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Abstract

The “automatic stay” and “avoidable preference” (clawback of some
pre-bankruptcy repayments), two key provisions in many countries’ bankruptcy
codes, seek to avoid creditor runs on insolvent firms. However, by making it harder
to exit distressed firms in or near bankruptcy, these provisions could motivate
creditors to run ex-ante. We develop a theoretical framework based on “clock game”
and derive the optimal design of these regulations. We show that inside creditors
should face a longer clawback window. Furthermore, firms can survive longer by
committing to filing for bankruptcy earlier because the extra payoff in bankruptcy
mitigates creditors’ incentive to run.
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1 Introduction

When firms borrow from multiple sources, coordination failure among creditors can
make the bankruptcy process chaotic, because individual creditors find it optimal to
run on firms’ assets. Accordingly, bankruptcy laws around the world usually impose
regulations to promote orderly resolution of bankruptcy by eliminating the first-come-first-
serve nature of the process. For example, when a debtor seeks “bankruptcy protection,”
creditors must stop collecting their debt individually and instead join others in bankruptcy
court to negotiate a more efficient outcome, a feature known as the “automatic stay.”
Another widely cited regulation with similar aims is the legal treatment of “avoidable
preference.”1 This regulation prevents a distressed firm from treating some creditors more
favorably than others and is implemented by clawing back repayments made shortly before
bankruptcy. The proceeds are then shared among all creditors in bankruptcy court.2

However, restricting creditors’ ability to collect debt around bankruptcy also affects their
incentives to stay invested while the firm is still relatively healthy. Concerned about the
possibility of being stuck in a failing firm, creditors may exit even sooner, at the first
sign of trouble, so that the firm is pushed into bankruptcy earlier.3 Hence, there is a
fundamental tension between coordinating creditors in bankruptcy ex-post and keeping
them ex-ante.

In this paper, we build a dynamic model to analyze how bankruptcy regulations affect
creditors’ willingness to stay invested ex-ante, and explore the optimal design of these
regulations as well as the optimal timing for a firm to seek bankruptcy protection. To
focus on events around bankruptcy, we model a failing firm with a continuum of creditors.
Specifically, at some random time, an unobservable bad shock hits the firm’s asset growth
rate. As a result, liabilities grow more rapidly than assets, and the firm will eventually go
bankrupt. In an asynchronous manner, creditors gradually and privately become informed
that the bad shock has arrived, but are not informed about the exact time of its arrival.

1Between 2017 and 2019, among the 595 bankruptcy cases collected by Westlaw legal research service,
290 cases (or 48.74%) cited avoidable preference in the United States. In the past, many well-known
bankruptcies, such as WorldCom, General Motors, and Lehman Brothers, resorted to avoidable preference
legislation to settle disputes among creditors.

2The typical clawback window is between 90 days and one year in the United States (see Chapter
11, Sections 547 and 550), between six months and one year in China (see Enterprise Bankruptcy Law,
Articles 31 and 32) and between six months and two years in the United Kingdom (see Insolvency Act
1986, Sections 239 and 240).

3For instance, under the avoidable preference regulation, creditors who intend to exit a troubled firm
need to leave sooner in order to make it more likely that this payment is outside of the clawback window
— a concern that legal professionals also share (see McCoid (1981) and Countryman (1985)).
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Therefore, they do not know how many other creditors are informed about the bad shock.
For simplicity, we assume that creditors continuously roll over the existing debt, and
upon being informed, each creditor can then decide when to refuse debt rollover and
exit the firm. One can alternatively interpret such an exit as long-term creditors not
waving covenant violations upon a technical default. The firm is forced into bankruptcy
when a sufficient fraction of creditors choose to exit, a threshold that the firm later can
choose in order to maximize equity value. Bankruptcy triggers the clawback window
under the avoidable preference regulation. The length of the clawback window is chosen
by a regulator in order to maximize welfare, which is the total payoff to all creditors.4

In deciding when to exit, each creditor faces the following trade-off: Staying invested for
longer earns the creditor additional interests if the firm survives during this time but
simultaneously increases the risk that the firm may fail before the creditor exits. In a
symmetric equilibrium, each creditor waits for the same amount of time after privately
learning about the bad shock and then exits the firm. The equilibrium variable – creditors’
waiting time – reflects their willingness to stay invested.

The timing of creditors’ exit and the clawback window in the avoidable preference
clause are only meaningful when time is explicitly modeled. We build on the clock-game
literature (e.g., Abreu and Brunnermeier (2003) and Brunnermeier and Morgan (2010))
to capture these dynamics. One of our key contributions is to endogenize creditors’
payoff in bankruptcy through various policies and creditors’ exit strategies. This novel
feature introduces a fixed point problem: Creditors’ willingness to stay invested (waiting
time) depends on the bankruptcy payoff they can expect, which in turn depends on their
equilibrium waiting time. Despite this technical complication, the model remains tractable,
and we provide analytical solutions for most equilibrium variables. Endogenizing the
bankruptcy payoff offers new insights into how regulations such as avoidable preference
should be designed, and when firms should seek bankruptcy protection.

We begin with the avoidable preference. Because the clawback of repayments per
se is purely redistributional among creditors, it affects welfare only through creditors’
willingness to stay invested – their equilibrium waiting time. A longer waiting time is
more efficient as any capital taken away from a productive firm hurts welfare. Hence, the
avoidable preference creates the following trade-off. On the one hand, a longer clawback
window improves the payoff in bankruptcy by seizing more repayments made prior to
bankruptcy. This channel incentivizes creditors to stay invested. On the other hand, a

4As will be clear, the total payoff to creditors is a welfare measure because the firm will ultimately go
bankrupt in this baseline model, and equity holders do not receive anything in bankruptcy.
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longer clawback window makes it less likely for creditors to exit successfully, which in turn
motivates them to exit sooner. Based on this trade-off, we find a closed-form solution for
the optimal clawback window and offer several implications on policy design.

First, the optimal clawback window depends on features of debt contracts but not
on certain firm characteristics, such as leverage and the post-shock growth rate. This
explains why the avoidable preference provision in practice often varies by different types
of creditors but is largely universal for all firms. Specifically, inside creditors are often
subject to longer clawback windows than those for outsiders in many legal regimes. In the
context of our model, bad news travels among insiders more quickly. As a result, insiders
are more eager to exit their debt positions, and a longer clawback window provides them
stronger incentives to stay. To see why the optimal clawback window is independent of
certain firm characteristics, we revisit the aforementioned trade-off. On the one hand,
the total repayments subject to clawback only depend on the terms and conditions of
the debt contract, such as the interest rate. On the other hand, the incentive to outrun
the clawback window only depends on the probabilistic structure of the game, such as
the likelihood of the bad shock and how quickly creditors become informed. Hence,
the trade-off associated with the avoidable preference does not depend on the firm’s
characteristics, and the independence result follows. Second, we show that if the bad
shock is more likely to occur, creditors are less willing to stay invested, and a longer
clawback window alleviates the problem. Third, a higher interest rate implies that more
repayments can be seized, thereby reducing the optimal length of the clawback window.
Finally, in an extension, when avoidable preference is only imperfectly enforced, we show
that the optimal clawback window must expand in order to compensate for the weaker
execution of the policy.

We then turn our attention to the effect of the automatic stay provision on creditors’
ex-ante incentive to stay invested and the firm’s optimal timing to seek bankruptcy
protection. A bankruptcy process without automatic stay has a first-come-first-serve
feature in that early creditors receive full repayments whereas latecomers receive nothing.
We show that in this case, creditors exit immediately upon learning the bad shock in order
to avoid the disastrous consequence of receiving nothing should they arrive late. Creditors’
frantic demand for repayments may in turn push the firm into bankruptcy more quickly.

A related and counterintuitive result is that firms can survive longer by committing to
filing for bankruptcy protection early even when they still have assets to honor additional
repayment. One might think that in order to survive longer, the firm should never declare
bankruptcy early but instead meet creditors’ demand for repayments until all assets are
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depleted. After all, it takes longer for enough creditors to exhaust all assets, thereby
delaying bankruptcy. The counteracting force again comes through our novel channel —
an endogenous payoff in bankruptcy. If the firm does not commit to a cessation of full
repayments and seeking bankruptcy protection while some assets are still available, then
creditors receive little payoff in bankruptcy, similar to the aforementioned case without
bankruptcy protection. Creditors’ decision to exit immediately upon being informed about
the bad shock can force the firm into bankruptcy even sooner.

A firm can ex-ante commit to a bankruptcy policy to some extent by holding some
illiquid assets: Once liquid assets are depleted by the repayments to exiting creditors,
the firm is bankrupt and remaining creditors share the illiquid assets. Our finding
therefore offers new insights on the role of illiquid assets and recovery rates in bankruptcy.
Maintaining some illiquid assets on the balance sheet can help mitigate runs, as they
ensure some payoffs to creditors in bankruptcy. In addition, comparative static analysis
suggests that firms should file for bankruptcy earlier, resulting in a higher recovery rate,
when the bad shock is more likely to happen or its magnitude is smaller. The opposite
implication for the intensity and magnitude of the bad shock also highlights the importance
of having a dynamic model to separate the two aspects.

Finally, we extend our model to allow for imperfect enforcement of avoidable preference
and show an ultra-long clawback window that prevents any creditor from exiting the firm
is suboptimal. Our model can also accommodate a recovery from the bad shock and
negative growth rates. The key insights remain robust.

Literature Review

The coordination problem at the center of our model is related to a large literature
on creditor (depositor) coordination following the seminal work by Bryant (1980) and
Diamond and Dybvig (1983).5 This literature studies bank runs and how policies such as
suspension of convertibility and deposit insurance can alleviate such runs. Recently, more
policies have been analyzed, including bank stress tests (see, for example, Goldstein and
Huang (2016); Inostroza and Pavan (2020); Basak and Zhou (2020b)) and direct payoff
intervention policies (see, for example, Sakovics and Steiner (2012); Cong, Grenadier and
Hu (2020)). Among this literature, Schilling (2020) is closely related. In a global game
setting, Schilling (2020) studies how many full withdrawals the regulator should allow

5See, for example, Gorton (1985); Chari and Jagannathan (1988); Jacklin and Bhattacharya (1988);
Green and Lin (2003); Peck and Shell (2003).
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(forbearance level) before imposing a costly resolution, after which depositors equally share
the remaining assets. There is a similar trade-off: Allowing for more withdrawals makes
it more likely for a depositor to receive full repayment, but simultaneously lowers the
payoff it receives in a resolution. Depositors therefore preempt the regulator’s forbearance
level by withdrawing more often. Most of this literature is static in that depositors only
choose whether to run but do not choose the precise timing of their exits.6 In contrast,
the continuous-time dynamic framework in this paper allows us to study the time aspect
of the coordination problem more carefully, such as when creditors exit and when firms
should seek bankruptcy protection. Furthermore, we can also investigate regulations that
are intrinsically dynamic, such as the clawback window in the avoidable preference clause.

Our paper also contributes to a large literature on corporate bankruptcy. For example,
Bebchuk (2002) finds that the ex-post violation of absolute priority in bankruptcy can
aggravate the moral hazard problem and thereby lower ex-ante efficiency. Bolton and
Oehmke (2015) investigate the ex-ante impact of exempting derivatives from automatic
stay in bankruptcy. Donaldson, Gromb and Piacentino (2020a,b) study the role of collateral
and covenants in regulating creditors’ payoffs in bankruptcy. Donaldson et al. (2020)
compare out-of-court restructuring and a formal bankruptcy procedure. Different from
the existing studies, we focus on two novel aspects of bankruptcy regulation – avoidable
preference and automatic stay in bankruptcy protection – and focus on how these ex-post
regulations affect creditors’ ex-ante incentive to exit the firm. Our study also generates
implications on the timing of bankruptcy, the recovery rate, and social welfare.

The theoretical foundation of our model – asynchronous clock – was first introduced
in the computer science literature (see Halpern and Moses (1990)). The key idea is that
not everyone learns about a piece of news at the same time, but instead some individuals
become aware of the news sooner than others. Morris (1995) applies this information
structure to a dynamic coordination game in labor economics. Abreu and Brunnermeier
(2003), Brunnermeier and Morgan (2010), and Doblas-Madrid (2012) use the clock game
setup to understand the formation of bubbles and their subsequent crashes. In the context
of banking, He and Manela (2016) allow investors to actively acquire information and show
that such information acquisition may accelerate runs. We contribute to this literature
by constructing a tractable framework to endogenize the bankruptcy payoff of creditors

6Among the exceptions, He and Xiong (2012) study runs on staggered corporate debt and show that a
creditor’s decision not to roll over maturing debt poses an externality on other creditors whose claims
have not yet matured. In contrast, our paper focuses more on various policies regulating this market.
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and use this framework to study the optimal response of firms and creditors and efficient
policy design.

From a theoretical perspective, clock game is a methodology to relax common knowledge
and eliminate equilibrium multiplicity in coordinate games. A popular alternative is the
global game approach introduced by Carlsson and Van Damme (1993), which has been
extensively applied to modeling currency attacks and bank runs (see Morris and Shin
(1998, 2004); Goldstein and Pauzner (2005) for details). The dynamic global game models
(see, for example, Dasgupta (2007); Angeletos, Hellwig and Pavan (2007); Basak and Zhou
(2020a)) focus on how learning from the past history of play can affect future coordination.7

While the global game models can offer a tractable way of modeling learning, the clock
game setup we adopt in this paper offers better tractability for investigating the timing of
creditors’ exits, firms’ choice of bankruptcy, and regulations that are intrinsically dynamic.

We structure the paper as follows. Section 2 introduces the baseline model featuring
endogenous bankruptcy payoff shaped by regulations and creditors’ strategic decision to
exit the firm. In Section 3, we analytically solve for the optimal clawback window in the
baseline model. Section 4 focuses on bankruptcy protection and automatic stay. We show
how bankruptcy protection affects creditors’ willingness to stay invested ex-ante and when
firms should commit to seek bankruptcy protection. We extend the model in Section 5
to incorporate imperfect policy enforcement, recovery from the bad shock, and negative
growth rates. Finally, Section 6 concludes.

2 Baseline Model

We start by building the baseline model in Subsection 2.1 and then discuss several key
model assumptions in Subsection 2.2.

