
Working Paper Series 
2016/66/FIN 

(Revised version of 2015/81/FIN) 

A Working Paper is the author’s intellectual property. It is intended as a means to promote research to interested readers.  
Its content should not be copied or hosted on any server without written permission from publications.fb@insead.edu 
Find more INSEAD papers at http://www.insead.edu/facultyresearch/research/search_papers.cfm 

 
 

 

 
Servicing Securitisation through Excessive Foreclosure 

 
John C. F. Kuong 

INSEAD, john.kuong@insead.edu 
 

Jing Zeng 
Frankfurt School of Finance and Management, j.zeng@fs.de 

 
September 2016 

 
How does securitisation distort the foreclosure decision of non-performing mortgages? In a 
model in which informed securitisers raise liquidity by jointly designing the mortgage-backed 
security and the foreclosure policy, we find that securitisers optimally adopt an excessive 
foreclosure policy while retaining the junior tranche to signal positive information to investors 
in the senior tranche. In order to commit to the optimal foreclosure policy, securitisers can 
either outsource the foreclosure decisions to mortgage servicers who are intrinsically “tough" 
or offer the servicers “biased" servicing contracts. Policies that aim to restore ex post efficient 
foreclosures may inadvertently reduce mortgage originators' screening effort.  
 
Keywords: Security Design; Mortgage-backed Securities; Mortgage Foreclosure; Mortgage 
Servicers; Asymmetric Information; Commitment 
JEL Classification: D8, G21, G23, G24 

 
 
 

Electronic copy available at: http://ssrn.com/abstract=2662536 
 
 
 
 
We are grateful to Ulf Axelson, Bruno Biais, Philip Bond, Elena Carletti, Gilles Chemla, Amil Dasgupta, James Dow, Daniel 
Ferreira, John Geanakoplos, Denis Gromb, Barney Hartman-Glaser, Frederic Malherbe, Artem Neklyudov, Enrico Perotti, 
Guillaume Plantin, Uday Rajan, David Skeie, James Thompson and seminar and conference participants at ESSFM evening 
session (Gerzensee), Inaugural Young Scholars Finance Consortium (Texas A&M), Chicago Financial Institutions 
Conference, Banque de France-TSE `Securitisation: the way forward' Conference, Oxford Financial Intermediation Theory 
Conference 2015, Finance Theory Group Summer School 2015, CICF (Shenzhen) 2015, BI Oslo, Frankfurt School, INSEAD, 
LSE and Stockholm School of Economics. 

file:///C:/Users/oehler/OneDrive/Matt%20Oehler/Information%20&%20Publication/Working%20Paper/publications.fb@insead.edu
http://www.insead.edu/facultyresearch/research/search_papers.cfm
mailto:john.kuong@insead.edu
mailto:j.zeng@fs.de
http://ssrn.com/abstract=2662536


1 Introduction

In the aftermath of the subprime mortgage crisis, the United States has seen more

than 14 million properties with foreclosure filings between 2008 and 2014.1 This

wave of mortgage foreclosures, often referred to as the “foreclosure crisis”, has raised

concerns from the general public and was extensively covered by media outlets. In

response, policy makers have taken legal actions against large financial institutions

and launched large-scale incentive schemes to reduce mortgage foreclosures.2,3

Several recent empirical studies about the subprime mortgage crisis have suggested

that the securitisation of mortgages has hindered the modification of non-performing

(delinquent) mortgages and caused excessive foreclosures.4 These studies conjecture

that some features in the securitisation process might have impeded the modification

of securitised loans: the prinicpal-agent problem between the investors and the

mortgage servicer, who is granted the discretion to foreclose or modify delinquent

loans; the servicer’s biased compensation contracts towards foreclosure; and the

complex liability structure of the mortgage pools. It is imperative to recognise,

however, that these features are endogenously designed by the securitising banks

(henceforth “securitisers”) and the investors in the first place. Therefore, the exact

mechanism driving excessive foreclosure is yet to be fully understood.5

To study the economic role played by foreclosure policy in securitsation, we

develop a model of asset-backed securitisation with endogenous foreclosure. As in

DeMarzo (2005), due to liquidity needs, an informed securitiser in our model would

1According to a recent report by RealtyTrac (2015).
2For example, in a historical settlement known as the National Mortgage Settlement (NMS),

the five largest mortgage servicers were required by the federal government to provide $26 billion
in relief to distressed homeowners and in direct payments to the states and federal government.

3For example, the HOPE for Homeowners act was signed into law in 2008 to help homeowners
refinance their mortgages into affordable fixed-rate ones. The Home Affordable Modification
Program (HAMP) introduced in 2009 provides monetary incentives to mortgage servicers to
encourage loan modification instead of foreclosure. For a detailed description and an empirical
evaluation of HAMP, see Agarwal et al. (2012).

4Piskorski et al. (2010), Agarwal et al. (2011), Zhang (2013),and Kruger (2016) have shown
that, conditional on being delinquent, mortgages in a securitised pool are more likely to be
foreclosed than mortgages of similar quality in banks’ portfolios. Using an earlier sample from
2005 to 2007 and a different methodology, Adelino et al. (2013) do not find statistically different
probability of modification between securitised and portfolio loans. See Agarwal et al. (2011) and
Kruger (2016) for a discussion on the different findings of Adelino et al. (2013).

5Another argument for excessive foreclosure is to discourage strategic default by borrowers.
While this argument might apply to all securitised and portfolio loans, it is not clear why borrowers
would choose to strategically default more when their mortgages are securitised.
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like to design and sell a security backed by the cash flow from her mortgage pool

to uninformed investors.6 In addition, in the baseline model, the securitiser can

publicly announce and commit to a policy to foreclose or to modify any fraction

of delinquent mortgages in the future.7 In order to avoid any lemon discount, a

securitiser with a high-quality mortgage pool (or “a high-type securitiser”) optimally

signals her private information to investors in equilibrium by designing both the

mortgage-backed security (MBS) and the foreclosure policy.

Excessive foreclosure policy arises endogenously in our model in order to mitigate

informational frictions in securitisation. In a separating equilibrium, the high-type

securitiser commits to an ex post excessive foreclosure policy and issues a risky debt

(the senior tranche) to signal the quality of the mortgage pool to the uninformed

investors. While the sale of the senior debt tranche and hence the retention of the

junior equity tranche as a costly signal has been established in DeMarzo (2005) and

Chemla and Hennessy (2014), to the best of our knowledge, the signalling role of

the foreclosure policy is novel.

Two key properties of mortgage foreclosure drive our result. First, a foreclosure

policy matters more for the securitiser with a low-quality, more prone-to-default

mortgage pool. Second, foreclosure, as opposed to modification, lowers the exposure

of the mortgage pool’s cash flow to the borrower re-default risk, which is likely to

be driven by aggregate uncertainties in future unemployment and property prices.

Specifically, foreclosing a delinquent mortgage and selling the underlying property

provides a safe cash flow, whereas modification delivers a higher (lower) cash flow

when the once-defaulted borrower recovers (re-defaults). Put differently, foreclosure

is a (potentially costly) way to transfer cash flow from the recovery state to the

re-default state. We emphasise that we assume neither frictions in implementing

a foreclosure policy (e.g. incomplete contract) nor that foreclosure is inherently

inefficient. In fact, from an expected cash flow perspective, there is an efficient,

interior level of foreclosure and the securitiser can freely commit to it.

To see how these properties of mortgage foreclosure give rise to the signalling

role of an excessive foreclosure policy, consider the problem faced by the high-type

6In the remainder of the paper we will refer to a securitiser as ”she” and a servicer as ”he”.
7For simplicity, we do not distinguish modification from forbearance, i.e. simply continuing the

mortgage contract with the defaulted borrowers. As it will soon be clear, there is no qualitative
difference in the interpretation of our model.
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securitiser: she wants to maximise a weighted sum of the expected value of the

mortgage pool and the proceeds from the sale of the MBS to the investors, but

is limited by the low-type securitiser’s mimicking behaviour. By designing the

same foreclosure policy and MBS as the high type’s, the low-type securitiser can

sell her MBS at a premium, as if it is backed by a high-quality mortgage pool.

Anticipating the low type’s strategic behaviour, the high-type securitiser designs

jointly the foreclosure policy and the MBS to reduce this mimicking premium, in

order to realise more gains from securitisation. On the security design, the optimal

MBS is a risky debt, whose payoffs are less sensitive to changes in the underlying

mortgage pool’s cash flow in states with higher cash flows. Because of this decreasing

cash flow sensitivity, foreclosing mortgages increases the expected payoff of the

debt, as foreclosure essentially transfers cash flows from relatively good states to

worse states. Crucially, foreclosure increases the expected value of a debt backed

by a low-quality pool more than the same debt backed by a high-quality pool,

because the low-quality pool is more likely to return low cash flows. Foreclosure

thus reduces the mimicking premium. In equilibrium, the hype-type securitiser

optimally commits to an excessive foreclosure policy that trades off the benefit of

achieving more gains from securitisation against the cost of inefficient foreclosure.

The above reasoning uncovers a broader theoretical contribution of this paper,

namely the importance of the joint determination of security design and the foreclosure

policy. The high-type securitiser’s optimal foreclosure policy is excessive precisely

because the optimal MBS is a risky debt. The opposite distortion towards an overly

lenient foreclosure policy is never optimal given that the MBS is a risky debt. This

insight on the joint determination of multiple signalling devices is general and should

apply to many economic setting in which an informed owner of an asset or a firm

tries to raise funds by selling claims backed by the asset while he can commit to

take certain actions that affect the asset/firm’s future cash flow.

The mechanism behind excessive foreclosure as a costly signal relies on the

securitiser’s commitment power, i.e., the ability to implement the ex ante optimal

foreclosure policy ex post when defaults occur. Without commitment power, the

securitiser could ex post profitably deviate to an overly lenient foreclosure policy in

a manner akin to risk shifting, as her retained junior tranche benefits only from the

upside, when the delinquent mortgage recover. While junior retention is necessary
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to signal quality ex ante, it distorts the securitiser’s incentive to foreclose delinquent

mortgages ex post.

In light of the securitiser’s limited ability to commit, our result suggests an

economic rationale to hire an external mortgage servicer as a commitment device.

In practice, mortgage servicers feature prominently in the mortgage industry and

they are granted substantial discretion over the foreclosure decision of delinquent

mortgages.8 By contracting with a mortgage servicer, the securitiser can effectively

commit to an excessive foreclosure policy by either choosing a servicer known to be

“tough”, or providing the servicer with an incentive contract that is biased towards

excessive foreclosure. The first interpretation corroborates with the economically

significant servicer fixed effects in predicting foreclosure probability as emphasised

by Agarwal et al. (2011). The second interpretation can explain why servicers’

compensation contracts are endogenously biased towards foreclosure. Such biases

have been documented by Levitin and Goodman (2009), Thompson (2009) and

Kruger (2016). Finally, it is plausible that investors of an MBS infer information

from the identity of the servicer and/or the mortgage servicing contract, as such

information are provided in the Pooling and Servicing Agreement (PSA) alongside

the prospectus of the MBS issue.

Last we extend the model to endogenise the securitiser’s ex ante screening effort

choice at origination and derive policy implications of foreclosure policy regulations.

Our message is a cautionary one in the Lucas’ critique fashion: policies aiming to

restore ex post efficient foreclosure such as HAMP would inadvertently reduce the

securitiser’s incentive to screen mortgages diligently, leading to lower average quality

of the mortgage pools and overall welfare in the economy. When a securitiser with

a high-quality mortgage pool can no longer signal her quality effectively with an

excessive foreclosure policy, her initial incentive to exert screening effort in order to

form a high-quality mortgage pool is weakened. Although information asymmetry

in securitisation always results in under-provision of the securitisers’ screening effort,

ex post excessive foreclosure in our model is a remedy, instead of a symptom, of the

problem. Finally, we conclude with several novel, testable empirical implications of

our model regarding the relationship between mortgage pool quality and foreclosure

8The servicers perform duties including collecting the payments, forwarding the interest and
principal to the lenders, and negotiating new terms if the debt is not being paid back (loan
modification), or supervising the foreclosure process.
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policies as well as servicer-specific characteristics.

