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Abstract

We analyze a continuous-time moral hazard problem in which the principal

can flexibly combine ”carrots” and ”sticks” to incentivize the agent. That is,

he can flexibly allocate his limited attention between seeking confirmatory ev-

idence and seeking contradictory evidence about the agent’s effort as the basis

for rewards and punishment. Such flexibility calls for a joint design of mon-

itoring and compensation schemes novel in the literature. When the agent’s

continuation value is low, the principal only resorts to carrots with a constant

rewards; When the agent’s continuation value reaches a threshold, the princi-

pal switches to stick-dominant mode and the level of rewards decreases in the

continuation value. Moreover, the agent’s effort could be perpetuated if and

only if both the flexibility in monitoring and the synergy relative to the agent’s

private benefit from shirking are sufficiently large.
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1 Introduction

In a long-term contractual relation, the principal usually has the flexibility in as-

signing weights to different performance indicators of the agent as the basis for the

incentive scheme. The weight assigned to a particular indicator affects the optimal

reward or punishment associated with it, and vice versa. How does such flexibility af-

fect the design of incentive schemes of agents at different stages of career? Would the

principal ever choose to perpetuate the agent’s effort? If so, when? These are preva-

lent issues in real life, such as in human resource management, bureaucratic systems

and educational practices. However, existing literature either assumes a single exoge-

nous performance indicator, or focuses on how much attention should be devoted to

a given indicator. In this paper, we develop a dynamic framework that incorporates

the joint determination of both the optimal combination of multiple performance in-

dicators and the reward or punishment scheme associated with it. We show that such

flexibility makes a qualitative difference in shaping the optimal contract.

To fix ideas, consider a continuous-time setup, in which the principal (“he”) has

a project that needs the agent (“she”) to operate. The agent is less patient than the

principal, and can work or shirk at each instant. From the perspectives of both the

principal and social welfare, it is optimal for the agent to work, but the agent enjoys

a private benefit if she shirks. To incentivize the agent, at each instant, the principal

chooses a combination of “carrots” and “sticks”. That is, he can allocate his fixed

amount of attention to seek the following two types of evidence, and determine how

much to reward or punish the agent upon its arrival. The C-evidence (C for “carrots”)

could arrive only if the agent has worked, while the S-evidence (S for “sticks”) could

arrive only if the agent has shirked. The principal can also terminate the project at

any time, which is socially inefficient.
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In addition to the standard incentive versus interest tradeoff in (DeMarzo and

Sannikov 2006) and (Sannikov 2008), the principal faces the tradeoff between carrots

and sticks as means to incentivize the agent. On one hand, carrots generate greater

variation than sticks in the agent’s continuation value, and are thus less favorable

to the principal, who is effectively risk averse in the relevant range of the agent’s

continuation value. This is because, given that the agent indeed works, S-evidence

would not arrive and thus requires no adjustment to the agent’s continuation value;

while C-evidence does arrive in equilibrium, which necessarily involves the reward

upon its arrival and the downward adjustment to the agent’s continuation value in

the absence of C-evidence. On the other hand, sufficiently high continuation value

is required as the agent’s skin in the game for sticks to be an effective incentive

device on its own, whereas the effectiveness of carrots does not depend on the agent’s

continuation value. Moreover, even if sticks can work alone, a high continuation

value of the agent has to be maintained, which involves interest expenditure to the

principal, making sticks less favorable than carrots. This tradeoff between carrots

and sticks, together with the incentive versus interest tradeoff, shapes the optimal

incentive scheme.

When the agent’s continuation value is low, the principal allocates all his attention

to seeking C-evidence and thus completely relies on carrots. Instead of paying the

agent immediately when C-evidence arrives, the principal adds the whole reward to

the agent’s continuation value, so as to build a buffer against inefficient termination

and make sticks effective in the future. In addition, since the arrival rate of C-evidence

is set to its maximum, the reward upon the arrival of each piece of C-evidence should

be just enough to deter shirking.

When the agent’s continuation value is accumulated to the level enough for sticks

to be effective, but not enough for sticks alone to deter shirking, the optimal incentive
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scheme features a “phase change”. That is, instead of the carrot-only mode, the

principal now mainly relies on sticks, and sets the penalty upon observing S-evidence

to its maximum — to confiscate the whole stake promised to the agent, resulting

in the termination of the project. Carrots are still used to make up for the sticks,

but the reward upon observing C-evidence is set larger to minimize the reliance on

carrots. Such reward decreases as the agent’s continuation value grows further.

When the agent’s continuation value further grows beyond the payout boundary,

the conflict of interest between the principal and the agent is so little that there is

little need to further incentivize the agent. But the interest accrued from deferred

payment is large. Thus, it is optimal for the principal to make payment at once, so

as to reduce the continuation value of the agent back to the payout boundary.

Concerning the perpetuation of the agent’s effort, the flexibility in combining car-

rots and sticks offers the principal the option of first building up the agent’s stake

in the game (i.e., her continuation value) with carrots, and then perpetuating the

agent’s effort mainly with sticks, which avoids the inefficient termination. We show

that such option is optimal if and only if the synergy relative to the agent’s private

benefit from shirking and the principal’s flexibility in allocating weights between car-

rots and sticks are both sufficiently large. In other words, with insufficient flexibility

as such, which is the central piece of this paper, the agent’s effort should not be per-

petuated even if the synergy is large relative to frictions. This contrasts with models

without such flexibility in adjusting weights on multiple performance indicators, and

provides new insight on human resource management and the design of bureaucratic

systems. Moreover, the value function may be convex in the vicinity of the payout

boundary if public randomization is not allowed. This reflects the fact that the higher

is the agent’s continuation value, the more likely that it reaches the absorbing payout

boundary and the contract becomes completely immune to inefficient termination.
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Our model also yields empirically plausible predictions. First, junior employees of

a firm are incentivized mainly based on confirmatory evidence of their contribution

to their employer, while senior employees are incentivized mainly based on contra-

dictory evidence of their contribution. Second, concerning the compensation scheme,

the reward for each piece of confirmatory evidence of contribution to the employer

varies little among junior employees, but decreases with seniority for senior employees,

and features an upward jump when a junior employee becomes senior. The penalty

for each piece of contradictory evidence of contribution to the employer increases

with seniority for both junior and senior employees. Third, except for those hired

permanently, all employees are more prone to unemployment absent the arrival of

confirmatory evidence of their contribution, and the more so if the employees are less

senior. Lastly, employers offer permanent positions if and only if both their flexibil-

ity in adjusting monitoring schemes and the potential synergy created by employees

(relative to frictions) are sufficiently large.

1.1 Literature Review

Our work is mainly related to the continuous-time dynamic contracting literature,

pioneered by (DeMarzo and Sannikov 2006) and (Sannikov 2008). Early work on

dynamic moral hazard models also includes (Biais, Mariotti, Rochet, and Villeneuve

2010). Like our model, (Biais, Mariotti, Rochet, and Villeneuve 2010) use a Pois-

son process instead of Brownian motions to model discrete losses in continuous time,

whose arrival rate depends on the hidden action of the agent. (Myerson 2015) consid-

ers a similar problem under a political economics framework where a political leader

uses randomized punishment to motivate governors to work. Opposite to the discrete

losses in (Biais, Mariotti, Rochet, and Villeneuve 2010), (Sun and Tian 2017) use
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Poisson processes to model arrivals of discrete revenue. Similarly, (He 2012) consid-

ers a risk-averse agent who can save privately and whose hidden effort affects the

arrival rate of discrete revenue. In those models, monitoring technologies are exoge-

nous. In other words, the output processes, which are functions of hidden actions and

other random factors, are exogenously assumed, and play dual roles as both direct

physical payoff determinants and bases for monitoring and contracting. The essence

of our model is to separate these two roles, so as to study the interaction between the

design of monitoring technology and that of contracts.

Recent work also endogenizes monitoring scheme in dynamic moral hazard models.

On top of the framework of (DeMarzo and Sannikov 2006), (Piskorski and Westerfield

2016) allow the principal to monitor the agent at a cost increasing with his moni-

toring intensity. Based on a framework similar to that of (Biais, Mariotti, Rochet,

and Villeneuve 2010), (Chen, Sun, and Xiao 2017) consider the timing decision of

monitoring, where monitoring is modeled as paying a fixed cost for a credible guar-

antee of the agent taking the desired action. (Varas, Marinovic, and Skrzypacz 2019)

consider a problem where monitoring serves as an incentive device and also provides

information to the principal. In (Orlov 2018), the principal can change his monitor-

ing intensity. In (Georgiadis and Szentes 2019), the principal can observe a diffusion

process with the drift being the agent’s effort at a cost proportional to the time at

which the principal stops observing this process, and the principal is to determine the

optimal stopping time. While these papers probe into how much attention should be

devoted to a given monitoring technology and the optimal timing, our focus is on the

principal’s optimal allocation of attention into multiple information sources, as the

basis for both his monitoring activities and his design of incentive scheme.

In a static setup, (Li and Yang 2019) and (Georgiadis and Szentes 2019) also study

the impact of the principal’s flexibility in designing his monitoring scheme. Based
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instead on a dynamic setup, we are able to explore when it is optimal for the principal

to perpetuate the agent’s effort. In addition, our notion of flexibility is different from

that in (Georgiadis and Szentes 2019). The information source in (Georgiadis and

Szentes 2019) is a single exogenous (conditional on the agent’s effort) linear diffusion

process, and the flexibility that they consider refer to the freedom of the principal to

stop observing that process earlier if existing observations already suffice to prove the

deviation of the agent from the desired action. The notion of flexibility in our paper

instead refers to the freedom of the principal to allocate different levels of attention

on various processes (interpreted as different performance indicators) contingent on

the whole history summarized by the agent’s continuation value.