2.1 Model Setup

Time t ∈ [0,∞) is continuous, and the discount rate is normalized to zero. To begin,
consider a mature and stable firm with total initial assets A and one unit of liability at
t = 0, both growing at the rate of g. Specifically, the liability is financed by a continuum
of identical risk-neutral creditors indexed by i ∈ [0, 1], each holding a unit face value at
t = 0. For simplicity, we assume that the debt contracts are continuously refinanced at

7It is important to note that, in our dynamic model, creditors perfectly understand the nature of the
fundamental shock but do not have perfect information about when the bad shock arrives. They are not
waiting for more information but rather are waiting for a higher payoff before the firm goes bankrupt.
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the interest rate g.8 As such, without additional shocks, the leverage ratio at any time t
is a constant egt

Aegt
= 1

A
≤ 1.

We are interested in the events around bankruptcy in this paper and therefore focus
on a failing firm heading for an eventual bankruptcy. To capture the essence of a failing
firm, we assume that at some random time t0, a bad shock hits, permanently reducing
the firm’s asset growth rate to g′ ∈ (0, g). The arrival intensity of the bad shock is λ,
and t0 therefore follows an exponential distribution with density function φ(t0) = λe−λt0

for any t0 > 0. Neither the firm nor the creditors directly observe the arrival of the bad
shock, and therefore no renegotiation of the debt contract, in particular the interest rate
g, is feasible.9 Instead, each creditor i independently learns about the bad shock at some
random time ti following its arrival, and ti is uniformly distributed over [t0, t0 + η] with
conditional density f(ti|t0) = 1

η
1ti∈[t0,t0+η]. In what follows, we sometimes refer to this

event as the creditor becoming “informed” at time ti. Upon becoming informed, creditors
only learn that the bad shock has arrived but are not informed about its exact time t0,
which in turn means that creditors do not exactly know how many other creditors have
been informed. As a result, creditor i’s posterior belief about t0 admits the following
conditional density:

ψ(t0|ti) =
f(ti|t0)φ(t0)∫ ti

ti−η f(ti|s)φ(s)ds
=

1
η
λe−λt0

1
η
(e−λ(ti−η) − e−λti)

=
λe−λ(t0−ti)

eλη − 1
,

for t0 ∈ [ti − η, ti], and ψ(t0|ti) = 0 otherwise. We denote by Ψ(t0|ti) the corresponding
cumulative distribution function.

After learning about the bad shock at ti, each creditor can then choose to stop rolling
over the debt at βi(ti) ≥ ti privately and demand the promised repayment egβi(ti) from
the firm. We normalize creditors’ outside return to 0, and hence, once having left the firm,
creditors’ payoff stops growing – an assumption we discuss in Subsection 2.2. One can
alternatively interpret the bad shock as a violation of certain performance-based covenants
and creditors’ exit from the firm as long-term creditors’ refusal to waive such a violation,
resulting in an acceleration of the repayment. The density (rate) of those creditors who

8We discuss in Subsection 2.2 that endogenizing the interest rate makes the coordination problem at
the center of the model more severe.

9As will be clear, in the baseline model, the firm has no strategic action. Consequently, it is irrelevant
whether the firm learns about the shock as it arrives. We provide more discussions of this assumption
and the possibility of renegotiation in Subsection 2.2.
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decide to exit at time t ≥ t0 (i.e., βi(ti) = t) is given by

wt(t0, {βi}) ≡ lim
∆t→0

1

∆t

∫
βi(ti)∈[t,t+∆t]

f(ti|t0)dti. (1)

The total assets remaining in the firm, denoted by Yt, evolve as follows:

dYt =

gYtdt if t ≤ t0

(g′Yt − wtegt) dt if t > t0
. (2)

The total assets grow at a rate of g prior to the bad shock’s arrival at t0, and g′ afterward.
At any instant t following t0, a density of wt creditors receive a total repayment of wtegt

from the firm, which is captured by the second case in (2).
Since each creditor is small, we assume that both individual and total repayments are

unobservable to other creditors. When a k ∈ (0, 1) fraction of creditors leave the firm, the
firm files for bankruptcy protection.10 One can interpret k as the portion of the firm’s
liquid assets, including those that can easily be sold without affecting its operation. When
the firm depletes its liquid assets, any additional demand for repayment from creditors
fundamentally disrupts the firm’s operation, and the firm goes bankrupt. Alternatively,
one can imagine that when sufficiently many creditors exit (i.e., a fraction k), the bad shock
becomes public information, and all remaining creditors immediately demand repayment,
forcing the firm into bankruptcy. The time of bankruptcy t̂ can therefore be defined as

t̂ (k, t0, {βi}) = inf

{
u

∣∣∣∣ ∫ u

t0

wt (t0, {βi}) dt ≥ k

}
. (3)

For now, k is an exogenous parameter. We will later allow (the manager of) the firm to
choose k in Subsection 4.1. In Subsection 2.2, we discuss why raising new financing may
be difficult at this stage and show that whether the firm continues or is terminated at t̂ is
inconsequential for our analysis.

To rule out infinite values, we make a purely technical assumption that the bad shock
at t0 leads to an exogenous termination of the firm at t0 +T regardless of creditors’ actions.
The remaining creditors in this case share the final assets Yt0+T equally. Throughout the
paper, we focus on the case where T is large enough and therefore nonbinding such that

10As will soon be clear, risk-neutral creditors do not have an incentive to keep partial investments.
Also, since the firm is doomed to fail, creditors also do not have an incentive to reinvest the capital back
into the firm. We adopt this model specification to focus on the key events around bankruptcy and the
associated coordination problems.
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the firm is always endogenously bankrupt (i.e., when k creditors withdraw their capital)
before reaching t0 + T in equilibrium.

We now introduce the key aspect of our paper: avoidable preference in the bankruptcy
process. Under the avoidable preference legislation in practice, creditors who receive
repayments shortly before bankruptcy, resulting in a more favorable treatment than other
remaining creditors, need to return those payments. These returned repayments, together
with other assets left in the firm, are shared among all creditors in the bankruptcy process.

In the United States, for example, Chapter 11, Section 547 b) of the Bankruptcy
Code states that “the trustee may, ... avoid any transfer of an interest of the debtor in
property ... made (A) on or within 90 days before the date of the filing of the petition;
or (B) between ninety days and one year before the date of the filing of the petition, if
such creditor at the time of such transfer was an insider.” This clause is commonly cited
in bankruptcy litigations. Among the 595 bankruptcy cases collected by Westlaw legal
research service between 2017 and 2019, 290 cases (or 48.74%) cite avoidable preference in
the United States. For instance, when General Motors filed for bankruptcy in 2009, the
bankruptcy trustee sued creditor JPMorgan Chase Bank to recover approximately $28
million in interest and $1.4 billion in principal repayment, citing the avoidable preference
clause.

We formally model this feature as a “clawback” window m chosen by a regulator with
the objective of maximizing social welfare. Specifically, suppose the pivotal creditor,
that is, the kth creditor whose exit triggers bankruptcy, leaves the firm at time t̂. If
the firm is unable to honor the full repayment of egt̂ to all remaining creditors (i.e.,
(1− k) egt̂ > Yt̂), then equity receives nothing and the avoidable preference clause becomes
effective.11 Specifically, only creditors who withdraw at least m dates before bankruptcy
(i.e., withdraw at time βi(ti) < t̂−m), can keep the full repayment egβi(ti), which we later
refer to as the “exit payoff.” Any creditor who withdraws during the final m dates prior
to bankruptcy at βi(ti) ∈

[
t̂−m, t̂

]
initially receives egβi(ti) but will later be required to

return the money (clawback) when the firm goes bankrupt at t̂. Denote by nc and RCt̂ the
number of creditors and the total repayments that are subject to clawback, respectively.
Mathematically:

nc =

∫
βi(ti)∈[t̂−m,t̂]

f(ti|t0)dti,

11In the baseline model, an ultimate bankruptcy is always the equilibrium outcome. In Subsection 4.1,
we extend the model so that equity may sometimes receive a positive payoff in bankruptcy. All intuitions
and trade-offs remain robust.
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and
RCt̂ =

∫
βi(ti)∈[t̂−m,t̂]

egβi(ti)f(ti|t0)dti. (4)

For reasons that will become clear in Subsections 5.1 and 5.2, we introduce imperfect
enforcement of avoidable preference; that is, the clawback of each individual repayment
made at βi(ti) ∈

[
t̂−m, t̂

]
is only successful with probability p independently, and with

probability 1− p, this creditor can keep the full repayment of egβi(ti). This assumption
is motivated by the fact that the outcome of a lawsuit in the bankruptcy court can be
uncertain, affected by many factors such as the preference of the judge, the skill of the
lawyers involved in the case, the specific purpose of each repayment, and so on. Since the
intuitions for most results are robust to such an enforcement imperfection, we focus on
the case of perfect enforcement (i.e., p = 1) for the main discussion in the paper. This
case highlights the key trade-off and offers a simple closed-form solution. We discuss
a theoretical subtlety associated with perfect enforcement in Subsection 5.1 and then
explicitly study the effect of imperfect enforcement in Subsection 5.2.

There are two groups of creditors in bankruptcy, including the pnc exiting creditors
whose repayments are clawed back and the 1 − k creditors who never have the chance
to exit prior to bankruptcy at t̂. These creditors will share the remaining assets Yt̂ and
the expected clawback proceeds pRCt̂ of the payments made during t ∈ [t̂−m, t̂]. Each
creditor therefore receives Yt̂+pRCt̂

1−k+pnc
.

In what follows, we specify the payoff functions of creditors and the regulator and define
the equilibrium concept. The equilibrium includes a set of creditors’ withdrawal strategy
β∗ = {β∗i (ti) |i ∈ [0, 1]} and the regulator’s optimal design of the avoidable preference
window m∗. Given other creditors’ equilibrium strategy β∗−i and avoidable preference
window m∗ specified by the regulator, creditor i’s withdrawal strategy β∗i

(
ti|β∗−i,m∗

)
maximizes her expected payoff, denoted by Πi:

β∗i (ti) = arg max
βi

Πi(βi|ti, β∗−i,m∗)

≡
∫
βi≤t̂−m

egβiψ(t0|ti)dt0︸ ︷︷ ︸
successful withdrawal: exit payoff

+

∫
t̂−m<βi≤t̂

(
(1− p) egβi + p

Yt̂ + pRCt̂
1− k + pnc

)
ψ(t0|ti)dt0︸ ︷︷ ︸

exit payoff or bankruptcy payoff within clawback window

+

∫
βi>t̂

Yt̂ + pRCt̂
1− k + pnc

ψ (t0|ti) dt0︸ ︷︷ ︸
bankruptcy payoff

.

(5)
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It is worth noting, from (3), that the time of bankruptcy t̂ (k, t0, {βi}) depends on other
creditors’ equilibrium withdrawal strategies {β∗−i} but not creditor i’s own strategy βi,
because any individual creditor is infinitesimally small. Since the creditor does not know
the exact value of t0, she must update her belief based on the time of being informed ti,
reflected by the posterior belief ψ(t0|ti). One of the following three outcomes occurs. If the
creditor withdraws at least m periods before the firm goes bankrupt (i.e., βi ≤ t̂−m), then
the creditor receives the full repayment egβi , reflected by the first integral in equation (5).
Alternatively, if the creditor withdraws within the clawback window (i.e., t̂−m < βi ≤ t̂,)
then she gets full repayment with probability 1 − p (when the clawback policy is not
enforced) or the bankruptcy payoff with probability p, captured by the second integral
in equation (5). Finally, if the firm goes bankrupt before the creditor withdraws (i.e.,
βi > t̂), then she receives the bankruptcy payoff, as in the last integral in equation (5).

Given creditors’ equilibrium strategy β∗ = {β∗i |i ∈ [0, 1]}, the regulator chooses an
optimal clawback window m∗ to maximize ex-ante welfare:

m∗ = arg max
m

W (m) ≡
∫ t0+η

t0

Πi (β
∗
i |ti) f(ti|t0)dti. (6)

Equation (6) is the total payoff to all creditors indexed by the time when they become
informed. Rigorously speaking, one should also include the payoff to equity holders in the
welfare calculation. As will soon be clear, with the exception of Subsection 4.1, equity is
eventually wiped out because not all creditors are paid in full in equilibrium. To simplify
the exposition, we ignore the zero payoff to equity.12

Finally, for technical consideration, we restrict our attention to relatively short clawback
windows in our baseline model,

m < kη, (7)

which is only needed under perfect enforcement (p = 1). The essence of condition (7)
is to allow some creditors to exit successfully in a symmetric equilibrium. Otherwise,
no creditors can exit with full repayment and arbitrary outcomes can be supported as
an equilibrium under perfect enforcement. We discuss the details of this assumption in
Subsection 5.1 and relax it in Subsection 5.2. In the baseline model, we present our main
results with p = 1 for maximum clarity and tractability.

12Note that the welfare defined in (6) is conditional on a specific realization of t0. One could alternatively
define ex-ante welfare by integratingW with respect to t0. As will soon be clear, this alternative definition
does not change any of our results because the welfare of different outcomes is uniformly ranked for all t0.
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2.2 Discussion of Modeling Assumptions

Liquidation vs. Reorganization Even though our formal model ends when the firm
goes bankrupt at t̂, this bankruptcy should not be narrowly interpreted as a liquidation
of the firm. The setting can be equivalently interpreted as the outcome of a costly
reorganization, and each creditor in bankruptcy receives the continuation value of the firm
until the project naturally matures at t0 + T . More specifically, the total value of assets
at bankruptcy t̂ is Yt̂ + pRCt̂. Assume the bankruptcy cost per unit asset is (1− γ), and
the continuation value of the firm is a multiple ω of its current assets in place.13 Hence,
each creditor’s payoff is

(1− γ)ω
Yt̂ + pRCt̂

1− k + pnc
.

One can immediately see that if (1− γ)ω = 1, the bankruptcy payoff above coincides
with that in (5). Even when (1− γ)ω 6= 1, the model can still be similarly solved and all
economic intuitions remain robust.