Our model starts from a discrete cash flow version of models of liquidity-based

security design, such as DeMarzo and Duffie (1999), DeMarzo (2005) and Biais

and Mariotti (2005). We depart from the literature by allowing the securitisers

to take actions that affect the distribution of the underlying asset’s cash flow. In

the context of mortgage securitisation, foreclosure policy of delinquent mortgages is

one of such actions. Endogenising the securitiser’s foreclosure policy enables us to

provide a theoretical explanation for the empirically documented causal relationship

between mortgage-backed securitisation and excessive foreclosure (e.g., Piskorski

et al., 2010; Agarwal et al., 2011; Zhang, 2013; Kruger, 2016). While excessive

foreclosure emerges as an additional dimension of the signal in equilibrium, the

optimal security in our model is debt, consistent with the classical literature on

security design with a privately informed issuer, started with Myers and Majluf

(1984) and Nachman and Noe (1994).

Several papers have highlighted the incentive problems associated with securitisation.

In a setting of securitisation under adverse selection similar to ours, Chemla and

Hennessy (2014) and Vanasco (2016) analyse how liquidity in the MBS market

affects ex ante loan originators’ screening effort. Hartman–Glaser et al. (2012) and

Malamud et al. (2013) also study the optimal design of the originator’s compensation

contracts to incentivise screening effort in a dynamic setting. These papers do

not study foreclosure policies of the delinquent mortgages. In contrast, we first

characterise the optimal foreclosure policy and then assess its effect on the originator’s

screening incentives.

Our results contribute to the understanding of the role of servicers and their

incentive contracts. Mooradian and Pichler (2014) study the asset composition

(pooling) of the mortgage pool and show that a non-diversified pool alleviates the

servicer’s moral hazard problem. Our paper instead focuses on the securitisation

(tranching) problem under asymmetric information for a mortgage pool of given

quality and shows that even in the absence of principle-agent frictions, it is ex ante

optimal to have an ex post inefficient foreclosure policy.

Our paper also relates to but differs from the literature on optimal loan modification

and foreclosure policy. Wang et al. (2002) and Riddiough and Wyatt (1994) argue

that borrowers’ strategic default incentives lead lenders to adopt a tough foreclosure
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policy in order to deter non-distressed borrowers from opportunistic behaviour.

However, these papers do not analyse the securitisation of the loans and their models

based on borrower strategy default do not readily explain the difference in the

foreclosure rates between securitised and portfolio loans. Gertner and Scharfstein

(1991) focuses on the free-riding problem among multiple creditors. Our paper

highlights that information asymmetry in securitisation can be another important

factor that determines foreclosure decisions.

The rest of the paper is organised as follows. Section 2 describes the model

setup. Section 3 carries out the main analysis of the equilibrium with endogenous

foreclosure policy. Section 4 highlights the importance of commitment over the

foreclosure policy and discusses the role of mortgage servicers in enabling such

commitment power. Section 5 extends the model to consider ex ante screening

incentives of the securitiser in relation to the subsequent foreclosure policy. Section

6 lists the model’s empirical implications, and Section 7 concludes.

2 Model setup

This section sets up the model and comments on the assumptions which are central

to the model.

There are four dates: 0, 1, 2 and 3. The model’s participants consist of a bank

and a continuum of outside investors. The main analysis of this paper (Section

3.1–4) concerns only t = 1, 2, 3. We extend the model to an ex ante stage t = 0

only in Section 5.

All agents are risk neutral. The outside investors are deep-pocketed and competitive.

The banks are impatient and have a discount factor δ < 1 between t = 1 and t = 3.

This follows the assumption of DeMarzo and Duffie (1999) and can be interpreted

as the bank’s liquidity needs.The outside investors have no such discount. Hence,

there are gains from trade between the bank and the investors.9

9Modelling gains from trade as a discount factor δ < 1 is standard in the literature to
capture liquidity needs stemming from, e.g., capital constraints, new investment opportunities,
risk-sharing, etc. (see Holmström and Tirole (2011)).
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Mortgage pool and foreclosures

The underlying asset in our model is a pool of assets containing a continuum of

ex ante identical mortgages that pay off at t = 3. For the main analysis, we focus

on the foreclosure of the mortgages when they become delinquent, as detailed below.

In Section 5 we extend the model to consider the ex ante screening effort choice,

which also has an effect on the cash flow of the mortgage pool.

We model the mortgage pool as a well-diversified portfolio of mortgages. The

mortgage pool is thus only exposed to aggregate risks, which affect the ability for

all borrowers to repay.10 Specifically, with probability π, the mortgage pool is in a

good state (G) and no borrowers default. In state G, the mortgage pool returns a

riskless cash flow ZG > 0. With probability 1 − π, the mortgage pool is in a bad

state (B) and each borrower defaults with some i.i.d. probability. Thanks to the

diversification benefit, the proportion of the mortgages that become delinquent at

t = 2 is fixed. We normalise the measure of the delinquent mortgages in the pool

to 1. The remaining performing mortgages continue to return a riskless cash flow

ZB < ZG at t = 3. Since mortgage delinquency only occurs in the bad state, we

will focus primarily on the sequence of events after a realisation of the bad state to

study mortgage foreclosures.

When a mortgage becomes delinquent at t = 2, it can be foreclosed or modified.11

In the case of foreclosure, the mortgage contract is terminated. The collateral

property is repossessed and sold to outside investors. Alternatively, if the delinquent

mortgage is modified, the modified mortgage pays off a riskless cash flow X > 0

with probability θ at t = 3 (recovery) or zero otherwise (re-default). For simplicity,

we assume that the recovery (and re-default) of delinquent mortgages in a give pool

are perfectly correlated. This is also in line with the assumption of a well-diversified

mortgage pool so that only aggregate risks affect the repayment of the borrower.

Finally, we further assume that ZG ≥ ZB + X, so that the value of a mortgage in

the good state is at least as high as in a bad state, even if all delinquent mortgages

are modified and subsequently resume payments in the bad state. Intuitively,

10Such aggregate risks can be aggregate properties prices and employment opportunities for the
borrower.

11Throughout the paper, we use “mortgage modification”, “mortgage renegotiation”, and
“mortgage forbearance” interchangeably. Because we abstract from the renegotiation process
between the mortgage lender and the borrower, one can interpret the cash flows to the mortgage
pool following a decision of no foreclosure as the un-modelled optimal renegotiation outcome.
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the difference accounts for the value of the temporary missing payments and the

modified lower principal and interest repayment.

The mortgage pool’s exposure to the aggregate risks is characterised by the

probability of entering state G. This probability π ∈ {πH , πL}, where πH > πL,

is mortgage-pool specific and is the source of information asymmetry between the

bank and outside investors, as detailed in the next section. We interpret πi as

the “quality” of the mortgage pool (subscript “H” stands for “High” and “L” for

“Low”). A high-quality pool is less exposed or more resilient to the aggregate risks

and hence is more likely to have no delinquent mortgages (be in the good state G).

At t = 1 all model participants have the prior belief that π = πH with probability

γ.12 We make the following assumption to ensure that the bad state (B) arises with

sufficient probability to guarantee its relevance, which ensures the concavity of the

objective function in the analysis.

Assumption 1. πL < πH < 1− (1− δ) θ
1−θ , where 1− δ < 1−θ

θ
.

The focus of the paper is to study what proportion of the delinquent mortgages

is chosen to be foreclosed in equilibrium and how securitisation affects this decision.

The foreclosure policy can be summarised by λi ∈ (0, 1), the fraction of delinquent

mortgages foreclosed in a mortgage pool of quality i (i.e. (1 − λ) fraction of

delinquency mortgages modified). Denote by L(λi) the total liquidation proceeds

from repossessed properties. For a given foreclosure policy, the overall cash flow

from a type i mortgage pool at t = 3 is then ZG with probability πi (the “Good”

state), ZB+L(λi)+(1−λi)X with probability (1−πi)θ (the “Recovery” state), and

ZB + L(λi) with probability (1− πi)(1− θ) (the “Re-default” state), as illustrated

in Fig 1.

The exact functional form of the liquidation proceeds L(λ) depends on the

characterisation of the market for distressed properties as well as the direct and

indirect costs associated with foreclosures. We abstract from these considerations

to keep the analysis general and make the following intuitive assumption on the

foreclosure technology.

Assumption 2. For λ ∈ (0, 1), (i) L(λ) is strictly increasing and concave; (ii)
∂ L(λ)
∂λ
∈ (0, X); and (iii) limλ→0−

∂ L
∂λ

> θX > limλ→1+
∂ L
∂λ

.

12In Section 5 we endogenise this probability γ in an ex ante stage t = 0 through the bank’s
screening effort choice.

9



Figure 1: Mortgage pool cash flow

πi

ZG

1− πi

Good state
(No defaults)
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(Default occurs)

θ

1− θ

ZB + L(λi) + (1− λi)X

Recovery state

ZB + L(λi)

Re-default state

Assumption 2 states that, first, L(λ) is strictly increasing and concave in λ.

The decreasing marginal liquidation value of the foreclosed loans could be due to

un-modelled heterogeneity in the market value of the underlying properties at t = 2.

All else equal, a delinquent mortgage backed by a property of higher market value

would be foreclosed first. Alternatively, the decreasing marginal liquidation value

of the foreclosed loans could also be due to either scarce capital or scarce expertise

in making the renovation needed to realise the value of the properties. Secondly,

the marginal liquidation value of the mortgage is below the full repayment value

of the mortgage ∂ L(λ)
∂λ

∈ (0, X) for any λ ∈ (0, 1). Intuitively, there are costs

associated with liquidating a mortgage, due to, for example, renovation and repair

costs associated with investing in distressed property, as well as other outstanding

liabilities such as unpaid fees and taxes. The last part of this assumption is a

technical assumption to ensure an interior optimal foreclosure policy in the first-best

case.

Securitisation

Because of the liquidity discount δ, at t = 1, the bank who owns the mortgage pool

would like to design and sell a security backed by the cash flow of the mortgage

pool at t = 3 to outside investors. We will henceforth refer to the bank as

the “securitiser” and the security as the mortgage-backed securities (MBS). The

securitiser thus receives the cash proceed from selling the MBS at t = 1, and
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retains any residual cash flow from the mortgage pool after paying off the investors

at t = 3.

We mentioned earlier that there is asymmetric information between the securitiser

and the investors. This creates friction in the securitisation process akin to the

classical lemon’s problem in Akerlof (1970). Specifically, at the beginning of t = 1,

the securitiser receives private information regarding the quality of the mortage pool

πi ∈ {πH , πL}. The source of private information could come from new information

produced during the process of structuring the individual mortgages into a pool for

securitisation, as in DeMarzo and Duffie (1999).13

The focus of this paper is the foreclosure decision, which interacts with the

securitisation process because the foreclosure policy affects the cash flows of the

mortgage pool. We therefore model the securitisation process as follows. The

securitiser with information πi offers the outside investors a security Fi and promises

a foreclosure policy λi. The security Fi is contracted upon the cash flows at t = 3,

specifying payments to the MBS investors for each realisation of the cash flow. We

restrict our attention to monotone securities.14

We assume that the securitiser is able to commit to the foreclosure policy

promised at t = 1 and then implement it as t = 2, when mortgage defaults occur.

The securitiser’s ability to commit is crucial to our main results. We show how

the results change if the securitiser did not have commitment power and discuss

how the securitiser can establish commitment power over her foreclosure policy by

contracting with a mortgage servicer in Section 4.

