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Abstract

We propose an integrated preferred-habitat model of term premia and exchange rates, build-

ing on Vayanos and Vila (2019). Our model generates deviations from UIP and also a decreasing

term structure of currency risk premia. Using our framework we explore the transmission of

monetary policy to domestic and currency markets, as well as the spillovers to the foreign term

premia; the effect of non-conventional monetary policy on the domestic and foreign economies;

and the effect of shifts in the ‘specialness’ of one country’s bonds or currency.
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1 Introduction

This paper proposes an integrated preferred-habitat model of term-premia and exchange rates. Our

model features two countries and three types of investors: bond investors, specialized in specific

maturity segments of the domestic or foreign bond market; currency investors; and risk-averse

global rate arbitrageurs with a limited amount of capital. Because these global rate arbitrageurs

operate on both on the domestic and foreign bond market, and in currency markets, term premia

and currency risk premia will be linked in equilibrium. Crucially, changes in demand and supply

of bonds or currency will need to be absorbed in equilibrium by global rate arbitrageurs, with

resulting -and joint- changes in risk premia, expected returns, long term yields and exchange rates.

Our model provides new and important insights on the international transmission of conven-

tional and unconventional monetary policy. It also offers a potential resolution to several long

standing puzzles in the finance literature, such as the Uncovered Interest Parity (UIP) puzzle or

deviations from the Expectation Hypothesis (EH). Under UIP, domestic and foreign bonds are

perfect substitutes, and the expected rate of depreciation of the nominal exchange rate offsets the

difference between domestic and foreign nominal yields. Under the EH, bonds of various maturities

are perfect substitutes and the shape of the yield curve reflects expectations about future short

rates.

Consider the standard international macro model with perfect capital mobility and floating

exchange rates. In that model, up to constant risk premia, both UIP and the EH hold. This

has powerful implications for the transmission of monetary policy, both along the yield curve,

and across countries. First, the yield curve in each country only depends on expectations of the

local policy rate, which is controlled by local monetary authorities. This immediately implies that

nonconventional policies, such as Quantitative Easing (QE), whereby the central bank purchases

long-dated bonds while keeping short rates unchanged, have no effect on the yield curve. Second,

this also implies that each country’s yield curve is fully insulated from other countries’ monetary

policy. This insulation obtains because, according to UIP, the expected rate of depreciation of the

exchange rate provides all the necessary adjustment. This result is nothing more than a slightly

broader statement of the well-known Friedman-Obstfeld-Taylor Trilemma: with flexible exchange

rates and perfect capital mobility, a floating exchange rate provides local monetary policy autonomy,

not just in setting policy rates, but also in shaping the local yield curve.

Four broad empirical observations cast doubts on the validity of this standard model. First,

a large empirical literature documents strong and systematic patterns in the structure of currency
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returns, in violation of UIP (see Fama (1984) and the subsequent literature): high interest rate

countries typically earn high expected returns on short term deposits, an indication that currency

risk premia are time-varying. These deviations from UIP form the basis for currency carry trade

(CCT) strategies that borrow in currencies with low short interest rates and invest in currencies

with high short interest rates.

Second, a similarly large empirical literature documents strong and systematic deviations from

the EH. Two seminal papers in this literature, Fama and Bliss (1987) and Campbell and Shiller

(1991), establish that the slope of the term structure has predictive power for excess bond returns

and for future change in yields, an indication that bond risk premia are time-varying. These

deviations form the basis for bond carry trade (BCT) strategies that borrow in maturities with a

low interest rate and invest in maturities with a higher interest rate.

Third, while the empirical literature on currency and bond returns largely followed parallel

but separate tracks, recent papers establish that the foreign exchange and bond risk premia are

deeply connected. For instance, Chernov and Creal (2020) as well as Lloyd and Marin (2020) find

that yield curve slope differentials matter for the predictability of the currency carry trade (CCT)

-investment strategies that borrow in low interest rate currencies and invest in high ones- while

Lustig, Stathopoulos, and Verdelhan (2019) find that the profitability of the currency carry trade

declines when the trade is carried out with long-term bonds rather than short term ones. This last

result indicate that bond and currency risk premia tend to offset each other as the maturity of the

bond instruments increases.

Lastly, since the 2008 Global Financial Crisis, monetary authorities around the world have

experimented with various forms of ‘Unconventional Monetary Policies’ (UMP) including but not

limited to Quantitative Easing (QE), Forward Guidance, yield curve control or negative interest

rates. A growing body of evidence, surveyed in Bhattarai and Neely (2018) suggests that central

banks’ asset purchases announcements had a significant impact not only on domestic yields, but

also on exchange rates and foreign yields (see also Neely (2015) and Bauer and Neely (2014)).

The challenge is to build a tractable asset pricing framework that is consistent with these four

broad facts. As Lustig, Stathopoulos, and Verdelhan (2019) observe, leading representative no-

arbitrage models of international finance typically have a hard time reproducing these empirical

patterns. For instance, these authors observe that no-arbitrage models cannot replicate both the

strong evidence of deviations from UIP at the short end of the maturity structure, and its absence

when using longer term instruments, since both arise from the set pricing equation. Similarly, Engel
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(2016) observes that standard representative agent models cannot explain simultaneously the UIP

puzzle -which through the lens of these models implies that the high interest rate currency is more

risky- and the fact that high interest rate currency tend to have a stronger currency -which through

the lens of these models suggests that the high interest rate currency is less risky.

Our paper develops such a framework. It builds on the recent and promising line of research that

recognizes the importance of financial intermediaries and of the limits to arbitrage across partially

segmented financial markets. At the theoretical level, this relaxes the hypothetical representative-

agent’s arbitrage condition and focuses instead on the risk-return tradeoff of the relevant global

investors. Gabaix and Maggiori (2015) present a stylized model of currency markets along those

lines, reviving an important older literature on portfolio balance models (Kouri, 1982). These

models naturally generate deviations from UIP as arbitrageurs need to be compensated for their

currency exposure. Similarly, Vayanos and Vila (2019) present a preferred-habitat model of seg-

mentation along the yield curve in a closed economy. That model naturally generate deviations

from the EH as arbitrageurs need to be compensated for their bond exposure. Our model proposes

an integrated analysis of global rate markets which delivers sharp predictions on the co-movements

between bond and currency risk premia. The model is particularly useful to investigate how ‘local

shocks’ to the supply of or demand for specific maturities can propagate along the domestic and

foreign term structure.

At the institutional level, market segmentation seems a very plausible assumption: the marginal

investor in currency markets is much more likely to be a specialized investor such as a large macro

global hedge fund, the trading desk of a multinational corporation, a sovereign wealth fund, or

the fixed-income desk of a global broker-dealer, rather than the representative household trying to

diversify the risks to the marginal utility of its consumption stream.

In each country, a monetary authority sets short term policy rate exogenously. Further, local

investors are situated along the domestic and foreign term structure. These investors are specialized

in a given currency and maturity segment. In addition, there are specialized investors in the cur-

rency market. These investors are price elastic and their demand for bonds and currency constitute

another source of exogenous variation. Lastly ‘global rates market’ risk averse arbitrageurs can

invest limited capital in all fixed-income instruments, foreign and domestic. Because these global

arbitrageurs operate both on the term structure in each country, and in currency markets, term

premia and currency risk premia are linked in equilibria.

Our framework allows us to answer a number of specific questions. First, we can characterize
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the time series behavior of term premia and currency risk premia, given the underlying policy

and demand shocks. Our model recovers deviations from UIP and also very naturally the Lustig,

Stathopoulos, and Verdelhan (2019) term structure of currency risk premia. In our model, as the

maturity of the bond increases, the short term excess return decreases to zero. The reason is

precisely that long term bond and currency risk premia are linked: as arbitrageurs become more

exposed to domestic policy shocks, domestic long term bonds and foreign currency are equally

undesirable: their premia increase by similar amounts, which account for the decline in the term

structure of currency risk premia.

Second, our framework allows us to explore how shocks to the policy rate in one country

transmit to the domestic term structure, the currency, and the foreign term structure. We now

provide the core intuition for our results. Consider first the case of a decrease in the domestic

policy rate and the impact on the domestic yield curve. This makes domestic long term bonds

more desirable, increasing the price of domestic long term bonds. This leads price-elastic domestic

bond investors to retrench. In equilibrium, global arbitrageurs must increase their holdings of

domestic long term bonds. This requires a higher expected return, hence the yield on foreign

bonds does not decline all the way to the level implied by the EH: the required rent that accrues

to global arbitrageurs attenuates the transmission of monetary policy along the domestic yield

curve, compared to the standard case. Consider now the impact on the exchange rate. The lower

domestic policy rate makes foreign currency more desirable, appreciating the foreign currency. This

leads price-elastic currency traders to retrench. In equilibrium, global arbitrageurs must increase

their foreign currency holdings. This requires a higher expected currency return, hence the foreign

currency does not appreciate all the way to the level implied by UIP. Finally, consider the impact

on the foreign yield curve. A larger exposure to foreign currency makes global rate arbitrageurs

more exposed to the risk of a decline in foreign interest rates (and the associated depreciation of the

foreign currency). Foreign long term bonds provide a natural hedge since their price increases when

the foreign short rate declines. Hence, in response to a decline in the domestic policy rate, global

rate arbitrageurs will increase their demand for foreign long term bonds. This will decrease the

yield on foreign bonds and flatten the foreign yield curve. Hence, the transmission of conventional

monetary policy to the domestic economy is weakened, and spills over to the foreign yield curve,

even when exchange rates are flexible: the required rents that accrue to global rate arbitrageurs

connect domestic, foreign and currency markets. To the extent that long rates matter for economic

activity, as in Ray (2019), the Friedman-Obstfeld-Taylor Trilemma fails.

Our framework also allows us to investigate how non-conventional policies such as Quantita-
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tive Easing, Forward Guidance or Foreign Exchange intervention transmit, both domestically and

abroad. Consider first the case of a purchase of domestic long term bonds by the domestic central

bank. This increase in demand leads to an increase in price of those bonds and decline in their yield.

Global arbitrageurs respond by reducing their demand for these long term bonds. This reduction

in their holdings of domestic long term bonds make them less exposed to the risk of a rise in the

domestic interest rate. Therefore, they become more willing to hold assets exposed to that risk.

Foreign currency and foreign long term bonds are two such assets. Hence the model predicts that

a domestic asset purchase will depreciate the domestic currency and lower foreign yields -flattening

the foreign yield curve.

If we interpret the Home country as the United States, the model also lets us investigate how

shifts in the demand for US Treasuries (i.e. a generalized shift in the demand for domestic bonds)

differs from a shift in the demand for dollars (i.e. a shift in the demand on the currency markets).

This allows us to better understand whether the current environment is one characterized by the

specialness of the U.S. dollar, or the specialness of U.S. Treasuries (Jiang, Krishnamurthy, and

Lustig, 2018, 2019).

Greenwood, Hanson, Stein, and Sunderam (2019) develop independently a model similar to

ours, with arbitrageurs trading bonds and currency across two countries. They find, as we do, that

bond and currency carry trades are profitable, and that an increase in bond demand in one country

causes the currency of that country to depreciate and bond prices in both countries to rise. They

also introduce segmented arbitrage, e.g., some arbitrageurs can only trade bonds in one country,

and some can trade only currency. Their model is set up in discrete time and assumes only a

short and a long bond. By contrast, ours is set up in continuous time and derives the entire term

structure of interest rates in each country. This allows us to compare the predictability of bond

and currency movements across different horizons, and to perform a quantitative exercise in which

we can compare model-generated moments to those in the data.

Literature Review. Our paper connects four strands of literature. First, there is an abundant

empirical literature on currency and bond pricing ‘puzzles.’ Cite.... Second, a more recent empirical

literature emphasizes the role of quantities in asset pricing. Cite Koijen etc....

Third, from a modeling perspective, we build on recent models of market segmentation in cur-

rency markets and bond markets. cite GA/MA, kouri, Vayanos-Vila. Itskhoki and Mukhin (2017)

present such a model where financial arbitrageurs also need to absorb liquidity demand arising
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from noise traders, as in Jeanne and Rose (2002). These liquidity demand shocks translate, in

equilibrium, into ‘UIP shocks’, i.e. deviations from the UIP condition. Quantitatively, Itskhoki

and Mukhin (2017) conclude that these UIP shocks account for more than 90% of the fluctuations

in the nominal and real exchange rate, but very little of the fluctuations in output, thus potentially

explaining the well-known disconnect between exchange rate movements and traditional macroe-

conomic fundamentals such as monetary policy, output growth, or external imbalances (see Meese

and Rogoff (1983) and the literature on the ‘exchange rate disconnect puzzle’).

Fourth, our paper explores how both conventional and unconventional monetary policy trans-

mit, both domestically and internationally. Ray (2019) embeds such a segmented asset market

structure into a New Keynesian model and explores how non-conventional policies, such as QE or

forward guidance can be deployed effectively. References on international transmission of monetary

policy (Gali Monacelli, Corsetti, Itskhokin-Mukhin)

2 Model

Time is continuous and goes from zero to infinity. There are two countries, Home (H) and Foreign

(F ). We define the exchange rate as the units of home currency that one unit of foreign currency can

buy, and denote it by et at time t. An increase in et corresponds to a home currency depreciation.