Renegotiation and New Financing In the model, we assume that the firm and its
creditors cannot engage in a renegotiation of debt contracts following the bad shock.
Indeed, if all creditors can accept a deal to lower the interest rate from g to g′, then
the coordination problem in our model disappears. However, such a spontaneously
coordinated reduction of interest is unlikely for several reasons, which arguably is why
formal reorganization in bankruptcy exists in the first place.

First, it is widely accepted that renegotiation with dispersed creditors, such as bond
holders, is notoriously difficult if not impossible in practice. In our model, there is a
continuum of creditors, each having a dominant strategy to refuse renegotiation if all other
creditors accept a reduction of interest. This free-rider problem may prevent creditors from
accepting any renegotiation in a decentralized fashion. In fact, empirical evidence suggests
that when firms receive bad news, such as a violation of covenants, the renegotiated
interest is often higher instead of lower than the original interest (see Roberts and Sufi
(2009a,b) and Roberts (2015)). For the same reason, no new debt financing is possible as
no creditor has incentives to accept an interest rate lower than g′. Therefore, we argue
that endogenizing the interest rate exacerbates the coordination problem and the insights
of the model remain robust. Equity financing is also infeasible because it will ultimately
be wiped out by debt holders in the inevitable bankruptcy. Second, it is well documented

13The valuation multiple ω can be further microfounded by having the firm operating to its natural
maturity t0 + T , where T is subject to an exponential distribution rather than a constant.
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that CEOs are prone to overconfidence. They might not recognize the bad shock or
perhaps may be unwilling to admit that (the growth rate of) the firm is in trouble. In our
model, (the manager of) the firm does not need to know when the bad shock happens as
they do not have any strategic action. Finally, since creditors only become aware of the
bad shock gradually in the model, it is not in the firm’s best interest to broadcast this
negative information voluntarily by renegotiating with all creditors. Keeping the negative
information private might slow the rate of withdrawal from creditors, providing the firm a
longer opportunity to recover.

Asynchronous Learning The asynchronous learning specification has a couple of
interpretations. First, it is possible that different creditors exert different monitoring effort
on the firm and therefore learn about the bad shock at different times. The parameter η
represents the time it takes for the news to disseminate among all creditors, and conversely
1
η
captures creditors’ speed of learning. Alternatively, one can interpret η as a proxy for

maturity when the debt structure is staggered, as is often the case in practice (see Almeida
et al. (2012) and Choi, Hackbarth and Zechner (2018)). Each debt contract has a maturity
of η dates, and at every unit of time, a 1

η
fraction of the total debt contracts mature.

Without the bad shock, creditors automatically renew their debt contracts with the same
interest rate and maturity. Under this interpretation, all creditors learn about the bad
shock simultaneously upon its arrival but can take action only when their respective debt
contracts mature. The creditor maturing at ti can decide whether to renew a debt contract
and, if so, with what maturity. The creditor’s exit strategy βi (ti) can be interpreted as
offering a new and final round of debt financing with βi (ti)− ti maturity. The extreme
case βi (ti) = ti means that the creditor does not roll over the debt contract and demand
the full repayment immediately.

Creditor’s Outside Option For simplicity, we normalize the return of creditors’
outside option to 0; that is, any capital taken away from the firm stops growing. The
essence of this mild assumption is that the promised return of the current investment (g)
is higher than that of an average project in the economy (normalized to 0). For instance,
through the investment relationship, creditors gradually learn about the quality of the
firms in their portfolios and only keep those with higher risk-adjusted returns. Also, due
to search friction, it may take creditors considerable amount of time to find the next good
investment opportunity. Hence, we argue it is likely that the currently invested firms

14

Electronic copy available at: https://ssrn.com/abstract=3355429



generate higher returns than an average new investment that a creditor can find in a
short period of time (i.e., before the creditor exits at βi(ti)).

3 Avoidable Preference

As preluded in the model setup, in this section, we focus on the case where avoidable
preference is perfect enforced (i.e., p = 1) and a clawback window that is not too long
as in (7). Following the literature, we study symmetric linear equilibria throughout the
paper: Every creditor, upon learning about the bad shock at ti, waits for the same amount
of time τ ≥ 0 and divests at

β(ti) ≡ βi(ti) = ti + τ. (8)

This type of equilibria is natural since all creditors are ex-ante identical. We first compute
the key variable – bankruptcy payoff – in Subsection 3.1, followed by the characterization
of creditors’ optimal waiting strategy τ ∗ in Subsection 3.2 and the regulator’s choice of
the optimal clawback window m∗ in Subsection 3.3.

3.1 Bankruptcy Payoff

Under the conjectured strategy in (8), we can explicitly rewrite the withdrawal rate defined
in (1) as

wt(t0, β) =

0 t ≤ t0 + τ

1
η

t0 + τ < t ≤ t0 + η + τ
. (9)

Before the first creditor becomes informed at t0 and then exits at t0 + τ , there is no capital
outflow. At every unit of time after t0 + τ , a 1

η
fraction of creditors, who learned about

the bad shock τ dates ago, exit the firm. Therefore, the pivotal (kth) creditor becomes
informed at t0 + kη and subsequently exits at

t̂ (k, t0, β) = t0 + kη + τ, (10)

driving the firm into bankruptcy. Mathematically, expression (10) is a simplification of
(3) using (9). A total of m

η
mass of creditors receive repayments during the final m dates

[t̂−m, t̂] and are therefore subject to clawback:

nc =
m

η
. (11)
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The affected nc creditors need to return the full repayment egt that they have received,
and the total proceeds defined in (4) can be simplified to

RCt̂ =

∫ t̂

t̂−m
egt

1

η
dt =

eg(t0+τ)

gη

(
egkη − eg(kη−m)

)
. (12)

Together with the assets in the firm at bankruptcy Yt̂, the total resources are shared
among 1− k + nc creditors, including those who did not exit (1− k) and those who are
subject to clawback (nc). Lemma 1 characterizes the bankruptcy payoff under avoidable
preference.

Lemma 1 Suppose all creditors use an identical exit strategy: β(t) = t+ τ , then the total
assets left in the firm at time t is

Yt =


Aegt 0 ≤ t ≤ t0

Aegt0+g′(t−t0) t0 < t ≤ t0 + τ

Aegt0+g′(t−t0) − egt−eg(t0+τ)+g′(t−t0−τ)
(g−g′)η t0 + τ < t ≤ t0 + τ + kη

(13)

At the time of bankruptcy t̂, each of the remaining 1− k + nc creditors receives

α(τ, k,m)egt0 ≡ Yt̂ +RCt̂
1− k + nc

=
Aeg

′(kη+τ) − egτ

(g−g′)η

(
egkη − eg′kη

)
+ egτ

gη
(egkη − eg(kη−m))

1− k + m
η

egt0

(14)

The first two cases in (13) reflect the high growth rate g prior to t0, the low growth
rate g′ between (t0, t0 + τ), and the fact that no creditor exits before t0 + τ . After t0 + τ ,
creditors start to take assets out of the firm at the rate of 1

η
according to (9). Its effect on

Yt is reflected by the second term in the third case of (13).
Figure 1 summarizes the evolution of the game and the payoff to creditors. The

bad shock hits at t0 reducing the asset growth rate from g to g′ (the dashed curve).
Creditors gradually learn about the bad shock between [t0, t0 + η] (the red region). The
pivotal creditor becomes informed at t0 + kη and exits at t̂ = t0 + kη + τ , triggering
bankruptcy. Creditors, who exit the firm at least m dates prior to bankruptcy between
[t0 +τ, t̂−m], receive the promised payment egt in full (the dark black curve). Repayments
made within the final m dates are subject to clawback (the green region), increasing total
assets available in bankruptcy. The affected creditors together with the remaining ones in
bankruptcy receive the bankruptcy payoff α(τ, k,m)egt0 (the blue line).
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Figure 1: Evolution of the game and payoff to creditors

3.2 Equilibrium Waiting Time

In this subsection, we solve for creditors’ optimal exit strategy β∗(ti), or equivalently, the
common waiting time τ ∗. To conserve notations, we denote by βi = ti + τi the exit time of
a generic individual creditor i who becomes informed at time ti and by τ ∗ the equilibrium
strategy of other creditors. Throughout the paper, we impose the following parameter
restriction to ensure that the equilibrium waiting time τ ∗ is well defined. We postpone its
intuition until after the first-order condition in (19).

Assumption 1 The parameters λ, η, and g satisfy 0 < η − 1
g−λ <

1
g
.

Given τ ∗, creditor i can receive the full repayment if and only if it is outside of the
clawback window: ti + τi ≤ t̂−m. Using (10), this condition can be explicitly expressed
as the bad shock occurring sufficiently late relative to ti:

t0 ≥ ti + τi − kη − τ ∗ +m. (15)
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From Lemma 1 and expression (5), the expected payoff to creditor i becomes

Πi(τi|ti, τ ∗) =

∫
ti+τi≤t̂−m

eg(ti+τi)ψ(t0|ti)dt0 +

∫
ti+τi>t̂−m

α(τ ∗, k,m)egt0ψ(t0|ti)dt0. (16)

Expression (16) is the simplified version of (5) under perfect enforcement of the clawback
policy (p = 1). Creditor i receives eg(ti+τi) if she exits outside of the clawback window
as in (15), or otherwise, the bankruptcy payoff α(τ ∗, k,m)egt0 . The optimal choice of τi
satisfies the first-order condition from (16):

[1−Ψ(ti + τi − τ ∗ − kη +m|ti)]geg(ti+τi) = ψ(ti + τi − τ ∗ − kη +m|ti)
(
1− αe−g(τ∗+kη−m)

)
eg(ti+τi)

(17)
Condition (17) highlights the trade-off associated with waiting for an additional

moment ∆t. On the left-hand side, the marginal benefit is that the exit payoff increases
by g∆teg(ti+τi) (recall the promised repayment grows at the rate of g) before the clawback
window becomes effective. This case, captured by (15), happens with probability 1−Ψ(ti+

τi− τ ∗− kη+m|ti). The right-hand side of condition (17) reflects the marginal costs. It is
possible that the clawback window becomes effective during the next ∆t instant, that is,

t̂−m ∈ (ti + τi, ti + τi + ∆t) , (18)

which occurs with probability ψ(ti + τi − τ ∗ − kη +m|ti)∆t. In this case, creditor i loses
the exit payoff eg(ti+τi) and instead receives the bankruptcy payoff α(τ ∗, k,m)egt0 . As
∆t→ 0, condition (18) boils down to an equality,

ti + τi = t0 + kη + τ ∗ −m,

and the bankruptcy payoff α(τ ∗, k,m)egt0 equals α(τ ∗, k,m)eg(ti+τi−τ
∗+m−kη), establishing

the right-hand side of condition (17).
In a symmetric equilibrium, creditor i adopts the same strategy as other creditors (i.e.,

τi = τ ∗), and the first-order condition (17) simplifies to

geg(ti+τ
∗) [1−Ψ(ti − kη +m|ti)] = [eg(ti+τ

∗) − αeg(ti−kη+m)]ψ(ti − kη +m|ti). (19)

Now is a good time to take a short detour to discuss the essence of Assumption 1,
which requires that the interest rate g is neither too big nor too small. On the one hand,
if the interest rate is too high, then the marginal benefit of waiting becomes excessively
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attractive, preventing an interior solution. On the other hand, if the interest rate is too
low, early repayments post few negative externalities on future creditors, leading to a
diminishing marginal cost of waiting and again preventing an interior solution.

For convenience, we define the following hazard rate:

h(k,m) ≡ ψ(t0 = ti − kη +m|ti)
1−Ψ(t0 = ti − kη +m|ti)

=
λeλ(kη−m)

eλ(kη−m) − 1
. (20)

Reorganizing (19), we arrive at an intuitive characterization for the equilibrium waiting
time τ ∗, as summarized by the following proposition.

Proposition 1 Any symmetric equilibrium with β(ti) = ti + τ ∗, where the waiting time
τ ∗ is strictly positive, satisfies

τ ∗ =
1

g
ln
[
α(τ ∗, k,m)e−g(kη−m)

]
+

1

g
ln

(
h(k,m)

h(k,m)− g

)
. (21)

In equilibrium, the equity holders receive nothing at t̂ = t0 + kη + τ ∗, that is,

α(τ ∗, k,m)egt0 < egt̂. (22)

Even though (21) is an implicit function of τ ∗, this decomposition intuitively reflects the
two factors affecting creditors’ incentive to run: the gap between the exit and bankruptcy
payoffs and the probability of a successful exit. First, a higher repayment from a successful
exit motivates creditors to leave early. If a creditor exits immediately before the clawback
window becomes effective, she receives the full repayment eg(t0+kη+τ∗−m). Otherwise, she
receives the bankruptcy payoff α(τ ∗, k,m)egt0 . The ratio between the bankruptcy payoff
and the full repayment is proportional to α(τ ∗, k,m)e−g(kη−m) for a given τ ∗. When this
ratio is higher, the gap between these two payoffs is narrower, and, thus, not being able
to exit successfully becomes less costly for creditors. Consequently, creditors are more
willing to wait, reflected by the first term in (21). Second, if creditors are more likely to
face bankruptcy (reflected by a higher hazard rate h(k,m)), they are more eager to run
on the troubled firm, thereby reducing the equilibrium waiting time τ ∗. This feature is
captured by the fact that a higher h(k,m) reduces the second term ( h(k,m)

h(k,m)−g ) in (21).
A simple rearrangement of (21) yields

h(k,m)− g
h(k,m)

= αe−g(kη−m+τ∗) ≥ α(τ ∗, k,m)egt0

eg(t0+kη+τ∗)
,
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where the inequality uses (10) and m ≥ 0. Since h(k,m)−g
h(k,m)

< 1, the above condition implies
(22). Intuitively, the bankruptcy payoff must be dominated by the highest payoff from a
successful exit, or otherwise, all creditors would wait for the superior bankruptcy payoff.
This fact in turn means that the remaining 1− k creditors in bankruptcy are not paid in
full, thereby triggering bankruptcy and the clawback provision.