After observing the offer (Fi, λi), the competitive investors form a posterior

belief π̂ regarding the private information of the securitiser, and bid the price of the

security p to its fair value. At t = 3, after paying investors according to Fi from

13DeMarzo and Duffie (1999) solves the ex ante security design problem, whereas we solve for
the ex post security design problem after the banks learn about their private information. As
shown by DeMarzo (2005) and DeMarzo et al. (2015), similar intuition carries through in the
ex post problem, although the problem becomes more complicated as the design itself becomes a
signal.

14That is, a higher realisation of the mortgage pool cash flow should leave both the outside
investors and the securitiser a (weakly) higher payoff. Although this implies some loss of generality,
it is not uncommon in the security design literature, e.g. Innes (1990) and Nachman and Noe
(1994). One potential justification provided by DeMarzo and Duffie (1999) is that, the issuer has
the incentive to contribute additional funds to the assets if the security payoff is not increasing in
the cash flow. Similarly, the issuers has the incentive to abscond from the mortgage pool if the
security leaves the issuer a payoff that is not increasing in the cash flow. If such actions cannot
be observed, the monotonicity assumption is without loss of generality.
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the mortgage pool cash flow, the securitiser consumes any residual cash flow.

Time line and the equilibrium concept

The timeline of the model is summarised in Table 1. The main analysis carried out

in Section 3.1–4 concerns only t = 1, 2, 3. We extend the model to an ex ante stage

t = 0 in Section 5.

Table 1: Model timeline

t = 0 Securitiser exerts screening effort (Section 5 only)

t = 1 Securitiser observes πi and offers (Fi, λi)
t = 2 Mortgage defaults in state B

Securitiser implements foreclosure policy λi

t = 3 Final payoffs realise

The equilibrium concept in this model is the perfect Bayesian equilibrium (PBE).

Formally, a PBE consists of a security Fi issued by the securitiser of each type

i ∈ {H,L}, the foreclosure policy λi of the securitiser of each type, and a system

of beliefs such that i) the securitiser chooses the security and the foreclosure policy

at t = 1 to maximise her expected payoff, given the equilibrium choices of the

other agents and the equilibrium beliefs, and ii) the beliefs are rational given

the equilibrium choices of the agents and are formed using Bayes’ rule (whenever

applicable). As there can be multiple equilibria in games of asymmetric information,

we invoke the Intuitive Criterion of Cho and Kreps (1987) to eliminate equilibria

with unreasonable out-of-equilibrium beliefs. This allows us to restrict attention to

only the least cost separating equilibrium.

3 Securitisation with Endogenous Foreclosure

In this section we analyse our model of securitisation with endogenous foreclosure.

In order to contrast with the distortion in the foreclosure policy created by information

asymmetry, we first present the benchmark case under full information, before we

proceed to solve the model under asymmetric information.
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3.1 First-best and the full-information benchmark

In this section we first characterise the first-best foreclosure policy. We then analyse

the benchmark equilibrium under full information, and show that the first best is

achieved in the full-information equilibrium.

The first-best foreclosure policy maximises the value of the mortgage pool Vi(λ).

λFBi = arg max
λ

Vi(λ) (1)

where Vi(λ) ≡ πiZG + (1− πi)[ZB + L(λ) + (1− λ)θX] (2)

The solution is characterised by the first order condition,
∂ L(λFB

i )

∂λ
= θX. That is,

since the marginal value obtained from foreclosure is decreasing with the fraction

of foreclosed loans, the first-best level of foreclosure is determined such that the

the margin value from foreclosure is equal to the expected recovery value given

modification, conditional on the bad state (B). Furthermore, as the H and L type

mortgage pools only differ in the probability of entering state (B), the first-best

level of foreclosure is identical across types. Denote the solution to this first order

condition by λFB ∈ (0, 1).

We now characterise the equilibrium under full information. Firstly consider the

optimal security issued in the securitisation process at t = 1. Since any retention

of the cash flows by the securitiser incurs a liquidity discount, it is optimal for the

security issued to be a full equity pass-through security to the investors, when all

securities are fairly priced given full information. Secondly, given that the entire

cash flow is securitised, the securitiser optimally commits to the first-best foreclosure

policy λFB to maximise the value of the mortgage pool and hence her payoff.

The following proposition thus summarises the full-information benchmark results.

All proofs are in the Appendix.

Lemma 1. In the full-information benchmark, the securitiser of both types issues

a pass-through equity security backed by the cash flows, and chooses the first-best

foreclosure policy λFB.

Denote henceforth the expected payoff to a type i securitiser in the full-information

benchmark as UFB
i ≡ Vi(λ

FB). We would like to conclude this section by stressing

the fact that the first-best foreclosure policy is achieved in the full-information
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benchmark equilibrium. Therefore, any inefficiency in the equilibrium foreclosure

policy in this paper is driven by information asymmetry between the securitiser and

the outside investors. We shall turn to this asymmetric information problem in the

next section.

3.2 Excessive foreclosure policy as a costly signal

In this section, in order to highlight the main result of excessive foreclosure policy,

we solve the model under the simplifying assumption that the equilibrium securities

are debt securities with endogenous face values.

At t = 1, the securitiser with private information πi issues an MBS Fi backed

by the cash flows of the mortgage pool, and promises a foreclosure policy λi.

Observing the offer from the securitiser (Fi, λi), the investors form a belief about the

quality π̂ of the mortgage pool. We focus our attention to the least cost separating

equilibrium, which is the unique equilibrium that satisfies the Intuitive Criterion in

our model. We state this result in the following lemma and formally prove it in the

Appendix.

Lemma 2. The unique equilibrium that satisfies the Intuitive Criterion is the least

cost separating equilibrium.

Let’s now start the analysis with the securitiser who owns a low quality mortgage

pool (high default probability). In a separating equilibrium, the low-type securitiser

always receives the fair price on the security issued. Therefore the securitiser

maximises her expected payoff by selling the entire cash flow from the mortgage

to outside investors, and promising the first-best level of foreclosure policy. There

is no distortion in the form of either inefficient retention or inefficient foreclosure for

the low type. Denote by U∗i the expected payoff to a type i securitiser in equilibrium.

The payoff to the low-type securitiser in a separating equilibrium is thus equal to the

first-best level, U∗L = UFB
L , while her foreclosure policy in equilibrium is λ∗L = λFB.

We denote henceforth with superscript ∗ all equilibrium quantities.

The high-type securitiser, on the other hand, has to issue a security and promise

a foreclosure policy such that in equilibrium it is not profitable for the low type to

deviate and mimic. Since we restrict the security to debt, we denote by FH the

face value of the security issued by the high-type securitiser. We focus on the case
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in which FH ∈ (ZB + L(λH), ZG), i.e. a risky debt, for any λH that the securitiser

promises. We show in Section 3.3 that the optimal security is indeed a risky debt

(Proposition 3).

Denote by pi(F, λ) the value of the MBS given a face value of F and a committed

foreclosure policy λ, backed by a mortgage pool of quality i. That is,

pi(F, λ) = πiF + (1− πi)[θmin{ZB + L(λ) + (1− λ)X,F}+ (1− θ)(ZB + L(λH))]

(3)

In a separating equilibrium, after observing (FH , λH), the investors believe that the

issuer of the security with face value FH who promises a foreclosure policy of λH is

of the high type. The market price of the MBS is therefore equal to pH(FH , λH).

In the least cost separating equilibrium, the high-type securitiser maximises the

value of the proceeds from securitisation plus the value of the residual cash flow by

choosing the face value of her debt and her promised foreclosure policy λH . Her

equilibrium payoff is given by

U∗H = max(FH ,λH) pH(FH , λH) + δ [VH(λH)− pH(FH , λH)]

s.t. (IC) UFB
L ≥ pH(FH , λH) + δ [VL(λH)− pL(FH , λH)] (4)

where (IC) is the incentive compatibility constraint for the low type not to mimic

the offer (FH , λH) of the high type. Denote by (F ∗H , λ
∗
H) the unique solution to the

above optimisation programme.

The following proposition highlights a key property of the equilibrium foreclosure

policy, which is the main result of the paper.

Proposition 1. In the least cost separating equilibrium, the high-type securitiser

adopts a (weakly) excessive foreclosure policy in equilibrium, whereas the low-type

securitiser adopts the first-best foreclosure policy. That is,

λ∗H ≥ λFB = λ∗L (5)
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The weak inequality is strict if and only if

G(λFB) ≡ (πH − πL)

πL(1− δ) (1− θ)(1− λFB)X − ZG

+ZB + L(λFB) + (1− λFB)X > 0 (6)

As shown in the Appendix, the condition G(λFB) > 0 given by Eq. 6 implies

that the equilibrium face value of the debt satisfies F ∗H < ZB +L(λ∗H) + (1−λ∗H)X.

That is, the optimal debt security in equilibrium is protected by high retention and

relatively safe, so that the MBS does not default in the recovery state, but only

in the re-default state. Proposition 1 states that, in an equilibrium in which the

MBS issued by the high type is relatively safe, the equilibrium foreclosure policy

of the high type deviates from the first-best policy and is qualitatively excessive.

G(λFB) > 0 is more likely to hold when i) the discount factor δ is high, and/or ii)

the extent of asymmetric information as measured by πH−πL
πL

is high, so that a large

fraction of the cash flows must be retained by the high type in order to signal her

quality.

To clarify the trade-off faced by the high-type securitiser when choosing her

foreclosure policy in equilibrium, we can rewrite the expected payoff to the high

type issuer as follows, which consists of two components.

δVH(λH) + (1− δ)pH(FH , λH) (7)

The first term represents the discounted value of the mortgage pool enjoyed by the

securitiser without securitisation, and the second term represents the gains from

securitising given the security choice and the foreclosure poplicy.

The equilibrium foreclosure policy λ∗H > λFB trades off the efficiency loss

associated with excessive foreclosure
∂VH(λ∗H)

∂λH
< 0 against increased gains from

securitisation. The latter force is stated by the following corollary. Denote by

p̂(λH) the highest securitisation proceeds the high-type securitiser can obtain by

optimising the face value of the debt issued in a separating equilibrium in which

her foreclosure policy is λH . That is, p̂(λH) ≡ maxFH
pH(λH , FH) s.t. (IC).

Corollary 1. In a separating equilibrium, excessive foreclosure allows the high-type

securitiser to receive higher securitisation proceeds. That is, ∂p̂(λH)
∂λ

∣∣∣
λH=λFB

≥ 0,
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where the inequality is strict if and only if Eq. 6 holds.

The high-type securitiser commits to excessive foreclosure in equilibrium, because

an excessive foreclosure policy reduces the signalling cost she must incur at the

securitisation stage. We shall illustrate the intuition behind such signalling cost

reduction effect as follows: a marginally more excessive foreclosure policy relaxes the

low type’s no-mimicking, incentive compatibility constraint, which can be re-written

as

δVL(λH) + pH(FH , λH)− δpL(FH , λH)︸ ︷︷ ︸
premium from securitising with (FH , λH)

≤ UFB
L (8)

Relaxing the incentive constraint is equivalent to lowering the low type’s mimicking

payoff, i.e. the left-hand-side of (Eq. 8), as UFB
L is not affected by the high type’s

action (FH , λH). The mimicking payoff comprises of two parts – i) the discounted

value of the low type’s portfolio δVL(λH) following deviation in her foreclosure

policy from the first-best to that of the high type, λH , and ii) the premium (in

utility units) from securitising under the terms offered by the high type, where the

low-type securitiser receives pH(FH , λH) from the investors whilst only giving up a

security that is worth δpL(FH , λH) to her. We exclusively focus on the premium

pH(·)−δpL(·) in the following discussion of the intuition because the expected value

of the pool VL is not affected by a marginal deviation from λFB as ∂VL(λFB)
∂λ

= 0.