In each country j = H,F , a continuum of zero-coupon government bonds can be traded. The

bonds’ maturities lie in the interval (0, T ), where T can be finite or infinite. The country-j bond

with maturity τ at time t pays off one unit of country j’s currency at time t+τ . We denote by P
(τ)
jt

the time-t price of that bond, expressed in units of country j’s currency, and by y
(τ)
jt the bond’s

yield. The yield is the spot rate for maturity τ , and is related to the price through

y
(τ)
jt = −

log
(
P

(τ)
jt

)
τ

. (2.1)

The country-j and time-t short rate ijt is the limit of the yield y
(τ)
jt when τ goes to zero. We take

ijt as exogenous, and describe its dynamics later in this section (Equation 2.9). An exogenous ijt

can be interpreted as the result of actions that the central bank in country j takes when targeting

the short nominal rate by elastically supplying liquidity.

There are three types of agents: arbitrageurs, bond investors and currency traders. Arbi-
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trageurs are competitive and maximize a mean-variance objective over instantaneous changes in

wealth. We express their wealth in units of the home currency, thus assuming that the home cur-

rency is the riskless asset for them. We allow arbitrage to be global or segmented. When arbitrage

is global, arbitrageurs can invest in the currencies and bonds of both countries. When instead

arbitrage is segmented, arbitrageurs can invest in the currency of the home country (the riskless

asset), and in a single additional asset class: foreign currency for some arbitrageurs, home bonds for

others, and foreign bonds for the remainder. We assume that the arbitrageurs investing in foreign

bonds have a zero net position in foreign-currency instruments: they hedge their bond position

with an equally sized position in the foreign short rate. Segmented arbitrage is a useful benchmark,

as the interactions between bond and currency markets that global arbitrage generates are not

present.

In the case of global arbitrage, we denote by Wt the arbitrageurs’ time-t wealth, by WHt and

WFt their net position in home and foreign-currency instruments, respectively, and by X
(τ)
Ht dτ and

X
(τ)
Ft dτ their position in the home and foreign bonds with maturities in [τ, τ + dτ ], respectively, all

expressed in units of the home currency. The position of arbitrageurs in the bonds with maturities

in [τ, τ + dτ ] is of order dτ in equilibrium because preferred-habitat demand for those bonds is

assumed to be of the same order.

The arbitrageurs’ budget constraint is

Wt+dt =

(
WHt −

∫ T

0
X

(τ)
Ht dτ

)
(1 + iHtdt) +

∫ T

0
X

(τ)
Ht

P
(τ−dt)
H,t+dt

P
(τ)
Ht

dτ

+

(
WFt −

∫ T

0
X

(τ)
Ft dτ

)
(1 + iFtdt)

et+dt
et

+

∫ T

0
X

(τ)
Ft

P
(τ−dt)
F,t+dt et+dt

P
(τ)
Ft et

dτ. (2.2)

The first term in the right-hand side of (2.2) corresponds to a position in the home short rate, the

second term to a position in home bonds, the third term to a position in the foreign short rate,

and the fourth term to a position in foreign bonds. In the third term, WFt −
∫ T

0 X
(τ)
Ft dτ units of

the home currency are converted at time t to units of the foreign currency by dividing by et. They

earn the foreign short rate between time t and t+dt, and are converted back at time t+dt to units

of the home currency by multiplying by et+dt. In the fourth term, X
(τ)
Ft units of the home currency

are converted at time t to units of the foreign currency by dividing by et, and then to units of the

foreign bond with maturity τ by dividing by P
(τ)
Ft , the price of the bond in foreign currency. They

are converted back at time t+ dt to units of the home currency by multiplying by P
(τ−dt)
F,t+dt et+dt.
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Subtracting Wt = WHt +WFt from both sides of (2.2) and rearranging, we find

dWt =WtiHtdt+WFt

(
det
et

+ (iFt − iHt)dt
)

+

∫ T

0
X

(τ)
Ht

(
dP

(τ)
Ht

P
(τ)
Ht

− iHtdt

)
dτ +

∫ T

0
X

(τ)
Ft

(
d(P

(τ)
Ft et)

P
(τ)
Ft et

− det
et
− iFtdt

)
dτ. (2.3)

If arbitrageurs invest all their wealth in the home short rate, then the instantaneous change dWt

in their wealth is WtiHtdt, the first term in the right-hand side of (2.3). Relative to that case,

arbitrageurs can earn an additional return from investing in three sets of assets: foreign currency,

home bonds, and foreign bonds. The returns from these investments correspond to the second,

third and fourth term, respectively, in the right-hand side of (2.3).

The optimization problem of a global arbitrageur is

max
WFt,{X

(τ)
jt }τ∈(0,T ),j=H,F

[
Et(dWt)−

a

2
Vart(dWt)

]
, (2.4)

where a ≥ 0 is a coefficient that characterizes the trade-off between mean and variance. The

coefficient a can capture innate risk aversion or, in reduced form, constraints such as Value at Risk.

By possibly redefining a, we assume that global arbitrageurs are in measure one. Arbitrageurs with

the objective (2.4) can be interpreted as overlapping generations living over infinitesimal periods.

In the case of segmented arbitrage, the budget constraint of any given arbitrageur is derived

from (2.3) by setting two of the terms to zero. For an arbitrageur who can invest only in foreign

currency, the third and fourth terms are zero (X
(τ)
Ht = X

(τ)
Ft = 0); for an arbitrageur who can invest

only in home bonds, the second and fourth terms are zero (WFt = X
(τ)
Ft = 0); and for an arbitrageur

who can invest only in foreign bonds, with a zero net position in foreign-currency instruments, the

second and third terms are zero (WFt = X
(τ)
Ht = 0). The optimization problem is derived from

(2.4) by restricting the choice variables accordingly. We denote by ae, aH and aF , respectively,

the risk-aversion coefficient of an arbitrageur who can invest in foreign currency, home bonds and

foreign bonds. By possibly redefining (ae, aH , aF ), we assume that each type of arbitrageur is in

measure one.

Bond investors have preferences (“habitats”) for specific countries and maturities. For example,

pension funds in the home country prefer long-maturity home bonds because these match their

pension liabilities, which are long term and denominated in home currency. At the other end of
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the maturity spectrum, home money-market funds are required by their mandates to hold short-

maturity home bonds. For tractability, we assume that preferences take an extreme form, where

investors demand only the bond closest to their preferred characteristics. That is, investors with

preferences for country j and maturity τ at time t hold a position Z
(τ)
jt in the country-j bond with

maturity τ and hold no other bond. We assume that maturity preferences cover the interval (0, T ),

and investors with preferences for country j and maturities in [τ, τ + dτ ] are in measure dτ . We

express the position Z
(τ)
jt in units of the home currency, and assume that it is affine and decreasing

in the logarithm of the bond price:

Z
(τ)
jt = −αj(τ) log

(
P

(τ)
jt

)
− β(τ)

jt . (2.5)

The slope coefficient αj(τ) ≥ 0 is constant over time but can depend on country j and maturity τ .

The intercept coefficient β
(τ)
jt can depend on t, τ and j. For simplicity, we refer to αj(τ) and β

(τ)
jt

as demand slope and demand intercept, respectively. The actual intercept is −β(τ)
jt .

The demand intercept β
(τ)
jt takes the form

β
(τ)
jt = ζj(τ) + θj(τ)βjt, (2.6)

where (ζj(τ), θj(τ)) are constant over time but can depend on country j and maturity τ , and βjt is

independent of τ but can depend on country j and time t. We refer to βjt as a demand risk factor,

and describe its dynamics later in this section (Equation 2.9). Vayanos and Vila (2019) provide

an optimizing foundation for the demand specification (2.5)-(2.6) in a setting where investors form

overlapping generations consuming at the end of their life, are infinitely risk-averse, and can invest

in bonds and in a private opportunity with exogenous return.

We assume that currency traders generate a downward-sloping demand for foreign currency as

a function of the exchange rate et. These agents can be interpreted as exporters and importers, or

as central banks intervening on currency markets. For example, when et is low, the central bank

in the home country may want to increase its holdings of foreign currency, perhaps to stabilize the

currency. Similarly, when et is low, the flow demand for foreign currency arising from exporters

and importers may increase, as in Gabaix and Maggiori (2015), and this may push up the stock

demand for foreign currency. For tractability, we assume that the stock demand of currency traders,

expressed in units of the home currency, is affine and decreasing in the logarithm of the exchange
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rate:

Zet = −αe log(et)− (ζet + θeγt), (2.7)

where αe ≥ 0 is a slope coefficient, ζet is a deterministic term, θe is a constant, and γt is a demand

risk factor. We describe the dynamics of γt and motivate the deterministic term ζet later in this

section.

The demand (2.7) for foreign currency is expressed in the spot market. We allow for additional

currency demand in the forward market. Indeed, according to BIS (2019), spot transactions ac-

counted for only one-third of total trading volume in the currency market over recent years, with

forward and swap transactions accounting for most of the remainder. We assume that the de-

mand of currency traders, expressed in units of the home currency, for the foreign-currency forward

contract with maturity τ is

Z
(τ)
et = −(ζe(τ) + θe(τ)γt), (2.8)

where (ζe(τ), θe(τ)) are functions of τ .

Under Covered Interest Parity (CIP), the demand Z
(τ)
et for the foreign-currency forward contract

with maturity τ is equivalent to the combination of (i) a demand Z
(τ)
et for foreign currency in the

spot market, (ii) a demand Z
(τ)
et for the foreign bond with maturity τ , and (iii) a demand −Z(τ)

et for

the home bond with maturity τ . Hence, the equilibrium with the forward market is equivalent to

one without it but with the demands (i)-(iii) added to (2.5) and (2.7). We use that equivalence to

study the effects of currency demand in the forward market. CIP holds only under global arbitrage

since it is only then that a common set of agents can trade all the instruments involved in CIP

arbitrage. Accordingly, we allow for currency demand in the forward market only under global

arbitrage.

The 5× 1 vector qt ≡ (iHt, iFt, βHt, βFt, γt)
> follows the process

dqt = −Γ(qt − q̄)dt+ ΣdBt, (2.9)

where q̄ is a constant 5 × 1 vector, (Γ,Σ) are constant 5 × 5 matrices, Bt is a 5 × 1 vector

(BiHt, BiF t, BβHt, BβFt, Bγt)
> of independent Brownian motions, and > denotes transpose. Equa-

tion (2.9) nests the case where the factors (iHt, iFt, βHt, βFt, γt) are mutually independent, and the

case where they are correlated. Independence arises when the matrices (Γ,Σ) are diagonal. When

10



instead Σ is non-diagonal, shocks to the factors are correlated, and when Γ is non-diagonal, the

drift (instantaneous expected change) of each factor depends on all other factors. We assume that

the eigenvalues of Γ have negative real parts so that qt is stationary. Equation (2.9) implies that

the long-run mean of a stationary qt is q̄. We set the long-run means of the demand factors to zero

(q̄3 = q̄4 = q̄5 = 0). This is without loss of generality since we can redefine {ζj(τ)}j=H,F and ζet to

include a non-zero long-run mean. We set the supply of each bond and of foreign currency to zero

by redefining demand to be net of supply.

Key to the tractability of our model is that all demand functions are expressed in terms of the

same numeraire, which is the riskless asset for arbitrageurs. The numeraire can be the currency

of one of the two countries, and we take it to be the home currency. One limiting feature of this

assumption is that the home currency must be the riskless asset for all arbitrageurs, even foreign

ones. Our assumption also precludes that exchange-rate movements holding foreign bond yields

constant affect foreign bond demand in home currency terms.

Our model can be given both a nominal and a real interpretation. Our presentation so far

focuses on the nominal interpretation: bonds pay in currency units, the exchange rate is the price

of one currency relative to the other, preferences of arbitrageurs concern their nominal wealth,

preferences of bond investors concern their nominal consumption, and the demand of currency

traders is a function of the nominal exchange rate. A difficulty with the nominal interpretation is

that the demand of currency traders such as exporters and importers is better viewed as a function

of the real rather than the nominal exchange rate. To put it differently, while it is reasonable for the

real exchange rate to be stationary, we want to allow for a non-stationary nominal exchange rate.

To make the nominal interpretation compatible with a real currency demand, we can replace the

nominal exchange rate et in (5.1) by the real exchange rate. This amounts to keeping et inside the

logarithm and adding αe(log(pFt)− log(pHt)) to ζet, where pjt is the price level in country j = H,F .

Hence, under the nominal interpretation, we can take ζet to be αe(log(pFt) − log(pHt)). This

interpretation is valid as long as we ignore inflation risk, i.e. as long as we treat log(pFt)− log(pHt)

as a deterministic process. More generally, the term ζet captures all deterministic forces that lead

to a non-stationary nominal exchange rate.

An alternative interpretation of our model is real: bonds pay in units of goods with a real price

P
(τ)
jt , the exchange rate et is the real exchange rate defined as the price of goods in one country

relative to the other, preferences of arbitrageurs concern their real wealth, preferences of bond

investors concern their real consumption, and the demand of currency traders depends on the real
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exchange rate. Under the real interpretation, we can take ζet to be a constant, ζe.

In what follows, we present the nominal interpretation of the model in the special case where

the inflation rate is constant in each country: ζet = ζe + αe(πF − πH)t, where πj is the constant

inflation rate in country j and ζe is a constant.