Condition (21) highlights our contribution to the existing literature. In many dynamic
coordination models, the bankruptcy (termination) payoff α(τ ∗, k,m) is typically assumed
to be exogenous, independent of both the creditor’s strategy and the termination rule.
For example, in Brunnermeier and Morgan (2010), among other differences, the coefficient
of termination payoff α ≡ 1. We develop a setting in which the bankruptcy payoff
is endogenously determined, allowing us to explicitly model how different bankruptcy
regulations affect creditors’ payoffs, which in turn affect their decision to stay invested
and the efficiency of the economy. Such an interdependence leads to a fixed-point problem
as in the implicit characterization of τ ∗ in (21). Despite this complication, the model
remains tractable. As will soon be clear, the endogenous bankruptcy payoff is the key
channel that qualitatively shapes the optimal clawback window in Subsection 3.3 and the
firm’s optimal timing of bankruptcy filing in Section 4. Using (14) to replace α(τ ∗, k,m),
we can further characterize the closed-form expression of τ ∗ from (21).

Proposition 2 The equilibrium waiting time is

τ ∗(k,m) = max{0, 1

g − g′
(lnA− ln v(k,m))}, (23)

where

v(k,m) ≡ e(g−g′)kη − 1

(g − g′)η
− e(g−g′)kη(1− e−gm)

gη

+ (1− k +
m

η
)
[g
λ
e(g−λ)(kη−m)−g′kη − (

g

λ
− 1)e(g−g′)kη−gm

]
.

(24)

Such a symmetric equilibrium exists if v(k,m) > 0.

As we show in Appendix A, it is possible that v(k,m) ≥ A. In this case, given any
conjectured equilibrium waiting time τ ∗ adopted by other creditors, creditor i’s best
response is to undercut: τi < τ ∗. That leads to a unique symmetric equilibrium, in which
all creditors exit immediately after hearing the bad news (i.e., τ ∗ = 0 and β∗(ti) = ti).
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3.3 Optimal Clawback Window

In this subsection, we solve for the regulator’s optimal clawback policy m∗. We first show
that the regulator’s objective to maximize welfare is equivalent to delaying bankruptcy
of the firm, or more precisely, maximizing the equilibrium waiting time τ ∗. Next, we
characterize the analytical solution of m∗, perform comparative static analysis, and discuss
related economic and policy implications.

An Equivalent Welfare Measure

Proposition 3 The total welfare defined in (6) depends on the clawback window m only
through τ ∗ and can be rewritten as

W (τ ∗) =

∫ t0+kη+τ∗

t0+τ∗

1

η
egtdt+ Yt0+kη+τ∗ . (25)

In addition, the total welfare W (τ ∗) is increasing in τ ∗.

Since avoidable preference is purely redistributional among creditors in bankruptcy, the
choice of clawback windowm per se does not directly affect welfare. However, the clawback
policy does affect creditors’ withdrawal decisions τ ∗, which in turn has a welfare impact.
Hence, total welfare can be equivalently calculated as the aggregate payoff to creditors as
if there were no clawback: The first k creditors withdrawing at t ∈ [t0 + τ ∗, t0 + kη + τ ∗]

receive egt, and the remaining creditors share the firm’s assets at bankruptcy Yt0+kη+τ∗ .
This establishes equation (25). A longer waiting time τ ∗ improves welfare in two ways.
First, any repayments reduce the productive assets in the firm, which appreciate at a rate
of g′ > 0. By delaying the initial repayment at t0 + τ ∗ and consequently all subsequent
ones, the firm can keep more productive assets growing, thereby increasing welfare. Second,
bankruptcy occurs later at t0 + kη + τ ∗, which also keeps productive assets growing for a
longer time, improving welfare. In summary, the total welfare W (τ ∗) is increasing in τ ∗.

An immediate implication of Proposition 3 is that the social planner’s objective to
maximize total welfare is equivalent to maximizing creditors’ equilibrium waiting time τ ∗:

m∗ = arg max
m≤kη

W (τ ∗) = arg max
m≤kη

τ ∗(k,m). (26)
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The Optimal Clawback Window

To visualize the welfare implications (or equivalently τ ∗ due to (26)) associated with the
clawback window m, we numerically decompose τ ∗ into two components according to (21)
in Figure 2. On the one hand, a bigger m subjects more creditors (m

η
) to the clawback

regulation and thereby makes more resources available for creditors in bankruptcy. As a
result, the gap between the bankruptcy payoff (i.e., α (τ, k,m) egt0) and the highest full
repayment immediately prior to the clawback window (i.e., eg(t0+kη+τ−m)) becomes smaller.
The ratio between these two payoffs, which is proportional to α (τ, k,m) e−g(kη−m) for a
given τ (i.e., the first term in the decomposition (21)), is therefore increasing in m. This
payoff channel increases the equilibrium waiting time τ ∗, reflected by the red curve in
Figure 2.

Figure 2: Decomposition of the equilibrium waiting time τ ∗.

We decompose the equilibrium waiting time τ∗ into the payoff channel (i.e., 1
g ln

(
α (τ, k,m) e−g(kη−m)

)
in red) and the hazard rate channel (i.e., 1

g ln
(

h(k,m)
h(k,m)−g

)
in blue) according to the two terms in (21).

The parameters we use to generate this figure are: g = 2, g′ = 1.9, λ = 0.05, η = 0.8, A = 2, T = 40, and
k = 0.5.

On the other hand, a longer clawback window makes it more difficult for creditors to
exit successfully, making them more eager to run ex-ante. Intuitively, without avoidable
preference, a successful exit only requires a creditor to outrun the pivotal creditor (i.e., the
kth creditor to become informed), whereas under avoidable preference, this creditor needs
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to leave at least m dates before the pivotal creditor in order to receive a full repayment.
A longer clawback window allows fewer creditors to exit successfully and therefore makes
waiting riskier, resulting in a higher hazard rate (i.e., h(k,m)). This higher hazard rate
in turn reduces creditors’ incentives to wait, reflected by a reduction of the second term
in the decomposition (21) (i.e., h(k,m)

h(k,m)−g ). The blue curve in Figure 2 depicts this hazard
rate channel. The optimal clawback window m∗ that maximizes τ ∗ (black curve in Figure
2) trades off these two channels. Proposition 4 analytically characterizes m∗.

Proposition 4 The optimal m∗ ∈ [0, kη) that maximizes welfare (or equivalently, the
equilibrium waiting time τ ∗(k,m)) is given by

m∗ = max

{
0,

1

g − λ
− (1− k)η

}
. (27)

Thanks to the closed-form solution, we can perform clean comparative static analysis
of m∗ on all relevant parameters and draw clear policy implications. The first striking
feature is that the optimal avoidable preference regulation m∗ is independent of certain
firm performance characteristics, such as the initial leverage A and the post-shock growth
rate g′.14 This feature implies that a universal regulation can be universally applied to
a wide class of firms. Although striking at first glance, this result is rather robust and
intuitive. Consider the trade-off associated with a longer clawback window. On the one
hand, the marginal benefit is the extra resources made available in bankruptcy, which
comes from the full repayment made to m

η
creditors prior to default. The total proceeds

only depend on the contractual terms of debt, such as the interest rate g, but not on the
firm’s performance. On the other hand, the marginal cost is the extra probability of a
creditor being trapped in bankruptcy, which only depends on the stochastic structure of
events (shock intensity λ, bankruptcy threshold k, and dissemination speed of the news
η), but again not on the firm’s performance. Taken together, the firm’s performance
characteristics should not affect the optimal clawback window.

Second, the result naturally implies that an insider who receives repayment prior to
bankruptcy should be subject to a longer clawback window, a common feature across
many legal regimes. For instance, for outside creditors the typical clawback window is 90
days in the United States and six months in the United Kingdom, whereas for insiders,

14One might notice that the optimal m∗ in (27) does depend on the pre-shock growth rate g, which is
a firm performance parameter. We argue that this is because g also represents the interest rate. Based
on the intuition that immediately follows, we conjecture that in a more complicated model where the
pre-shock growth rate is different from the interest rate, the former parameter does not affect m∗.
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this window extends to one year and two years, respectively. In the context of our model,
one can argue that bad news travels among insiders more quickly, hence a lower η. As a
result, insiders are more eager to exit their debt positions, and a longer clawback window
provides them stronger incentives to stay. Similarly, if the shock intensity λ is higher,
creditors are more likely to end up in bankruptcy, motivating them to exit sooner. A
longer clawback window in this case helps mitigate this effect.

Third, if the debt contracts feature a higher interest rate g, then more proceeds are
subject to clawback for any given m, reducing the need to have a long clawback window.
Finally, any increase in the bankruptcy threshold (a larger k) should be offset by a longer
clawback window m. Intuitively, when avoidable preference is in place, the pivotal creditor
who can successfully exit the firm is the k − m

η
th to be informed, and anyone receiving

repayments afterward needs to return the money. We can rewrite (27) as

k − m∗

η
= 1− 1

(g − λ) η
,

which shows that any inefficient delay of bankruptcy caused by a larger k should be
compensated by a longer clawback window m∗.15

We conclude the baseline model with a short note that the optimal design of avoidable
preference is time consistent: The regulator ex-ante specifies m∗ and does not have any
incentive to deviate ex-post when the firm goes bankrupt at t̂. This is because ex-post
clawback is purely redistributional, and the welfare of different equilibrium outcomes is
uniformly ranked by τ ∗ regardless of the realization of t0.

4 Bankruptcy Protection

Thus far, we have focused on the optimal design of a bankruptcy procedure: avoidable
preference. In this section, we consider another key feature of bankruptcy protection –
automatic stay – which prevents creditors from individually seizing assets in a bankrupt
firm. While most literature on corporate debt assumes automatic stay if the firm goes
bankrupt, its ex-ante impact on creditors’ willingness to stay invested remains largely
unexplored. Unlike the baseline model in Section 2, we now need to consider the firm’s

15Clearly, because the clawback window m must be weakly positive, the regulator can only move the
effective pivotal creditor earlier than k. If the bankruptcy threshold k is already inefficiently small (i.e.,
k ≤ 1 − 1

(g−λ)η ), then delaying bankruptcy through a larger k is efficient. In this case, the optimal
clawback window admits a corner solution, m∗ = 0.
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strategic decisions. As such, we start by introducing positive payoff to equity and its
decision to trigger bankruptcy in Subsection 4.1. Next, in Subsection 4.2, we show that
automatic stay not only promotes coordination in bankruptcy by definition but can also
incentivize creditors to stay invested early on. In absence of bankruptcy protection and
automatic stay, creditors would frantically run on a relatively healthy firm. Finally, we
analyze the firms’ optimal timing to seek bankruptcy protection in Subsection 4.3. The
result is perhaps surprising. In order to survive longer, firms need to commit to declaring
bankruptcy early when they still have assets to make additional repayments.

4.1 Equity Stake and Endogenous Bankruptcy Threshold k

To accommodate equity, we modify the baseline model by assuming that the bad shock
reduces the growth rate to g′ only with probability q ∈ (0, 1) in this section. With
complementary probability 1− q, the growth rate remains at g even after the bad shock,
although the project still terminates exogenously at t0 + T , as in the baseline model. In
addition, we allow the firm to choose and commit at time 0 to a threshold k∗ that triggers
bankruptcy – a parameter we exogenously fix in the baseline model. In making this
choice, the firm maximizes its expected equity value: the total assets net of all payouts to
creditors. Since the firm’s choice of bankruptcy threshold k∗ is our focus in this section, we
assume away the avoidable preference clause (i.e., m = 0) in order to simplify exposition.16

All other ingredients are the same as in the baseline model. Similar to the baseline model,
no one directly observes the bad shock nor its realized effect on the growth rate, and each
creditor decides when to withdraw investment after becoming informed at ti. We again
focus on a symmetric equilibrium where all creditors choose a common waiting time; that
is, βi = ti + τi and in equilibrium τi = τ ∗.

Our analysis of the ex-ante optimal bankruptcy threshold is economically relevant.
Indeed, firms can choose when to stop servicing their debt and file for bankruptcy. We
argue that firms can also commit up front to such a bankruptcy policy to some extent
through holding some illiquid assets. Specifically, suppose distressed firms primarily rely on
selling liquid assets as a last resort to service debt repayments shortly before bankruptcy;
then the fraction of liquid assets on the balance sheet can be broadly interpreted as the

16One can also study the optimal threshold k∗ given any clawback window m. The results and intuitions
are similar with more complicated mathematics. The problem becomes more challenging if one studies
the ex-ante design of the optimal clawback window m∗, taking into consideration that firms’ decision
k∗ (m∗) depends on m∗. In this case, total welfare can no longer be equivalently measured by creditors’
equilibrium waiting time τ∗. Given the length of this article, we leave this problem for future research.
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bankruptcy threshold k in the model. Once firms deplete the liquid assets, they are forced
into bankruptcy, and the remaining creditors share the illiquid portion of the firm’s assets.
To the extent that firms cannot quickly ex-post adjust the ratio of their liquid assets, we
view their bankruptcy policy k as being committed ex-ante. Granted that firm’s ex-post
choice of bankruptcy filing is an equally interesting question, we only provide a short
discussion at the end of this section, considering the length of this article.

To begin, we specify the payoff to a generic creditor i:

Πi(τi|ti, τ ∗) =

(
1− q + q

∫
ti+τi≤t̂

ψ(t0|ti)dt0
)
eg(ti+τi) + q

∫
ti+τi>t̂

α(τ ∗, k)egt0ψ(t0|ti)dt0,

(28)
where the time of bankruptcy t̂ is given by (10). The first term in (28) summarizes two
possibilities to receive a full repayment. With probability 1 − q, the bad shock does
not affect the asset growth rate, and the creditor receives the full repayment of eg(ti+τi)

regardless of the exit time. In addition, when the bad shock reduces the asset growth rate,
the creditor may still be fully repaid if it exits before bankruptcy (i.e., ti + τi ≤ t̂). The
second term in (28) captures the bankruptcy payoff when the asset growth rate is reduced
to g′, and the creditor fails to exit prior to bankruptcy.

The following first-order condition is conceptually similar to (19), with one more
marginal benefit of waiting for an additional ∆t moment: If the asset growth rate remains
at g (with probability 1− q), then the extra repayment of g∆teg(ti+τi) is guaranteed:

geg(ti+τi)[1− q + q(1−Ψ(ti + τi − τ ∗ − kη|ti)]

= qψ(ti + τi − τ ∗ − kη|ti)
(
eg(ti+τi) − α(τ ∗, k)eg(ti+τi−τ

∗−kη)
)
.

(29)

We can then replicate Propositions 1 and 2 in the baseline model.