The key driving forces behind the result that excessive foreclosure reduces the

premium pH(·)−δpL(·) come from the sensitivity differential of pH(·) and pL(·) with

respect to changes in foreclosure rate λH and face value FH . More precisely, the low

type’s valuation of the MBS is more sensitive to an increase in λ but less sensitive

to an increase in FH than the high type’s, as shown in

(1− πL)(1− θ)L′(λ) =
∂pL(F, λ)

∂λ
>

∂pH(F, λ)

∂λ
= (1− πH)(1− θ)L′(λ) (9)

1− (1− πL)(1− θ) =
∂pL(F, λ)

∂F
<

∂pH(F, λ)

∂F
= 1− (1− πH)(1− θ) (10)

Equipped with these properties of the MBS valuation, we can show that the high

type does strictly better under an excessive foreclosure policy than under the

first-best one. Starting from the separating offer (λFB, F FB
H ) that binds (IC), we

construct an alternative offer by with a marginal increase in λH and a simultaneous
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marginal decrease in FH such that pH(·) remains unchanged. This alternative offer

overall increases pL(·) as it increases more with the increase in λH and decreases less

with the decrease in FH than pH(·), thereby reducing the premium pH(·) − δpL(·)
and relaxing the (IC).15 Finally, as proven in the Appendix (as part of the proof

of Proposition 3), a slack (IC) implies that the high type can issue an MBS with

lower retention that gives her strictly higher ex ante utility, given her (marginally)

excessive foreclosure policy. Since the low-type securitiser receives the first-best

payoff in the separating equilibrium, excessive foreclosure by the high-type not

only improves the high type’s equilibrium payoff, but also achieves an equilibrium

allocation that Parato-dominates any allocation with first-best foreclosure.

The final missing piece in understanding the intuition behind excessive foreclosures

reducing signalling cost is what drives the sensitivity differential properties, in

particular Eq (9). Several important features of the model give rise to this property.

First, owing to the information asymmetry between the securitisers and the investors,

the optimal MBS issued by the high type is a risky debt, whose payoffs are more

sensitive to a change of the mortgage pool’s cash flow in the worse states. Particularly,

when Eq. 6 holds, the MBS has a face value that is strictly lower than the cash flow

in the recovery state. This MBS’s payoff is only sensitive to a change in the mortgage

pool’s cash flow in the re-default state. Second, an increase in the foreclosure rate

essentially transfers cash flow from the recovery state to the re-default state. This

in turn increases the expected payoffs of the risky debt backed by either type of

mortgage pool, as a consequence of the aforementioned difference in the sensitivity of

the MBS in different states. Finally, as the low-quality pool has a higher probability

of delinquency, foreclosure raises the value of the MBS backed by a low-quality pool

15 A more formal argument of this alternative offer: increase λH by a small positive amount

ε and decrease FH by ∂p/∂λH

∂p/∂FH
ε. By construction, the price of the MBS p(FH , λH) is the same

because by total differentiation and first-order approximation

dpH(FH , λH) ≈ ∂pH
∂FH

dFH +
∂pH
∂λH

dλH =
∂pH
∂FH

(
−∂pH/∂λH
∂p/∂FH

ε

)
+
∂pH
∂λH

ε = 0 (11)

Meanwhile, this deviation increases the low type’s valuation of the MBS pL(FH , λH) as

dpL(FH , λH) ≈ ∂pL
∂FH

dFH +
∂pL
∂λH

dλH =

[
∂pL
∂FH

(
−∂p/∂λH
∂p/∂FH

)
+
∂pL
∂λH

]
︸ ︷︷ ︸

>0 by Eq. (9) and (10)

ε > 0 (12)

This offer thus relaxes (IC) while leaving the high type indifferent.
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more than the same MBS backed by a high-quality pool.

To summarise, the high-type securitiser commits to excessive foreclosure λ∗H ≥
λFB in equilibrium, in order to generate greater gains from securitisation. This

is because excessive foreclosure reduces the exposure of the mortgage pools to the

risk of re-default of the delinquent mortgages, which discourages mimicking by the

low type, reducing the signalling cost the high type must incur at the time of

securitisation.

This effect is further illustrated by the following comparative statics: Firstly, an

increase in the quality of the high type, πH , exacerbates the information asymmetry

because it creates greater mimicking incentives. As a result, there is more distortion

towards excessive foreclosure in equilibrium. Secondly, an increase in the discount

factor of the securitiser, δ, reduces the distortion in the high-type securitiser’s

foreclosure policy. Since the high-type chooses an excessive foreclosure policy in

order to reduce the cost of retention, an increase in δ decreases such cost, mitigating

the need for excessive foreclosure.

Proposition 2. The equilibrium foreclosure policy of the high-type securitiser, and

hence the distortion in the foreclosure policy, is increasing in her quality, and

decreasing in the discount factor δ. That is,
∂λ∗H
∂πH

> 0 and
∂λ∗H
∂δ

< 0 when Eq. 6

holds.

3.3 The optimality of debt

In this section we endogenise the security design problem of the securitisers, and

show that indeed a risky debt is an optimal security in this model.

As analysed in Section 3.2, the low-type securitiser optimally issues a full pass-through

security to outside investors, because she always receives the fair price on her

security in any separating equilibrium.

We therefore focus our analysis on the high-type securitiser. In conjunction

with promising a foreclosure policy λH , the high type designs a security FH =

(f1, f2(c2), f3(c3)), which maps the realisation of the mortgage pool cash flows to

a set of payoffs to the outside investors, as summarised in Table 2, for any given

foreclosure policy λ. We suppress the dependency of c2 and c3 on λ whenever it

does not create confusion.
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Table 2: Payoffs of a generic security backed by the mortgage pool cash flows

Realisation of cash flow Security payoff F
c1 ≡ ZG f1

c2(λ) ≡ ZB + L(λ) + (1− λ)X f2(c2)
c3(λ) ≡ ZB + L(λ) f3(c3)

Notice that f2(c2) and f3(c3) also depends indirectly on the foreclosure policy

λ through c2 and c3. For brevity we also suppress the dependency of fj(cj) on cj,

j ∈ {2, 3}, whenever it is clear. The value of the MBS F backed by a mortgage

pool of quality i, given a committed foreclosure policy λ, is thus given by

pi(F , λ) = πif1 + (1− πi)[θf2 + (1− θ)f3] (13)

In the least cost separating equilibrium, the high-type securitiser maximises the

proceeds from securitisation plus the residual cash flow by choosing the security

FH to offer and her promised foreclosure policy λH , while ensuring that it is not

profitable for the low type to deviate and mimic.

max(FH ,λH) pH(FH , λH) + δ [VH(λH)− pH(FH , λH)]

s.t. (IC) UFB
L ≥ pH(F , λH) + δ [VL(λH)− pL(FH , λH)]

(MNO) f1 ≥ f2 ≥ f3 ≥ 0 ∀λ ∈ (0, 1) and
∂fj(cj)

∂cj
≥ 0 ∀j ∈ {2, 3}

(MNI) c1 − f1 ≥ c2 − f2 ≥ c3 − f3 ≥ 0 ∀λ ∈ (0, 1) and

∂

∂cj
(cj − fj(cj)) ≥ 0 ∀j ∈ {2, 3} (14)

The optimisation programme given by Eq. 14 takes into account the security

design problem. Therefore it has two additional monotonicity constraints regulating

the security design when compared to Eq. 4: (MNO), the outside investors’

monotonicity constraint, and (MNI), the insider residual claim’s monotonicity

constraint. These constraints state that, respectively, the payoff of the security

and the residual payoff to the securitiser are weakly increasing in the realisation of

the cash flows.16

16We specify the two monotonicity constraints for any generic security F and for all possible
realisation of the cash flows. Since the foreclosure policy λH is pre-committed, only three cash
flows occur in equilibrium, namely c1, c2(λH) and c3(λH). The equilibrium security is uniquely
defined for these cash flows that occur in equilibrium. Although the payoff of the optimal security
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The following proposition establishes the optimality of debt, which was taken

as given in the discussion in Section 3.2.

Proposition 3. For any pre-committed foreclosure policy λH , a risky debt backed

by the mortgage pool with face value FH ∈ (c3(λH), c1) is an optimal security for

the high-type securitiser. Formally, the MBS FH = {f1, f2, f3} is given by fj =

min{cj, FH} ∀λ ∈ (0, 1), ∀j ∈ {1, 2, 3}.

This result is consistent with the classic literature on the pecking order of outside

financing, e.g. Myers (1984) under asymmetric information. In order to discourage

the low type from mimicking, the optimal security issued by the high-type is a

debt security (FH < c1). Moreover, the high-type exhausts her capacity of issuing

risk-free debt (FH > c3(λH)), since risk-free securities are free from the information

asymmetry problem.17

The high-type securitiser’s retention of residual claims of future cash flow could

be seen as a necessary signalling cost in order to separate from the low type, a

well-established result in the security design literature such as Leland and Pyle

(1977) and DeMarzo and Duffie (1999). As discussed in the previous section, the

main result of this paper is to show that excessive foreclosure helps to mitigate such

signalling cost for the high-type securitiser. The extent of excessive foreclosure in

equilibrium thus trades off the direct cost of inefficient foreclosure against the greater

gains from securitisation.

4 Mortgage servicers as commitment devices

Thus far we have made the important assumption that the securitiser is able to

commit to a foreclosure policy at t = 1 and then implement it at t = 2 when

delinquencies occur. In this section, we first show how the results change if the

securitiser could not commit. We then introduce mortgage servicers into the model

and argue that they enable the securitisers to effectively commit to a foreclosure

policy.

may not be uniquely pinned down for the cash flows associated with off-equilibrium foreclosure
policies, this is inconsequential for solving the optimal foreclosure policy.

17Technically, the cash flow distribution in our model satisfies the (HRO) property, which is
weaker than the Monotone Likelihood Ratio Property (MLRP) commonly assumed in signalling
environments. DeMarzo et al. (2015) show that the (HRO) is a sufficient condition to ensure the
optimality of debt security in a signalling framework with liquidity needs.
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4.1 The effect of commitment

In order to formally study the importance of the securitiser’s ability to commit to

a foreclosure policy, we modify the sequence of events in the model, as shown in

Table 3.

Table 3: Model timeline without commitment

t = 1 Securitiser observes πi and offers Fi
t = 2 Mortgage defaults in state B

Securitiser chooses foreclosure policy λi

t = 3 Final payoffs realise

The crucial change here is that the securitiser chooses the foreclosure policy

after she has sold the MBS to the investors. This implies that promised foreclosure

policies at t = 1 are no longer credible and thus cannot signal any information

because the investors anticipate that the securitiser would always choose the foreclosure

policy that maximises the value of her residual claim when mortgage defaults occur

at t = 2. We defer the characterisation of the equilibrium without commitment to

the Appendix, and discuss the main intuition below.

To demonstrate the incentive problem associated with the lack of commitment,

consider the high-type securitiser’s incentive to foreclose the delinquent mortgage

at t = 2 in state B, for a given MBS issued at t = 1. Recall that when Eq. 6

holds, an optimal MBS with commitment is a debt security with face value F ∗H ∈
(ZB + L(λ∗H), ZB + L(λ∗H) + (1 − λ∗H)X) and the securitiser would like to commit

to an excessive foreclosure policy λ∗H > λFB (as described in Proposition 1).

Without commitment, however, this foreclosure policy is not incentive compatible

at t = 2. Given the MBS with face value F ∗H issued at t = 1, the securitiser holds

the residual levered-equity claim at t = 2, which only pays off in the recovery

state. Therefore, instead of implementing the promised foreclosure policy λ∗H ,

the securitiser would be better off deviating to a more lenient foreclosure policy.

By allowing more loan modification, the securitiser increases the cash flow of the

mortgage pool in the recovery state, and thus her expected payoff.18

18The illustrated profitable deviation to a more lenient foreclosure policy always exists. There
might exist other profitable deviations, as the optimal security under commitment F∗

H is not
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The above reasoning highlights the stark contrast between the securitiser’s

incentive to foreclose delinquent loans at t = 1 and at t = 2. The high-type

securitiser optimally issues a debt security at t = 1 and retains the residual equity

stake to signal the quality of her mortgage pool. In order to reduce the retention

cost, she would like to commit to an excessive foreclosure policy. Yet precisely

because of the retained equity stake necessary as a signal at t = 1, the securitiser at

t = 2 faces distorted incentives, which prevent her from implementing the ex ante

desired excessive foreclosure policy.