Our work is also related to (Che and Mierendorff 2019). In a dynamic setting,

(Che and Mierendorff 2019) study an individual’s decision among immediate action,

confirmatory learning (i.e., seeking evidence that would confirm the state he finds

relatively more likely) and contradictory learning (i.e., seeking evidence that would

confirm the state he finds relatively less likely), before taking actions that affect his

state-contingent payoff. While carrots and sticks in our model have informational

similarity to the two types of learning in theirs, the problem that we study is fun-

damentally different from theirs. (Che and Mierendorff 2019) study an individual’s

decision problem, in which the fact to learn (i.e., the state of nature) is exogenous,

while we are studying strategic situation featuring moral hazard, in which the fact to

learn (i.e., whether the agent is shirking) is endogenous to the choice of monitoring

technologies and in turn the design of the incentive scheme by the principal.
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2 The Model

2.1 Setup

Time is continuous and infinite. There is a principal (“he”) and an agent (“she”).1

Both of them are risk neutral. The principal has a discount rate r > 0 and unlimited

access to capital. The agent has a discount rate ρ > r and is protected by the

limited liability constraint. The principal owns a project that needs the agent to

operate, which involves an action at ∈ [0, 1] taken by the agent. The action can

be understood as the level of shirking. If action at is taken at instant t, in the

period [t, t + dt], the agent enjoys a private benefit of λ · atdt, while the benefit to

the principal is z · (1− at) dt > 0. Here we interpret z as the latent progress of a

project or reputation of an entity that is lost absent the agent’s due diligence and

is not discernible immediately. Therefore, contracts cannot be made contingent on

whether z is accrued. We refer to z as the “synergy” (between the principal and

the agent) hereafter. The principal can terminate the project at any time, and the

project generates a payoff of zero for both players since then.

To model the carrot-or-stick decision, we assume that at each instant the principal

can choose how to allocate his µ units of attention to seek one of two types of evidence.

C-evidence reveals whether the agent has good performance, while S-evidence reveals

whether she has bad performance. Specifically, if the principal allocates a fraction

αt ∈ [0, ᾱ] of his µ units of attention to seeking S-evidence and the remaining 1− αt

fraction of his attention for the C-evidence, he receives S-evidence with arrival rate

µ · αt · at, and C-evidence with arrival rate µ · (1− αt) · (1− at). Hence, the agent’s

chance of being caught shirking is proportional to at, the level of shirking, and µ ·αt,

the attention allocated to monitoring shirking. Intuitively, if the agent does not

1We do not intentionally associate the players with particular genders.
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shirk, no evidence of shirking exists in the first place and the principal cannot find

S-evidence no matter how much attention is allocated to seeking such evidence; if

the principal pays no attention to monitor shirking, no S-evidence arrives regardless

of the agent’s action. The arrival rate of C-evidence can be interpreted similarly.

More specifically, the cumulative number of arrivals of S-evidence, Y1, and that of

C-evidence, Y0, satisfy

dY1,t =

{
1, with probability µαtatdt

0, otherwise
,

and

dY0,t =

{
1, with probability µ (1− αt) (1− at) dt
0, otherwise

,

respectively. To save the notation, we write Y = (Y0, Y1).

It is worth noting that upper bound ᾱ measures the flexibility of the principal

in allocating his attention across different performance indicators. To highlight the

role of this flexibility, we assume ᾱ to be close to 1. However, if ᾱ = 1, we show in

the Appendix that the optimal reward to the agent upon the arrival of C-evidence

would be infinity with positive probability, and thus we preclude this case in the text.2

Formally, we assume that

Assumption 1 ᾱ ∈ [1− ρ
µ
, 1).

In addition, we assume that the principal is more patient than the agent, and that

the principal has enough attention to discipline the agent in this contractual relation.

Assumption 2 r < ρ < µ.

2See the discussion after Equation (14) for details.
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Moreover, we assume that z is large enough so that action 1 is inefficient even

taking into account the agent’s private benefit. Then it is without loss of generality

to focus only on contracts implementing at = 0 for all t.

Assumption 3 z > λ > 0.

A contract X specifies the action a taken by the agent, the monitoring scheme α,

the cumulative payment I to the agent and the time of termination τ as functions

of the history of past evidence. As mentioned before, we focus on contracts that

implement at = 0 for all t, so that we suppress a and write X = (α, I, τ).

Given the contract X and an action process a, the expected discounted utility of

the agent is

Ea

[∫ τ

0

e−ρt (dIt + λatdt)

]
,

and that of the principal is

Ea

[∫ τ

0

e−rt (z (1− at) dt− dIt)
]

. (1)

For notational convenience, we suppress all time subscripts hereafter when no confu-

sion can be caused.

While contracts involving randomization are of theoretical interest, they are typ-

ically not practical in reality. Therefore, we postpone the discussion of public ran-

domization to Section 5, and only consider deterministic contracts for the rest of this

paper unless mentioned otherwise.

2.2 Incentive Compatibility and Limited Liability

To characterize the incentive compatibility condition, we rely on martingale tech-

niques similar to those introduced by (Sannikov 2008). When choosing her action at
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time t, the agent considers how it will affect her continuation value, defined as

wt (X, a) = Ea

[∫ τ

t

e−ρu (dIu + λaudu)
∣∣Ft] 1{t<τ},

where {Ft} is the filtration generated by Y . Martingale representation theorem yields

the following lemma.

Lemma 2.1 For any contract X that implements at = 0 for all t ≤ τ , there exist

predictable processes (β0, β1) such that wt evolves before termination (t ≤ τ) as

dwt = ρwtdt− dIt + β0,t [dY0,t − µ (1− αt) dt]− β1,tdY1,t . (2)

The contract is incentive compatible if and only if

µαtβ1,t + µ(1− αt)β0,t ≥ λ . (IC)

And the contract satisfies the limited liability constraint of the agent if and only if

β1,t ≤ wt (3)

and

β0,t + wt ≥ 0 . (4)

The proofs of this lemma and all the other lemmas and propositions are relegated

to the Appendix unless otherwise specified. Intuitively, β0 refers to the reward to the

agent upon the arrival of C-evidence, and β1 refers to the punishment to her upon

the arrival of S-evidence. Inequality (IC) highlights the key feature of our model. Its

left-hand side consists of the two means for the principal to incentivize the agent —
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carrots and sticks, which have to sum up to at least λ, the agent’s private benefit

from shirking. The principal can choose not only the allocation of his attention α,

but also β0 and β1, the magnitudes of reward of carrots and punishment of sticks.

We require β0 and β1 to be deterministic functions of the agent’s continuation value

w.

Two limited liability constraints in Lemma 2.1 restrict the magnitudes of reward

and punishment. Inequality (3) requires that the punishment of sticks should be no

more than the whole stake promised to the agent. The other constraint (4) says

that the reward for carrots plus the stake already promised to the agent has to be

non-negative, which will be shown slack.

3 Basic Properties of the Optimal Contract

To build intuition, this section provides a heuristic derivation of some basic properties

of the optimal contract. In Theorem 3.1 at the end of this section, we verify that this

contract is indeed optimal.

Let B(w) denote the principal’s value function. We have the Hamilton–Jacobi–

Bellman (HJB) equation in the continuation region (t < τ)

rB (w) = max
α∈[0,ᾱ],β0,β1

z + (1− α)µ [B (w + β0)−B (w)] + [ρw − β0µ (1− α)]B
′
(w) ,

(5)

subject to

µαβ1 + µ(1− α)β0 ≥ λ ; (IC)

β1 ≤ w ; (6)

β0 + w ≥ 0 ; (7)
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and

α ∈ [0, ᾱ] . (8)

The left-hand side of Equation (5) is the principal’s expected flow of value at

instant t. The first term on the right-hand side, z, is the flow of synergy. The second

term is due to the reward β0 he gives to the agent if C-evidence arrives, which happens

with probability (1−α)µdt conditional on a = 0 being implemented from t to t+ dt.

The third term arises due to the drift of w, where ρw is the rate at which the interests

accrue, and −β0µ(1 − α) is the flip side of carrots due to promise keeping — if C-

evidence does not arrive, the principal reduces the agent’s continuation value at this

rate to balance against the reward for carrots, so that the continuation value w net of

ρw is a martingale and thus the contract does deliver w in expectation to the agent.

Note that there is no term in Equation (5) that corresponds to sticks (i.e., no term

containing β1), because S-evidence never arrives if the agent does follow the contract

and take a = 0 at each instant. In this sense, sticks serve only as an off-equilibrium

threat. Therefore, the limited liability constraint (6) must be binding — If S-evidence

were observed, the principal would maximize the penalty by terminating the project

and confiscating the whole stake w promised to the agent.

Notationally, superscript * denotes objects of the optimal contract hereafter.

Property 1 β∗1 (w) = w.

Instead of B (w), it is equivalent but more convenient to continue our analysis

based on V (w) = B(w) +w, the sum of the principal’s value function and the agent’s

continuation value, or their joint surplus. Equation (5) then becomes

rV (w) = max
α∈[0,ᾱ],β0

z+[ρw−β0µ(1−α)]V ′ (w)+(1−α)µ[V (w+β0)−V (w)]−(ρ−r)w .

(9)
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Next, since r < ρ, we guess and later verify that there is a payout boundary w̄

as standard in existing dynamic contracting models, e.g., (DeMarzo and Sannikov

2006) and (Biais, Mariotti, Rochet, and Villeneuve 2010) — If w > w̄, the principal

will simply pay dI = w − w̄ immediately and reduce the continuation value to w̄;

Otherwise, the principal will use backloading; i.e., waiting for the agent’s continuation

value w to increase instead of paying her immediately (i.e., dI = 0). By construction,

V (w̄ + β0) = V (w̄), so that when w = w̄, the third term in equation (9) equals

zero, and V ′ (w̄) = 0 if it exists. If V ′ (w̄) does not exist, i.e., the left and the right

derivatives are not equal, (9) is not defined at w = w̄ and the coefficient in front of

V
′
(w) must be zero at w̄. Notice that this coefficient is the drift of the continuation

value. Hence, when V ′ (w̄) does not exist, w̄ is an absorbing payout boundary. As

a result, no matter whether the payout boundary w̄ is absorbing or not, the second

term in equation (9) must also equal zero when w = w̄, so that

V (w̄) =
z

r
− (ρ− r)w̄

r
(10)

and

B(w̄) =
z

r
− ρ

r
w̄ . (11)

Moreover, we must have w̄ ≤ λ
ρ+µᾱ

. Assume otherwise, once the continuation value

reaches w̄ > λ
ρ+µᾱ

, the principal could always incentivize the agent with the following

contract: paying out w̄ − λ
ρ+µᾱ

immediately to reduce the agent’s continuation value

to λ
ρ+µᾱ

; setting α = ᾱ, β1 = λ
ρ+µᾱ

and β0 = ρλ
µ(1−ᾱ)(ρ+µᾱ)

, so that (IC) is binding, and

that β0µ(1− ᾱ) = ρ λ
ρ+µᾱ

, i.e., the drift of the agent’s continuation value is zero with

payment I = 0 and thus w = λ
ρ+µᾱ

is an absorbing state. Then the principal’s payoff
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becomes

z

r
− ρ

r
· λ

ρ+ µᾱ
− (w̄ − λ

ρ+ µᾱ
) >

z

r
− ρ

r
w̄ = B(w̄) ,

where the inequality follows w̄ > λ
ρ+µᾱ

, contradicting the optimality of B(w̄).