Proposition 5 When the bad shock reduces the growth rate with probability q, the
equilibrium waiting time τ ∗ > 0 can be decomposed into

τ ∗(k, q) =
1

g
ln
[
α(τ ∗, k)e−gkη

]
+

1

g
ln

(
h(k,m = 0)

h(k,m = 0)− g − g 1−q
q

1
1−Ψ(t0=ti−kη|ti)

)
. (30)

The analytical solution of τ ∗ is given by

τ ∗(k, q) = max

{
0,

1

g − g′
(lnA− ln v(k, q))

}
,
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where

v(k, q) ≡ e(g−g′)kη − 1

(g − g′)η
+ (1− k)

(
e(g−g′−λ)kη g

λ

[
eλη − 1

q
(eλη − 1)

]
− (

g

λ
− 1)e(g−g′)kη

)
.

(31)

Comparing the decompositions in (30) and (21) reveals that when q = 1, the current
setup admits the baseline model (with m = 0) as a special case. As the bad shock becomes
more benign (i.e., as q decreases), creditors are more willing to wait (i.e., the equilibrium
τ ∗ increases), driven by the hazard rate channel (i.e., the second term in (30)).

4.2 Bankruptcy Protection and Ex-Ante Runs

Our model offers new insights into the role of bankruptcy protection. The received wisdom
is that automatic stay prevents creditors from running after the firm declares bankruptcy,
thereby promoting coordination among them. We show that it also has an ex-ante effect
when the firm is not yet bankrupt. A world without automatic stay is similar to allowing
the maximum number of creditors (k = kmax, which will be defined later) to exit with full
repayments in our model. Put differently, creditors can freely run on the firm until no
assets are left, and their payoff has a first-come-first-serve feature.

Formally, we define kmax to be the natural upper bound of the bankruptcy threshold
such that exactly zero assets are left at the time of bankruptcy when the bad shock
reduces the asset growth rate to g′. Mathematically, kmax is the solution to

Yt0+kmaxη|asset growth rate=g′ after t0 = 0 (32)

under a conjectured equilibrium strategy τ ∗ = 0, where the evolution of Yt in this case is
given by Lemma 1, with τ = 0. Since we do not consider clawback window m here, the
bankruptcy payoff α(τ ∗ = 0, kmax,m = 0) is also 0. The next result characterizes kmax

and proves that the conjectured “no-waiting” strategy τ ∗ = 0 is indeed an equilibrium
under some conditions.

Proposition 6 Define A ≡ e(g−g
′)η−1

(g−g′)η > 0 and q0 ≡ eλη−1

eλη−(1−λ
g

)(1+A(g−g′)η)
λ

g−g′
. For any

A ∈ [1, A) and q ∈ [q0, 1], the maximum bankruptcy threshold given by (32),

kmax ≡
1

(g − g′)η
ln (A(g − g′)η + 1) ,
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is well defined. In addition, when k = kmax, the equilibrium waiting time is τ ∗ = 0.

Intuitively, without bankruptcy protection, creditors who are late in collecting
repayments receive nothing. As a result, creditors have such a strong incentive to exit
ex-ante that there is a corner solution: Every creditor leaves immediately upon learning
about the bad shock (τ ∗ = 0).17 The extreme outcome of zero waiting time may
accelerate the firm’s bankruptcy compared with a firm who commits to seeking
bankruptcy protection when there are still some assets left. In the latter case, the
remaining assets preserved in bankruptcy offer creditors more incentives to stay invested
up front. The natural question that follows is when a firm should seek bankruptcy
protection (i.e., the optimal threshold k). We address this question in the next
subsection.

4.3 Optimal Timing to Seek Bankruptcy Protection

Similar to the baseline model, if the bad shock lowers the asset growth rate to g′, then
equity receives nothing in bankruptcy. Hence, equity is only valuable when the asset
growth rate stays at g following the bad shock at t0. A convenient feature of this setup is
that the leverage is a constant 1

A
. When the firm is terminated at t̂ = t0 + kη+ τ ∗ (k), the

assets and liabilities are (A− k)egt̂ and (1− k)egt̂, respectively. Therefore, the expected
value of equity can be succinctly expressed as follows:

E (1− q) (A− 1) eg(t0+kη+τ∗), (33)

where the expectation is taken over all possible realization of t0. Clearly, the firm’s
objective of maximizing the expected value of equity in (33) is equivalent to maximizing
its life span:

k∗ = arg max
k
kη + τ ∗(k,m). (34)

Such an objective can be alternatively motivated by a manager’s desire to stay in the
job and the fact that a bankruptcy filing is typically associated with a shakeup of the
management. The manager would therefore like to choose an optimal timing to declare

17Technically, the existence of such an equilibrium relies on A being not too big. Otherwise, even in
the g′ case, after all creditors withdraw their capital immediately at ti, the firm still has some assets left,
which would encourage creditors to deviate and wait for some time. In addition, we need q to not be too
small or otherwise the likelihood of the bad shock becomes too negligible to motivate any creditors to
exit.
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bankruptcy (implemented by holding some illiquid assets as previously discussed) in order
to maximize the expected life span of the firm.

How can a firm maximize its expected life span? One might naturally think that the
optimal k∗ to prolong firm life is simply kmax: Repay creditors until no assets are left.
After all, why would the firm commit to an early bankruptcy if the goal is to maximize its
life? Surprisingly, this intuition is incomplete. As we show in Proposition 7, the optimal
threshold to trigger bankruptcy k∗ can be strictly smaller than kmax. The key driver of
this result is in fact the intuition of Proposition 6: As k approaches kmax, creditors are
eager to exit up front (i.e., τ ∗ = 0), driving the firm into bankruptcy more quickly. The
next proposition, which is the main finding of this subsection, characterizes the optimal
threshold k∗ and shows that k∗ is typically an interior solution strictly smaller than kmax.

Proposition 7 The optimal threshold k∗ to seek bankruptcy protection satisfies

e(g−g′)k∗η
[
−g
λ

+ 1 +
g

q

(
η(1− k∗) +

1

λ

)(
−(1− q)eλη + 1

)
e−λk

∗η

]
= 1.

Under the parameter condition
(
λη+1
1−λ/g

) g−g′
λ

< A(g − g′)η + 1, the optimal threshold is
strictly interior, 0 < k∗ < kmax.

To demonstrate how the threshold to seek bankruptcy protection (k) affects the firm’s
life span, we plot kη + τ ∗ in Figure 3 and decompose it into three components using (30).
First, a larger k mechanically makes the firm more robust to creditors’ exit as it allows
more creditors to exit before bankruptcy. This effect is captured by the kη term in the
firm’s objective function (34) and the green line in Figure 3. Second, as k increases, it
becomes relatively easier for creditors to exit successfully, which alleviates their incentives
to run. This hazard rate channel (i.e., the second term in the decomposition (30)) is
reflected by the increasing blue curve in Figure 3. Finally, the novel payoff channel in
our model works in the opposite direction. A higher bankruptcy threshold k allows more
creditors to exit with full repayments, leaving fewer assets for the remaining creditors
to share in bankruptcy. This effect widens the gap between the full exit payoff and the
bankruptcy payoff, which motivates creditors to run more frantically, reflected by the red
curve in Figure 3. Mathematically, the first term in (30) (i.e., α(k, τ ∗)e−gkη), capturing
the payoff gap, is decreasing in k when k is sufficiently large. The optimal bankruptcy
threshold k∗ balances all three effects and is in general interior.

Our model offers a novel insight into the role of illiquid assets in the firm: Holding
some illiquid assets can mitigate potential creditor runs. Recall that the firm can commit
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Figure 3: Decomposition of the firm’s life span kη + τ ∗

We decompose the firm’s objective into three components: the number of creditors allowed to exit (i.e.,
kη in green), the payoff gap channels (the first term in (30), in red), and the hazard rate channel (the
second term in (30), in blue). The parameters we use to generate this figure are: g = 2, g′ = 1.6, λ =
0.15, η = 0.6, T = 40, A = 2, k = 0.5.

to filing for bankruptcy earlier (i.e., a smaller k∗) by holding more illiquid assets. Our
result therefore suggests that firm optimal liquidity level k∗ is less than what the firm can
maximally support kmax. Intuitively, illiquid assets guarantee some positive payoffs for
creditors in bankruptcy and provide them some assurance to stay invested early on.

Another surprising feature of the model is that a higher intensity (λ) and a bigger
magnitude (g − g′) of the bad shock lead to opposite implications on the timing of
bankruptcy filing k∗ and creditors’ recovery rate, even though both parameter changes
make the bad shock more severe. One can define the recovery rate as the ratio between
the actual payoff in bankruptcy and the promised full repayment:

αegt0

eg(t0+k∗η+τ∗)
= αe−g(k

∗η+τ∗).

On the one hand, when the bad shock is more likely to occur (a higher λ), creditors are
less likely to exit successfully. Firms should therefore seek bankruptcy protection early
(a lower k∗ as in Panel A of Figure 4) in order to preserve more capital for creditors
in bankruptcy, resulting in a higher recovery rate (Panel C of Figure 4). On the other
hand, when the magnitude of the bad shock is larger (a lower g′ and therefore a bigger
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g − g′), the gap between the full exit payoff and bankruptcy payoff is wider. Unlike the
previous case for λ, firms now should file for bankruptcy later (a higher k∗ as in Panel
B) in order to allow more creditors to exit, thereby reducing the chance for them to
receive the bankruptcy payoff, resulting in a lower recovery rate (Panel D). Two similar
aspects of the bad shock – intensity and magnitude – generate distinctively different
effects on the optimal bankruptcy threshold k∗ and the equilibrium recovery rate. This
contrast demonstrates the importance of using a dynamic model to separate the time
aspect (intensity) and the static aspect (magnitude) of the problem.

The model’s prediction on recovery rate is consistent with a well-known empirical fact
that when an industry is in distress, creditors’ recovery rate is typically lower (see, for
example, Acharya, Bharath and Srinivasan (2007); Mora (2012); Jankowitsch, Nagler and
Subrahmanyam (2014)). In the context of our model, the growth rate (following the bad
shock) tends to be lower in a distressed industry, and firms tend to file for bankruptcy
later, leaving fewer assets for creditors in bankruptcy.

We conclude this subsection with a brief discussion on the time-inconsistency problem.
Unlike the optimal design of the clawback window m∗ in the baseline model, the firm’s
choice of the bankruptcy threshold is time-inconsistent and therefore requires commitment.
Although it is ex-ante optimal for the firm to commit to filing for bankruptcy early by
choosing a relatively lower threshold k∗ < kmax, once creditors start to exit, the firm
always prefers to make additional repayments in order to survive longer ex-post. As
such, the firm has incentives to deviate from k∗. While we have argued that the ex-ante
optimal choice of k∗ is an interesting problem in its own right, we acknowledge that firms
in practice can choose a bankruptcy threshold ex-post based on their performance and
the action of their creditors. A time-consistent bankruptcy policy is interesting to study,
and we look forward to future research on this matter.

5 Extensions

5.1 A Fragile First Best with Ultra-Long Clawback Window

In this subsection, we consider the first-best outcome that maximizes social welfare and
show that the policy that may achieve such an outcome is fragile in that it suffers from
the multiple equilibria problem. Even after the bad shock, the firm still generates a
positive growth rate g′ > 0 that is superior to creditors’ outside option (normalized to
0). Consequently, any repayments made prior to the exogenous termination at t0 + T
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Panel A Panel B

Panel C Panel D

Figure 4: Optimal Timing to File for Bankruptcy and Recovery Rate

We plot the firm’s optimal timing to seek bankruptcy protection k∗ and the equilibrium recovery rate
αe−g(k

∗η+τ∗) as functions of shock intensity λ (in Panels A and C) and the post-shock growth rate g′
(in Panels B and D). A higher λ indicates a more likely shock whereas a lower g′ indicates a greater
magnitude (g − g′). The common parameters are: A = 2, g = 2, η = 0.6 and q = 0.95 across all four
panels. In Panels A and C, we fix g′ = 1.6 and vary λ. In Panels B and D, we fix λ = 0.15 and vary g′.

cannibalize productive assets in the firm and are therefore inefficient. The first-best
outcome is to have all creditors wait for at least T dates,

τ ∗FB ≥ T, (35)

and let the project terminate naturally at t0 + T , delivering each creditor Aegt0+g′T .
Interestingly, when the clawback window can be enforced perfectly (p = 1), an

ultra-long clawback window (for example, m∗ ≥ T ) offers a chance, albeit fragile as
discussed below, to restore the first-best outcome. In this case, even when the first creditor
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who becomes informed at t0 exits immediately, she is still subject to clawback because
t0 ∈ [t0 + T −m∗, t0 + T ]. As a result, no creditor receives the exit payoff, and everyone
instead receives the bankruptcy payoff. Consequently, individual creditors are indifferent
about the timing to exit because the bankruptcy payoff is determined by the collective
action of all creditors rather than individual ones. Hence, any strategy profile (not even
necessarily symmetric ones as in (8)) that leads to bankruptcy can be supported as an
equilibrium. The most efficient outcome is given by (35), and the most inefficient outcome
is τ ∗ ≡ 0.18 Because of the indeterminacy, we argue that these outcomes are fragile,
which is also why we assume (7) in the baseline model to rule out such pathological
(indeterministic) cases.

We would like to emphasize that imposing (7) is purely for technical consideration
under perfect enforcement (p = 1) and does not eliminate any interesting outcomes. As
shown in Subsection 5.2, when the clawback enforcement is imperfect (p < 1), such
equilibrium indeterminacy disappears. The unique symmetric equilibrium converges to
the one we solved in Section 3, as clawback enforcement approaches perfection p → 1.
In this case, the optimal clawback window m∗ indeed satisfies (7) even when ultra-long
clawback window m ≥ kη is possible. In other words, condition (7) can be established as
a result rather than an assumption, and the equilibrium we study in the baseline model is
robust, whereas others do not survive even a slight perturbation in enforcement.

5.2 Imperfect Enforcement

In this subsection, we solve the general model specified in (5) with imperfect enforcement
(i.e., p < 1). As discussed, such an imperfection can be interpreted as the uncertainty
associated with lawsuits in the bankruptcy court, for instance, the preference of the
judge, the skill of the lawyers involved, and so on. We show that the unique symmetric
equilibrium converges to the one in the baseline model as p→ 1. In addition, we find that
the optimal clawback window is decreasing in enforcement.