The lack of commitment thus limits the foreclosure policy the securitiser can

credibly choose in equilibrium. This in turn reduces the efficiency of securitisation

in equilibrium, as demonstrated by the following proposition. Denote by UNC
i

the expected payoff to a securitiser with a type i mortgage pool in the least cost

separating equilibrium without commitment, whereNC stands for “No Commitment”.

Proposition 4 establishes Eq. 6 as a sufficient condition for the constraint imposed

by the lack of commitment to bind and lead to efficiency loss.

Proposition 4. If Eq. 6 holds, compared to the scenario without commitment,

the low-type securitiser in the least cost separating equilibrium with commitment is

equally well off whereas the high-type securitiser is strictly better off. That is,

UFB
L = U∗L = UNC

L and UFB
H > U∗H > UNC

H (15)

4.2 Mortgage servicers enable commitment

The high-type securitiser has a commitment problem because her incentives at t = 1

to signal her quality through excessive foreclosure conflicts with her incentives at t =

2 to maximise the value of her residual claim. Outsourcing the foreclosure decision

at to a third-party agent could thus avoid such conflict and hence effectively restore

the securitiser’s commitment power. Indeed, this argument provides a raison d’être

for hiring mortgage servicers, a common practice in the mortgage securitisation

industry. As we show below, this interpretation corroborates with some empirical

findings regarding the servicers’ impact on foreclosures and their compensation

contracts.

uniquely defined.
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We propose two potential ways in which the securitiser can commit to a foreclosure

policy through contracting with a mortgage servicer. First, if servicers have different

mortgage foreclosure capacities or modification capacities and such heterogeneity

is public information, the high-type securitiser can signal and effectively commit

to a “tough” foreclosure policy by hiring a servicer with high foreclosure capacity

(or low modification capacity). This mechanism rests on the assumption that it is

costly for servicers to alter their capacity significantly. We believe this assumption is

realistic. For example, Thompson (2009), among others, argue that foreclosing and

modifying a delinquent mortgage require substantial human capital and expertise

hence it is very difficult and costly for a servicer expand the capacity quickly. This

interpretation of heterogeneity among mortgage servicers corroborates with the

economically and statistically significant servicer fixed effect in predicting foreclosure

probability, as emphasised by Agarwal et al. (2011).

Alternatively, the securitiser can hire a servicer and provide him a compensation

contract that encourages foreclosure. This can explain why mortgage servicing

contracts with biased incentives are offered in practice. Thompson (2009) and

Kruger (2016) argue that the biased incentives of the servicers are a key friction

causing excessive foreclosures. Contracting with servicers can implement ex post

inefficient foreclosures as long as there are frictions preventing the contract from

being renegotiated. Empirically Kruger (2016) has shown that indeed mortgage

servicing contracts are rarely renegotiated, mainly because by law, it requires the

consent of the securitiser, the servicer, and the dispersed MBS investors.

We formalise the above ideas in the two extensions below respectively.

4.2.1 Mortgage servicers with heterogeneous foreclosure capacity

In this section, we extend the model to allow the securitiser to choose a mortgage

servicer of known foreclosure capacity at t = 1. More specifically, there exists a

continuum of servicers with different foreclosure capacity τ ∈ (0, 1), which is public

information. The foreclosure capacity affects the cost of foreclosure. At t = 2, if

the servicer with capacity τ forecloses a fraction λ of the delinquent mortgages, he

incurs a quadratic private cost of κ
2
(λ − τ)2 for some κ > 0. The servicer chooses

the foreclosure policy at t = 2 to minimise the cost. It follows that the servicer

chooses to foreclose a fraction λ = τ of the delinquent mortgages. We henceforth
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refer to τ as the intrinsic “toughness” of the servicer.

At t = 1, after learning the quality of her mortgage pool πi, the securitiser can

choose to hire a servicer with capacity τi. Each servicer has a reservation utility of

0, and is therefore willing to work for a securitiser if chosen. The securitiser then

announces the identity of the servicer alongside the security F that she offers to

the investors. The overall timeline of this extension of the model is summarised in

Table 4.

Table 4: Model timeline with heterogeneous servicers

t = 1 Securitiser observes πi
Securitiser chooses servicer ti and offers Fi

t = 2 Mortgage defaults in state B
Servicer’s foreclosure policy λi = τi

t = 3 Final payoffs realise

It is important to notice that the intrinsic “toughness” of the servicers directly

affects the subsequent foreclosure policy in equilibrium, because the foreclosure

decision is now made by the servicer. Therefore the low-type securitiser would like

to choose a “neutral” sevicer with τL = λFB to implement the first-best foreclosure

policy, whereas the problem faced by the high-type securitiser at t = 1 can be

re-written as

max
FH ,τH

pH(FH , λH) + δ[VH(λH)− pH(FH , λH)]

s.t λH = τH

and (IC) as given by Eq. 4 (16)

As discussed in Section 3, at t = 1, the high-type securitiser benefits from

committing to an excessive foreclosure policy. In this extensions, this can be exactly

achieved by hiring a servicer who is known to be “tough”, as stated below.

Proposition 5. In the least cost separating equilibrium, the high-type securitiser

hires an excessively “tough” servicer, whereas the low-type securitiser hires a “neutral”

servicer. That is, τ ∗H = λ∗H ≥ λFB = τ ∗L. The equilibrium foreclosure policy is

(λ∗H , λ
∗
L).
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Proposition 5 highlights that, not only do the servicers hired in equilibrium

implement the ex ante optimal foreclosure policy, they also serve as a signalling

device at the securitisation stage. By hiring an excessively “tough” servicer, the

high-type securitiser signals to the investors the quality of her mortgage pool, and

reduces the costly retention in equilibrium.

4.2.2 Mortgage servicing contract with biased incentives

In this section, we extend the model to allow the securitiser to explicitly contract

with the servicer at t = 1. Unlike in the previous subsection, in this extension we

assume that the servicer is free to choose any foreclosure policy without incurring

any cost, consistent with the setup in the baseline model in which the foreclosure

decision is made by the securitiser. This then creates a role for incentive contracts,

in order for the securitiser to induce the servicer to make the desired foreclosure

policy at t = 2.

We assume that at t = 1, after learning the quality of her mortgage pool πi, the

securitiser offers a servicing contract to the servicer. A contract (αi, βi) specifies

a percentage fee to the servicer based on the repayments from the performing (or

recovered) mortgages αi > 0, and a percentage fee based on the foreclosure proceeds

αiβi ≥ 0.19 The parameter βi measures the relative pay from foreclosure compared

to modification. The expected payoff to the servicer, given a foreclosure policy of

λ, is given by

π̂αi [βi L(λ) + θ(1− λ)X] (17)

where π̂ is the servicer’s expectation about the securitiser’s type πi, and plays no role

in characterising the equilibrium foreclosure policy. The servicer has a reservation

utility of 0, and is therefore willing to accept any servicing contract of non-negative

value.

Once accepted by the servicer, the servicing contract (αi, βi) is public information

at t = 1. The securitiser then offers a security Fi to the investors. The timeline of

19This specification of the contract resembles a servicing agreement in practice, and is without
loss of generality. Any non-decreasing contract based on the cash flows of the mortgage pool in
the bad state can be written as a contract (α, β). We also abstract from payments for servicing
the non-defaulting loans, as they play no role in affecting how the servicing contracts affect the
foreclosure of delinquent mortgages.
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this version of the model is summarised in Table 5.

Table 5: Model timeline with servicing contracts

t = 1 Securitiser observes πi
Securitiser offers the servicer a servicing contract (αi, βi)
Securitiser offers investors a security Fi and discloses (αi, βi)

t = 2 Mortgage defaults in state B
Servicer chooses foreclosure policy λi

t = 3 Final payoffs realise

We now solve for the servicing contracts and foreclosure policy in equilibrium

backwards. At t = 2, when the mortgages default in the bad state, the servicer

chooses the foreclosure policy that maximises his expected payoff as specified by

the servicing contract. The resulting foreclosure policy λs, where the subscript

stands for servicer, is characterised by the first order condition βi
∂ L(λs)
∂λ
− θX = 0.

It is useful to notice that the incentive for the servicer to foreclosure the delinquent

mortgages is determined by the parameter βi of the contract, as stated in the

following lemma.

Lemma 3. For a given servicing contract (αi, βi), the foreclosure decision of the

servicer at t = 2 is strictly increasing in βi, and independent of αi. The servicer

chooses the first-best foreclosure decision λFB if and only if βi = 1.

We will henceforth refer to a contract with βi = 1 as an “unbiased” contract,

and a contract with βi > 1 as a “biased” contract towards foreclosure. Anticipating

the incentive effects of the servicing contract, the securitiser chooses the contract

as well as the security to offer at t = 1, in order to maximise her payoff. We defer

the full characterisation of the equilibrium to the Appendix, and discuss the main

intuition below.

Proposition 6. In the least cost separating equilibrium, the high-type securitiser

provides the servicer with biased incentives towards foreclosure β∗H ≥ 1, whereas

the low-type securitiser provides the servicer with unbiased incentives β∗L = 1. The

equilibrium foreclosure policy is (λ∗H , λ
∗
L).
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The low-type securitiser offers an unbiased servicing contract to the servicer in

equilibrium, in order to implement the first-best foreclosure policy. The high-type

securitiser, on the other hand, would prefer an excessive foreclosure policy, because

excessive foreclosure reduces the signalling cost she must incur in order to separate

from the low type. Therefore, the high-type securitiser optimally chooses to offer a

biased servicing contract towards foreclosure in equilibrium.

5 Ex ante screening effort and welfare

So far we have treated the ex ante probability γ of the mortgage pool being

high quality as exogenous. In this section, we extend the model to incorporate

an ex ante stage t = 0, at which time the securitiser can endogenously exert

non-verifiable costly effort to increase the probability of receiving a high-quality

mortgage pool at t = 1. The main finding is that while information asymmetry leads

to underinvestment in screen effort, committing to an ex post excessive foreclosure

policy mitigates this underinvestment problem and the associated inefficiency.

At t = 0, the securitiser is endowed with $1 and can invest in a mortgage pool.

When investing, the securitiser can exerts non-contractible effort to affect γ ∈ [γ, γ̄],

the probability that the mortgage pool is of high quality at t = 1. Such effort can be

interpreted as, for example, time and resources spent to screen out borrowers with

suspicious income or to form mortgage pool with better diversification property.

The effort incurs a quadratic cost of
1

2
k(γ − γ)2. We assume k ≥ UFB

H −UFB
L

γ̄−γ to

guarantee an interior optimal level of effort, and UFB
L ≥ 1 so that investing in the

mortgage pool is always efficient.

5.1 Optimal screening effort

In this section we solve for the optimal screening effort of the securitiser in equilibrium.

The securitiser is willing to exert costly effort because the expected payoff of being

a high type UH is higher than that of being a low type UL . Since UH and UL will

be potentially affected by the information environment, the security design, and

the foreclosure policy in the subsequent stages of the model, the optimal screening

effort chosen by the securitiser will be indirectly affected.

Notice that since the subsequent securitisation stage is in the least cost separating
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equilibrium, the equilibrium outcome does not depends on γ, the prior probability

that the mortgage pool is of high quality. We can therefore consider any generic pair

of {UH , UL} that represents the expected payoffs to the securitiser in the separating

equilibrium at the securitsation stage t = 1. At t = 0, the securitiser chooses the

optimal level of effort to maximise her ex ante expected payoff

max
γ

γUH + (1− γ)UL −
1

2
k(γ − γ)2 (18)

The optimal effort is thus

γ∗(UH , UL) = γ +
UH − UL

k
(19)

The optimal effort chosen by the securitiser is increasing in the difference in the

expected payoff (UH − UL) between a high-quality and a low-quality pool. We will

look at how this difference changes under symmetric and asymmetric information,

and under different foreclosure policy.