Property 2 There exists a w̄ ∈ (0, λ
ρ+µᾱ

] such that i) dI∗ = (w − w̄)+ ; ii) V is

increasing in [0, w̄]; iii) if w ≥ w̄,

V (w) = z/r − (ρ− r)w̄/r ; (12)

and iv) either V ′ (w̄) = 0, or ρw̄ − µ(1− α∗ (w̄))β∗0 (w̄), the drift at w = w̄, is 0.

Together with Assumption 2 and Property 1, we have β∗1 (w) = w < w̄ ≤ λ
ρ+µᾱ

<

λ/µ for w < w̄; i.e., by the (IC) constraint, sticks alone are not sufficient to incentivize

the agent to work. Moreover, (IC) and Property 1 imply that wα∗+β∗0(1−α∗) ≥ λ/µ,

and thus β∗0 (w) ≥ λ/µ > λ
ρ+µᾱ

if w < w̄. This, together with Property 2, implies

Property 3 w + β∗0 ≥ w̄ for all w < w̄.

That is, a single piece of C-evidence suffices to make the continuation value w jump

to the payout region [w̄,+∞), so that V (w+β∗0) = V (w̄); i.e., β∗0, the optimal reward

for carrots, only raises their joint surplus from V (w) to V (w̄), and the remaining

reward, β∗0 − (w̄ − w), is an immediate transfer from the principal to the agent and

has no impact on their joint surplus. Also, the limited liability constraint (7) slacks

as conjectured.

Property 3 plays a crucial role in the derivation of the optimal contract, given

that the value function V may not always be concave.3 To see this, by Property 3,

3This possibility is discussed in Section 4.2.
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Equation (9) becomes

rV (w) = maxβ0,αz+[ρw−β0µ(1−α)]V
′
(w)+(1−α)µ[V (w̄)−V (w)]−(ρ−r)w , (13)

whose right-hand side is always decreasing in β0. This has two important implications.

First, it indicates an advantage of using sticks relative to using carrots, regardless of

the concavity of V . In equilibrium, S-evidence never arrives, and thus sticks incen-

tivize the agent without causing variation in her continuation value w. But if carrots

are used (i.e., β0 > 0), C-evidence does arrive in equilibrium and generate variation

in w. Property 3 implies that effectively, the upward jump in w when C-evidence

arrives is always w̄ − w (after the bonus payment), which is independent of α and

β0. But the magnitude of the downward drift of w absent the arrival of C-evidence,

β0µ(1−α), is increasing in both the attention allocated to carrots, µ(1−α), and the

associated reward, β0. Therefore, the more the principal resorts to carrots, the more

adverse variation in w is generated, making it disadvantageous relative to sticks.

Second, the fact that the right-hand side of Equation (13) is decreasing in β0

implies a binding incentive compatibility constraint (IC) in the no-payment region

[0, w̄], i.e.,

Property 4 µ [α∗w + (1− α∗)β∗0] = λ.

The incentive compatibility constraint (IC) plays a central role in this model.

Property 4 establishes that the combination of carrots and sticks should be just

enough to overcome the agent’s private benefit of shirking.

Note that the principal still has two degrees of freedom to set the sensitivities

of the agent’s continuation value to news reflecting her action. As mentioned in the

literature review, this contrasts with the counterpart in models without the choice
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among multiple performance indicators, e.g., in (Sannikov 2008) and (Biais, Mariotti,

Rochet, and Villeneuve 2010), where there is no such degree of freedom.

Now we are ready to derive the central piece of the model — the optimal allocation

of attention, α, and the optimal reward for carrots, β0, in the no-payment region [0, w̄].

By Properties 1 and 4,

β∗0 =
λ− µα∗w
µ(1− α∗)

. (14)

Equation (14) highlights the substitution between the attention allocated to carrots,

1− α, and pecuniary reward β0 for them, which is peculiar to our setup with flexibility

in monitoring practice. The more attention is allocated to carrots, the higher is the

probability of the arrival of C-evidence confirming the agent’s effort, and thus the

less reward is needed to incentivize the agent. Conversely, a higher pecuniary reward

for carrots provides stronger incentive for the agent, and thus reduces the reliance of

the principal on the arrival of C-evidence, enabling him to utilize sticks. Note that

β∗0 → ∞ as α∗ → 1, and thus we assume ᾱ < 1 in Assumption 1 to preclude this

situation.

In the no-payment region, we have dI = 0 by definition and V (w + β0) = V (w̄)

by Property 2. Thanks to Equation (14) in addition, the HJB equation (9) becomes

rV (w) = max
α∈[0,ᾱ]

z− (ρ− r)w+ (1−α)µ[V (w̄)− V (w)] + (ρw− λ+µαw)V
′
(w). (15)

Notice that α affects the right-hand side of Equation (15) through the last two terms.

As explained before, the third term reflects its impact through the reward of car-

rots; i.e., raising α reduces the arrival rate of C-evidence and that of the contingent

increment V (w̄)− V (w) in their joint surplus. This in turn reduces the expected in-

stantaneous joint surplus (1− α)µ[V (w̄)− V (w)]. The impact is linear in α, and the
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marginal impact is −µ[V (w̄)− V (w)], whose absolute value monotonically decreases

with w.

The last term of the right-hand side of Equation (15) reflects the impact of α

through the flip side of carrots; i.e., a lower arrival rate of C-evidence also reduces

the downward drift of the agent’s continuation value w due to promise keeping.4 This

increases the expected instantaneous joint surplus (ρw− λ+ µαw)V
′
(w). This effect

is also linear in α, with a marginal impact µwV
′
(w), which could be non-monotonic

in w. Since the total impact of α is linear, with marginal impact

µ
[
wV

′
(w) + V (w)− V (w̄)

]
, (16)

we have the following corner solution.

Property 5 If wV
′
(w) + V (w) < V (w̄), then α∗ = 0 and β∗0 = λ/µ;

If wV
′
(w) + V (w) = V (w̄), then α∗ ∈ [0, ᾱ] and β∗0 = λ−µα∗w

µ(1−α∗) ;

If wV
′
(w) + V (w) > V (w̄), then α∗ = ᾱ and β∗0 = λ−µᾱw

µ(1−ᾱ)
.

The following Theorem verifies that the contract that we derive is indeed optimal.

Theorem 3.1 Under Assumption 3, the solution V to the HJB equation (9) is the

principal’s value function. Moreover, the optimal contract is characterized by Property

5.

4 The Role of Flexible Monitoring

This section highlights the critical role of flexible monitoring, which is the central

piece of this paper. Section 4.1 shows that such flexibility is indeed utilized by and

4Note that ρw − λ + µαw ≤ 0 since w̄ ≤ λ
ρ+µᾱ . Raising α thus reduces the magnitude of the

downward drift.

18



thus valuable to the principal. Section 4.2 further articulates that such flexibility

enables the principal to perpetuate the agent’s effort with positive probability when

the synergy z is large relative to the agent’s private benefit of shirking, λ. Section

4.3 summarizes these results with a graphic illustration using the narratives of career

path and provides a few empirically plausible predictions.

4.1 Flexibility in Monitoring is Utilized

Property 5 establishes that other than knife-edge cases, the optimal attention al-

located to sticks, α∗, is either 0 or ᾱ. This subsection further establishes that an

optimal contract necessarily involves both possibilities. Specifically, Proposition 4.1

establishes that α∗ (w) = 0 when the agent’s continuation value w is close to 0, and

α∗ (w) = ᾱ when w is close to the payout boundary w̄. This indicates that the

flexibility in allocating attention between different performance indicators allows the

principal to incentivize the agent differently at different stages of her career, and is

thus valuable to the principal.

Proposition 4.1 There exists a ŵ0 ∈ (0, w̄) and a ŵᾱ ∈ [ŵ0, w̄), such that α∗ (w) =

0 and β∗0 (w) = λ/µ if w ∈ (0, ŵ0), and that α∗ (w) = ᾱ and β∗0 (w) = λ−µᾱw
µ(1−ᾱ)

if

w ∈ (ŵᾱ, w̄].

By Property 5, the optimal contract only involves α = 0 and α = ᾱ except for

the knife-edge case featuring indifference, from Equation (15) we know that for each

w ∈ (0, w̄), either α = 0 and

rV (w) = z + [ρw − λ]V
′
(w) + µ[V (w̄)− V (w)]− (ρ− r)w , (17)
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or α = ᾱ and

rV (w) = z + (1− ᾱ)µ[V (w̄)− V (w)] + [ρw − λ+ µᾱw]V
′
(w)− (ρ− r)w . (18)

Both equations can be solved in closed form, and interested readers are referred to the

Appendix. It can be verified that V ′ (0) is finite. This implies 0 · V ′(0) + V (0) = 0 <

V (w̄), and by continuity, there is a neighborhood of w = 0 such that wV
′
(w)+V (w) <

V (w̄). Thus, the principal relies completely on carrots when the agent’s continuation

value w is low. The statement for (ŵᾱ, w̄) can also be proved with the closed-form

solutions.

Intuitively, when the agent’s continuation value w is low, the principal should not

rely on sticks at all, because the agent has little to lose even if she is confirmed to

have shirked. Relying on carrots, on the other hand, also maximizes the chance that

C-evidence (i.e., hard evidence confirming the effort of the agent) arrives. This helps

the principal quickly accumulate the agent’s ”skin in the game”, which makes sticks

(which is costless to the principal) more effective in the future, and pushes the project

away from termination (which is socially inefficient). When the agent’s continuation

value w is higher, the principal is able to impose large penalty if S-evidence arrives.