18Note that this discussion relies on the clawback clause being triggered upon termination, namely,
at least some creditors do not receive the full repayment. Otherwise, creditors simply receive their
full repayment and the clawback window becomes irrelevant. For exogenous termination at t0 + T to
trigger clawback, we require T to be large enough such that the final assets are less than final liabilities:
Aegt0+g

′T < eg(t0+T ). For the outcome with τ∗ ≡ 0 to trigger clawback, we require A ≥ 1 to be small
enough such that the firm goes bankrupt when all creditors leave immediately upon being informed
during [t0, t0 + η]: A < Ā ≡ 1

(g−g′)η [e(g−g
′)η − 1]. The derivation for this condition is provided in the

proof of Proposition 6 in Appendix A.
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We begin by calculating the terms in (5). The time of bankruptcy t̂ is still given by
(10). The number of creditors nc and the total proceeds RCt̂, given by (10) and (12) in
the baseline model, should be modified as follows:

nc = min

{
m

η
, k

}
,

and

RCt̂ =

∫ t̂

t̂−min{m,kη}
egt

1

η
dt =

eg(t0+τ)

gη

(
egkη − egmax{kη−m,0}) .

Using these expressions, the bankruptcy payoff in (5) can be explicitly calculated:

αp (τ,m) egt0 =
Aeg

′(kη+τ) − egτ

(g−g′)η

(
egkη − eg′kη

)
+ p e

gτ

gη
(egkη − egmax{kη−m,0})

1− k + pmin{m
η
, k}

egt0 . (36)

Compared with (14), the bankruptcy payoff in (36) reflects the fact that clawback is only
successful with probability p.

Similar to the baseline model, we focus on a symmetric equilibrium with βi = ti + τi

and τ ∗i = τ ∗ for any creditor i. The first-order approach is slightly more complicated in
this extension since there is a kink in the payoff function (5) at m = kη and τi = τ ∗. We
discuss three cases m < kη, m > kη, and m = kη in Appendix B, and the respective
equilibrium waiting time is summarized in the following proposition.

Proposition 8 For any parameter 0 ≤ p < 1, a symmetric equilibrium β(ti) = ti +

τ ∗(m, p) can be characterized as follows:

1. When m ∈ [0, kη), the equilibrium is unique and

τ ∗(m, p) =
1

g − g′

{
lnA− ln

[
e(g−g′)kη − 1

(g − g′)η
− pe

(g−g′)kη(1− e−gm)

gη

+

(
1− k +

p

η
m

)
−(g − λ)[peλ(kη−m) + (1− p)eλkη] + g

pλe−(g−g′−λ)kη+(g−λ)m + (1− p)λe−(g−g′−λ)kη

]}
.

2. When m ∈ (kη,+∞), if a symmetric equilibrium τ ∗ exists, then it is unique and

τ ∗(m, p) =
1

g − g′

{
lnA− ln

[
e(g−g′)kη − 1

(g − g′)η
− pe

−g′kη[egkη − 1]

gη

+ (1− (1− p)k)
[
−
(g
λ
− 1
)
e(g−g′)kη +

g

λ
e(g−g′−λ)kη

]]}
.

(37)
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3. When m = kη, no symmetric equilibrium exists.

When the clawback window m is relatively short as in (7), the outcome and intuition
are similar to the baseline model. The additional effect is that clawback is only effective
with probability p, affecting both the likelihood of a successful exit and the bankruptcy
payoff. When the clawback window is long m > kη, the equilibrium waiting time τ ∗ in
(37) is insensitive to m. Intuitively, all withdrawing creditors are subject to clawback,
albeit only successful with probability p, and the policy is already at its maximum power
for any m > kη. Unlike in the perfect enforcement case, symmetric equilibrium can be
unique because the creditors choose the optimal exiting time considering the scenario
where the clawback is not enforced. Finally, the kink in the payoff function (5) at m = kη

and τi = τ ∗ prevents any symmetric equilibrium.
We further show that, when m > kη, the symmetric equilibrium, if it exists, admits a

waiting time τ ∗(m, p) that is strictly decreasing in p (see Lemma 3 in Appendix B). Since
zero enforcement (p = 0,m > kη) is obviously equivalent to having no clawback window
(m = 0) to begin with, we have τ ∗(m, p) ≤ τ ∗(m, p = 0) = τ ∗(m = 0, p) for any m > kη.
Therefore, without loss of generality, for any p ∈ (0, 1), to find the optimal length of the
clawback window that maximizes τ ∗(m, p), we only need to consider m ∈ [0, kη). We
solve the optimal clawback window m∗p and show that m∗p converges to m∗ in (27), when
policy enforcement becomes perfect (p → 1) as in the baseline model (see Lemma 4 in
Appendix B). This observation provides us with reassurance that the equilibrium we focus
on in the baseline model is the only one robust to arbitrary small imperfections in policy
enforcement. Finally, we study how policy enforcement affects the optimal design of the
clawback window.

Proposition 9 For any p > p(k) ≡ e−(g−λ)kη−(1−k)(g−λ)η

e−(g−λ)kη+(g−λ)kη−1
, m∗p ∈ [m∗, kη] is decreasing in

p.

Weaker enforcement makes it easier for creditors to leave and claw back fewer assets
into the bankruptcy state. Hence, in order to restore the power of avoidable preference,
the optimal clawback window must expand to compensate for the smaller probability of a
successful clawback.

5.3 Recovery of Growth and Negative Growth g′

Throughout the paper, we have assumed that the bad shock is permanent in order to
model a firm heading for bankruptcy in a succinct manner. However, in practice, many bad
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shocks are temporary. One can modify the baseline model to incorporate the possibility
that the growth rate g′ might revert back to g after t0 with intensity λ̂. Denote by t1 ≥ t0

the random time when this event happens. Assume for simplicity that creditors stop
learning about the bad shock at t1 as it no longer exists, and those who have exited the
firm cannot reinvest. All remaining creditors automatically stay invested until the project
naturally terminates at t0 + T . All other model ingredients are the same as in Section 2.

Instead of formally deriving this extension, we provide the key intuitions behind it to
conserve space. When the growth rate recovers sufficiently quickly (i.e., t1 is sufficiently
close to t0), the firm can avoid bankruptcy in equilibrium. Consequently, when creditors
decide their exit time, waiting involves an additional marginal benefit: The growth rate
might improve, thereby eliminating the risk of bankruptcy. Although orthogonal to the
trade-off in the baseline model, this channel motivates creditors to stay invested for a
longer period of time. On the other hand, the regulator’s preference to delay exit is not
affected by this new ingredient. A longer waiting time τ provides the firm more chance to
recover its original growth rate and is therefore more efficient. As such, we argue that the
results in our baseline model are robust to the extension of growth recovery. A surprising
insight related to Proposition 7 is that by committing to filing for bankruptcy, the firm
could avoid bankruptcy altogether because creditors are more willing to stay invested,
thereby offering the firm a better chance to recover.

When the post-shock growth rate g′ is negative, the equilibrium waiting time τ ∗ in
Proposition 1 does not change mathematically. However, a negative growth rate does alter
the regulator’s welfare measure in Proposition 3. Specifically, since keeping money inside
the firm is no longer productive, welfare is decreasing in τ ∗. The numerical simulation in
Figure 5 suggests that the hump-shaped relation between τ ∗ and the clawback window m

remains a robust feature. Therefore, the welfare-maximizing m∗ should be either 0 or (the
left limit of) kη, depending on which boundary generates a smaller τ ∗. This observation
suggests that for firms without a profitable business model, the bankruptcy court should
take extreme actions: to either not enforce avoidable preference at all (equivalent to no
clawback window m∗ = 0) or impose a long clawback window.

6 Conclusion

In this paper, we build a dynamic coordination model in which atomistic creditors learn
about a hidden bad shock in an asynchronous manner and then decide when to withdraw
capital. We study the impact of two bankruptcy regulations – avoidable preference and
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Figure 5: Decomposition of the equilibrium waiting time τ ∗ (g′ < 0)

Similar to Figure 2, we decompose the equilibrium waiting time τ∗ into the payoff channel (i.e.,
1
g ln

(
α (τ, k,m) e−g(kη−m)

)
in red) and the hazard rate channel (i.e., 1

g ln
(

h(k,m)
h(k,m)−g

)
in blue) according

to the two terms in (21). The key difference is that the post-shock growth rate g′ is negative. The
parameters we use to generate this figure are: g = 2, g′ = −0.5, λ = 0.05, η = 0.8, T = 40 and k = 0.5.

automatic stay – on creditors’ ex-ante decision to stay invested. The optimal clawback
window features a closed-form solution and should be longer when creditors learn more
quickly about the bad shock (such as insiders), when the interest rate is lower, when the
bad shock is more likely to occur, or when the bankruptcy is triggered later.

We then show that bankruptcy protection such as automatic stay helps mitigate
creditors’ incentives to exit ex-ante. Surprisingly, firms can survive longer if they commit
to filing for bankruptcy when they still have some assets available to honor more repayments
because the resulting higher payoff to creditors in bankruptcy alleviates creditors’ ex-ante
incentives to run. Finally, the analytical framework provided in this paper is general
enough to allow for more work on this topic. We look forward to future research on how
other policies regulating creditors’ ex-post payoffs affect their ex-ante investment decisions
– for example, a redemption fee in the mutual fund industry, a suspension of redemption
in the banking industry, and so on.
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A Appendix A. Omitted Proofs

Proof of Lemma 1. Under the symmetric exiting strategy β(t) = t + τ , wt = 0 for
t < t0 + τ . Based on the dynamic evolution of the total asset value (2) and Y (0) = A, we
have

Yt =

{
Aegt 0 ≤ t ≤ t0

Aegt0+g′(t−t0) t0 < t ≤ t0 + τ
.

When t > t0 + τ , wt = 1
η
and dYt =

(
g′Yt − 1

η
egt
)
dt. Thus, we have d

(
Yte
−g′t) =

e−g
′t (dYt − g′Ytdt) = − e(g−g

′)t

η
dt. Solving the above differential equation with the following

initial condition Yt0+τe
−g′(t0+τ) = Aegt0+g′τe−g

′(t0+τ) = Ae(g−g′)t0 , we have∫ t

u=t0+τ

d
(
Yue

−g′u
)

= Yte
−g′t − Ae(g−g′)t0 =

∫ t

u=t0+τ

−e
(g−g′)u

η
du.

Hence,

Yt = Aegt0+g′(t−t0) − 1

(g − g′) η

[
egt − eg(t0+τ)+g′(t−t0−τ)

]
.

Given this dynamic process of Yt, at time t̂ = t0 + τ + kη,

Yt̂ = Aegt0+g′(τ+kη) − 1

(g − g′) η

[
eg(t0+τ+kη) − eg(t0+τ)+g′kη

]
.

According to (12), the total proceeds that will be clawed back is
RCt̂ = eg(t0+τ)

gη

(
egkη − eg(kη−m)

)
. Hence, each remaining creditor receives α(τ, k,m)egt0 ;

that is,

α(τ, k,m) =
Yt̂ +RCt̂

1− k + nc
e−gt0 =

Aeg
′(kη+τ) − egτ

(g−g′)η

(
egkη − eg′kη

)
+ egτ

gη
(egkη − eg(kη−m))

1− k + m
η

.

Proof of Proposition 1. We can rewrite the equilibrium condition (19) as

geg(ti+τ
∗) = h(k,m)[eg(ti+τ

∗) − αeg(ti−kη+m)]. (38)
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Eliminating egti on both sides of (38), we have egτ∗ = α h(k,m)
h(k,m)−ge

−g(kη−m). Hence, for any
τ ∗ > 0 that makes the first-order condition satisfied, we have

τ ∗ =
1

g
ln
[
α(τ ∗, k,m)e−g(kη−m)

]
+

1

g
ln

(
h(k,m)

h(k,m)− g

)
,

thereby completing the proof.

Proof of Proposition 2. According to (20), the hazard rate h(k,m) = λeλ(kη−m)

eλ(kη−m)−1
, and,

thus,
h(k,m)

h(k,m)− g
=

λeλ(kη−m)

g − (g − λ)eλ(kη−m)
.

When m ∈ (0, kη), we can plug in α(τ ∗, k,m) into equation (21) and rearrange it to find
a unique τ ∗ that satisfies the equilibrium condition. If the equilibrium waiting time τ ∗ is
well defined, then

τ ∗(k,m) =
1

g − g′
(lnA− ln v(k,m)) .

Please refer to (24) to see the expression of v(k,m). Obviously, when v(k,m) < 0 or
v(k,m) > A, then the above expression cannot give a well defined equilibrium waiting
time. Next, we are concerned with the conditions under which τ ∗(k,m) is well defined
and is non-negative. We first discuss three mutually exclusive and collectively exhaustive
cases regarding v(k,m).

Case 1: v(k,m) > A. Given all the other creditors choose to wait τ ∗ ≥ 0, the first-order
derivative for creditor i is

∂E(πi|ti)
∂τi

=
eg(ti+τi)

eλη − 1

(
(g − [1− α(τ ∗, k,m)e−g(τ

∗+kη−m)]λ)eλ(τ∗−τi+kη−m) − g
)
.

Thus, the best response for creditor i, given that others choose τ ∗, is

τi = τ ∗ + kη −m− 1

λ
ln

(
1

1− [1− α(τ ∗, k,m)e−g(τ∗+kη−m)]λ
g

)
.

The condition v(k,m) > A is equivalent to

e(g−g
′)kη−1

(g−g′)η − e(g−g
′)kη(1−e−gm)

gη

1− k + m
η

>
A

1− k + m
η

−
[g
λ
e(g−λ)(kη−m)−g′kη − (

g

λ
− 1)e(g−g′)kη−gm

]
.
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Multiplying both sides by e−(g−g′)kη+gm, we have

A

1− k + m
η

e−(g−g′)kη+gm −
[g
λ
e−λ(kη−m) − (

g

λ
− 1)

]
<

egm(1−e−(g−g′)kη)
(g−g′)η − egm−1

gη

1− k + m
η

. (39)

Based on the inequality in (39), we have

α(τ ∗, k,m)e−g(τ
∗+kη−m) =

Ae−(g−g′)(τ∗+kη)+gm − egm(1−e−(g−g′)kη)
(g−g′)η + egm−1

gη

1− k + m
η

<
Ae−(g−g′)(τ∗+kη)+gm

1− k + m
η

− A

1− k + m
η

e−(g−g′)kη+gm +
[g
λ
e−λ(kη−m) − (

g

λ
− 1)

]
=
Ae−(g−g′)kη+gm(e−(g−g′)τ∗ − 1)

1− k + m
η

+
g

λ
e−λ(kη−m) − (

g

λ
− 1).