3 Segmented Arbitrage

In this section we study the case of segmented arbitrage, where foreign currency, home bonds, and

foreign bonds are traded by three disjoint sets of arbitrageurs. For simplicity, we assume that

the home and foreign short rates (iHt, iFt) are independent, that demand for bonds and foreign

currency does not vary stochastically and hence the demand factors (βHt, βFt, γt) are equal to their

mean of zero in steady state, that one-off shocks to the demand factors do not affect the short

rates or other demand factors, and that all currency demand is expressed in the spot market. This

amounts to taking the matrices (Γ,Σ) in (2.9) to be diagonal and to setting Σ3,3 = Σ4,4 = Σ5,5 =

ζe(τ) = θe(τ) = 0. Setting (Γ1,1,Γ2,2, q̄1, q̄2,Σ1,1,Σ2,2) ≡ (κiH , κiF , iH , iF , σiH , σiF ), we can write

the dynamics of the country-j short rate as

dijt = κij(ij − ijt)dt+ σijdBijt. (3.1)

3.1 Equilibrium

We conjecture that the equilibrium exchange rate is a log-affine function of the home short rate, the

foreign short rate and a linear time trend, and that equilibrium bond yields in country j = H,F

are affine functions of that country’s short rate. That is, there exist three scalars ({Aije}j=H,F , Ce)

and four functions {Aij(τ), Cj(τ)}j=H,F that depend only on τ , such that

log et = − [AiHeiHt −AiFeiFt + Ce + (πF − πH)t] , (3.2)

logP
(τ)
jt = − [Aij(τ)ijt + Cj(τ)] . (3.3)

When arbitrage is segmented, the exchange rate, the yields of home bonds, and the yields of

foreign bonds are determined independently, and they reflect the risk aversion of the corresponding

arbitrageurs. Our conjectured solution (3.2)-(3.3) implies that the real exchange rate (etpFt)/pHt =

et exp((πF − πH)t)(pF0/pH0) and bond prices P
(τ)
jt are stationary while the nominal exchange rate

exhibits a trend exp((πH − πF )t).
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3.1.1 Exchange Rate

We determine the exchange rate by deriving the arbitrageurs’ first-order condition and combining

it with market clearing. Applying Ito’s Lemma to (3.2), and using the dynamics (3.1) of ijt, we

find that the instantaneous return on foreign currency is

det
et

= µetdt−AiHeσiHdBiHt +AiFeσiFdBiF t, (3.4)

where

µet ≡ −AiHeκiH(iH − iHt) +AiFeκiF (iF − iFt)− (πF − πH) +
1

2
A2
iHeσ

2
iH +

1

2
A2
iFeσ

2
iF (3.5)

is the expected return. Substituting the return (3.4) into the budget constraint of the subset of

arbitrageurs who can invest in foreign currency (and whose budget constraint is derived from (2.3)

by setting X
(τ)
Ht = X

(τ)
Ft = 0), we find

dWt = [WtiHt +WFt (µet + iFt − iHt)] dt−WFt (AiHeσiHdBiHt −AiFeσiFdBiF t) .

The optimization problem of these arbitrageurs is

max
WFt

[
WFt (µet + iFt − iHt)−

ae
2
W 2
Ft

(
A2
iHeσ

2
iH +A2

iFeσ
2
iF

)]
,

and their first-order condition is

µet + iFt − iHt = aeWFt

(
A2
iHeσ

2
iH +A2

iFeσ
2
iF

)
. (3.6)

Equation (3.6) describes the arbitrageurs’ risk-return trade-off when investing in the currency carry

trade (CCT). We term CCT the trade of borrowing short-term in the home country, exchanging

the borrowed amount in the foreign currency, investing it short-term in the foreign country, and

exchanging it back in the home currency.1 The CCT’s return is det
et

+ (iFt − iHt)dt, equal to the

return on foreign currency plus that on the foreign-home short-rate differential.

If arbitrageurs invest an extra unit of home currency in the CCT, then their expected return

increases by the CCT’s expected return µet+iFt−iHt. This is the left-hand side of (3.6). The right-

hand side is the increase in the the arbitrageurs’ portfolio risk, times their risk-aversion coefficient

1For simplicity, we deviate from market terminology, according to which the CCT borrows in the currency with
the low interest rate.
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ae. The increase in portfolio risk is equal to the variance of the CCT’s return, times the arbitrageurs’

wealth WFt invested in foreign currency.

We next combine the arbitrageurs’ first-order condition (3.6) with market clearing in foreign

currency. Market clearing requires that the time-t positions of arbitrageurs and currency traders

sum to zero:

WFt + Zet = 0. (3.7)

Using (3.7), we can write (3.6) as

µet + iFt − iHt = −aeZet
(
A2
iHeσ

2
iH +A2

iFeσ
2
iF

)
= ae [αe log(et) + ζe + αe(πF − πH)t]

(
A2
iHeσ

2
iH +A2

iFeσ
2
iF

)
= ae [ζe − αe (AiHeiHt −AiFeiFt + Ce)]

(
A2
iHeσ

2
iH +A2

iFeσ
2
iF

)
, (3.8)

where the second step follows from (2.7) and γt = 0, and the third step follows from (3.2). Substi-

tuting µet from (3.5) into (3.8), we can write the latter equation as

−AiHeκiH(iH − iHt) +AiFeκiF (iF − iFt)− (πF − πH) +
1

2
A2
iHeσ

2
iH +

1

2
A2
iFeσ

2
iF + iFt − iHt

= ae [ζe − αe (AiHeiHt −AiFeiFt + Ce)]
(
A2
iHeσ

2
iH +A2

iFeσ
2
iF

)
. (3.9)

Equation (3.9) is affine in (iHt, iFt). Identifying the linear terms in (iHt, iFt) and the constant

terms yields three equations for the three scalars ({Aije}j=H,F , Ce).

Proposition 3.1. When arbitrage is segmented, the exchange rate et is given by (3.2), with

({Aije}j=H,F , Ce) equal to the unique solution of the system

κijAije − 1 = −aeαeAije
(
σ2
iHA

2
iHe + σ2

iFA
2
iFe

)
, (3.10)

− κiHiHAiHe + κiF iFAiFe − (πF − πH) +
1

2
σ2
iHA

2
iHe +

1

2
σ2
iFA

2
iFe (3.11)

= ae (ζe − αeCe)
(
σ2
iHA

2
iHe + σ2

iFA
2
iFe

)
.

In the special case where arbitrageurs are risk neutral (ae = 0), (3.6) implies that Uncovered

Interest Parity (UIP) holds: µet = iHt − iFt. In addition, for the solution to be of the form

conjectured in (3.2), Proposition 3.1 requires that the unconditional mean of the two countries’

real interest rates, ij − πj , be equated, up to a convexity adjustment term equal to
σ2
iH

2κ2iH
+

σ2
iF

2κ2iF
:

iF − πF +
σ2
iH

2κ2
iH

+
σ2
iF

2κ2
iF

= iH − πH , (3.12)
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This is quite intuitive: if these unconditional real interest rates were different and arbitrageurs

were risk neutral, then the real exchange rate would appreciate or depreciate forever, violating the

conjectured stationarity in (3.2). From (3.10), the sensitivity of the nominal exchange rate to short

rate shocks is AUIPije = 1/κij . When arbitrageurs are risk neutral, the response of the exchange rate

to the short rate only depends on the persistence of the short rate process. The more persistent

the process is (a lower κij), the larger is the nominal exchange rate response.

When arbitrageurs are risk-averse, UIP does not hold, even in the limit when risk-aversion goes

to (but is not equal to) zero. In that case, the real exchange rate remains stationary as conjectured

in (3.2), regardless of the unconditional mean of the two countries’ real interest rates. The reason is

that any permanent difference in real interest rates is absorbed in equilibrium by a an adjustment

in currency risk premia. The currency of the country with permanently higher real interest rate is

permanently stronger. This reduces the demand from currency traders, and requires an offsetting

adjustment in risk premia, but no trend appreciation of the currency. In the limit ae → 0, the

position of arbitrageurs in the CCT becomes arbitrarily large.

The following corollary summarizes these results.

Corollary 3.1. Suppose that arbitrage is segmented.

• When currency arbitrageurs are risk-neutral (ae = 0), UIP holds: the expected return on

foreign currency is µUIPet ≡ iHt− iFt. The sensitivity of the exchange rate to short-rate shocks

is AUIPije ≡ 1
κij

. Stationarity of the real exchange rate requires that (3.12) holds

• When the risk aversion of currency arbitrageurs goes to zero (ae → 0), the expected return

on foreign currency does not converge to µUIPet , but the sensitivity of the exchange rate to

short-rate shocks converges to AUIPije . The real exchange rate is stationary and satisfies (3.2),

even if (3.12) is not satisfied.

3.1.2 Bond Yields

The determination of bond yields parallels that of the exchange rate. Applying Ito’s Lemma to

(3.3) for j = H, using the dynamics (3.1) of ijt for j = H, and noting that t + τ stays constant

when taking the derivative, we find that the time-t instantaneous return on the home bond with
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maturity τ is

dP
(τ)
Ht

P
(τ)
Ht

= µ
(τ)
Htdt−AiH(τ)σiHdBiHt, (3.13)

where

µ
(τ)
Ht ≡ A

′
iH(τ)iHt + C ′H(τ)−AiH(τ)κiH(iH − iHt) +

1

2
AiH(τ)2σ2

iH (3.14)

is the expected return. Likewise, (3.1) and (3.3) for j = F , combined with (3.2), imply that the

time-t instantaneous return on the foreign bond with maturity τ , expressed in home-currency terms,

minus the instantaneous return on foreign currency, is

d(P
(τ)
Ft et)

P
(τ)
Ft et

− det
et

= µ
(τ)
Ft dt−AiF (τ)σiFdBiF t, (3.15)

where

µ
(τ)
Ft ≡ A

′
iF (τ)iFt + C ′F (τ)−AiF (τ)κiF (iF − iFt) +

1

2
AiF (τ) (AiF (τ)− 2AiFe)σ

2
iF (3.16)

and AiFe is solved for in Proposition 3.1. We next substitute the return (3.13) into the budget

constraint of the subset of arbitrageurs who can invest in home bonds (and whose budget constraint

is derived from (2.3) by setting WFt = X
(τ)
Ft = 0). We do the same for (3.15) and the subset of

arbitrageurs who can invest in foreign bonds and have a zero net exposure in foreign-currency

instruments (and whose budget constraint is derived from (2.3) by setting WFt = X
(τ)
Ht = 0). For

the arbitrageurs investing in the bonds of country j = H,F , we find

dWt =

[
WtiHt +

∫ T

0
X

(τ)
jt

(
µ

(τ)
jt − ijt

)
dτ

]
dt−

∫ T

0
X

(τ)
jt Aij(τ)σijdBijt.

The optimization problem of these arbitrageurs is

max
{X(τ)

jt }τ∈(0,T )

[∫ T

0
X

(τ)
jt

(
µ

(τ)
jt − ijt

)
dτ − aj

2

(∫ T

0
X

(τ)
jt Aij(τ)dτ

)2

σ2
ij

]
,

and their first-order condition, which follows from point-wise differentiation, is

µ
(τ)
jt − ijt = ajAij(τ)

(∫ T

0
X

(τ)
jt Aij(τ)dτ

)
σ2
ij . (3.17)
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Equation (3.17) describes the arbitrageurs’ risk-return trade-off when investing in the bond

carry trade (BCT) in country j. We term BCT in country j the trade of borrowing short-term in

that country and investing the borrowed amount in that country’s bonds.2 The return on the BCT

in the home country and for maturity τ is
dP

(τ)
Ht

P
(τ)
Ht

− iHtdt, equal to the return on the home bond

with maturity τ minus that on the home short rate. The return on the BCT in the foreign country,

expressed in home-currency terms, is
d(P

(τ)
Ft et)

P
(τ)
Ft et

− det
et
− iFtdt. This is equal to the return on the

foreign bond with maturity τ , expressed in home-currency terms, minus that on foreign currency,

minus that on the foreign short rate.

If arbitrageurs invest an extra unit of home currency in the BCT for country j and maturity

τ , then their expected return increases by the BCT’s expected return µ
(τ)
jt − ijt. This is the left-

hand side of (3.17). The right-hand side is the increase in the arbitrageurs’ portfolio risk, times

their risk-aversion coefficient aj . The increase in portfolio risk is equal to the covariance between

the return on the BCT in country j and for maturity τ , and the return on the BCT portfolio of

arbitrageurs in country j and across all maturities. Since these returns depend only on the country

j short rate ijt, their covariance is the product of their sensitivities to ijt times the instantaneous

variance σ2
ij of ijt. Equations (3.13) and (3.15) imply that the return sensitivities to ijt are −Aij(τ)

and −
∫ T

0 X
(τ)
jt Aij(τ), respectively.

We next combine the arbitrageurs’ first-order condition (3.17) with market clearing for country

j bonds. Market clearing requires that the time-t positions of arbitrageurs and bond investors sum

to zero:

X
(τ)
jt + Z

(τ)
jt = 0. (3.18)

Using (3.18), we can write (3.17) as

µ
(τ)
jt − ijt = −ajAij(τ)

(∫ T

0
Z

(τ)
jt Aij(τ)dτ

)
σ2
ij

= ajAij(τ)

(∫ T

0

[
αj(τ) log

(
P

(τ)
jt

)
+ ζj(τ)

]
Aij(τ)dτ

)
σ2
ij

= ajAij(τ)

(∫ T

0
[ζj(τ)− αj(τ) (Aij(τ)ijt + Cj(τ))]Aij(τ)dτ

)
σ2
ij (3.19)

2For simplicity, we deviate from market terminology, according to which the BCT borrows at maturities with a
low interest rate.
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where the second step follows from (2.5) and βjt = 0, and the third step follows from (3.3).