Since such penalty is just an off-equilibrium threat, making sticks less costly than

carrots, the principal should rely on sticks as much as possible.

The flexibility in combining carrots and sticks allows the principal to exploit their

respective advantages. On one hand, carrots generate greater variation than sticks

in the agent’s continuation value, and are thus less favorable to the principal. This

is because, given that the agent indeed works, S-evidence would not arrive and thus

requires no adjustment to the agent’s continuation value; while C-evidence does ar-

rive in equilibrium, which necessarily involves the reward upon its arrival and the
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downward adjustment to the agent’s continuation value in the absence of C-evidence.

On the other hand, sufficiently high continuation value is required as the agent’s skin

in the game for sticks to be an effective incentive device on its own, whereas the

effectiveness of carrots does not depend on the agent’s continuation value. Moreover,

even if sticks could work alone, a high continuation value of the agent has to be

maintained, which involves interest expenditure to the principal, making sticks less

favorable than carrots. This tradeoff between carrots and sticks makes the principal

rely only on carrots when w is low, and on sticks as much as possible when w is high.

Concerning β0, the reward for carrots, recall that the right-hand side of Equation

(13) is decreasing in β0, since an increase in β0 makes the drift of the agent’s con-

tinuation value, ρw − β0µ(1 − α), more negative due to promise keeping, and thus

makes the project more prone to termination. Hence, given the optimal attention

allocation α∗, β∗0 should be set as low as possible — such that the incentive compati-

bility constraint (IC) is binding. Thus, for agents facing α∗ = 0, including those with

w ∈ (0, ŵ0), we have β∗0 (w) = λ/µ, and the resulting drift of w is ρw − λ< 0; For

agents facing α∗ = ᾱ, including those with w ∈ (ŵᾱ, w̄], we have β∗0 (w) = λ−µᾱw
µ(1−ᾱ)

, and

the resulting drift of w is ρw − λ+ µᾱw ≤ 0.5

Note first that β∗0 (w) is constant in the region with α∗ (w) = 0, but is decreasing

in the region with α∗ = ᾱ. This is because in the latter case, the penalty for sticks

increases with w, partially substituting the reward for carrots that is required by

the incentive compatibility constraint (IC). Second, β∗0 (w) features an upward jump

when α∗ switches from 0 to ᾱ. To see this, notice the fact that any switching point

w < λ
ρ+µᾱ

≤ λ
µ

implies that the size of the upward jump is λ−µᾱw
µ(1−ᾱ)

− λ
µ
>

λ−µᾱ·λ
µ

µ(1−ᾱ)
− λ

µ
= 0.

Third, the drift of w increases (i.e., becomes less negative) with w, due to the interest

accrued (i.e., due to the term ρw) and the increasing reliance on sticks in lieu of

5This is because w ≤ w̄, and w̄ ≤ λ
ρ+µᾱ by Property 2.
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carrots (i.e., due to the term µᾱw). Lastly, the drift of w is negative, which moves

w towards 0, the termination boundary, unless w reaches the payout boundary w̄

and w̄ = λ
ρ+µᾱ

, where the drift is zero; i.e., the project and the agent’s effort are

perpetuated. Section 4.2 characterizes when such perpetuation is optimal.

4.2 Possibility of Perpetuation of the Agent’s Effort

This subsection discusses whether the optimal contract involves the perpetuation of

the agent’s effort with positive probability. Mathematically, this refers to whether the

payout boundary w̄ is an absorbing state. We show that this is related to the (local)

convexity of the value function, which is in turn determined by the flexibility of the

principal’s attention allocation as captured by ᾱ, and by the ratio of the synergy z

to that of the agent’s private benefit of shirking, λ. Specifically, 1) w̄ is absorbing if

and only if w̄ = λ
ρ+µᾱ

; 2) w̄ is absorbing if and only if the value function V is not

universally concave6. More precisely, w̄ is absorbing if and only if V is convex in

(ŵᾱ, w̄) given by Proposition 4.1; and 3) w̄ is absorbing if and only if ᾱ > r−ρ+µ
2µ

and

z/λ ≥ θ, where the threshold θ is a function of ᾱ, r, ρ, µ and λ.

Again, the role of the flexibility in attention allocation worths a highlight. We

show that without such flexibility, perpetuation of the agent’s effort is impossible.

Recall from Property 2 that w̄ ≤ λ
ρ+µᾱ

. We have in addition

Lemma 4.1 w̄ is absorbing if and only if w̄ = λ
ρ+µᾱ

.

Proof. First consider the “if” statement. If w̄ = λ
ρ+µᾱ

, we show that the following

strategy is feasible and optimal, and makes w̄ absorbing: α = ᾱ, β0 = ρλ
µ(1−ᾱ)(ρ+µᾱ)

and β1 = w̄ = λ
ρ+µᾱ

. Feasibility results from the binding (IC) constraint. To see

6Recall from Section 2 that we will discuss public randomization in Section 5 and preclude it in
the rest of the paper unless otherwise mentioned.
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why w̄ is absorbing, when w = w̄, the positive component of the drift of the agent’s

continuation value due to accrued interest is ρw̄dt = ρλ
ρ+µᾱ

dt, and the negative com-

ponent due to Carrots is µ(1 − ᾱ)β0dt, which also equals ρλ
ρ+µᾱ

dt, so that w remains

constant when no C-evidence arrives, and the whole reward β∗0 upon its arrival is paid

out immediately so that w is also unchanged.

To see the optimality of this strategy, observe that the principal’s expected pay-

off at w = λ
ρ+µᾱ

is E(
∫ +∞

0
ze−rtdt − β0

∫ +∞
0

e−rtdY0,t). Since Y0,t − µ(1 − ᾱ)t is a

martingale,

E(

∫ +∞

0

ze−rtdt− β0

∫ +∞

0

e−rtdY0,t) =
z

r
− β0µ(1− ᾱ)

r
=
z

r
− ρ

r
· λ

ρ+ µᾱ
.

Thus, the expected joint surplus is

z

r
− ρ

r
· λ

ρ+ µᾱ
+ w̄ =

z

r
− ρ− r

r
· w̄ .

From equation (10), this strategy achieves the optimal joint surplus at the payout

boundary.

To show the “only if” statement, by Property 2, it suffices to show that any

w̄ < λ
ρ+µᾱ

cannot be absorbing. Any contract respecting the (IC) constraint satisfies

β0µ(1− ᾱ) ≥ λ− w̄µᾱ > ρ · λ

ρ+ µᾱ
> ρw̄ .

Thus, when no C-evidence arrives, the agent’s continuation value always has a down-

ward drift term ρw̄ − β0µ(1 − ᾱ) < 0. This implies that the payout boundary is

reflective.

Notice the role of the flexibility in attention allocation here. If w̄ = λ
ρ+µᾱ

, the way

for the principal to perpetuate the agent’s effort there is to set α = ᾱ; i.e., to rely on
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sticks as much as possible. But if w0 < ŵ0, such monitoring scheme is not viable since

the agent has too little to lose if caught shirking. To avoid inefficient termination, the

principal has to first rely on carrots to build up the agent’s skin in the game while

keeping her working, and then switch to stick-dominant mode when the continuation

value is high enough. This approach is infeasible without the flexibility in attention

allocation.

As the main proposition of this subsection, Proposition 4.2 further establishes the

connection between the possibility of the perpetuation of the agent’s effort, the (local)

convexity of the value function, and the conditions on exogenous parameters.

Proposition 4.2 Let ŵ0 and ŵᾱ be given by Proposition 4.1. Then, w̄ is absorbing if

and only if V is convex in (ŵᾱ, w̄), which holds if and only if ᾱ > r−ρ+µ
2µ

and z/λ ≥ θ,

where the threshold θ is a function of exogenous parameters r, ρ, µ and ᾱ. Moreover,

if w̄ is absorbing, then ŵ0 = ŵᾱ.

That is, the agent’s effort could be perpetuated if and only if both the principal

enjoys sufficient flexibility in attention allocation and the synergy relative to the

friction of the contractual relation is large enough. The Appendix gives the exact

closed-form formula for the threshold θ. In other words, no matter how large is the

synergy relative to the friction, the contractual relation would terminate in probability

one as long as the principal does not have sufficient flexibility of attention allocation.

This again stresses the importance of such flexibility in shaping the optimal contract.

Proposition 4.2 also establishes the equivalence relation between w̄ being absorbing

and the local convexity of the value function V . If V is globally concave, then the

payout boundary w̄ is reflective as in (Biais, Mariotti, Rochet, and Villeneuve 2010)

and (DeMarzo and Sannikov 2006). That is, the agent receives a lumpy bonus of
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β0 − (w̄ − w) and a jump of w̄ − w in continuation value upon each arrival of C-

evidence, but her continuation value will then still drift downward from w̄ until the

next arrival, and will eventually reach zero in probability one, resulting in termination

of the project.

Moreover, if the agent’s effort could be perpetuated, there is only one switching

point in (0, w̄) for attention allocation; i.e., the optimal α = 0 in (0, ŵᾱ), and α = ᾱ

in (ŵᾱ, w̄).

The proof of Proposition 4.2 is based on the closed-form solutions to Equations

(17) and (18). Interested readers are referred to the Appendix. Here we provide an

intuitive explanation for the role of the flexibility based on these two equations.

In the range of w in which the optimal α = 0, which at least includes (0, ŵ0) by

Proposition 4.1, the value function V satisfies Equation (17), which yields

V ′′ (w) = (ρw − λ)−1 [(ρ− r) + (r + µ− ρ)V ′ (w)] .7 (19)

By Property 2, w̄ ≤ λ
ρ+µᾱ

< λ/ρ, so the drift of w, ρw − λ, must be negative in

this range. In the square brackets, ρ − r is due to the interest accrued, (ρ − r)w;

rV ′ (w) is due to the interest rV (w) earned by the principal; µV ′ (w) is due to the

expected jump in the principal’s value, µ[V (w̄) − V (w)], which falls by µV ′ (w) dw

for an increase in w by dw; −ρV ′ (w) is due to the drift of w, which rises by ρdw

and costs the principal ρV ′ (w) dw for an increase in w by dw. Since V ′ (w) > 0

for w < w̄, and both ρ − r and r + µ − ρ are positive by Assumption 2, we have

V ′′ (w) < 0 for all w in this range; i.e., the value function is concave. This reflects the

tradeoff between the constant marginal cost of backloading due to interest accrued

and the decreasing marginal benefit of accumulating the cushion against termination,

which happens when w hits zero for the first time. In addition, since the drift of w
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is negative, if only carrots are accessible to the principal; i.e., if the principal cannot

flexibly allocate attention between carrots and sticks, the payout boundary w̄ must be

non-absorbing and satisfy V ′ (w̄) = 0. This echoes the results in existing models with

only one-sided control, such as (DeMarzo and Sannikov 2006) and (Biais, Mariotti,

Rochet, and Villeneuve 2010).