That, in turn, implies

1− [1− α(τ ∗, k,m)e−g(τ
∗+kη−m)]

λ

g
<
λ

g

Ae−(g−g′)kη+gm(e−(g−g′)τ∗ − 1)

1− k + m
η

+ e−λ(kη−m).

Therefore, for any τ ∗ that is well defined (i.e., τ ∗ ≥ 0), e−(g−g′)τ∗ − 1 ≤ 0, and, thus,

1− [1− α(τ ∗, k,m)e−g(τ
∗+kη−m)]

λ

g
< e−λ(kη−m).

Based on the above inequality, the optimal τi as a response to others’ waiting strategy
τ ∗ satisfies that τi < τ ∗ + kη −m− 1

λ
ln 1

e−λ(kη−m) = τ ∗. In sum, if v(k,m) > A, the best
response τi, which makes the first order condition satisfied, has to be strictly smaller than
τ ∗. Next, we consider a “corner solution.” Given all the other creditors choose τ ∗ = 0, the
marginal benefit from waiting for any τi is

∂E(πi|ti)
∂τi

=
eg(ti+τi)

eλη − 1

(
(g − [1− α(τ ∗, k,m)e−g(τ

∗+kη−m)]λ)eλ(τ∗−τi+kη−m) − g
)

<
geg(ti+τi)

eλη − 1

(
e−λ(kη−m)eλ(−τi+kη−m) − 1

)
=
geg(ti+τi)

eλη − 1

(
e−λτi − 1

)
< 0

The best response for creditor i is τi = 0. Therefore, if v(k,m) > A, in the unique
symmetric equilibrium, τ ∗ = 0.
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Case 2: v(k,m) ≤ 0. If the condition v(k,m) ≤ 0 holds, then we have

e(g−g
′)kη−1

(g−g′)η − e(g−g
′)kη(1−e−gm)

gη
+ (1− k + m

η
)
[
g
λ
e(g−λ)(kη−m)−g′kη − ( g

λ
− 1)e(g−g′)kη−gm] ≤ 0.

That, in turn, implies

e(g−g
′)kη−1

(g−g′)η − e(g−g
′)kη(1−e−gm)

gη

1− k + m
η

≤
(g
λ
− 1
)
e(g−g′)kη−gm − g

λ
e(g−λ)(kη−m)−g′kη.

Multiplying both sides by e−(g−g′)kη+gm, we have

egm(1−e−(g−g′)kη)
(g−g′)η − egm−1

gη

1− k + m
η

≤ g

λ
− 1− g

λ
e−λ(kη−m).

Based on the above inequality and the fact that τ ∗ is well defined (i.e., τ ∗ ≥ 0), following
the same procedures as in the case where v(k,m) > A, we have

1− [1− α(τ ∗, k,m)e−g(τ
∗+kη−m)]

λ

g
≥ λ

g

Ae−(g−g′)(τ∗+kη)+gm

1− k + m
η

+ e−λ(kη−m) > e−λ(kη−m).

Therefore, the best response τi to others choosing τ ∗ is

τi =τ ∗ + kη −m− 1

λ
ln

1

1− [1− α(τ ∗,m)e−g(τ∗+kη−m)]λ
g

>τ ∗ + kη −m− 1

λ
ln

1

e−λ(kη−m)
= τ ∗.

That implies, if v(k,m) ≤ 0, τi > τ ∗ for any τ ∗, thereby proving the non-existence of a
symmetric equilibrium.

Case 3: 0 < v(k,m) ≤ A. In the case where v(k,m) ∈ (0, A], based on the above
discussions, the equilibrium waiting time τ ∗(k,m) ≥ 0 is unique and can be solved
explicitly as τ ∗(k,m) = 1

g−g′ (lnA− ln v(k,m)) .

To summarize, if v(k,m) ∈ (0, A], there is a unique equilibrium waiting time τ ∗ ≥ 0,

which satisfies the first-order condition as an interior solution. If v(k,m) > A, τ ∗(k,m) = 0

constitutes the unique symmetric equilibrium; otherwise, if v(k,m) ≤ 0, a symmetric
equilibrium with a linear waiting strategy does not exist. Next, we show that under
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Assumption 1, v(k,m) > 0 for any m ∈ (0, kη). Based on that, we can exclude the
possibility that a symmetric equilibrium does not exist.

First, consider τ ∗(k,m) = 1
g−g′ (lnA− ln v(k,m)), we have

∂τ ∗(k,m)

∂m
= − 1

g − g′
vm(k,m)

v(k,m)
,

in which, vm(k,m) = g
λη
e(g−g′)kη−gm(1− e−λ(kη−m))[−1 + (η(1− k) +m)(g−λ)]. Therefore,

vm(k,m∗) = 0 if

m∗ = kη − (η − 1

g − λ
). (40)

Further, since vmm(k,m)|m=m∗ = g
λη
e(g−g′)kη−gm∗(1− e−λ(kη−m∗))(g − λ) > 0, we know

that v(k,m) decreases with m for m ∈ [0,m∗] and increases with m, m ∈ (m∗, kη]. As
such, v(k,m) attains its minimum, and, accordingly, τ ∗(m) attains its maximum at m∗.
To prove that v(k,m) > 0 for all m ∈ (0, kη), it suffices to show that v(k,m∗) > 0. Plug
m∗ (solved in (40)) into v(k,m = m∗), we have

v(k,m∗) =
g′e(g−g′)kη

gη(g − g′)
− (g − λ)e−g

′kη+g(η− 1
g−λ )

gλη
+
geη(g−λ)−1−g′kη

λη(g − λ)
− 1

(g − g′)η
.

So, to prove that v(k,m∗) > 0, it suffices to show that

1

(g − g′)g
(g′egkη − geg′kη) > 1

λ
eg(η−

1
g−λ )

(
g − λ
g
− g

g − λ
e−λ(η− 1

g−λ )

)
. (41)

Since ∂(g′egkη−geg′kη)
∂k

= g′gη(egkη − eg′kη) > 0, the LHS of (41) is increasing in k. For the
inequality in (41) to hold true, we need

1

(g − g′)g
(g′egkη − geg′kη)

∣∣∣∣
k=1− 1

η(g−λ)

>
1

λ
eg(η−

1
g−λ )

(
g − λ
g
− g

g − λ
e−λ(η− 1

g−λ )

)
.

This is equivalent to

g

g − λ
e−λ(η− 1

g−λ ) − λ

g − g′
e−(g−g′)(η− 1

(g−λ) ) >
g − λ
g
− λg′

(g − g′)g
=
g − g′ − λ
g − g′

. (42)

According to Assumption 1, η − 1
g−λ > 0, and, thus, the LHS of (42) satisfies

g

g − λ
e−λ(η− 1

g−λ ) − λ

g − g′
e−(g−g′)(η− 1

g−λ ) >
g

g − λ
(1− λ(η − 1

g − λ
))− λ

g − g′
.
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Moreover, since η − 1
g−λ <

1
g
(see Assumption 1), the RHS of (42) satisfies

g − g′ − λ
g − g′

=
g

g − λ
(1− λ

g
)− λ

g − g′
<

g

g − λ
(1− λ(η − 1

g − λ
))− λ

g − g′
.

Therefore, the inequality in (42) holds and v(k,m∗) > 0 for any m ∈ (0, kη).
Furthermore, we check the second-order condition to make sure that τi = τ ∗(k,m)

maximizes the creditor i’s expected payoff when other creditors take the same strategy τ ∗.
Given τ = τ ∗(m, k), the second-order derivative at τi = τ ∗(m, k) is

∂2E(πi|ti)
∂τ 2

i

∣∣∣∣
τi=τ∗

= −g(1 + λ)
eg(ti+τ

∗)

eλη − 1
< 0.

Therefore, τi = τ ∗(k,m) is indeed the local maximizer, thereby completing the proof.

Proof of Proposition 3. Based on the definition of total welfare W in (6) and the
symmetric equilibrium captured by τ ∗, we can rewrite the total welfare as

W (τ ∗) =

∫ t0+kη+τ∗−m

t0+τ∗

1

η
egtdt+

∫ t0+η+τ∗

t0+kη+τ∗−m

1

η
α(τ ∗, k,m)egt0dt

=

∫ t0+kη+τ∗−m

t0+τ∗

1

η
egtdt+

Yt0+kη+τ∗ +
∫ t0+τ∗+kη

t0+kη+τ∗−m
1
η
egtdt

1− k + m
η

∫ t0+η

t0+kη−m

1

η
dt.

Based on the definition of α and the fact that
∫ t0+η

t0+kη−m
1
η

= 1− k + m
η
, we have

W (τ ∗) =

∫ t0+kη+τ∗−m

t0+τ∗

1

η
egtdt+

∫ t0+τ∗+kη

t0+kη+τ∗−m

1

η
egtdt+ Yt0+kη+τ∗ =

∫ t0+kη+τ∗

t0+τ∗

1

η
egtdt+ Yt̂.

Next, we leverage on the following Lemma to prove the monotonicity of W (τ ∗) on
τ ∗. For convenience, we introduce Yt,τ and wt,s to denote the firm’s asset value and the
fraction of exiting creditors at time t respectively, if the waiting time is τ for each creditor.

Lemma 2 For any τ2 > τ1,
Yt,τ2 ≥ Yt,τ1 ,

for any t ≤ t0 + kη + τ1 with equality holding if and only if t ≤ t0 + τ1.
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Proof. Given the process of asset value Yt (see (13)), if t ≤ t0 + τ1, clearly, Yt,τ2 = Yt,τ1 .
Moreover, when t0 + τ1 < t ≤ t0 + τ2, we have

Yt,τ2 = Aegt0+g′(t−t0) > Aegt0+g′(t−t0) − 1

(g − g′) η

[
egt − eg(t0+τ1)+g′(t−t0−τ1)

]
= Yt,τ1 .

Finally, if t > t0 + τ2, Yt,τ2 > Yt,τ1 because the term egt − eg(t0+τ)+g′(t−t0−τ) in the third
case scenario in (13) is strictly decreasing in τ .

We can rewrite Yt,τ in its integral form: Yt,τ = Yt0 +
∫ t
t0
g′Ys,τ − ws,τegsds, where

ws,τ =

 1
η

if s ∈ [t0 + τ, t0 + kη + τ ]

0 otherwise
.

Consider any τ2 > τ1 > 0. The difference between welfare associated with waiting times
τ1 and τ2 is given by:

W (τ2)−W (τ1) =

∫ t0+τ2+kη

t0+τ2

1

η
egsds−

∫ t0+τ1+kη

t0+τ1

1

η
egsds

+

∫ t0+kη+τ2

t0

(g′Ys,τ2 − ws,τ2egs) ds−
∫ t0+kη+τ1

t0

(g′Ys,τ1 − ws,τ1egs) ds.

For any s ≤ t0 + τ1 < t0 + τ2, Ys,τ2 = Ys,τ1 (Lemma 2), and ws,τ1 = ws,τ2 = 0. Therefore,
we have

W (τ2)−W (τ1) =

∫ t0+τ2+kη

t0+τ2

1

η
egsds−

∫ t0+τ1+kη

t0+τ1

1

η
egsds

+

∫ t0+kη+τ2

t0+τ1

(g′Ys,τ2 − ws,τ2egs) ds−
∫ t0+kη+τ1

t0+τ1

(g′Ys,τ1 − ws,τ1egs) ds

=

∫ t0+kη+τ2

t0+τ1

g′Ys,τ2ds−
∫ t0+kη+τ1

t0+τ1

g′Ys,τ1ds

=

∫ t0+kη+τ2

t0+kη+τ1

g′Ys,τ2ds+

∫ t0+kη+τ1

t0+τ1

g′ (Ys,τ2 − Ys,τ1) ds.

Since Yt,τ > 0 and Ys,τ2 − Ys,τ1 > 0 (Lemma 2), the above expression is strictly positive,
thereby completing the proof.
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Proof of Proposition 4. Please refer to the proof of Proposition 2 to see that, when
the symmetric equilibrium exists, the equilibrium waiting time τ ∗ increases with m when
m ∈ [0, kη − (η − 1

g−λ)] and decreases with m when m ∈ (kη − (η − 1
g−λ), kη]. Therefore,

m∗ = max{0, kη − (η − 1
g−λ)}.

Proof of Proposition 5. In any symmetric equilibrium, when other creditors choose
τ ∗, the optimal choice τi = τ ∗. Plug this into the first-order condition (29), we have

(
1− α(τ ∗, k)e−g(τ

∗+kη)
)
qψ(ti − kη|ti) = g [1− q + q(1−Ψ(ti − kη|ti))] , (43)

in which, α(τ ∗, k) = α(τ = τ ∗, k,m = 0) (see (14)), or, equivalently,

α(τ ∗, k) =
Aeg

′(τ+kη) − egτ (egkη−eg′kη)
(g−g′)η

1− k
.

Rearranging (43), we have

τ ∗(k, q) =
1

g
lnα(τ ∗, k)e−gkη +

1

g
ln

h(k,m = 0)

h(k,m = 0)− g − g 1−q
q

1
1−Ψ(ti−kη|ti)

,

in which, h(k,m = 0) = λeλkη

eλkη−1
(see (20)) and Ψ(ti − kη|ti) = eλη−eλkη

eλη−1
. Then, plug α, h

and Ψ into the above decomposition of τ ∗ and follow the same procedure as we did in the
proof of Proposition 1, we can show that τ ∗(k, q) = max{0, 1

g−g′ lnA− ln v(k, q)}. The
definition of v(k, q) can be found in (31).

Proof of Proposition 6.