First note that the low-type securitiser can always attain the highest possible

payoff given her type, i.e. UL = UFB
L , because she suffers no information friction

and hence optimally chooses the efficient foreclosure policy λFB and sells a full

pass-through security. On the other hand, the high type is strictly worse off under

asymmetric information because of the signalling cost (Proposition 4). As a result,

the securitiser exerts strictly less effort.

Proposition 7. Comparing to the symmetric information case, the securitiser

expends less screening effort under asymmetric information. The ability to commit

to a foreclosure policy at t = 1 enhances screening effort at t = 0. That is,

γ∗(UFB
H , UFB

L ) > γ∗(U∗H , U
∗
L) ≥ γ∗(UNC

H , UNC
L ) (20)

where the inequality is strict when Eq. 6 holds.

As commitment power over foreclosure policy not only improves efficiency (Proposition

4) but also enhances the ex ante screening effort as stated in the above proposition,

this result further points to an additional benefit of mortgage servicers as commitment

devices.
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5.2 Foreclosure policy and screening effort

Next we turn to the question of how regulatory interventions of foreclosure policies

can affect the screening effort. As shown by our main result, committing to an

excessive foreclosure policy allows the high-type securitiser to reduce the signalling

costs incurred in equilibrium. Our extension reveals that this also creates a stronger

incentives for the securitiser to screen to create a high-quality mortgage pool, further

increasing higher welfare. The following proposition summarises the effect of a

regulatory intervention in the foreclosure policy on ex ante screening effort and on

welfare.

Proposition 8. If the government imposes a foreclosure policy λH different from

the equilibrium policy λ∗H , including the ex post efficient policy λFB, the securitiser

exerts less screening effort at t = 0, hence reducing the total welfare.

Proposition 8 highlights a novel unintended consequence of government regulation

of the foreclosure decision in the mortgage securitisation market. Due to information

asymmetry, imposing any foreclosure policy different from λ∗H on the securitiser

reduces her payoff in the case of receiving a high-quality mortgage pool. This in

turn lowers her incentive to exert screening effort to obtain a high-quality pool.

This under-provision of value-enhancing screening effort decreases social welfare.

6 Empirical implications

This section summarises the novel empirical implications of our model related to

the role of foreclosure policies in the mortgage-backed securitisation industry.

1. Securitised mortgage pools on average have a higher foreclosure rate conditional

on delinquency than comparable bank-held mortgages. Conditioning on the

quality, the high-quality mortgages drive the difference. This is the main

result of the model (Propsition 1) that the high-type securitiser distorts the

foreclosure policy to mitigate the information friction in the process of securitisation,

while there is no distortion for the low-quality pool and the bank-held mortgages.

This provides an economic explanation of the existing empirical findings of

Piskorski et al. (2010), Agarwal et al. (2011) and Kruger (2016). In particular,

30



Piskorski et al. (2010) show that while securitised loans on average have a 3%

to 7% higher foreclosure rate in absolute terms than bank-held loans, the

effects are larger among borrowers with better credit quality.

2. Foreclosing the marginal delinquent mortgage in a securitised pool returns

on average less than the mortgage’s expected recovery value, or the marginal

delinquent mortgage in a bank-held portfolio. As foreclosures in a securitised

pool on average are excessive, the foreclosure proceeds of the marginal delinquent

mortgage are lower than the loan’s expected recovery value. The excessive

foreclosure in securitised pools is driven by informational frictions in the

securitisation process. Since bank-held mortgages are free of this friction, they

are foreclosed at the ex post efficient rate, where the value of the marginal

foreclosure is equated to the loan’s expected recovery value.

3. Servicers of securitised mortgages on average have compensation contracts that

are biased towards foreclosure. Conditioning on the quality of the mortgage

pool, the servicers of high-quality mortgage pools drive the difference. Our

model suggests that securitisers would offer optimal incentive contracts to

servicers in order to implement the ex ante optimal foreclosure policy. Since

the optimal policy appears excessive comparing to the ex post efficient benchmark,

the servicers’ incentives have to be biased accordingly towards foreclosure.

Thompson (2009) and Kruger (2016) document biases in the servicers’ incentives

consistent with our prediction.

4. Intrinsic servicer-specific biases towards foreclosure are positively related to the

quality of the mortgage pools. Our model allows also the interpretation that

securitisers of high-quality mortgage pools seek intrinsically “tough” servicers

as commitment to excessive foreclosure. While works by Agarwal et al. (2014)

and Agarwal et al. (2012) uncover the importance of servicer-specific factors

relating to their pre-existing organisational capabilities towards foreclosure,

our model predicts a testable relationship between such servicer-specific characteristics

and the quality of the mortgage pools.
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7 Conclusion

This paper studies the relationship between the foreclosure decision of delinquent

mortgages and the securitisation of mortgages. We propose a novel mechanism in

which excessive foreclosure policies, in addition to the retention of junior securities,

serves as costly signals to reduce informational frictions inherent in the securitisation

process. We list the empirical predictions coming from our model, some of which

explain several important observed patterns and empirical findings in the mortgage

securitisation industry.

Our paper also suggests that mortgage servicers could have the important role

as commitment devices, allowing the securitiser to optimally commit to ex post

excessive foreclosure policies. As a result, the mortgage servicing contracts appear

to have biased incentives towards foreclosure, and the servicer-specific capacity

related to foreclosure can be informative about the quality of the underlying mortgage

pool. These results are broadly consistent with empirical findings and yield new

predictions for future empirical work.

For a normative perspective, our results caution that policies attempting to

restore ex post foreclosure efficiency can have the unintended consequence of reducing

the securitisers’ ex ante screening effort, thereby worsening the average quality of

the mortgage pools and reducing social welfare.

We conclude with some conjecture of directions for future work and extensions.

First, this framework can be extended to a setting with multiple securitisers to

study the spillover effects of foreclosure. For instance, it would be interesting to

study the interaction between the excessive foreclosure policies due to securitisation

and the fire-sale externality in the distressed property market. It could also be

fruitful to analyse, in a general equilibrium, the potential impact of securitisation

on the quantity, quality, and the prices of mortgages originated. Finally, a dynamic

framework could shed lights on how the excessive foreclosure due to securitisation

interacts with property prices across business cycles.
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Appendices

A Proofs

A.1 Proof of Lemma 1

This result follows immediately from the discussion.

A.2 Proof of Lemma 2

We will first show no pooling PBE satisfy the Intuitive Criterion. And then we

show the same for any separating PBE other than the least-cost-separating PBE.

The logic of the proof is as follows: for any candidate pooling PBE (UP
H , U

P
L ) with

an offer {FP , λP}, we construct an off-equilibrium pooling offer {F ′, λP} that prunes

the candidate PBE with Intuitive Criterion. Since we do not involve changing λP in

the following analysis, for the ease of notation we will simply denote an offer with

F whenever it does not create confusion.

We begin by applying the Intuitive Criterion to our two-type model as follows:

a PBE fails to satisfy the Intuitive Criterion if there exists an unsent offer F ′, such

that the type H is strictly better off than at the posited PBE by proposing F ′ for

all best responses with beliefs focused on H, and the type L is strictly better at the

posited PBE than at F ′ for all best responses for all beliefs in response to F ′.
Define JH(F ′) and JL(F ′) as the payoff of the H and L type when they deviate

to the off-equilibrium offer F ′ under a belief focused on H

JH(F ′) ≡ pH(F ′) + δ[VH − pH(F ′)]

JL(F ′) ≡ pH(F ′) + δ[VL − pL(F ′)] (21)

Therefore a pooling PBE (UP
H , U

P
L ) does not satisfy the intuitive criterion if there

exists an F ′ such that JH(F ′) > UP
H and JL(F ′) < UP

L .

We begin the proof with establishing some useful properties of any pooling PBE
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(UP
H , U

P
L ). First, the payoffs can be computed as follows:

UP
H ≡ p̄(FP ) + δ[VH − pH(FP )]

UP
L ≡ p̄(FP ) + δ[VL − pL(FP )] (22)

where p̄(F) = π̄f1 + (1− π̄)[θf2 + (1− θ)f3)] and π̄ ≡ γπH + (1− γ)πL.

Second, in any pooling PBE that satisfies Intuitive Criterion, both types must

attain weakly higher payoffs than the least-cost-separating (LCS) payoffs (U∗H , U
∗
L).

The following claim establishes this property formally.

Claim 1. For any pooling PBE (UP
H , U

P
L ) that satisfies the Intuitive Criterion,

UP
H ≥ U∗H and UP

L ≥ U∗L.

Proof. This claim is proved by contradiction. First of all, UP
L < U∗L cannot be

a PBE because the low type can always attain at least the LCS payoffs U∗L by

deviating to the first-best offer of the low type.

Suppose now UP
H < U∗H and UP

L ≥ U∗L. To invoke the Intuitive Criterion, consider

a set of beliefs that all deviations are done by the high type. Then by deviating to

(F ∗H , λ
∗
H), the high type achieves her LCS payoff U∗H > UP

H whereas the low type’s

payoff pH(F ∗H , λ
∗
H) + δ[VL(λ∗H) − pL(F ∗H , λ

∗
H)], is also equal to her LCS payoff U∗L

because (F ∗H , λ
∗
H) is the solution of the LCS problem in Eq. 4 and the (IC) therein

is binding at the solution. Now consider another offer {F ′, λ∗H} with F ′ = F ∗H − ε
for some arbitrarily small and positive ε such that the high type’s payoff with this

off-equilibrium offer is U ′H ∈ (UP
H , U

∗
H). Such an F ′ exists because UP

H < U∗H and

F ∗H > c3 (Proposition 3). Finally the low type’s payoff with the offer {F ′, λ∗H} is

U ′L < U∗L ≤ UP
L .

The third property is shown in the following claim

Claim 2. In any pooling PBE with offer {FP , λP}, fp1 > c3(λP ).

Proof. Suppose instead fP1 ≤ c3(λP ). Because of (MNO), c3 ≥ fP1 ≥ fP2 ≥ fP3

UP
L ≤ δVL(λP ) + (1− δ)c3(λP ) < VL(λP ) ≤ VL(λFB) ≡ U∗L

which contradicts the fact that UP
L ≥ U∗L.
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We are now equipped to construct the PBE pruning offer F ′ for any pooling

PBE with offer FP . First, we parametrise a series of offers with y such that

F(y) = {fP1 − y, fP2 −max{y − (fP1 − fP2 ), 0}, fP3 } (23)

for y ∈ [0, fP1 −fP3 ]. Note that F(0) = FP and the domain of y is non-empty thanks

to Claim 2 and fP3 ≤ c3 due to limited liability. The rest of the proof involves two

claims with the parametrised offer F(y).

Claim 3. There exists a unique ỹ ∈ (0, fP1 − fP3 ) that satisfies JL(F(ỹ)) = UP
L

Proof. The proof is based on the Intermediate Value Theorem. First, JL(F(ε)) >

UP
L with ε→ 0 because

JL(F(ε))− UP
L = pH(F(ε))− p̄(FP )− δ[pL(F(ε))− pL(FP )]

= pH(FP )− p̄(FP ) > 0 as ε→ 0

Second, JL(F(fP1 − fP3 )) < UP
L as F(fP1 − fP3 ) = {fP3 , fP3 , fP3 }, fP3 ≤ c3 due to

(LL), and following the same argument as in Claim 2,

JL(F(fP1 − fP3 )) ≤ δVL + (1− δ)c3 < VL(λP ) ≤ VL(λFB) = U∗L ≤ UP
L

Finally, JL(F(y)) is strictly decreasing and continuous in y

∂JL(F(y))

∂y
=

−πH + δπL < 0 for y ∈ [0, fP1 − fP2 )

(1− θ)(δπL − πH)− θ(1− δ) < 0 for y ∈ [fP1 − fP2 , fP1 − fP3 )

(24)

Therefore, the Intermediate Value Theorem applies.