Now consider the range of w in which the optimal α = ᾱ, which at least includes

(ŵᾱ, w̄) by Proposition 4.1. The value function V satisfies Equation (18) there, which

yields

V ′′ (w) = (ρw − λ+ µwᾱ)−1 {(ρ− r) + [r + (1− ᾱ)µ− ρ− µᾱ]V ′ (w)} . (20)

Notice the difference between Equations (19) and (20) due to the attention ᾱ allo-

cated to sticks. First, it increases the drift of w by µwᾱ. To see why, recall that in

equilibrium, C-evidence does arrive and rewards for carrots do incur, which requires

a downward drift to balance it due to promise keeping. However, S-evidence does not

arrive in equilibrium and thus does not require a drift term to balance the penalty.

Hence, when attention ᾱµ is reallocated from carrots to sticks, it reduces the down-

ward drift balancing the reward for carrots by µwᾱ. By Lemma 4.1, the drift is still

negative for w < λ
ρ+µᾱ

. This also interprets the new term −µᾱV ′ (w) in the braces.

Second, it reduces the expected jump in the principal’s value from µ[V (w̄)−V (w)] to

(1− ᾱ)µ[V (w̄)− V (w)], which accounts for the difference between µV ′ (w) in Equa-

tion (19) and (1− ᾱ)µV ′ (w) in Equation (20).

With those differences, if the terms in the square brackets, r+ (1− ᾱ)µ− ρ−µᾱ

is negative; i.e., if ᾱ > r−ρ+µ
2µ

as in Proposition 4.2, V ′′ may be positive for some

w ∈ (ŵᾱ, w̄); in other words, V may be convex in this range. In the Appendix, based

on the closed-form solution to Equations (17) and (18), we show that this is the case
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if and only if w̄ is absorbing. This reflects the fact that the higher is the agent’s

continuation value, the more likely that it reaches the absorbing payout boundary

and the contract becomes completely immune to termination. This is impossible if

the principal does not have the flexibility to reallocate attention from carrots to sticks.

In the proof, we further establish that besides ᾱ > r−ρ+µ
2µ

, the ratio of the synergy

to the agent’s private benefit of shirking, z/λ, has to be no less than θ, as the sufficient

and necessary condition for w̄ to be absorbing. Moreover, in this case, ŵ0 = ŵᾱ, so

that attention µ is reallocated only once as the agent’s continuation value w rises

from 0 to w̄.

4.3 A Career Path Narrative

Using the narrative of career path, this subsection summarizes with a graphic illus-

tration the role of flexibility in monitoring practice studied in this section, which is

the core of this paper, and provides a few empirically plausible predictions.

Proposition 4.1 establishes that the optimal monitoring and compensation schemes

for junior employees (i.e., agents with continuation value w ∈ (0, ŵ0)) are quali-

tatively different from those for senior employees (agents with continuation value

w ∈ (ŵᾱ, w̄)). Concerning monitoring schemes, junior employees are incentivized in

carrot-only mode (i.e., α = 0), since they need to accumulate cushion against un-

employment (i.e., termination) and have little to lose even caught shirking; Senior

employees are instead incentivized in stick-dominant mode (i.e., α = ᾱ), since they

have enough skin in the game, and sticks are based on off-equilibrium penalties, which

are less costly than on-equilibrium reward for carrots. Thus, our model predicts that

Prediction 1 Junior employees are incentivized mainly based on confirmatory evi-

dence of their contribution to their employer, while senior employees are incentivized
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mainly based on contradictory evidence of their contribution.

Concerning compensation schemes, as an off-equilibrium threat, the penalty for

sticks is always the whole continuation value w and thus increases in seniority of

employees. The reward for carrots for junior employees is set to the minimum level

required for inducing effort, and is constantly λ/µ, while that for senior employees,

λ−µᾱw
µ(1−ᾱ)

, decreases with their seniority, since the reward for carrots is more substitued

by the penalty for sticks at higher continuation values. For super-senior employees,

i.e., agents with continuation value w > w̄, their promised stakes are so large that a

payment w− w̄ to reduce interest accrued is so urgent as to dominate their incentive

problems. Hence,

Prediction 2 The reward for each piece of confirmatory evidence of contribution

to the employer varies little among junior employees, but decreases with seniority for

senior employees. The penalty for each piece of contradictory evidence of contribution

to the employer increases with seniority for both junior and senior employees.

Concerning the possibility of being fired (i.e., termination), absent the arrival of

C-evidence, the drift of the continuation value of junior employees is ρw−λ, and that

of senior employees is ρw − λ+ µᾱw. They are both negative unless w = w̄ = λ
ρ+µᾱ

,

i.e., unless the (senior) employee is permanently hired. They are less negative the

higher the continuation value w for two reasons. First, larger stakes in the game carry

larger interest income; Second, larger stakes also allow for larger penalty for sticks

and less reliance on carrots, and thus less downward drift in continuation value to

balance the in-equilibrium reward for carrots. Therefore,

Prediction 3 Except for those hired permanently, absent the arrival of confirmatory

evidence of their contribution, an employee is more prone to unemployment than

before, and the more so if the employees are less senior.
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Figure 1: Reflective Payout Boundary w̄

Then, when is it possible for employees to be hired permanently? Proposition 4.2

shows that it is the case if and only if both the flexibility in adjusting monitoring

schemes and the potential synergy created by employees (relative to frictions) are

sufficiently large.

First consider the case ᾱ ≤ r−ρ+µ
2µ

as illustrated in Figure 1; i.e., the flexibility

in monitoring is not large enough. The blue solid line corresponds to the value

function V (in terms of the joint surplus), and the red dash-dotted line corresponds

to the principal’s value function B (w) = V (w)−w. The value function V is strictly

concave in (0, ŵ0), reflecting the standard incentive versus interest tradeoff; V is also

strictly concave in (ŵᾱ, w̄), where the fact that the reward for carrots decreases with

the agent’s stake in the game makes V less concave; However, since ᾱ is low, the

principal does not have enough flexibility to rely on sticks to the extent he wants, so

that w̄ is reflective and thus given by V ′ (w̄) = 0. That is, senior employees who just

receive a reward for carrots still face a downward drift in their promised stakes and

thus the risk of being fired. This is the case no matter how large is the synergy z

relative to λ, the agent’s private benefit of shirking.
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Now fix an ᾱ > r−ρ+µ
2µ

, so that the principal does have enough flexibility in adjust-

ing monitoring scheme. If z/λ < θ, the synergy is too low to justify perpetuation of

the agent’s effort, so the optimal contract is qualitatively similar to that of the case

ᾱ ≤ r−ρ+µ
2µ

; Once z/λ grows beyond the threshold θ, the optimal contract changes

fundamentally as shown in Figure 2. — Now the principal has both the flexibility and

the desire to perpetuate the agent’s effort, so now the payout boundary w̄ becomes

absorbing. That is, the agent is ”tenured” once her effort is confirmed by an arrival

of C-evidence. In addition, the possibility of complete avoidance of termination cre-

ates new marginal benefit of increasing continuation value, and thus makes the value

function V convex in (ŵᾱ, w̄). Moreover, ŵ0 = ŵᾱ, so that α, the attention allocated

to sticks, only switches once as the agent’s continuation value rises from 0 to w̄. Thus,

we have

Prediction 4 Employers offer permanent positions if and only if both their flexibil-

ity in adjusting monitoring schemes and the potential synergy created by employees

(relative to frictions) are sufficiently large.

5 Public Randomization

So far we have been focusing on deterministic contracts, on the basis that random

contracts are of little practical relevance in reality. This is without loss of generality

theoretically as well if the resulting value function is globally concave as in the case il-

lustrated in Figure 1 and as in most existing models in the literature as well. However,

as established in Proposition 4.2, our value function is convex in the vicinity of the

payout boundary w̄ if it is absorbing (as illustrated in Figure 2). For this situation,

this section discusses the extension in which public randomization of the following
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Figure 2: Absorbing Payout Boundary w̄

form is allowed. At time 0, in addition to starting the contractual relation with a de-

terministic continuation value w0, the principal can choose a mean-preserving spread

of w0 as the basis for random contracts, but no further randomization is allowed for

t > 0. Since B = V − w, and the linear term has no effects on the concavification

operation, we can work with the joint surplus function V without loss of generality.

Proposition 5.1 With public randomization, the principal’s value function B∗ =

V ∗ − w, where V ∗ is the concavification of V .

Proof. Proposition 4.2 establishes that when V is not globally concave, we must have

w̄ = λ
ρ+µᾱ

, and V (w̄) is uniquely determined by Property 2. In addition, V is concave

in (0, ŵ) and convex in (ŵ, w̄), where ŵ ≡ ŵ0 = ŵᾱ. Therefore, the concavification

of V must be over w̄ and some w′ ∈ (0, ŵ) as shown with the yellow broken line in

Figure 2.8

We check that the values of non-randomized states are not changed. First, V (w̄)

does not change because w̄ = λ
ρ+µᾱ

is absorbing and its value does not depend on the

8The purple dotted line in Figure 2 illustrates the corresponding concavification B∗ of the prin-
cipal’s value function B.
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values of other states. For w ∈ (0, w′), notice that the continuation value may only

drift downward or jump upward over w̄. Since V (w̄) remains the same and V ∗ = V

for w ∈ (0, w′), the values of these states satisfy the same HJB equation and thus

remain the same.