Substituting µ
(τ)
Ht from (3.14) into (3.19) for j = H, we find an equation affine in iHt. Identifying

the linear terms in iHt and the constant terms yields two ordinary differential equations (ODEs) for

the two functions (AiH(τ), CrH(τ)). Repeating this process for the foreign bond, yields two ODEs

for (AiF (τ), CrF (τ)). These ODEs are linear, with the complication that the linear coefficients

depend on integrals involving these functions.

Proposition 3.2. When arbitrage is segmented, bond prices P
(τ)
jt in country j = H,F are given

by (3.3), with (Aij(τ), Crj(τ)) equal to the unique solution of the system

A′ij(τ) + κijAij(τ)− 1 = −ajσ2
ijAij(τ)

∫ T

0
αj(τ)Aij(τ)2dτ, (3.20)

C ′j(τ)− κijijAij(τ) +
1

2
σ2
ijAij(τ)

(
Aij(τ)− 2AiFe1{j=F}

)
= ajσ

2
ijAij(τ)

∫ T

0
[ζj(τ)− αj(τ)Cj(τ)]Aij(τ)dτ, (3.21)

with the initial conditions Aij(0) = Cj(0) = 0.

In the special case where arbitrageurs are risk-neutral, the Expectations Hypothesis (EH) holds.

Corollary 3.2. When arbitrage is segmented and bond arbitrageurs in country j are risk-neutral

(aj = 0), the EH holds in country j. The expected return on country-j bonds is µ
(τ)EH
jt ≡ ijt, and

the sensitivity of these bonds to shocks to the country-j short rate is AEHij (τ) ≡ 1−e−κijτ
κij

. The same

results hold when the risk aversion of bond arbitrageurs in country j goes to zero (aj → 0).

3.2 Short-Rate Shocks, Carry Trades and Risk Premia

We next determine how bond yields and the exchange rate respond to short-rate shocks, and what

the implications are for the profitability of carry trades and risk premia.

3.2.1 Bonds

Proposition 3.3. Suppose that arbitrage is segmented. Following a drop in the short rate in

country j, bond yields drop in that country (Aij(τ) > 0) and do not change in the other country.
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When additionally bond arbitrageurs in country j are risk-averse (aj > 0) and the demand of bond

investors in that country is price-elastic (αj(τ) > 0 in a positive-measure set of (0, T )):

• Bond yields do not drop all the way to the value implied by the EH: Aij(τ) < AEHij (τ).

• The expected return of the BCT rises:
∂
(
µ
(τ)
jt −ijt

)
∂ijt

< 0.

When the short rate in country j drops, bond prices in that country rise (and bond yields drop)

because of a standard discounting effect. Prices do not rise all the way to the value implied by the

EH, however. Indeed, if prices remain the same as before the shock, then the drop in the short rate

renders the BCT in country j more profitable, raising its expected return µ
(τ)
jt − ijt. Hence, bond

arbitrageurs in country j seek to invest in the BCT, increasing their bond holdings X
(τ)
jt . This

puts upward pressure on bond prices P
(τ)
jt . When the demand by bond investors in country j is

price-elastic, their holdings Z
(τ)
jt decreases as bond prices rise and that of bond arbitrageurs X

(τ)
jt

increases in equilibrium. But according to (3.17), bond arbitrageurs need to be compensated for

their larger bond position with a higher risk premium. Hence, as in Vayanos and Vila (2019) for

the case of a closed economy, the BCT’s expected return µ
(τ)
jt − ijt remains higher than before the

shock. Bond prices adjust all the way to their EH value when bond arbitrageurs in country j are

risk neutral, since they do not require such compensation. They also adjust to their EH value when

the demand by bond investors in country j is price-elastic, because arbitrageurs’ activity causes

prices to rise until there is no change in X
(τ)
jt .

Proposition 3.3 implies that the slope of the term structure in country j predicts positively the

BCT’s future return in that country. Indeed, slope and future return vary over time only because of

the country j short rate ijt, and are both high when ijt is low. A positive relationship between the

slope of the term structure and the BCT’s future return is documented in Fama and Bliss (1987,

FB), but is inconsistent with the EH according to which the BCT’s expected return should be zero.

Campbell and Shiller (1991, CS) document a related violation of the EH: the slope of the term

structure in country j predicts negatively changes in future long rates in that country. We present

the FB and CS regression equations within the context of our model in Appendix ??, and do the

same for all return regressions presented in subsequent sections. DV: ADD APPENDIX. We

explore quantitatively the link between our model and the regression evidence in Section 5.
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3.2.2 Foreign Currency

Proposition 3.4. Suppose that arbitrage is segmented. Following a drop in the home short rate

or a rise in the foreign short rate, the foreign currency appreciates (AiHe > 0, AiFe > 0). When

additionally currency arbitrageurs are risk-averse (ae > 0) and the demand of currency traders is

price-elastic (αe > 0),

• The foreign currency does not appreciate all the way to the level implied by UIP: AiHe < AUIPiHe ,

AiFe < AUIPiFe .

• The expected return of the CCT rises: ∂(µet+iFt−iHt)
∂iHt

< 0 and ∂(µet+iFt−iHt)
∂iFt

> 0.

When the home short rate drops or the foreign short rate rises, the foreign currency appreciates.

These movements are in the direction implied by UIP. The foreign currency does not appreciate

all the way to the value implied by UIP, however. Indeed, if the exchange rate remains the same

as before the shock, then the drop in iHt or rise in iFt render the CCT more profitable, raising

its expected return µet + iFt − iHt. Hence, currency arbitrageurs seek to increase their holdings

WFt of the foreign currency. When the demand by currency traders is price-elastic, both the

exchange rate et and arbitrageurs’ foreign-currency holdings WFt increase in equilibrium. Risk-

averse arbitrageurs, however, do not trade all the way to the point where et reaches its UIP value.

Instead, in a spirit similar to Gabaix and Maggiori (2015), the CCT’s expected return µet+iFt−iHt
remains higher than before the shock to compensate arbitrageurs for the risk generated by their

larger foreign-currency position. The exchange rate adjusts all the way to its UIP value when

currency arbitrageurs are risk-neutral or when the demand by currency traders is price-inelastic.

Proposition 3.4 implies that the difference between the foreign and the home short rate predicts

positively the CCT’s future return. This is consistent with the evidence in Bilson (1981) and Fama

(1984), who document that following an increase in the foreign-minus-home short-rate differential,

the expected return on the foreign currency typically increases. Moreover, even in samples where

it decreases, it does so less than implied by UIP. Hence, the CCT becomes more profitable.

3.3 Demand Shocks

We next determine how bond yields and the exchange rate respond to changes in the demand

for bonds and foreign currency. Since we assume no demand risk in this section, we take the

demand changes to be unanticipated and one-off. Demand changes by bond investors in country j
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correspond to shocks to the demand factor βjt. Demand changes by currency traders correspond to

shocks to the demand factor γt. Following the shocks, the demand factors revert deterministically

to their mean of zero. The effects of unanticipated and one-off shocks are the limit of those under

anticipated and recurring shocks (Section 5) when the shocks’ variance goes to zero.

Without loss of generality, we take θe to be positive, which means that an increase in γe

corresponds to a drop in demand for foreign currency. We take θj(τ) to be positive for all τ , which

means that an increase in βjt corresponds to a drop in demand for the bonds of country j.

Proposition 3.5. Suppose that arbitrage is segmented, θe > 0 and θj(τ) > 0 for all τ .

• An unanticipated one-off drop in investor demand for the bonds of country j (increase in βjt)

raises bond yields in country j if bond arbitrageurs in that country are risk-averse (aj > 0).

It has no effect on bond yields in the other country and on the exchange rate.

• An unanticipated one-off drop in currency traders’ demand for foreign currency (increase in

γe) causes the foreign currency to depreciate if currency traders are risk-averse (ae > 0). It

has no effect on bond yields.

When arbitrage is segmented, changes to the demand for an asset class—foreign currency, home

bonds, foreign bonds—affect that asset class only. When, for example, the demand for bonds in

country j drops, these bonds become cheaper and their yields increase, while foreign currency and

bonds in the other country are unaffected.

3.4 International Transmission and the Trilemma with Segmented Arbitrage

We next summarize the main implications of the model with segmented arbitrage for the domestic

and international transmission of monetary policy. Consider a conventional monetary policy eas-

ing at home, such as a drop in the home short rate iHt. That drop propagates along the home

term structure, although less than implied by EH (Proposition 3.3). Moreover, the home currency

depreciates, although less than implied by UIP (Proposition 3.4). Propagation is imperfect (com-

pared to EH and UIP) because bond and foreign-currency arbitrageurs must be compensated for

the change in their portfolio holdings. The drop in the home short rate does not affect the foreign

term structure (Proposition 3.3), and hence has no effect on foreign monetary conditions. In that

sense, the model with segmented arbitrage features full insulation.

Consider next a quantitative easing at home, where the Central Bank unexpectedly increases its
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holdings of home bonds of some maturities τ > 0. Through the lens of the model, this corresponds

to an increase in the demand for home bonds, i.e. βjt < 0. This policy decreases home bond yields

(Proposition 3.5). It does not effect the foreign term structure, and hence has no effect on foreign

monetary conditions. Once again, the model with segmented arbitrage features full insulation.

To understand why insulation arises, it is useful to frame the discussion in terms of the classic

Friedman-Obstfeld-Taylor open-economy Trilemma. According to the Trilemma, a country that

wants to maintain domestic monetary autonomy must either let its currency float, or impose cap-

ital controls. From that perspective, our finding that foreign monetary policy is insulated from

home monetary policy may appear unsurprising at first glance. After all, we are assuming that

the exchange rate is floating and that there are restrictions on capital flows since home-bond arbi-

trageurs cannot hold foreign bonds and vice-versa. According to the Trilemma, each one of these

assumptions in isolation would be sufficient to ensure monetary policy insulation. As the next

section will demonstrate, however, this is not the case in our framework. When arbitrageurs are

global, they transmit monetary impulses from one country’s term structure to the other, even when

exchange rates are floating. In other words, while floating exchange rates keep short rates insulated,

insulation of the term structure arises entirely from the assumption that the home and foreign bond

markets are segmented.

In the model with segmented arbitrage, foreign-currency arbitrageurs can invest only in the

home and the foreign short rate, which are pinned down, respectively, by the home and foreign

central bank. Hence, unanticipated shocks to the demand for home bonds affect home bond yields

but not the exchange rate (Proposition 3.5). One relevant implication is that unanticipated QE has

no effect on the exchange rate. Hence in the segmented model, conventional monetary policy and

QE transmit differently to the domestic economy: in the case of conventional policy, a monetary

easing lowers bond yields and depreciates the currency, while in the case of unanticipated QE, a

monetary easing lowers bond yields but leaves the exchange rate unchanged. This result no longer

holds in Section 5, where shocks to bond demand affect both the term structure and the exchange

rate.

4 Global Arbitrage

The remainder of the paper studies the case of global arbitrage. In this section we maintain the

other assumptions of Section 3, i.e., independent short rates, no stochastic variation in the demand

factors, one-off shocks to the demand factors that do not affect the short rates or other demand
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factors, and currency demand only in the spot market. We relax these assumptions in Section 5.

4.1 Equilibrium

We conjecture that the equilibrium exchange rate takes the same form (3.2) as in Section 3. In

contrast to Section 3, we allow bond yields in each country j = H,F to also depend on the other

country’s short rate because of potential spillovers, which we show occur in equilibrium. Thus, we

replace (3.3) by

logP
(τ)
jt = −

[
Aijj(τ)ijt +Aijj′(τ)ij′t + Cj(τ)

]
(4.1)

for j′ 6= j and six functions ({Aijj′(τ)}j,j′=H,F , {Cj(τ)}j=H,F ) that depend only on τ .