Claim 4. JH(F(ỹ)) > UP
H

Proof. This result relies on two properties:

(i) JH(F(ε))− UP
H = JL(F(ε))− UP

L = pH(FP )− p̄(FP ) > 0 as ε→ 0;

(ii) 0 >
∂JH(F(y))

∂y
>
∂JL(F(y))

∂y
for y ∈ [0, fP1 − fP3 ]
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(i) is immediate from the definition of JH while (ii) from the direct comparison

between Eq. 24 and

∂JH(F(y))

∂y
=

−πH + δπH < 0 for y ∈ [0, fP1 − fP2 )

(1− θ)(δπH − πH)− θ(1− δ) < 0 for y ∈ [fP1 − fP2 , fP1 − fP3 )

(25)

These two properties imply that the wedges JH − UP
H and JL − UP

L are the same

when y is arbitrarily close to zero. As y increases, JL decreases strictly faster then

JH . Therefore, at ỹ, the wedge of JL − UP
L is zero while the wedge JH − UP

H is

strictly positive.

The last step of constructing the PBE pruning F ′ is to set F ′ = F(ỹ+ εy) with

an arbitrarily small but positive εy such that JH(F ′) > UP
H . This εy exists because

JH(F(ỹ)) > UP
H as in Lemma 4. And by the properties of ỹ in Lemma 3 and JL,

JL(F ′) < JL(F(ỹ)) = UP
L . As a result, the posited pooling PBE (UP

H , U
P
L ) cannot

satisfy the Intuitive Criterion.

The proof for showing that no separating PBE other than the LCS PBE can

satisfy Intuitive Criterion is very similar to Claim 1. Consider a separating PBE

(UH , UL), by definition of LCS, UH ≤ U∗H and UL ≤ U∗L with at least one strict

inequality. First UL cannot be strictly less than U∗L because the low type can always

achieve at least U∗L by giving the first-best offer. The relevant class of separating

PBE is thus with UH < U∗H and UL = U∗L. The remaining argument of the proof

follows exactly the same as the one in Claim 1 and therefore is omitted.

A.3 Proof of Proposition 1

The least cost separating equilibrium is characterised by Eq. 4. We prove this

proposition by solving the optimisation programme and then highlighting the properties

of the equilibrium foreclosure policy.

Firstly, we establish that any optimiser of the programme must bind the (IC).

We prove this by contradiction. Suppose there exists (FH , λH) that is an optimiser of

the programme such that the (IC) is slack. Then there exists F ′H > FH such that the

(IC) is still satisfied at (F ′H , λH). However, the objective function is strictly greater
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at (F ′H , λH) than at (FH , λH). This contradicts with the supposition that (FH , λH)

is an optimiser of the programme. Therefore any optimiser of the programme must

bind the (IC).

We then solve this optimisation given a binding (IC) in two separate cases.

(i) FH ∈ [ZB + L(λH) + (1− λH)X,ZG)

(ii) FH ∈ (ZB + L(λH), ZB + L(λH) + (1− λH)X)

Case (i): FH ∈ [ZB + L(λH) + (1− λH)X,ZG)

The solution in this case can be expressed as follows

max(FH ,λH) pH(FH , λH) + δπH(ZG − FH)

s.t. (IC) U∗L = pH(FH , λH) + δπL(ZG − FH) (26)

where the market value of the high type’s security is

pH(FH , λH) = πHFH + (1− πH)θ[ZB + L(λH) + (1− λH)X]

+ (1− πH)(1− θ)[ZB + L(λH)] (27)

The binding (IC) implies that the implicit derivative of FH w.r.t. λH is

∂FH
∂λH

= −
∂pH(FH ,λH)

∂λH
∂pH(FH ,λH)

∂FH
− δπL

(28)

We substitute the (IC) into the objective function to eliminate FH . The solution λ∗H

is then characterised by the first order condition obtained by total differentiation:

FOC(i) =
∂pH(FH , λH)

∂λH
+

(
∂pH(FH , λH)

∂FH
− δπH

)
∂FH
∂λH

(29)

The above first order condition is equal to zero at λFB because ∂p(FH ,λH)
∂λH

∣∣∣
λH=λFB

= 0.

Therefore for case (i), λ∗ = λFB, and F ∗H is given by the binding (IC) at λFB:

F ∗H = ZG −
VH(λFB)− VL(λFB)

πH − δπL
(30)
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Next, we confirm that the second order condition is satisfied, so that FOC(i) indeed

characterises the optimal λ∗H . After differentiating some algebraic manipulation:

SOC(i) =
δ(1− πH)(πH − πL)

πH − δπL
L′′(λH) < 0 (31)

Finally we provide the condition for this case to exist. That is, F ∗H ≥ ZB+L(λFB)+

(1 − λFB)X. Expanding the expression and collecting terms yields the following,

which is the complimentary case of Eq. 6.

(πH − πL)(1− θ)(1− λFB)

πL(1− δ) X ≤ ZG −
[
ZB + L(λFB) + (1− λFB)X

]
(32)

Case (ii): FH ∈ (ZB + L(λH), ZB + L(λH) + (1− λH)X)

The solution in this case can be expressed as follows

U∗H = max(FH ,λH) (1− δ)pH(FH , λH) + δVH(λH)

s.t. (IC) U∗L = pH(FH , λH) + δπL [(ZG − FH)

+(1− πL)θ (ZB + L(λH) + (1− λH)X − FH)] (33)

where the market value of the high type’s security is

pH(FH , λH) = [πH + (1− πH)θ]FH + (1− πH)(1− θ)[ZB + L(λH)] (34)

The binding (IC) implies that the implicit derivative of FH w.r.t λH is

∂FH
∂λH

= −
∂pH(FH ,λH)

∂λH
+ (1− πL)θ[L′(λH)−X])

∂pH(FH ,λH)
∂FH

− δ[πL + (1− πL)θ]
(35)

We substitute the (IC) into the objective function to eliminate FH . The solution λ∗H

is then characterised by the first order condition obtained by total differentiation:

FOC(ii) =
∂pH(FH , λH)

λH
+ (1− πH)θ[L′(λH)−X]

+

(
∂pH(FH , λH)

∂FH
− δ[πH + (1− πH)θ]

)
∂FH
∂λH

(36)
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At λFB, L′(λFB) = X and the above first order condition is strictly greater than

zero:

FOC(ii)

∣∣
λH=λFB = −θ(1− θ)X

×
[
(1− πH)− (1− δ)[πH + (1− πH)θ]

[πH + (1− πH)θ]− δ[πL + (1− πL)θ]
(1− πL)

]
︸ ︷︷ ︸

<0

> 0

(37)

This implies that the solution for case (ii) is λ∗H > λFB. The face value of the debt

issued in the case F ∗H is given by the binding (IC) at λ∗H :

F ∗H =
U∗L − δπLZG − δ(1− π)θ[ZB + L(λ∗H)]− (1− πH)(1− θ)[ZB + L(λ∗H) + (1− λ∗H)X]

[πH + (1− πH)θ]− δ[πL + (1− πL)θ]

(38)

Next, we confirm that the second order condition is satisfied, given Assumption 1.

After some algebraic manipulation:

SOC(ii) =

>0 by Assumption 1︷ ︸︸ ︷
[(1− πH)− θ(1− δ + 1− πH)]

× δ(πH − πL)

(1− θ)(πH − δπL) + θ(1− δ) L
′′(λH) < 0 (39)

We now provide the condition for this case to exist. That is, F ∗H < ZB+L(λ∗H)+

(1 − λ∗H)X, which is equivalent to G(λ∗H) > 0 where G(·) is defined in Eq. 6. As

G(λ∗H) is strictly increasing in λ∗H for all λ∗H ≥ λFB, the condition Eq. 6 implies

that Case (ii) exists as G(λ∗H) ≥ G(λFB) > 0.

Finally, while a solution in Case (ii) may still exist when Eq. 6 does not hold, the

existence of a solution in Case (i) implies that the solution to the overall optimisation

programme given by Eq. 4 is the solution in Case (i), which provides the high-type

securitiser with a strictly higher payoff than any solution in Case (ii), given that

the Case (i) solution has both an efficient foreclosure policy λ∗H = λFB and a higher

face value of the debt issued.

To summarise, the equilibrium foreclosure policy by the high-type securitiser is

such that λ∗H ≥ λFB, where the inequality is strict if and only Eq. 6 holds.
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A.4 Proof of Corollary 1

We establish this corollary considering the two separate cases discussed in Appendix

A.3. Notice that ∂p̂(λH)
∂λH

can be expressed as ∂p(FH ,λH)
∂FH

∂FH

∂λ
+ ∂p(FH ,λH)

∂λ
, where ∂FH

∂λ
is

the implicit derivative of FH w.r.t. λH given by a binding (IC).

In Case (i), Eq. 26–28 imply that ∂p̂(λH)
∂λH

∣∣∣
λH=λFB

= 0.

In Case (ii), Eq. 33–35 imply that

∂p̂(λH)

∂λH

∣∣∣∣
λH=λFB

=
δθ(1− θ)(πH − πL)

(1− θ)(πH − δπL) + θ(1− δ)X > 0 (40)

The face value of the debt issued in the least cost separating equilibrium binds

the (IC). The equilibrium is given by Case (ii) if and only if Eq. 6 holds. We

therefore have ∂p̂(λH)
∂λH

∣∣∣
λH=λFB

≥ 0, with the inequality strict if and only if Eq. 6

holds.

A.5 Proof of Proposition 2

When Eq. 6 holds, the equilibrium foreclosure policy is implicitly defined by the

first order condition (Eq. 36). After some algebraic manipulation, the equilibrium

foreclosure policy can be implicitly defined by

L′(λ∗H) =
δ − [θ(1− πH) + πH ]

(1− δ)θ + (1− πH)(1− θ)θX (41)

Implicitly differentiating the above equation yields that
∂λ∗H
∂πH

> 0, because the RHS

of the above equation is strictly decreasing in πH .

Similarly, implicitly differentiating the above equation yields that
∂λ∗H
∂δ

< 0,

because the RHS of the above equation is strictly increasing in δ.

Therefore, the equilibrium foreclosure policy is such that
∂λ∗H
∂πH

> 0 and
∂λ∗H
∂δ

< 0

when Eq. 6 holds.
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A.6 Proof of Proposition 3

The proof is constructed by establishing several claims in succession. For any given

λH , an optimal security is maximises the high-type securitiser’s expected payoff

δVH(λH) + (1− δ)pH(FH , λH)

subject to the constrains (IC), (MNO) and (MNI). Since VH(λH) is not affected

by the security design, the security maximises the selling proceeds pH(FH , λH) =

πHf1 + (1− πH)[θf2 + (1− θ)f3]. Since λH plays no role in this proof, we suppress

the selling proceeds to pH(FH) for the ease of notation.

As explained in Section 3.3, given a committed foreclosure policy λH , there can

only be three cash flow realisations c1, c2(λH), and c3(λH) in equilibrium. Denote

by f ∗1 , f ∗2 , and f ∗3 the payoffs of the optimal security for these equilibrium cash flow

realisations respectively. Claim 5–8 below aim to establish the properties that the

equilibrium payoffs of the optimal security must satisfy. We finally characterise the

properties of the full security and show that a risky debt as described in Proposition

3 is indeed an optimal security.

Claim 5. For an optimal security F∗H , f ∗1 < c1.

Proof. If f ∗1 = c1, by (MCI), f ∗2 = c2(λH) and f ∗3 = c3(λH). This security (full

equity) violates (IC).

Claim 6. For any optimal security F∗H , the (IC) must bind.