Condition for A Recall that

α(τ = 0, k,m = 0) =
Aeg

′kη − egkη−eg′kη
(g−g′)η

1− k
= eg

′kη
A− e(g−g

′)kη−1
(g−g′)η

1− k

By definition, kmax makes α(τ = 0, k = kmax,m = 0) = 0 satisfied, and, thus, kmax =
1

(g−g′)η ln [1 + A(g − g′)η] . For the existence of such kmax ∈ (0, 1), we need A < Ā ≡
e(g−g

′)η−1
(g−g′)η .
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Condition for q When τ ∗ = 0 and m = 0, the first order derivative with respect to τi is

eg(ti+τi) (g[1− q + q(1−Ψ(t0 = ti − kη|ti))]− qψ(t0 = ti − kη|ti)) .

To guarantee that τ ∗ = 0 is an equilibrium when k = kmax, we need(
1− q
q

)
g ≤ ψ(t0 = ti − kmaxη|ti)− g (1−Ψ(t0 = ti − kmaxη|ti)) =

g − (g − λ)eλkmaxη

eλη − 1
.

That is equivalent to

q ≥ 1
g−(g−λ)eλkmaxη

g(eλη−1)
+ 1

=
geλη − g

geλη − (g − λ)eλkmaxη
.

Given that kmax = 1
(g−g′)η ln [1 + A(g − g′)η], the above condition can be re-written as

q ≥ q0 =
eλη − 1

eλη − (1− λ
g
) (1 + A(g − g′)η)

λ
g−g′

.

Proof of Proposition 7. The first-order derivative of kη + τ ∗ with respect to k is

∂(kη + τ ∗(k, q))

∂k
= η +

∂τ ∗(k, q)

∂k
=

1

(g − g′)v(k, q)
[(g − g′)ηv(k, q)− vk(k, q)]

where

v(k, q) =
e(g−g′)kη − 1

(g − g′)η
+(1− k)

(
−(

g

λ
− 1)e(g−g′)kη − (

1

p
− 1)

g

λ
eλη+(g−g′−λ)kη +

g

pλ
e(g−λ)kη−g′kη

)
and

vk(k, q) = e(g−g′)kη +

[
g

λ
− 1− (1− k)

(g − λ)(g − g′)η
λ

]
e(g−g′)kη +

[
(
1

q
− 1)

g

λ
− (1− k) (

1

q

−1)
g(g − g′ − λ)η

λ

]
eλη+(g−g′−λ)kη +

[
− g

qλ
+ (1− k)

g(g − λ− g′)η
qλ

]
e(g−λ)kη−g′kη.
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Given that, the optimal k∗, which satisfies (g − g′)ηv(k, q)− vk(k, q) = 0, solves

e(g−g′)k∗η
[
−g
λ

+ 1 +
g

q

(
η(1− k∗) +

1

λ

)(
−(1− q)eλη + 1

)
e−λk

∗η

]
= 1.

Next, we want to show that, under the assumption A(g − g′)η + 1 >
(
g(λη+1)
g−λ

) g−g′
λ ,

k∗ ∈ (0, k). First of all, under this assumption, we have,

g

q

(
η(1− kmax) +

1

λ

)
(1− (1− q)eλη)e−λkmaxη < g

q

(
η +

1

λ

)
(1− (1− q)eλη)e−λkmaxη

=
g

q

(
η +

1

λ

)
(1− (1− q)eλη)[A(g − g′)η + 1]

− λ
g−g′ <

g

q

(
η +

1

λ

)
(1− (1− q)eλη) g − λ

g(λη + 1)
.

Then, since 1−(1−q)eλη
q

is increasing in q ∈ (0, 1), we know that 1−(1−q)eλη
q

< 1. Following
the above inequality, we have

g

q

(
η(1− kmax) +

1

λ

)
(1− (1− q)eλη)e−λkmaxη

<
g

q

(
η +

1

λ

)
(1− (1− q)eλη) g − λ

g(λη + 1)

q

1− (1− q)eλη
=
g

λ
− 1.

Therefore, we have ∂(kη+τ∗(k,q))
∂k

∣∣∣
k=kmax

< 0, which demonstrates that k∗ ∈ (0, kmax).

47

Electronic copy available at: https://ssrn.com/abstract=3355429



B Appendix B. Imperfect Enforcement

Proof of Proposition 8. Creditor i’s expected payoff from choosing τi is

E(πi|ti) =

∫ ∞
ti+τi−(τ∗+kη−m)

eg(ti+τi)ψ(t0|ti)dt0 +

∫ ti+τi−(τ∗+kη)

0

αp(τ
∗, k,m)egt0ψ(t0|ti)dt0

+

∫ ti+τi−(τ∗+kη−m)

ti+τi−(τ∗+kη)

[(1− p)eg(ti+τi) + pαp(τ
∗, k,m)egt0 ]ψ(t0|ti)dt0.

Accordingly, the first-order derivative with respect to τi is

∂E(πi|ti)
∂τi

= eg(ti+τi)[g(1−Ψ(ti + τi − (τ ∗ + kη −m)|ti))

− (1− αp(τ ∗, k,m)e−g(τ
∗+kη−m))ψ(ti + τi − (τ ∗ + kη −m)|ti)]

+ (1− p)eg(ti+τi) {g(Ψ(ti + τi − (τ ∗ + kη −m)|ti)−Ψ(ti + τi − (τ ∗ + kη)|ti))

+ ψ(ti + τi − (τ ∗ + kη −m)|ti)− ψ(ti + τi − (τ ∗ + kη)|ti)

− αp(τ
∗, k,m)e−g(τ

∗+kη)[egmψ(ti + τi − (τ ∗ + kη −m)|ti)− ψ(ti + τi − (τ ∗ + kη)|ti)]
}
.

Case I. m < kη When m < kη, in any possible symmetric equilibrium, τi = τ ∗, which
is in the range of [τ ∗ + kη − η, τ ∗ + kη −m). We consider ∂E(πi|ti)

∂τi
in this range, and find

the first-order condition as follows.

peg(ti+τi)[g(1−Ψ(ti + τi − (τ ∗ + kη −m)|ti))− (1− αp(τ ∗,m)e−g(τ
∗+kη−m))

×ψ(ti + τi − (τ ∗ + kη −m)|ti)] + (1− p)eg(ti+τi)[g(1−Ψ(ti + τi − (τ ∗ + kη)|ti))

−(1− αp(τ ∗,m)e−g(τ
∗+kη))ψ(ti + τi − (τ ∗ + kη)|ti)] = 0.

(44)

Based on this first-order condition, if a symmetric equilibrium exists, we can solve for the
unique τ ∗(m, p), that is,

τ ∗(m, p) =
1

g − g′

{
lnA− ln

[
e(g−g′)kη − 1

(g − g′)η
− pe

(g−g′)kη(1− e−gm)

gη

+

(
1− k +

p

η
m

)
−(g − λ)[peλ(kη−m) + (1− p)eλkη] + g

pλe−(g−g′−λ)kη+(g−λ)m + (1− p)λe−(g−g′−λ)kη

]}
.

Next, as we have the following the second-order condition

∂2E(πi|ti)
∂τ 2

i

∣∣∣∣
τi=τ∗

= −eg(ti+τ∗) gλ

eλη − 1
< 0,
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we know that τi = τ ∗(m, p) obtains the maximal expected payoff when others take the
same strategy.

Case II. m > kη When m > kη, in any possible symmetric equilibrium with τ ∗(m, p),
we only need to consider the range that τi = τ ∗(m, p) ∈ [τ ∗+kη−η, τ ∗+kη). Considering
the first-order condition in this range, we have

(1− p)eg(ti+τi){g[1−Ψ(ti + τi − (τ ∗ + kη)|ti)]− [1− αp(τ ∗,m)e−g(τ
∗+kη)]ψ(ti + τi − (τ ∗ + kη)|ti)} = 0. (45)

Then, based on the above first order condition, if such a symmetric equilibrium exists, we
can solve for the unique τ ∗(m, p), that is,

τ ∗(m, p) =
1

g − g′

{
lnA− ln

[
e(g−g′)kη − 1

(g − g′)η
− pe

−g′kη[egkη − 1]

gη

+ (1− (1− p)k)
[
−
(g
λ
− 1
)
e(g−g′)kη +

g

λ
e(g−g′−λ)kη

]]}
.

Further, we check the the second-order condition and find that the sign of second-order
derivative is negative; that is,

∂2E(πi|ti)
∂τ 2

i

∣∣∣∣
τi=τ∗

= −(1− p)eg(ti+τ∗) gλ

eλη − 1
< 0.

Therefore, τi = τ ∗(m, p) is a profit maximizing choice.

Case III. m = kη To show that symmetric equilibrium does not exist when m = kη,
observe that when creditor i chooses to wait longer than the other creditors’ symmetric
choice τ ∗ (i.e., τi > τ ∗), the first-order condition is in the form of (45). However, if
creditor i chooses any τi < τ ∗, then the first-order condition of τi is in the form of (44).
As this holds true for any τ ∗ when m = kη, no symmetric equilibrium exists given this
discontinuity in the marginal condition at τi = τ ∗.

The following Lemma demonstrates how the equilibrium waiting time τ ∗(m, p) depends
on the enforcement parameter p (if a symmetric equilibrium exists when m > kη).

Lemma 3 For any k and m > kη, τ ∗(m, p) is strictly decreasing in p.
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Proof of Lemma 3. With m > kη, the equilibrium waiting time τ ∗(m, p) can be
written as 1

g−g′ {lnA− ln v(k,m, p)} (see (37)), where

v(k,m, p) =
e(g−g′)kη − 1

(g − g′)η
−pe

−g′kη[egkη − 1]

gη
+(1−(1−p)k)

[
−
(g
λ
− 1
)
e(g−g′)kη +

g

λ
e(g−g′−λ)kη

]
.

Next, we show that v(k,m, p) is increasing in p. First, observe that

∂v(k,m, p)

∂p
= −e

−g′kη[egkη − 1]

gη
+ k

[
−
(g
λ
− 1
)
e(g−g′)kη +

g

λ
e(g−g′−λ)kη

]
= e(g−g′)kη

[(
k − 1− e−gkη

gη

)
+ k

g

λ
(e−λkη − 1)

]
.

Define a new function z(k) :=
(
k − 1−e−gkη

gη

)
+ k g

λ
(e−λkη − 1). It is easy to check that

z(k = 0) = 0, and z′(k) > 0 for any k ∈ (0, 1) given the parameter restriction in
Assumption 1. Therefore, for any k ∈ (0, 1), ∂v(k,m,p)

∂p
= e(g−g′)kηz(k) > 0. Therefore,

v(k,m, p) in increasing in p, and, accordingly, τ ∗(m, p) is decreasing in p.

The next Lemma characterizes the optimal clawback window m∗p in our extension. One
can easily check that the condition (46) converges to m∗p(g − λ)− 1 + (1− k)η(g − λ) = 0

when p converges to 1, which echoes the optimal length of clawback window when there is
perfect enforcement (i.e., m∗ in (27)).

Lemma 4 For any given p ∈ (0, 1), the optimal choice m∗p ≡ arg maxm≥0 τ
∗(m, p) ∈

[0, kη] and m∗p satisfies

m∗p(g − λ)p− (1− p)e−(g−λ)m∗p − p+ (1− k)η(g − λ) = 0. (46)

Proof of Lemma 4. When m ∈ [0, kη), taking the first-order derivative for τ ∗(m, p)

with respect to m, we have ∂τ∗(m,p)
∂m

= − 1
g−g′

∂v(k,m,p)
∂m

v(k,m,p)
, in which,

∂v(k,m, p)

∂m
=
gpeλ(kη−m) + (g − λ)(1− p)eλkη − g + (1− p)λeλkη−gm

λpe−(g−g′−λ)kη+(g−λ)m + (1− p)λe−(g−g′−λ)kη

×−(1− p)em(g−λ)p−(g−λ)m − p+ (1− k)η(g − λ)
η
p
[p+ (1− p)e−(g−λ)m]

.
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Since g − (g − λ)eλkη − λe−(g−λ)kη ≤ 0, the following inequality, that is,

gpeλ(kη−m) + (g − λ)(1− p)eλkη − g + (1− p)λeλkη−gm ≥ 0,

holds true for all m ∈ [0, kη) and p ∈ (0, 1). Therefore, to have ∂τ∗(m,p)
∂m

|m=m∗p = 0, m∗p
must satisfy

m∗p(g − λ)p− (1− p)e−(g−λ)m∗p − p+ (1− k)η(g − λ) = 0. (47)

Moreover, the second-order derivative ∂2v(k,m,p)
∂m2 for m = m∗p is

gpe
λ(kη−m∗p)+(g−λ)(1−p)eλkη−g+(1−p)λeλkη−gm

∗
p

λpe−(g−g′−λ)kη+(g−λ)m∗p+(1−p)λe−(g−g′−λ)kη
(g−λ)(1−p)e−(g−λ)m∗p+(g−λ)p

η
p

[p+(1−p)e−(g−λ)m∗p ]
> 0.

Therefore, m∗p that satisfies (47) minimizes v(k,m, p) and maximizes τ ∗(m, p).

Proof of Proposition 9. Define h(m, p) := m(g − λ)p − (1 − p)e−(g−λ)m − p + (1 −
k)η(g − λ). First, it is easy to see that h(m, p) is increasing in m because, for any m ≥ 0

and p ∈ (0, 1),
∂h(m, p)

∂m
= (g − λ)p+ (1− p)(g − λ)e−(g−λ)m > 0.

Next, it is easy to check that the condition p > p(k) holds, h(m = kη, p) > 0; and,
under the condition that (1 − k)η(g − λ) < 1, h(m = 0, p) < 0.19 Further, since
e−(g−λ)m ≥ −(g − λ)m+ 1, we have

∂h(m, p)

∂p
= m(g − λ) + e−(g−λ)m − 1 > 0.

Therefore, h(m, p) is increasing in p. Given that h(m, p) is increasing in m and m∗p

uniquely solves h(m∗p, p) = 0, we know that m∗p is decreasing in p.

19Notice that, under Assumption 1, η(g − λ) > 1, and, thus, p(k) < 1 for any k ∈ (0, 1). Moreover,
(1− k)η(g − λ) < 1 is a condition that is needed for the existence of a positive m∗p (same for m∗ defined
in (27)).
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