Proceeding as in Section 3, we find that the first-order condition of global arbitrageurs is

µet + iFt − iHt = AiHeλiHt −AiFeλiF t, (4.2)

µ
(τ)
jt − ijt = Aijj(τ)λijt +Aijj′(τ)λij′t, (4.3)

where j, j′ = H,F , j 6= j′ and

λijt ≡ aσ2
ij

WFtAije(−1)1{j=F} +
∑

j′=H,F

∫ T

0
X

(τ)
j′t Aij′j(τ)dτ

 . (4.4)

The left-hand side of (4.2) and (4.3) is the increase in the arbitrageurs’ expected return if they invest

one unit of home currency in the CCT and in the country j BCT, respectively. The right-hand side

is the increase in the arbitrageurs’ portfolio risk, times their risk-aversion coefficient a. Portfolio

risk increases by the covariance between the corresponding trade (CCT or country j BCT) and

the arbitrageurs’ portfolio. To compute the covariance, we multiply the sensitivity of the trade’s

return to the short rate in country j, times the sensitivity λijt of the arbitrageurs’ portfolio return

to the same factor, times the factor’s variance σ2
ij . We then sum over j = H,F . In the terminology

of no-arbitrage models, the sensitivity λijt is the price of the risk factor ijt. The key difference

between (4.2) and (4.3), and their counterparts (3.6) and (3.17) is that the same factor prices λijt

apply to all trades (CCT, home BCT, foreign BCT). It is through the equalization of factor prices

that global arbitrage connects bond and currency markets. Using market clearing to substitute

(WFt, {X(τ)
jt }j=H,F in (4.4), and proceeding as in Section 3, we characterize the exchange rate and

bond prices by a system of scalar equations and ODEs.
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Proposition 4.1. When arbitrage is global, the exchange rate et is given by (3.2) and bond prices

P
(τ)
jt in country j = H,F are given by (4.1), with ({Aije}j=H,F , Ce) solving

κijAije − 1 = aσ2
ij λ̄ijjAije − aσ2

ij′ λ̄ijj′Aij′e, (4.5)

− κiHiHAiHe + κiF iFAiFe − (πF − πH) +
1

2
σ2
iHA

2
iHe +

1

2
σ2
iFA

2
iFe (4.6)

= aσ2
iH λ̄iHCAiHe − aσ2

iF λ̄iFCAiFe,

and (Aijj(τ), Aijj′(τ), Cj(τ)) solving

A′ijj(τ) + κijAijj(τ)− 1 = aσ2
ij λ̄ijjAijj(τ) + aσ2

ij′ λ̄ijj′Aijj′(τ), (4.7)

A′ijj′(τ) + κrj′Aijj′(τ) = aσ2
ij λ̄rj′jAijj(τ) + aσ2

ij′ λ̄rj′j′Aijj′(τ), (4.8)

C ′j(τ)− κijijAijj(τ)− κrj′ij′Aijj′(τ) +
1

2
σ2
ijAijj(τ)

(
Aijj(τ)− 2AiFe1{j=F}

)
+

1

2
σ2
ij′Aijj′(τ)

(
Aijj′(τ) + 2AiHe1{j=F}

)
= aσ2

ij λ̄ijCAijj(τ) + aσ2
ij′ λ̄ij′CAijj′(τ), (4.9)

with the initial conditions Aijj(0) = Aijj′(0) = Cj(0) = 0, where j′ 6= j and

λ̄ijj ≡ −

 ∑
k=H,F

∫ T

0
αk(τ)Aikj(τ)2dτ + αeA

2
ije

 , (4.10)

λ̄ijj′ ≡ −

 ∑
k=H,F

∫ T

0
αk(τ)Aikj(τ)Aikj′(τ)dτ − αeAijeAij′e

 , (4.11)

λ̄ijC ≡
∑

k=H,F

∫ T

0
(ζk(τ)− αk(τ)Ck(τ))Aikj(τ)dτ + (ζe − αeCe)Aije(−1)1{j=F} . (4.12)

Equations (4.7) and (4.8) form a system of two linear ODEs in (Aijj(τ), Aijj′(τ)), with the

complication that the coefficients of (Aijj(τ), Aijj′(τ)) depend on integrals involving these functions,

on integrals involving the functions obtained by inverting j and j′ 6= j, and on (AiHe, AiFe). We

solve the system taking λ̄ijj , λ̄ijj′ = λ̄ij′j and λ̄ij′j′ as given. We do the same for the system

obtained by inverting j and j′, and for the linear scalar system (4.5) in (AiHe, AiFe). We then

substitute back into the definitions of λ̄ijj , λ̄ijj′ = λ̄ij′j and λ̄ij′j′ to derive a non-linear system of

three equations in these three unknowns. The properties that we show in the remainder of this

section hold for any solution of this system.
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In the special case where arbitrageurs are risk-neutral and the parameters (ψe, iF − iH) satisfy

(3.12), UIP and EH hold. When instead (ψe, iF − iH) are unrestricted and arbitrageurs are risk-

averse, UIP and EH do not hold, even in the limit when risk-aversion goes to zero. Recall that in

that limit, UIP fails but EH holds under segmented arbitrage. Under global arbitrage, failure of

UIP causes failure of EH because the risk premia in the currency market, which do not converge

to zero, spill over to the bond market.

Corollary 4.1. When arbitrage is global, the results in Corollaries 3.1 and 3.2 continue to hold.

The only exception is that when arbitrageur risk aversion goes to zero (a→ 0) and (3.12) does not

hold, the expected return on country-j bonds does not converge to µ
(τ)EH
jt .

4.2 Short-Rate Shocks, Carry Trades and Risk Premia

Proposition 4.2. Suppose that arbitrage is global.

• The effects of short-rate shocks on the exchange rate and on the CCT’s expected return have

the same properties as in Proposition 3.4.

• The effects of shocks to the country-j short rate ijt on bond yields in country j and on the

BCT’s expected return have the same properties as in Proposition 3.3, except that the price-

elasticity condition can hold for currency traders or bond investors (αe > 0 or αj(τ) > 0).

• When arbitrageurs are risk-averse (a > 0) and the demand by currency traders is price-elastic

(αe > 0), a drop in ijt causes bond yields in country j′ 6= j to drop (Aj′j(τ) > 0) and the

BCT’s expected return to drop (
∂
(
µ
(τ)

j′t−ij′t
)

∂ijt
> 0).

• The effect of ijt on bond yields is smaller in country j′ than in country j (Ajj(τ) > Aj′j(τ)).

The response of the exchange rate to short-rate shocks is similar under global and segmented

arbitrage: the exchange rate moves in the direction implied by UIP, and there is under-reaction

when arbitrageurs are risk-averse (a > 0) and the demand by currency traders is price-elastic

(αe > 0). Global and segmented arbitrage differ in how bond yields respond to shocks. Under

segmented arbitrage, a shock to the short rate ijt in country j affects bond yields in that country

only. By contrast, under global arbitrage, and provided that aαe > 0, the shock affects bond yields

in both countries, even though the short rate ij′t in country j′ 6= j does not change. When ijt

drops, bond yields in both countries drop.
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Since short-rate shocks are transmitted across countries, monetary policy in one country has a

direct effect on the other country’s interest rates. When the central bank in country j lowers the

short rate ijt, interest rates for longer maturities in country j′ drop. This is so even though the

central bank in country j′ leaves the short rate ij′t unchanged.

Short-rate shocks are transmitted across countries because global arbitrageurs engage in the

CCT and use the bond market to hedge. Recall that under both segmented and global arbitrage,

a drop in the home short rate iHt raises the profitability of the CCT, making it more attractive to

arbitrageurs. When the demand by currency traders is price-elastic, the arbitrageurs’ equilibrium

investment in the CCT increases. Because arbitrageurs hold more foreign-currency instruments

(higher WFt), they become more exposed to the risk that the foreign short rate iFt drops and the

foreign currency depreciates. Global arbitrageurs hedge that risk by buying foreign bonds because

their price rises when iFt drops. The arbitrageurs’ activity pushes the prices of foreign bonds up

and their yields down.

An additional consequence of hedging by global arbitrageurs is greater under-reaction of home

bonds to the home short rate. When iHt drops, arbitrageurs invest more in the CCT, and hence

become more exposed to a rise in iHt. Investing in home bonds, whose prices drop when iHt rises,

adds to that risk. Hence, global arbitrageurs are less eager than segmented arbitrageurs to buy

home bonds following a drop in iHt, and the expected return of the home BCT increases more

than under segmented arbitrage. In particular, when the demand by home bond investors is price-

inelastic (and that by currency traders is elastic), a drop in iHt raises the home BCT’s expected

return under global arbitrage but leaves it unaffected under segmented arbitrage.

We next turn to variants of the CCT studied in the empirical literature. We show that these

trades can be viewed as combinations of the BCT and the (basic) CCT, and that Proposition 4.2

can shed light on empirical findings concerning these trades.

One variant is a hybrid CCT in which the trading horizon is short but the trading instruments

are long-term. Borrowing in the home country and investing in the foreign country is done with

the respective τ -year bonds, and the positions are held for a short horizon dt. The return of the

hybrid CCT in home-currency units is

d(P
(τ)
Ft et)

P
(τ)
Ft et

−
dP

(τ)
Ht

P
(τ)
Ht

=

(
det
et

+ (iFt − iHt)dt
)

+

(
d(P

(τ)
Ft et)

P
(τ)
Ft et

− det
et
− iFtdt

)
−

(
dP

(τ)
Ht

P
(τ)
Ht

− iHtdt

)
.

(4.13)
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Hence, the hybrid CCT can be viewed as a combination of (i) the basic CCT, (ii) a long position

in the foreign BCT, and (iii) a short position in the home BCT.

A second variant is a long-horizon CCT, in which borrowing in the home country and investing

in the foreign country is done with the respective τ -year bonds, and the positions are held until

the bonds’ maturity. The return of the long-horizon CCT in home-currency units and log terms is

log

(
et+τ

P
(τ)
Ft et

)
− log

(
1

P
(τ)
Ht

)
=

∫ t+τ

t

(
log

(
es+ds
es

)
+ iFsds− iHsds

)

+

(
τy

(τ)
Ft −

∫ t+τ

t
iFsds

)
−
(
τy

(τ)
Ht −

∫ t+τ

t
iHsds

)
, (4.14)

where the equality follows from (2.1). Hence, the long-horizon CCT can be viewed as the combi-

nation of (i) a sequence of basic CCTs, (ii) a long position in a long-horizon foreign BCT, and (iii)

a short position in a long-horizon home BCT. The long-horizon BCT in country j involves buying

bonds in country j and financing that position by borrowing short-term and rolling over.

Proposition 4.3. Suppose that arbitrage is global, arbitrageurs are risk-averse (a > 0), and the

demand by currency traders or by bond investors is price-elastic (αe > 0 or αj(τ) > 0).

• The hybrid CCT’s and the long-horizon CCT’s expected returns rise following a drop in the

home short rate iHt or a rise in the foreign short rate iFt, provided that the maturity τ of

the bonds involved in these trades lies in an interval (0, τ∗). The threshold τ∗ is infinite when

countries are symmetric.

• The sensitivity of the hybrid CCT’s expected return to (iHt, iFt) is smaller than for the basic

CCT. The sensitivity of the long-horizon CCT’s expected return to (iHt, iFt) is smaller than

for the corresponding sequence of basic CCTs.

• The sensitivity of the hybrid CCT’s and the long-horizon CCT’s expected returns to (iHt, iFt)

goes to zero when the maturity τ of the bonds involved in these trades goes to infinity. The

expected return of the hybrid CCT also goes to zero.

Short-rate shocks move the expected returns of the hybrid CCT and the long-horizon CCT

in the same direction as for the basic CCT, except possibly when the maturity τ of the bonds

involved in these trades is very long. The effects of short-rate shocks on the hybrid CCT and the

long-horizon CCT are smaller than for the corresponding basic CCTs because the shocks’ effects

through the BCTs work in the opposite direction. Consider, for example, a drop in the home short

rate. Proposition 4.2 implies that the expected return of the basic CCT increases, but so does the
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expected return of the home BCT, which enters as a short position in the hybrid CCT and the

long-horizon CCT.

When the maturity τ of the bonds involved in the hybrid CCT and the long-horizon CCT is

very long, the effects of short-rate shocks through the BCTs offset almost fully those through the

basic CCTs. As a consequence, short-rate shocks have almost no effect on the expected return of

the hybrid CCT and the long-horizon CCT. These results are consistent with Lustig, Stathopoulos,

and Verdelhan (2019), who document that short rates lose their predictive power for the return of

the hybrid CCT, while they predict strongly the return of the basic CCT. They are also consistent

with Chinn and Meredith (2004), who document that UIP cannot be rejected over long horizons.

Short rate shocks lose their predictive power for the hybrid and the long-horizon CCT because

the risk of these trades arises from long-horizon exchange-rate movements, which are unrelated

to current short-rate shocks. Indeed, an arbitrageur entering in the long-horizon CCT at time t

receives a fixed amount of foreign currency and pays a fixed amount of home currency at time

t + τ . Mean-reverting short-rate shocks do not affect the risk borne by the arbitrageur when τ is

large. The same is true for the hybrid CCT because that trade is identical to the long-horizon CCT

except that it is unwound at time t+ dt.

Under segmented arbitrage, the hybrid and the long-horizon CCT cannot be performed by any

agent in the model as they require trading bonds and foreign currency simultaneously. Yet, we can

compute these trades’ expected returns, and show the second result in Proposition 4.2. The first

and third result do not hold, however, because the effects of short-rate shocks on the BCTs and the

basic CCT are driven by the risk aversion of different arbitrageurs, and are hence disconnected. In

particular, the expected returns of the hybrid CCT and the long-horizon CCT may not approach

zero when the maturity τ of the bonds involved in these trades is very long.

4.3 Demand Shocks

Under global arbitrage, shocks to the demand for an asset class—foreign currency, home bonds,

foreign bonds—affect all three asset classes. This is in contrast to segmented arbitrage, where only

the asset class for which demand changes is affected (Proposition 3.5).