6 Conclusion

This paper studies a continuous-time moral hazard problem in which the principal

can flexibly combine “carrots” with “sticks” to incentivize the agent. That is, he

can flexibly allocate his limited attention between confirmatory and contradictory

evidence about the agent’s effort as the basis for rewards and punishment. We find

that such flexibility generates rich dynamics, which differs qualitatively from the

situation where only one of the two means is feasible. When the agent has little

skin in the game, the principal only resorts to carrots; When the agent has large

skin in the game, the principal instead assigns the highest possible weights on sticks.

Moreover, only with such flexibility can the agent’s effort be perpetuated with positive

probability when the agent is less patient than the principal.
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7 Appendix

7.1 Proofs in Section 2

7.1.1 Proof of Lemma 2.1

Proof. The proof is a standard application of the martingale representation theorem.

For any given contract X = (α, I, τ) and effort process a, define

M1,a
t = Y 1

t − µ
∫ t

0

αsasds

and

M0,a
t = Y 0

t − µ
∫ t

0

(1− αs)(1− as)ds .

If the agent follows the effort process a, her lifetime expected payoff conditional on

information at time t is

Ut =

∫ t∧τ

0

e−ρs(dIs + λasds) + e−ρtWt .

Let ã be an arbitrary effort process. Let Ũt denote the agent’s lifetime expected payoff

conditional on information at t if she follows a till time t and then reverts to ã. Then

by the martingale representation theorem, Ut can be written as

Ut = U0 −
∫ t∧τ

0

e−ρsβ1,sdM
1,a
t +

∫ t∧τ

0

e−ρsβ0,sdM
0,a
t
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For each t ≥ 0,

Ũt =Ut +

∫ t∧τ

0

e−ρsλ(ãs − as)ds

=U0 −
∫ t∧τ

0

e−ρsβ1,sdM
1,a
t +

∫ t∧τ

0

e−ρsβ0,sdM
0,a
t +

∫ t∧τ

0

e−ρsλ(ãs − as)ds

=U0 −
∫ t∧τ

0

e−ρsβ1,sdM
1,ã
t +

∫ t∧τ

0

e−ρsβ0,sdM
0,ã
t +

∫ t∧τ

0

e−ρsλ(ãs − as)ds

−
∫ t∧τ

0

e−ρsµαsβ1,s(ãs − as)ds−
∫ t∧τ

0

e−ρsµ(1− αs)β0,s(ãs − as)ds

Hence, at = 0 for all t is incentive compatible if and only if the drift term of the above

expression is non-positive for any effort process ã 6= 0, i.e.,

λ ≤ µαtβ1,t + µ(1− αt)β0,t

for all t before termination.

7.2 Proofs in Section 3

We provide the proofs for Property 2 and Theorem 3.1 here, and those of all the other

properties are straightforward from the text and thus omitted.

7.2.1 Proof of Property 2

Proof. Note that the joint value function V must be nondecreasing in continuation

value w. This is because in any region where V is strictly decreasing in w, the principal

can benefit from paying out to the agent, contradicting to the optimality of V . Let

A ⊂ R+ denote the region of continuation values in which V is strictly increasing.

Then the principal does not make any payment when w ∈ A and R+\A is the payout

region. Since ρ > r, deferring payment becomes infinitely costly as w → +∞. Thus
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the payout region R+\A is nonempty and there exists a w̄ = inf(R+\A).

By construction, V is strictly increasing for w ∈ [0, w̄] and is constant in a right

neighborhood of w̄, (w̄, w̄ + ∆). Then, if V ′ (w̄) exists, it must be zero. If V ′ (w̄)

does not exist, i.e., the left and the right derivatives are not equal, (9) is not defined

at w = w̄ and the coefficient in front of V
′
(w) must be zero at w̄. Notice that this

coefficient is the drift of the continuation value. Hence, when V ′ (w̄) does not exist,

w̄ is an absorbing payout boundary. As a result, no matter whether V ′ (w̄) exists or

not, the second and the third terms in the right hand side of equation (9) must be

zero when w = w̄, leading to V (w̄) = z
r
− ρ−r

r
w̄.

By definition, the payout region is a subset of (w̄,+∞). Actually, the payout

region is (w̄,+∞). Otherwise, there exists an interval (w̄′ −∆, w̄′) ⊂ (w̄,+∞) such

that V is strictly increasing on [w̄′ −∆, w̄′] and is constant in a right neighborhood of

w̄′. It must be the case that w̄′ <∞, since ρ > r and deferring payment is infinitely

costly as w → +∞. Then similar argument regarding the existence of V ′ (w̄) also

applies here – no matter whether V ′ (w̄′) exists or not, the second and the third

terms in the right hand side of equation (9) must be zero when w = w̄′, and thus

V (w̄′) = z
r
− ρ−r

r
w̄′ < z

r
− ρ−r

r
w̄ = V (w̄), a contradiction to the non-decreasing property

of V . Hence, the above defined w̄ is the payout boundary and the payout region is

(w̄,+∞). As an immediate implication, the optimal payment is dI∗ = (w − w̄)+ and

for w ∈ [w̄,+∞), V (w) = V (w̄).

The above proof has already shown that either V ′ (w̄) = 0, or V ′ (w̄) does not

exist and ρw̄ − µ(1− α∗ (w̄))β∗0 (w̄), the drift at w = w̄, is 0.

The proof for w̄ ≤ λ
ρ+µᾱ

is straightforward from the text.
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7.2.2 Proof of Theorem 3.1

Lemma 7.1 For any w̄ ∈ (0, λ
ρ+µᾱ

], let V̄ ≡ z
r
− ρ−r

r
w̄ and α be determined by

Property 5, then the ODE

rV (w) = z − (ρ− r)w + ρwV
′
(w) + (1− α)µ[V̄ − V (w)]− (λ− µαw)V

′
(w) (21)

with boundary condition V (0) = 0 has a unique solution on [0, w̄].

Proof. For any w < λ
ρ+ᾱµ

, since λ− µαw− ρw > 0, we can rearrange Equation (21)

to obtain

V
′
=
z − (ρ− r)w + (1− α)µ[V̄ − V ]− rV

λ− µαw − ρw
.

Let

F (w, V ) =
z − (ρ− r)w + (1− α)µ[V̄ − V ]− rV

λ− µαw − ρw
.

For any fixed ε > 0, for any (w1, V1), (w2, V2) ∈ [0, λ
ρ+ᾱµ

− ε] × [0, V̄ ], there exists an

M such that |F (w1, V1) − F (w2, V2)| ≤ M |V1 − V2|. Then, by the Cauchy-Lipschitz

theorem, the initial value problem has a unique solution over [0, λ
ρ+ᾱµ

− ε]. Further

notice that V is increasing and upper bounded, thus V does not explode as w → w̄.

Then the maximum interval of existence reaches the boundary w̄ for all w̄ ≤ λ
ρ+ᾱµ

.

When w̄ = λ
ρ+ᾱµ

, taking ε→ 0, we can extend the solution over
[
0, λ

ρ+ᾱµ

]
.

Proposition 7.1 Consider two ODEs

rV1 = maxα∈[0,ᾱ]z − (ρ− r)w + ρwV
′

1 + (1− α)µ[V̄1 − V1]− (λ− µαw)V
′

1

and

rV2 = maxα∈[0,ᾱ]z − (ρ− r)w + ρwV
′

2 + (1− α)µ[V̄2 − V2]− (λ− µαw)V
′

2 ,
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where V̄1 = z
r
− ρ−r

r
w̄1, V̄2 = z

r
− ρ−r

r
w̄2, w̄1 < w̄2 ≤ λ

ρ+ᾱµ
; and V1(0) = V2(0) = 0.

Then V1 > V2 for w ∈ (0, w̄1).

Proof. Suppose the contrary holds. Note that V
′

1 (0) > V
′

2 (0). Then, there exists a

w ∈ (0, w̄1) such that V1(w) = V2(w). Define w̃ = inf {w ∈ (0, w̄1) : V1(w) = V2(w)}.

By the continuity of V1 and V2, we have V1(w̃) = V2(w̃). Let α2 be the α that solves

the maximization problem for V2 at w̃. Taking the difference between the two ODEs

at w = w̃, we obtain

(ρw̃ + µα2w̃ − λ) · (V1 − V2)
′
+ (1− α2)µ(V̄1 − V̄2) ≤ 0 .

Since α2 < 1 and V̄1 − V̄2 > 0,

(ρw̃ + µα2w̃ − λ) · (V1 − V2)
′
< 0 .

Since w̄1 < λ
ρ+ᾱµ

, ρw̃ + µα2w̃ − λ < 0. Thus, V
′

1 (w̃) − V
′

2 (w̃) > 0. Note that

this inequality holds whenever V1 = V2. Since V1 (w) − V2 (w) is continuous and the

inequality is strict, it also holds for w close to w̃, i.e., V
′

1 (w)−V ′2 (w) > 0 in (w̃ − δ, w̃)

for some δ > 0. By the defintion of w̃, V1 (w)− V2 (w) > 0 for w ∈ (w̃ − δ, w̃). Then,

it is impossible to have V1(w̃) = V2(w̃), a contradiction.

According to the above results, the candidate of the optimal payout boundary

is the smallest w̄ ∈ (0, λ
ρ+ᾱµ

] such that the solution of ODE (15) satisfies V (w̄) =

z
r
− ρ−r

r
w̄. The existence of such w̄ is guaranteed by the continuity of V . Now we are

ready to prove Theorem 3.1.

Proof. Let τ denote the first time that wt hits zero. We first verify that the principal’s

value function can be induced by the proposed control processes in Property 5 and

the proposed payment process dIt = (β0 + w − w̄)+dY 0
t . Note that by Property 3,
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β0 + w > w̄, so that dIt = (β0 + w − w̄)dY 0
t . By Ito’s Formula for jump processes,

e−r(t∧τ)B(wt∧τ ) =B(w0) +

∫ t∧τ

0

e−rs[(ρws − β0,sµ(1− αs))B
′
(ws)− rB(ws)]ds

+

∫ t∧τ

0

e−rs[B(w̄)−B(ws)]dY
0
s .

Under the optimal control processes, the HJB equation becomes

rB(w) = z + (ρw − β0µ(1− α))B
′
(w) + (1− α)µ[B(w̄)−B(w)− (w + β0 − w̄)] .