Proof. Suppose instead the (IC) is slack for some optimal security with payoffs

{f ∗1 , f ∗2 , f ∗3}. By Claim 5, f ∗1 < c1. Unless c1 − f ∗1 = c2(λH) − f ∗2 , there exists a

security F̂ with payoffs {f̂1, f
∗
2 , f

∗
3} with f̂1 > f ∗1 that satisfies the (IC). As pH(·)

strictly increases with f1, pH(F̂) > pH(F∗H), contradicting the supposition that the

security is optimal.

If f ∗1 < c1 and c1 − f ∗1 = c2(λH) − f ∗2 , one can increase the objective function

pH(·) by increasing both f ∗1 and f ∗2 by some ε > 0 without violating the (IC), unless

f ∗2 = c2(λH) or c2(λH)− f ∗2 = c3(λH)− f ∗3 . Note that f ∗2 = c2(λH) implies f ∗1 = c1

hence violates Claim 5.

Suppose now f ∗1 < c1 and c1−f ∗1 = c2(λH)−f ∗2 = c3(λH)−f ∗3 , similarly one can
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increase all f ∗1 , f ∗2 , f ∗3 without violating the (IC) to strictly increase pH(·), unless

f ∗3 = c3(λH). And f ∗3 = c3(λH) implies f ∗1 = c1 hence violates Claim 5.

Since we have shown that any security with a slack (IC) can be improved upon,

the (IC) must be binding at any optimal security.

Claim 7. For any optimal security F∗H , f ∗1 > c3(λH).

Proof. Suppose instead that f ∗1 ≤ c3(λH). By (MNO), c3(λH) ≥ f ∗1 ≥ f ∗2 ≥ f ∗3 .

This implies that the (IC) is slack because the mimicking payoff

δVL(λH)+pH(F∗H)−δpL(F∗H) ≤ δVL(λH)+(1−δ)c3(λH) < VL(λH) ≤ VL(λFB) = U∗L

By Claim 6, a slack (IC) contradicts the optimality of F∗H .

Claim 8. Any optimal security F∗H has either

1. f ∗1 = f ∗2 > f ∗3 = c3(λH) or

2. f ∗1 > f ∗2 = c2(λH) > f ∗3 = c3(λH)

Proof. Consider a security that pays off f̂1, f̂2, and f̂3 for cash flows c1, c2(λH) and

c3(λH) respectively, such that with the (IC) binds. Using the (IC), write f̂1 as a

function of f̂2 and f̂3

f̂1(f̂2, f̂3) =
(1− δ)U∗L − [(1− πH)− δ(1− πL)](θf̂2 + (1− θ)f̂3)

πH − δπL
(42)

Substitute this f̂1 into the objective function. After some algebraic manipulation,

the objective function becomes

δVH + (1− δ)
[

πH
πH − δπL

(1− δ)U∗L + δ
πH − πL
πH − δπL

(θf̂2 + (1− θ)f̂3)

]
(43)

which is strictly increasing in f̂2 and f̂3. Since f̂2 is bounded above by either c2(λH)

or f̂1, and f̂3 only by c3(λH), any optimal security F∗H must have f ∗3 = c3(λH) and

f ∗2 = min{f ∗1 , c2(λH)}. Finally, by Claim 7, f ∗1 > c3(λH) and hence f ∗2 > c3(λH).

Having now analysed the properties of an optimal security’s equilibrium payoffs

{f ∗1 , f ∗2 , f ∗3}, we now consider the security’s payoffs associated with the off-equilibrium

cash flow realisations, i.e. f2(c2) and f3(c3) ∀λ ∈ (0, 1).
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Claim 9. For any optimal security F∗H , f3(c3) = c3(λ) ∀λ ≤ λH , and either

1. f ∗1 = f ∗2 = f2(c2(λ)) ∀λ ≤ λH , or

2. f ∗1 > f2(c2) = c2(λ) and f3(c3) = c3(λ) ∀λ ≥ λH

Proof. Notice that these payoffs do not affect either the objective function or the

(IC). Therefore they are only restricted by the (MNO) and the (MNI). By Claim

8, f ∗3 = c3(λH). The (MNI) thus implies that f3(c3) = c3(λ) ∀λ ≤ λH , because

c3(λ) is increasing in λ.

By Claim 8, there are two cases. In the first case, f ∗1 = f ∗2 . The (MNO)

then implies that f ∗1 = f ∗2 = f2(c2(λ)) ∀λ ≤ λH , because c2(λ) is decreasing in λ.

In the second case, f ∗2 = c2(λH) > f ∗3 = c3(λH). The (MNI) then implies that

f2(c2) = c2(λ) and f3(c3) = c3(λ) ∀λ ≥ λH .

Finally we can now verify that a risky debt with face value FH ∈ (c3(λH), c1),

as defined in Proposition 3, indeed is an optimal security as it satisfies Claim 5–9.

A.7 Proof of Proposition 4

In order to establish this result, we first characterise fully the least cost separating

equilibrium without commitment. As in the main text, we denote all equilibrium

quantities with NC for the case with no commitment.

We again start the analysis with the low-type securitiser. Since the low type

issues a full pass-through equity security in a separating equilibrium, she retains

no cash flow. Maintaining the assumption that in this case she makes the first-best

foreclosure decision to maximise the value of the mortgage pool, λNCL = λFBL , the

payoff to a low-type securitiser is therefore equal to UNC
L = UFB

L .

The high-type securitiser chooses an optimal security FH at t = 1 to maximise

her expected payoff, taking into account the subsequent foreclosure policy λNCH

chosen at t = 2 given the security issued. In the least cost separating equilibrium,
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the high type’s problem without commitment is

max
(FH ,λ

NC
H )

pH(FH , λNCH ) + δ[VH(λNCH )− pH(FH , λNCH )]

s.t. (IC) UNC
L ≥ pH(FH , λNCH ) + δ[VL(λNCH )− pL(FH , λNCH )]

(ICs) λNCH = arg max
λ

θ [c2(λ)− f2] + (1− θ) [c3(λ)− f3]

(MNO) and (MNI) as given by Eq. 14 (44)

Except for the constraint (ICs), the high-type’s problem without commitment

has the same objective function and constraints as the problem with commitment

in Eq. 14. This additional (ICs) constraint captures the fact that, the securitiser is

not able to pre-commit to a foreclosure policy. Instead, the foreclosure policy λNCH

is chosen at t = 2 to maximise the expected value of her residual claim, given the

security FH issued. Similarly, should the low-type securitiser mimic the security

issued by the high type, she also subsequently chooses the same incentive compatible

foreclosure policy λNCH . This is reflected in the low type’s no-mimicking constraint

(IC).

We can now prove the remaining parts of this proposition. U∗H ≥ UNC
H follows

immediately from the above observation that the opitmisation problem without

commitment is the problem with commitment in Eq. 14 with the additional constraint

(ICs). As such, the solution to the problem without commitment is a feasible offer

for the problem with commitment. Therefore, the high type securitiser can achieve

at least UNC
H when she can commit to a foreclosure policy.

We finally show that U∗H > UNC
H if Eq. 6 holds. To do this, we make use of some

property of the equilibrium optimal MBS F∗H issued by the high-type securitiser

established in the proof of Proposition 1. If Eq. 6 holds, f ∗1 = f ∗2 = F ∗H < c2(λ∗H) and

λ∗H > λFB. Claim 9 then implies that f2(c2) = F ∗H ∀λ ≤ λH . In this case, however,

the offer (F∗H , λ∗H) does not satisfies the (ICs) in the problem without commitment,

as there a marginal decrease in λ from λ∗H would increase the securitiser’s expected

payoff at t = 2, given by θ[c2(λH) − F ∗H ]. As a result, any solution (F∗H , λ∗H) of

the problem with commitment is not admissible in the more constrained problem

without commitment if Eq. 6 holds, UNC
H < U∗H .
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A.8 Proof of Proposition 5

This proposition follows immediately from the discussion.

A.9 Proof of Lemma 3

This lemma follows immediately from examining the property of the first order

condition βi
∂ L(λs)
∂λ
− θX = 0. By implicitly differentiating λs w.r.t. βi we have

∂λs
∂βi

= −
∂ L(λs)
∂λ

βi
∂2 L(λs)
∂λ2

> 0 (45)

Further, since the first-best foreclosure policy is characterised by ∂ L(λFB)
∂λ

= θX,

λs = λFB if and only if βi = 1.

A.10 Proof of Proposition 6

We fully characterise the least cost separating equilibrium of this extension and

establish the results.

We start the analysis with the low-type securitiser. Given any servicing contract,

the low type issues a full pass-through equity security in a separating equilibrium.

Therefore she chooses a servicing contract to maximise her payoff

max
(αL,βL)

VL(λs)− πLαL [βL L(λs) + θ(1− λs)X]

s.t. π̂αL [βL L(λs) + θ(1− λs)X] ≥ 0 (46)

where λs is given by the first order condition βL
∂ L(λs)
∂λ
− θX = 0. The solution to

the above problem is βL = 1 and αL → 0. As a result, the equilibrium foreclosure

policy of a low-type mortgage pool is λFB, and the low-type securitiser receives a

payoff is equal to UFB
L .

The high-type securitiser, given a servicing contract, chooses an optimal security

FH at t = 1 to maximise her expected payoff, taking into account the subsequent

foreclosure policy induced by the servicing contract. We again restrict attention

to a risky debt security with face value FH ∈ (ZB + L(λs), ZG). As shown in

Proposition 3, risky debt is indeed the optimal security. The high-type securitiser
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chooses to offer a servicing contract and the security to maximise the proceeds from

securitisation plus the residual cash flow less the fees paid to the servicers.

maxFH ,(αH ,βH) p(FH , λH) + δ [πH(ZG − FH)

+(1− πH)θmax{ZB + L(λs) + (1− λs)X − FH , 0}]

− πHαH [β L(λs) + (1− λs)X]

s.t. π̂αL [βL L(λs) + θ(1− λs)X] ≥ 0

(MC) and (IC) are given by Eq. 4 (47)

where λs is given by the first order condition βH
∂ L(λs)
∂λ
− θX = 0. The solution

to the above problem is βH ≥ 1 such that λs = λ∗H ≥ λFB, and αH → 0. As a

result, the equilibrium foreclosure policy of a high-type mortgage pool is λ∗H , and

the high-type securitiser receives a payoff equal to U∗H .

A.11 Proof of Proposition 7

This proposition follows immediately from Eq. 19 and Proposition 4.

A.12 Proof of Proposition 8

Denote with Ui(λ) the expected payoff obtained by the high-type securitiser in the

least cost separating equilibrium, for a given foreclosure policy. In this equilibrium,

the high-type securitiser chooses a security to offer at t = 1 to maximise her expected

payoff, while preventing mimicking from the low type. Formally, Ui(λ) is equal to

the value of the optimisation programme Eq. 3, given λH = λ.

By definition of λ∗H as the optimiser of Eq. 3 , UH(λ∗H) > UH(λH) for any

λH 6= λ∗H . Thus the screening effort γ∗ decreases as

γ∗(UH(λH), UFB
L ) < γ∗(UH(λ∗H), UFB

L ) ∀λH 6= λ∗H

For efficiency, we only need to look at the securitiser’s expected payoff as the

investors are always indifferent. The expected payoff is lower when λ∗H is replaced
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with λH , i.e.

γ∗(UH(λH), UFB
L )UH(λH) + [1− γ∗(UH(λH), UFB

L )]UFB
L − 1

2
kγ∗2(UH(λH), UFB

L )

< γ∗(UH(λH), UFB
L )UH(λ∗H) + [1− γ∗(UH(λH), UFB

L )]UFB
L − 1

2
kγ∗2(UH(λH), UFB

L )

≤ γ∗(UH(λ∗H), UFB
L )UH(λ∗H) + [1− γ∗(UH(λ∗H), UFB

L )]UFB
L − 1

2
kγ∗2(UH(λ∗H), UFB

L )

The first inequality comes from UH(λH) < UH(λ∗H) and the second weak inequality

follows from the definition of optimal γ∗. Finally, λFBH is one of the possible λH 6= λ∗H

if and only if Eq. 6 holds.
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