Proposition 4.4. Suppose that arbitrage is global, arbitrageurs are risk-averse (a > 0), the func-

tions (aH(τ), αF (τ)) are non-increasing, and the function θj(τ) is positive. A drop in investor

demand for the bonds of country j (increase in βjt):
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• Raises bond yields in country j.

• Raises bond yields in country j′ 6= j when the demand by currency traders is price-elastic

(αe > 0).

• Causes the foreign currency to depreciate if j = H, and to appreciate if j = F .

A drop in investor demand for home bonds depresses their prices, as in Proposition 3.5. Ad-

ditionally, prices for foreign bonds drop and the foreign currency depreciates. The latter (cross)

effects are driven by hedging of global arbitrageurs. Indeed, arbitrageurs accommodate the drop

in demand for home bonds by holding more such bonds. Hence, they become more exposed to

a rise in the home short rate iHt and less willing to hold assets that lose value when iHt rises.

Foreign currency is such an asset, and hence it depreciates. Foreign bonds is another such asset

(Proposition 4.2 shows that a rise in iHt drives foreign bond prices down when the demand by

currency traders is price-elastic), and hence their prices drop. A drop in demand for foreign bonds

has symmetric effects.

Proposition 4.5. Suppose that arbitrage is global, arbitrageurs are risk-averse (a > 0), the func-

tions (aH(τ), αF (τ)) are non-increasing, and θe > 0. A drop in currency traders’ demand for

foreign currency (increase in γt):

• Causes the foreign currency to depreciate.

• Raises bond yields in the home country.

• Lowers bond yields in the foreign country.

A drop in currency traders’ demand for foreign currency causes it to depreciate, as in Proposi-

tion 3.5. Additionally, hedging by global arbitrageurs causes home bond prices to drop and foreign

bond prices to rise. Indeed, arbitrageurs accommodate the drop in demand for foreign currency by

holding more of it. Hence, they become more exposed to a rise in the home short rate iHt and to a

decline in the foreign short rate iFt. This makes them less willing to hold home bonds, which lose

value when iHt rises, and more willing to hold foreign bonds, which gain value when iFt drops.

4.4 International Transmission and the Trilemma with Global Arbitrage

We next summarize the main implications of the model with global arbitrage for the domestic and

international transmission of monetary policy. Consider a conventional monetary policy easing at

home, such as a drop in the home short rate iHt. That drop propagates imperfectly along the home
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term structure and depreciates the home currency (Proposition 4.2). These effects are as in the

case of segmented arbitrage. Unlike in that case, yields on foreign bonds decrease, even though the

foreign short rate remains unchanged. Hence, foreign monetary conditions are affected by domestic

monetary conditions. In that sense, the model with global arbitrage and floating exchange rates

features imperfect insulation.

Consider next a quantitative easing at home, where the Central Bank increases its holdings of

domestic bonds of some maturities τ > 0. Through the lens of the model, this corresponds to an

increase in the demand for domestic bonds, i.e. βjt < 0. This policy decreases home bond yields

(Proposition 4.4). This effect is as in the case of segmented arbitrage. Unlike that case, yields on

foreign bonds decrease and the home currency depreciates. Hence, foreign monetary conditions are

affected by domestic monetary conditions. Once again, the model with global arbitrage features

imperfect insulation. For both types of policies, monetary conditions co-move positively: easing at

home eases abroad and vice versa.

To understand why insulation fails, we can go back to our Trilemma analysis. According to the

Trilemma, a country without restrictions on capital mobility should be able to maintain domestic

monetary autonomy—interpreted as controlling the yield curve—by letting the exchange rate float.

This is no longer the case under global arbitrage. The reason is that global rate arbitrageurs

rebalance their entire portfolio in response to shocks. When global arbitrageurs are risk-averse,

portfolio rebalancing requires adjustments in expected returns. In turn, this triggers movements in

bond prices and the exchange rate.

For example, a lower home short rate induces global arbitrageurs to increase their holdings

of domestic bonds (BCT) and of foreign currency (CCT). It also induces them to increase their

holdings of foreign long term bonds (BCT), to hedge their larger holdings of foreign currency. This

pushes down bond yields everywhere and depreciates the home currency.

The global arbitrage model implies additionally that sterilized foreign exchange interventions

affect not only the exchange rate but also the home and foreign yield curves. A sterilized foreign

exchange intervention designed to support the home currency can be interpreted as a drop in the

demand for foreign currency (an increase in γt), while holding the short rate unchanged. This

depreciates the foreign currency while tightening domestic monetary conditions and easing foreign

monetary conditions (Proposition 4.5).

Insulation of monetary policy is restored if global investors are risk-neutral. In that case,

expected returns satisfy both EH and UIP. Under EH, all bonds in a given country have the same
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instantaneous expected return, equal to that country’s short rate. Under UIP, the foreign currency

has instantaneous expected return equal to the difference between the home and the foreign short

rate. Hence, the exchange rate adjusts so that bonds of all maturities in both countries have the

same expected return: insulation is restored.

5 Global Arbitrage and Demand Risk

We now turn to the most general version of the model, allowing for stochastic demand by bond

investors and currency traders. There are five risk factors: the home and foreign short rates

(iHt, iFt), the demand factors for home and foreign bonds (βHt, βFt), and the demand factor for

currency γt. The vector of state variables qt = (iHt, iFt, βHt, βFt, γt)
> satisfies (2.9). We allow for

a general correlation structure between the five factors (non-diagonal matrices Γ and Σ), and for

currency demand in both the spot and the forward market, with appropriate substitutions.

5.1 Equilibrium

We conjecture and verify that the equilibrium exchange rate and bond yields are log-affine func-

tions of qt. That is, there exist six scalars ({Aije, Aβje}j=H,F , Aγe, Ce) and twelve functions

({Aijj′(τ), Aβjj′(τ)}j,j′=H,F , {Aγj(τ)}j=H,F , {Cj(τ)}j=H,F ) that depend only on τ , such that

log et = −
[
A>e qt + Ce + (πF − πH)t

]
, (5.1)

logP
(τ)
jt = −

[
Aj(τ)>qt + Cj(τ)

]
, (5.2)

where Ae ≡ (AiHe,−AiFe, AβHe,−AβFe, Aγe)> and Aj(τ) ≡ (AijH(τ), AijF (τ), AβjH(τ), AβjF (τ),

Aγj(τ))>.

Proceeding as in Sections 3 and 4, the first-order condition of the optimization problem of

global arbitrageurs is

µet + iFt − iHt = A>e λt, (5.3)

µ
(τ)
jt − ijt = Aj(τ)>λt, (5.4)

where j = H,F , µet = Et(det/et) and µ
(τ)
jt = Et(dP

(τ)
jt /P

(τ)
jt ) , λt ≡ (λiHt, λiF t, λβHt, λβFt, λγt)

>
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and

λt ≡ aΣΣ>

WFtAe +
∑
j=H,F

∫ T

0
X

(τ)
jt Aj(τ)dτ

 . (5.5)

The expected return of the CCT in (5.3), and of the country j BCT in (5.4), are computed by

multiplying the sensitivity of each trade’s return to each risk factor times the factor’s price, and

summing over factors. We denote by (EiH ,EiF ,EβH ,EβF ,Eγ) the five 5×1 vectors that correspond

to the five consecutive columns of the 5 × 5 identity matrix. Using market clearing to substitute

(WFt, {X(τ)
jt }j=H,F ) in (5.5), and proceeding as in Sections 3 and 4, we characterize the exchange

rate and bond prices by a system of scalar equations and ODEs in the following proposition.

Proposition 5.1. When arbitrage is global and demand for currency and bonds is stochastic ac-

cording to (2.9), the exchange rate et is given by (5.1) and bond prices P
(τ)
jt in country j = H,F

are given by (5.2), with (Ae, Ce) solving

MAe − EiH + EiF = 0, (5.6)

−A>e Γq̄ − (πF − πH) +
1

2
A>e ΣΣ>Ae = A>e λC , (5.7)

and (Aj(τ), Cj(τ)) solving

A′j(τ) +MAj(τ)− Eij = 0, (5.8)

C ′j(τ)−Aj(τ)>Γq̄ +
1

2
Aj(τ)>ΣΣ>

(
Aj(τ) + 2Ae1{j=F}

)
= Aj(τ)>λC , (5.9)

with the initial conditions Aj(0) = Cj(0) = 0, and

M ≡ Γ> − a

 ∑
j=H,F

∫ T

0

(
θj(τ)Eβj + θe(τ)Eγ(−1)1{j=H} − αj(τ)Aj(τ)

)
Aj(τ)>dτ

+

(
θeEγ +

∫ T

0
θe(τ)Eγdτ − αeAe

)
A>e

ΣΣ>, (5.10)

λC ≡ aΣΣ>

 ∑
j=H,F

∫ T

0

(
ζj(τ) + ζe(τ)(−1)1{j=H} − αj(τ)Cj(τ)

)
Aj(τ)dτ

+

(
ζe +

∫ T

0
ζe(τ)dτ − αeCe

)
Ae

 . (5.11)

32



Equation (5.8) is a linear ODE system in the 5× 1 vector Aj(τ). We solve it taking the 5× 5

matrix M as given, and do the same for the linear scalar system (5.6) in Ae. We then substitute

({Aj(τ)}j=H,F , Ae) in (5.10) and derive M as a solution to a non-linear scalar system. Because the

non-linear system is high-dimensional, it can no longer be solved analytically and must instead be

solved numerically, as described in Appendix B.

5.2 Estimation and Data

We next lay out explicitly the model parameters required to solve the model numerically, and

describe our estimation strategy. First, we parametrize the functions {αj(τ)}j=H,F that describe

the slope of preferred-habitat demand as function of maturity, and {θj(τ)}j=H,F that describe how

shocks to the demand factors affect the demand intercept as function of maturity. The analytical

results in the previous sections place only weak restrictions on these functions, but solving the model

numerically requires a more explicit characterization. We assume the exponential specification

αj(τ) ≡ αj0 exp(−αj1τ), (5.12)

θj(τ) ≡ θj0τ exp(−θj1τ), (5.13)

for positive scalars (αj0, αj1, θj0, θj1). The exponential specification simplifies the estimation of the

model, while also being sufficiently flexible. The function θj(τ) is positive and hump-shaped with

a peak at maturity 1
θj1

. Thus, shifts to the demand factor βjt shift the demand for bonds of all

maturities in the same direction, with the effects being more pronounced at a specific maturity.

The function αj(τ)τ , which describes the demand slope when demand is expressed as function of

yield rather than price, has the same functional form as θj(τ), with a peak at 1
αj1

. When αj1 = θj1,

the term structure in the absence of arbitrageurs is flat, and shocks to βjt generate parallel shifts.

We set the maximum maturity T to infinity.

Next, we impose some structure on the dynamics matrix Γ and correlation matrix Σ in (2.9).

We allow unrestricted dynamics for the short rates (iHt, iFt). These dynamics can be inferred from

the data because the short rates are observable. Since the data does not offer as tight guidance on

the demand factors (βHt, βFt, γt), which are not observable, we restrict the parts of (Γ,Σ) pertaining

to them. We allow shifts to the short rates to affect the demand factors, but not vice-versa. We

also restrict the innovations to the demand factors to be mutually independent, and independent

of the innovations to the short rates. These restrictions simplify the estimation of the model and

the interpretation of the results, while also providing sufficient richness to capture key features
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of the data. In particular, the link between the short rates and the demand factors is critical,

as we explain later in this section. With the imposed restrictions, Γ is lower triangular and Σ is

block-diagonal:

Γ =


ΓiH ΓiH ,iF 0 0 0

ΓiF ,iH ΓiF 0 0 0
ΓβH ,iH ΓβH ,iF ΓβH 0 0
ΓβF ,iH ΓβF ,iF 0 ΓβF 0
Γγe,iH Γγe,iF 0 0 Γγe

 , Σ =


ΣiH 0 0 0 0

ΣiF ,iH ΣiF 0 0 0
0 0 ΣβH 0 0
0 0 0 ΣβF 0
0 0 0 0 Σγe

 (5.14)

Finally, we do not estimate the long-run mean q̄ of the vector of state variables qt, the intercepts

({ζj(τ)}j=H,F , ζe), and the inflation differential πF − πH . These parameters concern long-run

averages rather than responses to shocks. We estimate our model using second moments of yields

(implied by responses to shocks), and use it to determine other second moments and responses to

shocks.

The above assumptions leave us with 30 parameters to estimate: eight bond demand param-

eters ({αj0, αj1}j=H,F , {θj0, θj1}j=H,F ), two currency demand parameters (αe, θe), 13 elements of

Γ, six elements of Σ, and arbitrageurs’ risk-aversion coefficient a. Our estimation does not iden-

tify four out of these moments: the three volatility parameters ({Σβ,j}j=H,F ,Σγe) of the demand

shocks, because they affect second moments only through their products with ({θj(τ)}j=H,F , θe),

and the risk-aversion coefficient a because it affects second moments only through its products

with ({αj(τ), θj(τ)}j=H,F , αe, θe). The intuition in the case of a is that volatility of yields can be

large if demand shocks are modest and arbitrageurs highly risk-averse, or if shocks are large and

arbitrageur risk aversion is low. We bring in additional information later in this section to identify

a.