Thus,

B(w0) =

∫ t∧τ

0

e−rs[z + (1− αs)µ(B(w̄)−B(ws)− (ws + β0,s − w̄))]ds

−
∫ t∧τ

0

e−rs[B(w̄)−B(ws)]dY
0
s − e−r(t∧τ)B(wt∧τ ) .

Due to the fact that Y 0
s − (1− αs)µs is a martingale and wτ = 0, letting t→∞ and

taking expectation on the right hand side of the above equation, we obtain

B(w0) = E(

∫ τ

0

e−rs[zds− (ws + β0,s − w̄)dY 0
s ]) ,

which verifies that the principal’s expected payoff given by (1) is indeed achieved at

the proposed control and payment processes.

We then verify the proposed contract is optimal. Since the cumulative payment

process is increasing in time, without loss of generality, write a general payment

process as

It = Ict + Idt ,

where Ict is a continuous increasing process and Idt includes discrete upward jumps.
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By Ito’s Formula for jump processes,

e−r(t∧τ)B(wt∧τ ) =B(w0) +

∫ t∧τ

0

e−rs[(ρws − β0,sµ(1− αs))B
′
(ws)− rB(ws)]ds

−
∫ t∧τ

0

e−rsB
′
(ws)dI

c
s +

∫ t∧τ

0

e−rs[B(ws + β0,s)−B(ws)]dY
0
s

+
∑

s∈[0,t∧τ ]

e−rs[B(ws + β0,s∆Y
0
s −∆Ids )−B(ws + β0,s∆Y

0
s )] ,

where ∆Y 0
s ≡ Y 0

s − Y 0
s− . We then rearrange the terms to get

B(w0) =e−r(t∧τ)B(wt∧τ )

+

∫ t∧τ

0

e−rs{rB(ws)− (ρws − β0,sµ(1− αs))B
′
(ws)− (1− αs)µ[B(w + β0,s)−B(w)]}ds

+

∫ t∧τ

0

B
′
(ws)e

−rsdIcs +

∫ t∧τ

0

[B(w + β0,s)−B(w)][(1− αs)µds− dY 0
s ]

−
∑

s∈[0,t∧τ ]

e−rs[B(ws + β0,s∆Y
0
s −∆Idt )−B(ws + β0,s∆Y

0
s )] .

Taking expectation on both sides and using the fact that Y 0
t −

∫ s
0

(1 − αs)µds is a

martingale, we obtain

B(w0) =E(e−r(t∧τ)B(wt∧τ ))

+ E(

∫ t∧τ

0

e−rs{rB(ws)− (ρws − β0,sµ(1− αs))B
′
(ws)− (1− αs)µ[B(w + β0,s)−B(w)]}ds)

+ E(

∫ t∧τ

0

B
′
(ws)e

−rsdIcs)

− E(
∑

s∈[0,t∧τ ]

e−rs[B(ws + β0,s∆Y
0
s −∆Idt )−B(ws + β0,s∆Y

0
s )]) .

Notice that

rB(w) ≥ z + (ρw − β0µ(1− α))B
′
(w) + (1− α)µ[B(w̄)−B(w)− (w + β0 − w̄)]
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and for any incentive compatible contract,

B(w + β0,s) = B(w̄)− (w + β0,s − w̄) .

Moreover, since B
′
(w) ≥ −1,

B(w0) ≥ E(e−r(t∧τ)B(wt∧τ ))+E(

∫ t∧τ

0

ze−rsds−
∫ t∧τ

0

e−rsdIcs)−E(
∑

s∈[0,t∧τ ]

e−rs∆Idt ) .

Letting t→∞ and using the fact that B(w) is bounded, we obtain

B(w0) ≥ E(

∫ τ

0

e−rs(zds− dIs)) .

Therefore, any function satisfying all these conjectured properties is indeed the value

function for the principal.

7.3 Proofs in Section 4

7.3.1 Proof of Proposition 4.1

Proof. Recall from Property 2 that w̄ ≤ λ
ρ+µᾱ

. If w = w̄ = λ
ρ+µᾱ

, Equation (18) is

exactly Equation (10), so α∗ (w) = ᾱ.

For w ∈
(

0, λ
ρ+µᾱ

)
, Equation (15) is equivalent to

V ′ (w) = max
α∈[0,ᾱ]

z − (ρ− r)w + (1− α)µ[V (w̄)− V (w)]− rV (w)

λ− ρw − µαw
. (22)

Let G (α;w) = z−(ρ−r)w+(1−α)µ[V (w̄)−V (w)]−rV (w)
λ−ρw−µαw , which is obviously continuous in both

α and w. Property 5 establishes that the maximizer of the right-hand side (RHS) of

Equation (22) must be 0 or ᾱ. So to figure out α∗ (w), it suffices to compare G (0;w)
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with G (ᾱ;w), taking as given V (0) = 0 and V (w̄).

For w ∈
(

0, λ
ρ+µᾱ

)
, G (ᾱ;w) ≥ G (0;w) is equivalent to

w [z − (ρ− r)w − rV ] ≥ [λ− (µ+ ρ)w] (V (w̄)− V (w)) . (23)

Let ŵ0 = min
{
w̄, λ

ρ+µ

}
. For any w ∈ (0, ŵ0), the left-hand side of Inequality (23)

is negative, but its right-hand side is positive. So it fails, establishing the optimality

of α (w) = 0 in this range.

Now we establish the optimality of α (w) = ᾱ for w in the vicinity of w̄. Note

that by Equation (10), (23) is equivalent to

w (ρ− r) (w̄ − w) ≥ [λ− (µ+ ρ+ r)w] (V (w̄)− V (w)), (24)

which holds for all w ≥ λ
ρ+µ+r

. So if w̄ ∈ ( λ
ρ+µ+r

, λ
ρ+µᾱ

], α∗ (w) = ᾱ for all w ∈

( λ
ρ+µ+r

, w̄].

Note that Inequality (24) is equivalent to w̄−w
V (w̄)−V (w)

≥ λ−(µ+ρ+r)w
(ρ−r)w . If w̄ ≤ λ

ρ+µ+r
<

λ
ρ+µᾱ

, by Lemma 4.1 (whose proof does not require Proposition 4.1), w̄ is reflective

so that V ′ (w̄) = 0. Then by L’Hospital’s rule, lim
w→w̄−

w̄−w
V (w̄)−V (w)

= lim
w→w̄−

1
V ′(w)

= +∞,

while lim
w→w̄−

λ−(µ+ρ+r)w
w(ρ−r) = λ−(µ+ρ+r)w̄

(ρ−r)w̄ < +∞. Hence, there also exists a ŵᾱ < w̄, such

that α (w) = ᾱ for all w ∈ (ŵᾱ, w̄].

β∗0 (w) for w ∈ (0, ŵ0) ∪ (ŵᾱ, w̄] results from Equation (14).

Here we provide the closed-form solutions to Equations (17) and 18). As a first-

order linear ODE, Equation (17) has general solutions

V (w) =
ρ− r

r + µ− ρ
(
λ

ρ
− w) +

µV (w̄) + z − (ρ− r)λ
ρ

r + µ
+K(

λ

ρ
− w)

r+µ
ρ , (25)
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which are all strictly concave in (0, w̄). From V (0) = 0, we can pin down for w ∈

(0, ŵ0) that K = − ρ(ρ−r)
(r+µ)(r+µ−ρ)

· λ
ρ

− r+µ−ρ
ρ − µV (w̄)+z

r+µ
· λ
ρ

− r+µ
ρ .

Also as a first-order linear ODE, Equation (18) has general solutions

V (w) =
ρ− r

r + (1− ᾱ)µ− (ρ+ ᾱµ)
(

λ

ρ+ µᾱ
−w)+

(1− ᾱ)µV (w̄) + z − (ρ− r) λ
ρ+ᾱµ

r + µ(1− ᾱ)
+K(

λ

ρ+ µᾱ
−w)

r+(1−ᾱ)µ
ρ+µᾱ

(26)

if r + (1− ᾱ)µ 6= ρ+ ᾱµ and

V (w) = − ρ− r
ρ+ µᾱ

(
λ

ρ+ µᾱ
−w)ln(

λ

ρ+ µᾱ
−w)+

(1− ᾱ)µV (w̄) + z − (ρ− r) λ
ρ+ᾱµ

r + µ(1− ᾱ)
+K(

λ

ρ+ µᾱ
−w)

(27)

if r + (1 − ᾱ)µ = ρ + ᾱµ. It is shown later in the proof of Proposition 4.2 that the

solutions that are increasing in (0, w̄) are strictly convex in (0, w̄) if r + (1 − ᾱ)µ <

ρ + ᾱµ and K < 0, linear if r + (1− ᾱ)µ < ρ + ᾱµ and K = 0, and strictly concave

in (0, w̄) otherwise.

With the closed-form solutions and their concavity properties discussed above, we

show the following proposition:

Proposition 7.2 If w̄ ≥ λ
ρ+µ+r

, then ŵ0 = ŵᾱ.

To prove Proposition 7.2, we first prove Lemma 7.2, which articulates that the

optimal α takes values in {0, α} almost surely.

Lemma 7.2 There does not exist an interval (w1, w2) such that w ·V ′ (w) = V (w̄)−

V (w) for all w ∈ (w1, w2).

Proof. Suppose the contrary. Then w · V ′ (w) = V (w̄)− V (w) implies

V (w) =
c

w
+ V (w̄) (28)
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in (w1, w2) for some constant c. Plugging w · V ′ (w) = V (w̄) − V (w) into the HJB

equation (9) we obtain

V (w) =
z − (ρ− r)w + (ρ+ µ− λ/w)V (w̄)

r + ρ+ µ− λ/w
. (29)

It is straightforward to verify that Equations (28) and (29) cannot be both satisfied

in any interval.

Lemma 7.3 shows that the convexity of V in an interval below the payout boundary

w̄ is ”contagion” up to w̄.

Lemma 7.3 If there exists an interval [w1, w2) ⊂ (0, w̄) such that w1 · V
′
(w1) ≥

V (w̄)− V (w1) and V is convex in (w1, w2), then α∗ (w) = ᾱ for all w ∈ (w1, w̄] and

V is convex in [w1, w̄].

Proof. If V is convex in (w1, w2), since V is continuously differentiable in (0, w̄),

w ·V ′ (w) +V (w) is strictly increasing in [w1, w2). Given that w1 ·V
′
(w1) ≥ V (w̄)−

V (w1), we have w · V ′ (w) > V (w̄) − V (w) for all w ∈ (w1, w2). So there exists

w3 ∈ (w2, w̄) such that w · V ′ (w) > V (w̄) − V (w) for all w ∈ (w1, w3). Iteration

of this argument yields w · V ′ (w) > V (w̄) − V (w) and thus α∗ (w) = ᾱ for all

w ∈ (w1, w̄). By Proposition 4.1, α∗ (w̄) = ᾱ as well.

Given that α∗ (w) = ᾱ for all w ∈ (w1, w̄], the specific solution to Equation (18)

that matches the value function V in [w1, w2) must also matches V in [w1, w̄]. Since

V is convex in [w1, w2), that specific solution must be given by Equation (26) with

K ≤ 0 and r + (1− ᾱ)µ < ρ+ ᾱµ. This proves the convexity of V in [w1, w̄].

With Lemmas 7.2 and 7.3, we can now prove Proposition 7.2.

Proof. Let Ŵ ≡
{
w ∈ (0, w̄) : w · V ′ (w) = V (w̄)− V (w)

}
. We are to show that Ŵ

is a singleton if w̄ ≥ λ
ρ+µ+r

. By Proposition 4.1, Ŵ is non-empty and has a maximum.
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Without loss of generality, assume ŵᾱ = max Ŵ . Then V must be strictly concave

in (0, ŵᾱ]. To see this, Lemma 7.2 and the properties of the general solutions to

Equations (17) and 18) imply that V must be piecewise concave or convex in (0, ŵᾱ].

If there is an interval (w1, w2) ⊂ (0, ŵᾱ] such that V is convex in it, then by Lemma

7.3, α∗ (w) = ᾱ for all w ∈ (w1, w̄], contradicting the fact that ŵᾱ = max Ŵ .

Note that Equation (29) holds for w = ŵᾱ. Plug it into V
′
(ŵᾱ) = V (w̄)−V (ŵᾱ)

ŵᾱ
,

we have V
′
(ŵᾱ) = ρ−r

r+ρ+µ
(1 −

λ
r+µ+ρ

−w̄
λ

r+µ+ρ
−ŵᾱ

). Similarly, if there exists ŵ′ ∈ Ŵ such

that ŵ′ < ŵᾱ, then V
′
(ŵ′) = ρ−r

r+ρ+µ
(1 −

λ
r+µ+ρ

−w̄
λ

r+µ+ρ
−ŵ′ ). If w̄ ≥ λ

ρ+µ+r
, then we have

V ′ (ŵ′) ≤ V ′ (ŵᾱ), contradicting the concavity of V in (0, ŵᾱ].

7.3.2 Proof of Proposition 4.2

Proof. By Proposition 4.1, α∗ (w) = ᾱ if w ∈ (ŵᾱ, w̄], so here we focus on the

solutions to Equation (18) when studying the property of the payout boundary w̄.

Let VK be the solution with constant K in Equation (26) or (27).

Case 1: If r+ (1− ᾱ)µ > ρ+ ᾱµ, we must have w̄ < λ
ρ+µᾱ

, and thus w̄ is reflective

by Lemma 4.1. To see this, Equation (26) yields

V
′

K = − ρ− r
r + (1− ᾱ)µ− (ρ+ ᾱµ)

−Kr + (1− ᾱ)µ

ρ+ µᾱ
(

λ

ρ+ µᾱ
− w)

r+(1−ᾱ)µ
ρ+µᾱ

−1. (30)

Since the first term of the right-hand side of Equation (30) is negative, K must

be negative, otherwise V
′
K < 0 for all w ≤ λ

ρ+µᾱ
, contradicting the optimality of

α∗ (w) = ᾱ for w ∈ (ŵᾱ, w̄]. Since r+(1−ᾱ)µ
ρ+µᾱ

− 1 > 0, VK is concave. Moreover, as

w → λ
ρ+µᾱ

, V
′
K → −

ρ−r
r+(1−ᾱ)µ−(ρ+ᾱµ)

< 0, contradicting the optimality of α∗ (w) = ᾱ

for w ∈ (ŵᾱ, w̄] if w̄ = λ
ρ+µᾱ

.
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Case 2: If r + (1− ᾱ)µ = ρ+ ᾱµ, we have

V
′

K = −K +
ρ− r
ρ+ µᾱ

+
ρ− r
ρ+ µᾱ

ln(
λ

ρ+ µᾱ
− w) .

Regardless of the value of K, VK is concave and as w → λ
ρ+µᾱ

, V
′
K → −∞. Thus,

analogous to the previous case, it must be that w̄ < λ
ρ+µᾱ

and w̄ is reflective.

Case 3: If r+ (1− ᾱ)µ < ρ+ ᾱµ, since − ρ−r
r+(1−ᾱ)µ−(ρ+ᾱµ)

> 0, K in Equation (26)

can be either positive or negative. Equation (30) yields

V
′′

K = K
r + (1− ᾱ)µ

ρ+ µᾱ
(
r + (1− ᾱ)µ

ρ+ µᾱ
− 1)(

λ

ρ+ µᾱ
− w)

r+(1−ᾱ)µ
ρ+µᾱ

−2 .

If K > 0, since r+(1−ᾱ)µ
ρ+µᾱ

− 1 < 0 , V
′′
K < 0 so that VK is concave. Moreover, as

w → λ
ρ+µᾱ

, V
′
ᾱ → −∞. Again, it must be that w̄ < λ

ρ+µᾱ
, and w̄ is reflective.

If K = 0, then V
′
K (w) = − ρ−r

r+(1−ᾱ)µ−(ρ+ᾱµ)
> 0 for all w ∈ (ŵᾱ, w̄]. Thus we must

have w̄ = λ
ρ+µᾱ

as an absorbing state.

If K < 0, V
′′
K > 0 so that VK is strictly convex. Thus, the value function V

satisfies V
′
> 0 for all w < λ

ρ+µᾱ
. This implies that w̄ = λ

ρ+µᾱ
, and w̄ is absorbing by

Lemma 4.1.

To summarize all the cases above, we have w̄ is absorbing (i.e., w̄ = λ
ρ+µᾱ

) if and

only if r + (1− ᾱ)µ < ρ+ ᾱµ and K ≤ 0; i.e., if and only if V is (weakly) convex in

(ŵᾱ, w̄).

If w̄ is absorbing, w̄ = λ
ρ+µᾱ

> λ
ρ+µ+r

, so we have ŵ0 = ŵᾱ by Proposition 7.2. Let

ŵ = ŵ0 = ŵᾱ in this case.

Now we prove the second ”if and only if” claim; i.e., w̄ is absorbing if and only if

ᾱ > r−ρ+µ
2µ

and z/λ ≥ θ.
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From Equation (25), we have

V
′
(ŵ) =

ρ− r
r + µ− ρ

(1− ρ

λ
ŵ)

r+µ
ρ
−1 +

µV (w̄) + z

λ
(1− ρ

λ
ŵ)

r+µ
ρ
−1 − ρ− r

r + µ− ρ
. (31)

On the other hand, by Property 5, we have V ′ (ŵ) = V (w̄)−V
ŵ

. Plug this into Equation

(17), we have

V
′
(ŵ) =

ρ− r
r + ρ+ µ

(1−
λ

r+µ+ρ
− w̄

λ
r+µ+ρ

− ŵ
) . (32)

As ŵ increases from 0 to λ
r+µ+ρ

, the right-hand side of Equation (31) is decreasing

from µV (w̄)+z
λ

, and that of Equation (32) is increasing from z−V (w̄)
λ

to +∞. Thus,

there exists a unique ŵ ∈ (0, λ
r+µ+ρ

) such that both equations hold simultaneously.

Next, we show that VK is convex if and only if ŵ ≥ λ
2(ρ+µᾱ)

. Observe that V (ŵ)

should also satisfy Equation (26), and thus

V
′
(ŵ) = − ρ− r

r + (1− ᾱ)µ− (ρ+ ᾱµ)
−Kr + (1− ᾱ)µ

ρ+ µᾱ
(

λ

ρ+ µᾱ
− ŵ)

r+(1−ᾱ)µ
ρ+µᾱ

−1 . (33)

We have shown that VK is convex if and only if r + (1 − ᾱ)µ < ρ + ᾱµ and K ≤ 0.

From Equations (32) and (33),

K ≤ 0⇔ ρ− r
r + ρ+ µ

(1−
λ

r+µ+ρ
− w̄

λ
r+µ+ρ

− ŵ
) ≥ − ρ− r

r + (1− ᾱ)µ− (ρ+ ᾱµ)
,

which reduces to ŵ ≥ λ
2(ρ+µᾱ)

.Notice that if r + (1− ᾱ)µ < ρ+ ᾱµ, λ
2(ρ+µᾱ)

< λ
r+µ+ρ

.

Therefore, VK is convex if and only if r + (1 − ᾱ)µ < ρ + ᾱµ (i.e., ᾱ > r−ρ+µ
2µ

)

and the right-hand side of Equation (31) and that of Equation (32) intersect at some

ŵ ∈ [ λ
2(ρ+µᾱ)

, λ
r+µ+ρ

). The second condition holds if and only if

(
ρ− r

r + µ− ρ
+
µV (w̄) + z

λ

)
(1−ρ

λ

λ

2(ρ+ µᾱ)
)
r+µ
ρ
−1− ρ− r

r + µ− ρ
≥ ρ− r
r + ρ+ µ

(1−
λ

r+µ+ρ
− λ

ρ+µᾱ

λ
r+µ+ρ

− λ
2(ρ+µᾱ)

),
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which is equivalent to

z

λ
≥ r(ρ− r)

µ+ r

{
2(ρ+ µᾱ)

ρ+ 2µᾱ

2µᾱ

(r + µ− ρ)[(ρ+ µᾱ)− (r + µ(1− ᾱ))]
− 1

r + µ− ρ
+

µ

ρ+ µᾱ

}
≡ θ .
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