We estimate the 26 remaining parameters via GMM, by targeting a large set of unconditional

second moments of yields and exchange rates as well as bond turnover by maturity. We take the

home country to be the United States and the foreign country to be the United Kingdom. We

focus on these two countries mainly for data reasons: we require the availability of a long history

of zero-coupon yield curve data and bond trading volume data by maturity. We use monthly yield

data covering the period 01/1986 to 12/2009 and annual volume data covering the period 2002-2020

for the US (FR 2004 dataset) and 2001-2020 for the UK (Debt Management Office). As in previous

sections, the units of time t and maturity τ are years, so consecutive months are separated by a

time equal to 1
12 .
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A first set of target moments concern the one-year yields. We include them to obtain infor-

mation on the dynamics of the short rates. These moments are: the variance of one-year yields

y
(1)
jt and of their annual change ∆y

(1)
jt ≡ y

(1)
j,t+1− y

(1)
jt ; the variance of the one-year yield differential,

y
(1)
Ht − y

(1)
Ft ; and the covariance between y

(1)
Ht − y

(1)
Ft and the future change ∆y

(1)
jt .

A second set of moments concern the exchange rate. We include them to obtain information

on the dynamics of the demand factor γt and how they are affected by the short rates (i.e., the

non-diagonal terms in Γ). These moments are: the variance of the annual (log) exchange rate

change ∆ log et ≡ log et+1 − log et; the covariance between ∆ log et and the two-year change in the

exchange rate ∆2 log et ≡ log et+2 − log et; and the covariance between y
(1)
Ht − y

(1)
Ft and the future

change ∆ log et.

A third set of moments concern yields across all maturities up to fifteen years. We include them

to obtain information on the dynamics of the demand factors (βHt, βFt) and how they are affected

by the short rates. The moments that we expect to be more directly related are: the variances of

yields y
(τ)
jt and of their annual change ∆y

(τ)
jt ≡ y

(τ)
j,t+1 − y

(τ)
jt ; and the covariance between one-year

yields y
(1)
j′t and the future change ∆y

(τ)
jt in all yields. For robustness, we include additionally: the

covariance between the annual changes ∆y
(1)
jt in one-year yields and ∆y

(τ)
jt in all other yields; the

variance of the slope of the yield curve y
(τ)
jt − y

(1)
jt ; the covariance between y

(τ)
jt − y

(1)
jt and the

future change ∆y
(τ)
jt ; and the covariance between the yield differentials y

(τ)
Ht −y

(τ)
Ft and ∆ log et. Our

estimation results are not sensitive to the latter four sets of moments.

A final set of moments concern trading volume. We include them to obtain information on the

functions {(αj(τ), θj(τ)}j=H,F that describe the demand of preferred-habitat investors. We include

the relative trading volume for short-term bonds (with maturities between 0 and 3 years for the US,

1 and 3 years for the UK) and long-term bonds (with maturities between 10 and 30 years for the

US and 11 and 30 years for the UK). Overall, we have 14+15×NT target moments where NT refers

to the number of maturities. We observe maturities up to fifteen years in quarterly increments, so

there are NT = 60 maturities and 914 (=14+15×60) target moments. We refer to the 14 moments

that do not depend on maturity as scalar. Appendix Section C describes in more detail our data

sources and moment calculations.

Collecting the 26 parameters into a vector ρ, we estimate the model by choosing ρ̂ to minimize
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the weighted sum of square residuals:

L(ρ) =

N∑
n=1

wn(m̂n −mn(ρ))2, (5.15)

where {m̂n}n represents the moments from the data, and {mn(ρ)}n the model-implied counterparts

as a function of the calibration parameters. The terms wn represent the weights placed on each

target moment. We set the weight to one for scalar moments, and to 1
NT

for moments that are a

function of maturity.

5.3 Model Fit

5.3.1 Estimated Parameters and Target Moments

Appendix Table B1 reports the estimated parameters. The estimated demand slope and intercept

are substantially larger in the US than in the UK, reflecting the larger size of the US Treasury

market.3 The data also indicate that shifts to the short rates affect the demand factors, i.e.,

Γβj ,ij′ 6= 0 and Γγ,ij 6= 0. King (2019) finds a similar effect in a one-country US model. A drop in

the US short rate is associated with a gradual rise in demand for US bonds (ΓβH ,iH < 0), drop in

demand for UK bonds (ΓβF ,iH > 0) and rise in demand for pounds (Γγe,iH < 0).

Table 1 compares the empirical scalar moments to their model-implied counterparts. Figure

1 does the same for the moments that depend on maturity. For ease of interpretation, we report

the second moments in terms of standard deviations (σ(x) =
√

Var(x)) and correlations (ρ(x, y) =

Cov(x,y)√
Var(x)Var(y)

), instead of the target variances and covariances. The red circles in Figure 1 are the

empirical moments and the blue solid lines are their model-implied counterparts. The model does

remarkably well in fitting the large set of moments, both across maturities and across countries.

5.3.2 Return Predictability Regressions

We next examine the implications of our estimated model for the predictability of bond and currency

returns. We do so by computing common regressions run in the asset pricing literature, and

3The par value of privately held government debt as of December 2020 was $17.3 trillion in the US
(https://www.dallasfed.org/research/econdata/govdebt#tab3) and £1.89 trillion in the UK (HM Treasury, Debt
Management Report 2021-22, page 17).
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Moment Data Model

σ(y
(1)
Ht) 1.5189 1.5141

σ(y
(1)
Ft ) 1.6108 1.6171

σ(∆y
(1)
Ht) 1.4509 1.4455

σ(∆y
(1)
Ft ) 1.5160 1.5128

σ(y
(1)
Ht − y

(1)
Ft ) 1.6603 1.6601

ρ(y
(1)
Ht − y

(1)
Ft ,∆y

(1)
Ht) 0.0464 0.0512

ρ(y
(1)
Ht − y

(1)
Ft ,∆y

(1)
Ft ) 0.4974 0.5037

σ(∆ log et) 8.6772 8.6773
ρ(∆ log et,∆

2 log et) 0.5928 0.8272

ρ(y
(1)
Ht − y

(1)
Ft ,∆et) -0.0046 -0.0013

V olume
(short)
H 0.3608 0.3482

V olume
(long)
H 0.0797 0.0226

V olume
(short)
F 0.0946 0.0926

V olume
(long)
F 0.3658 0.3637

Table 1: Scalar Moments in the Data and the Model

comparing the empirical coefficients in our US/UK sample to the coefficients implied by our model.

The regression coefficients are not targeted moments in our estimation. Hence, comparing the

empirical coefficients to the model-implied ones is akin to an “out-of-sample” exercise.

Figure 2 reports empirical and model-implied coefficients for the Fama and Bliss (1987, FB)

(top row) and Campbell and Shiller (1991, CS) (bottom row) regressions for the US (left column)

and the UK (right column). The FB and CS regressions are described in Section 3.2. More

details on these and the remaining regressions presented in this section are in Appendix ??. Under

the EH, the FB coefficient should be zero and the CS coefficient should be one. The empirical

coefficients, indicated by the red circles and the two-standard-error confidence intervals around

them, are consistent the findings of FB and CS. The EH is rejected and the deviations from EH

are increasing with maturity.

The model-implied coefficients in Figure 2 are indicated by the blue lines. The estimated

model reproduces both qualitatively and quantitatively the empirical patterns: the FB coefficients

are positive, increasing in maturity, and near or above one for long maturities. The CS coefficients

are below one, decreasing in maturity, and negative for long maturities.

Demand risk reinforces the positive relationship between the slope of the term structure and the

BCT’s future return, shown in Sections 3 and 4. This is because when bond demand by preferred-

habitat investors in country j is low, bond prices in that country are low so that arbitrageurs are
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Figure 1: Maturity-Dependent Moments in the Data and the Model)

induced to buy the bonds. As a consequence, the BCT’s expected return is high and the term

structure is steeply upward sloping. Demand risk also generates a FB coefficient that increases

with maturity. Indeed, since bonds of longer maturities are riskier, their expected returns are more

impacted by demand shocks. The slope of the term structure is also impacted more by demand

shocks when it is calculated based on longer maturities, but the effect is not increasing as rapidly

with maturity as with expected returns. This is because the effect on yields factors in the demand

shocks’ effect on future expected returns, and demand shocks mean-revert.

Figure 3 reports empirical and model-implied coefficients for various types of UIP regressions.

The top left panel concerns the hybrid UIP regression of Lustig, Stathopoulos, and Verdelhan
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Figure 2: Term Structure Regression Coefficients

(2019, LSV), in which the return of the hybrid CCT constructed using bonds with maturity τ is

regressed on the foreign-minus-home short-rate differential. This regression nests as a special case,

for small τ , the standard UIP regression of Bilson (1981) and Fama (1984). Under the UIP, the

LSV coefficient should be zero. The empirical coefficients in Figure 3 are significantly different from

zero. This finding is consistent with Bilson (1981) and Fama (1984) in the case of short maturities.

In the case of long maturities, LSV find statistically insignificant coefficients. The discrepancy may

arise because we consider only the US/UK pair while LSV use a panel of currencies. As in LSV,

however, we find that the regression coefficient declines when maturity becomes long enough.

The top right panel in Figure 3 concerns the long-horizon UIP regression of Chinn and Meredith

(2004, CM), in which the realized rate of foreign currency depreciation over horizon τ is regressed

on the foreign-minus-home τ -year yield differential. Under the UIP, the CM coefficient should be

one. The empirical coefficient is not statistically different from zero, although confidence intervals

are large because we use only one currency pair. As horizon increases, the regression coefficient

converges to one, consistent with CM (and UIP).

The bottom two graphs concern regressions run in Chernov and Creal (2020) and Lloyd and
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Marin (2020), whereby the realized rate of foreign currency depreciation over horizon τ is regressed

on the foreign-minus-home τ -year yield differential (level – same regressor as in CM), and on the

foreign-minus-home slope differential (slope). Under the UIP, the level coefficient should be one

and the slope coefficient should be zero. As with the CM regression, the coefficients using only one

currency pair are imprecisely estimated, but the point estimates are consistent with the literature.

In particular, the slope coefficient is positive, meaning that for a given yield differential, the CCT

is less profitable when foreign-minus-home slope differential is larger.4

Figure 3: Generalized UIP Regression Coefficients

Our estimated model replicates the key patterns shown in the absence of demand risk in

Sections 3 and 4: UIP violations; LSV coefficient that declines with maturity; CM coefficient that

rises to one as maturity increases. It also generates coefficients that are quantitatively close to their

empirical counterparts, with the exception of the regression on level and slope in the case of short

maturities. Even for these maturities, however, the model-implied coefficients have the same sign

as their empirical counterparts.

4With only one currency pair, the Lloyd and Marin (2020) regression results are never strongly significant, except
at very long horizons where one may be concerned about the strong serial correlation due to overlapping observations.
Our standard-errors are Newey-West corrected but with few genuine non-overlapping observations, they may still be
artificially low.
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The intuition for the positive coefficient on slope is as follows. Suppose that the demand for

foreign bonds by preferred-habitat investors is low. This pushes up foreign bond yields, raising the

foreign-minus-home slope differential and causing the foreign currency to appreciate (Proposition

4.4). Hence, the future expected return on the foreign currency declines. As found in the data, this

predictability of slope is primarily only over short and medium maturities. For long maturities, the

effects go away and UIP holds.

5.4 Monetary Policy

We next explore the implications of our estimated model for the domestic and international trans-

mission of monetary policy. We start with conventional monetary policy, and consider a cut to the

short rate by the central bank. We assume that the cut is unanticipated and occurs at time zero.

We set the size of the cut to 25 basis points (bps).

Figure 4 shows how a cut to the US short rate (top row) or the UK short rate (bottom row)

affects the term structures in both countries at the time of impact (left column) and the exchange

rate over time (right column). The shock’s effects are pronounced on the term structure in the

country where the shock originates, while the spillovers on the other country’s term structure are

limited (Proposition 4.2). The shock’s effects are also pronounced on the exchange rate: a 25 bps

cut in the US short rate causes the dollar to depreciate by a maximum of 0.8%, while the same cut

in the UK rate causes the dollar to appreciate by a maximum of 0.4%.

The response of the exchange rate to the short-rate cut exhibits overshooting: the effect is

maximized approximately one year after the shock. Overshooting is more pronounced in the case

of the US rate cut, whose effect on impact is about half of the maximum effect. Overshooting is

driven by the responses of the demand factors to short-rate shocks. Under our estimated model

parameters, a US rate cut is accompanied by a gradual rise in demand for US bonds (ΓβH ,iH < 0),

decline in demand for UK bonds (ΓβF ,iH > 0), and rise in the demand for pounds (Γγe,iH < 0). All

three demand effects add to the depreciation of the dollar (Propositions 4.4 and 4.5), amplifying

the effect of the US rate cut.

The amplifying effect of the demand factors helps explain why our estimation delivers demand-

factor dynamics that depend on the short rates. If the short-rate and demand-factor dynamics were

restricted to be mutually independent (block-diagonal matrix Γ), then short-rate shocks would have

small effects on long rates and the exchange rate. Indeed, the low volatility of short-rate shocks
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Figure 4: Conventional Monetary Policy – Short Rate Shock

observed in the data would be insufficient to generate the high observed volatility of exchange-rate

changes. Exchange-rate volatility would have instead to be generated by the currency demand

factor. Likewise, the volatility of long-maturity yields would have to be primarily generated by

the bond demand factors. As a consequence, each of the BCTs and the CCT would have a large

independent source of volatility: bond demand in country j in the case of that country’s BCT, and

currency demand in the case of the CCT. Arbitrageurs would then find these trades highly risky,

and engage in them in such a limited extent that short rate movements would not be transmitted to

long rates and the exchange rate. Effectively, bond and currency markets would be segmented from

each other, as in Section 3, and from the short rate. A segmented model generates a poor fit for our

target moments, especially those concerning the covariance between short rates and exchange-rate

changes, and the covariance between short and long rates.

When instead the demand-factor dynamics can depend on the short rates, the volatilities of

long rates and the exchange rate can take their observed values even for lower variances of the

respective demand factors. Bond and currency markets are better integrated, and the model’s fit

improves by a factor of ten. Even under our estimated parameters, however, long rates and the

exchange rate remain imperfectly connected to fundamentals. A variance decomposition analysis
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reveals that about half of exchange-rate volatility is driven by the currency demand factor.

Since demand-factor dynamics are exogenous, our model does not explain the mechanism

through which these dynamics depend on the short rates—it instead identifies what the dynamics

should be so that the moments of the endogenously determined yields and exchange rates fit best

the data. We next consider possible mechanisms that could be driving the demand-factor dynamics

implied by our estimation, and interpret the dynamics in terms of these mechanisms.

One mechanism is reach for yield. In response to a US rate cut, investors could seek higher-

yielding opportunities, thus increasing their demand for US and UK long-maturity bonds, and for

pounds. Under this mechanism, preferred-habitat investors and currency traders would exhibit

some of the behavior that our model attributes solely to arbitrageurs. Another mechanism is

forward hedging. In response to a US rate cut, UK firms could borrow more in the US and buy

dollars in the forward market to hedge their currency exposure. The increased demand for dollar

forwards is equivalent to a lower demand for UK bonds, a lower demand for pounds, and a higher

demand for US bonds. Under this mechanism, firms exhibit some of the behavior that we attribute

to arbitrageurs.5 We consider also a forex mechanism, whereby a US rate cut generates only a

demand for pounds but not for bonds.

In Appendix ?? we map the demand-factor dynamics implied by our estimation into dynamics

for the modified factors. A US rate cut is accompanied by a combination of reach for yield and

forward hedging, as each of these mechanisms can account for the rise in demand for US bonds.

The forward hedging mechanism is more important, to account for the decline in demand for UK

bonds. The forex mechanism is also present, to account for the rise in demand for pounds.

We next turn to non-conventional monetary policy, and consider large-scale purchases of bonds

by the central bank. We assume that the purchases are unanticipated, occur at time zero, and are

unwound over time. We describe the net amount purchased by the central bank (purchases at time

zero minus subsequent unwinding) by the same exponential specification as the demand intercept:

θQEjt (τ) ≡ θQEj0 τ exp
(
−θQEj1 τ

)
exp
(
−κQEj t

)
.

The parameter θQEj0 characterizes the size of the purchases. We allow it to differ across the US

and the UK, reflecting the different size of the two countries. The parameter θQEj1 characterizes

the breakdown of purchases across maturities. We assume that it is the same in the two countries

5Liao (2020) explores the forward hedging mechanism and its relationship to covered interest parity.
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to render the results more comparable. For the same reason, we assume that the parameter κQEj ,

which describes the rate at which purchases are unwound, is the same across countries.

We calibrate the size of the QE shock for a given country so that yields respond on average by

the same amount as to that country’s monetary policy shock. We then examine spillovers across

the yield curves (both domestically and internationally), as well as to the exchange rate.

Figure 5: QE Shock Spillovers

Notes: the top panels plot the responses of the yield curve on impact (top-left panel)
and the exchange rate over time (top-right panel) to a QE shock in the Home country.
The size of the Home QE shock is calibrated to move the Home yield curve by the
same amount as the Home monetary policy shock (on average across maturities). The
bottom panels plot the analogous results in response to the Foreign QE shock. In the
left panels, the Home yield curve response is shown in blue, while the Foreign yield
curve response is shown in yellow.

Figure 5 shows the responses to the QE shocks. Unlike the monetary policy shocks, we find

that there are large spillovers, particularly of the Home QE shocks, both to Foreign yields and the

exchange rate.

Recall that in order to make meaningful comparisons between the monetary policy and QE,

we calibrated the size of the QE shock to move domestic yields on average the same amount as the

monetary policy shock. However, note that this implies a relatively small QE shock; the Home QE
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shock only moves 10-year yields by roughly 5 b.p. In comparison, following the March 18, 2009,

FOMC announcement regarding QE1, US 10-year Treasury yields fell by approximately 40 b.p.

Hence, this announcement reflected a QE policy shock approximately 8 times larger than the one

we model. According to our model, a QE shock of this size would depreciate the US dollar by over

4 percentage points on impact, which is in line with the observed movements of the dollar/pound

exchange rate following the QE1 announcement.
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Appendix

A Proofs

Proof of Proposition 3.1: Equation (3.10) follows by identifying the linear terms in (iHt, iFt) in

(3.9). Equation (3.11) follows by identifying the constant terms.

To show that the system of (3.10) and (3.11) has a unique solution for ({Aije}j=H,F , Ce), we

start with the system of two equations in {Aije}j=H,F obtained by writing (3.10) for j = H and

j = F . A solution to the latter system must be positive, as can be seen by writing (3.10) as

[
κij + aeαe

(
σ2
iHA

2
iHe + σ2

iFA
2
iFe

)]
Aije = 1. (A.1)

Since Aije > 0, the right-hand side of (3.10) is negative. Therefore, the left-hand side is negative

as well, which implies Aije <
1
κij

. Dividing (3.10) written for j = H by (3.10) written for j = F ,

we find

1− κiHAiHe
1− κiFAiFe

=
AiHe
AiFe

⇔ AiHe =
AiFe

1 + (κiH − κiF )AiFe
. (A.2)

Equation (A.2) determines AiHe as an increasing function of AiFe ∈
[
0, 1

κiF

]
, equal to zero for

AiFe = 0, and equal to 1
κiH

for AiFe = 1
κiF

. Substituting AiHe as a function of AiFe in (A.1)

written for j = F , we find an equation in the single unknown AiFe. The left-hand side of that

equation is increasing in AiFe, is equal to zero for AiFe = 0, and is equal to a value larger than

one for AiFe = 1
κiF

. Hence, that equation has a unique solution AiFe. Given that solution, (A.2)

determines AiHe uniquely, and (3.11) determines Ce uniquely.

Proof of Corollary 3.1: When ae = 0, (3.10) implies Aije = 1
κij

. Substituting into (3.11), we

find (3.12). Substituting into (3.8), we find µet = iHt − iFt.

When ae goes to zero, (3.10) implies that Aije converges to 1
κij

. When, in addition, (3.12) does

not hold, (3.11) implies that Ce converges to plus or minus infinity at the rate 1
ae

, and (3.8) implies

that µet does not converge to iHt − iFt.
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Proof of Proposition 3.2: Substituting µHt and µFt from (3.14) and (3.16), respectively, into

(3.19), we find

A′ij(τ)ijt + C ′j(τ)−Aij(τ)κij(ij − ijt) +
1

2
Aij(τ)

(
Aij(τ)− 2AiFe1{j=F}

)
σ2
ij − ijt

= ajAij(τ)

(∫ T

0
[ζj(τ)− αj(τ) (Aij(τ)ijt + Cj(τ))]Aij(τ)dτ

)
σ2
ij . (A.3)

Equation (3.20) follows by identifying the linear terms in ijt in (A.3). Equation (3.21) follows by

identifying the constant terms. The initial conditions Aij(0) = Cj(0) = 0 follow because the price

of a bond with zero maturity is its face value, which is one.

Solving (3.20) with the initial condition Aij(0) = 0, we find

Aij(τ) =
1− e−κ

∗
ij

κ∗ij
, (A.4)

with

κ∗ij ≡ κij + ajσ
2
ij

∫ T

0
αj(τ)Aij(τ)2dτ. (A.5)

Substituting Aij(τ) from (A.4) into (A.5), we find the equation

κ∗ij − κij + ajσ
2
ij

∫ T

0
αj(τ)

(
1− e−κ

∗
ij

κ∗ij

)2

dτ = 0 (A.6)

in the single unknown κ∗ij . The left-hand side of (A.6) is increasing in κ∗ij , is negative for κ∗ij = κij ,

and goes to infinity when κ∗ij goes to infinity. Hence, (A.6) has a unique solution κ∗ij > κij . Given

κ∗ij , (A.4) determines Aij(τ) uniquely.

Solving (3.21) with the initial condition C(τ) = 0, we find

Cj(τ) = κ∗iji
∗
j

∫ τ

0
Aij(τ)dτ − 1

2
σ2
ij

∫ τ

0
Aij(τ)2dτ, (A.7)

with

κ∗iji
∗
j ≡ κijij + ajσ

2
ij

∫ T

0
[ζj(τ)− αj(τ)Cj(τ)]Aij(τ)dτ + σ2

ijAiFe1{j=F}. (A.8)
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Substituting Cj(τ) from (A.7) into (A.8), we find

i
∗
j =

κijij + ajσ
2
ij

∫ T
0 ζj(τ)Aij(τ)dτ + σ2

ijAiFe1{j=F} + 1
2ajσ

4
ij

∫ T
0 αj(τ)

(∫ τ
0 Aij(τ

′)2dτ ′
)
Aij(τ)dτ

κ∗ij

[
1 + ajσ2

ij

∫ T
0 αj(τ)

(∫ τ
0 Aij(τ

′)dτ ′
)
Aij(τ)dτ

]
(A.9)

Given i
∗
j , (A.7) determines Cj(τ) uniquely.

Proof of Corollary 3.2: When aj = 0, (3.20) with the initial condition Aij(0) = 0 implies

Aij(τ) = 1−e−κijτ
κij

. Substituting into (3.19), we find µ
(τ)
jt = ijt. The same results hold when aj → 0.

Proof of Proposition 3.3: Equations (A.4) and κ∗ij > κij imply Aij(τ) < 1−e−κijτ
κij

. Differentiating

(3.19) with respect to ijt implies

∂
(
µ

(τ)
jt − ijt

)
∂ijt

= −ajσ2
ijAij(τ)

∫ T

0
αj(τ)Aij(τ)2dτ < 0,

where the second step follows because (A.4) implies Aij(τ) > 0.

Proof of Proposition 3.4: The property Aije <
1
κij

is shown in the proof of Proposition 3.1.

Differentiating (3.8) with respect to iHt and iFt, we find

∂(µet + iFt − iHt)
∂iHt

= −aeαeAiHe
(
σ2
iHA

2
iHe + σ2

iFA
2
iFe

)
< 0,

∂(µet + iFt − iHt)
∂iFt

= aeαeAiFe
(
σ2
iHA

2
iHe + σ2

iFA
2
iFe

)
> 0.

where the second step in each case follows because Aije > 0.

Proof of Proposition 3.5: Consider an one-off increase in βjt at time zero, and denote by κβj

the rate at which βjt reverts to its mean of zero. Bond prices in country j at time t are

P
(τ)
jt = e−[Aij(τ)ijt+Aβj(τ)βjt+Cj(τ)], (A.10)
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where (Aij(τ), Aβj(τ), Cj(τ)) are functions of τ . The counterpart of (A.3) is

A′ij(τ)ijt +A′βj(τ)βjt + C ′j(τ)−Aij(τ)κij(ij − ijt) +Aβj(τ)κβjβjt

+
1

2
Aij(τ)

(
Aij(τ)− 2AiFe1{j=F}

)
σ2
ij − ijt

= ajAij(τ)

(∫ T

0
[ζj(τ) + θj(τ)βjt − αj(τ) (Aij(τ)ijt +Aβj(τ)βjt + Cj(τ))]Aij(τ)dτ

)
σ2
ij .

(A.11)

Identifying terms in rt and constant terms, we find (3.20) and (3.21), respectively. Identifying terms

in βjt, we find

A′βj(τ) + κβjAβj(τ) = ajσ
2
ijAij(τ)

∫ T

0
[θj(τ)− αj(τ)Aβj(τ)]Aij(τ)dτ. (A.12)

Solving (A.12) with the initial condition Aβj(τ) = 0, we find

Aβj(τ) = λβj

∫ τ

0
Aij(τ

′)e−κβj(τ−τ
′)dτ ′, (A.13)

with

λβj ≡ ajσ2
ij

∫ T

0
[θj(τ)− αj(τ)Aβj(τ)]Aij(τ)dτ. (A.14)

Substituting Aβj(τ) from (A.13) into (A.14), we find

λβj =
ajσ

2
ij

∫ T
0 θj(τ)Aij(τ)dτ

1 + ajσ2
ij

∫ T
0 αj(τ)

(∫ τ
0 Aij(τ

′)e−κβj(τ−τ
′)dτ ′

)
Aij(τ)dτ

. (A.15)

Since (θj(τ), Aij(τ)) are positive, so is λβj and Aβj(τ). Hence, (A.15) implies that an increase in

βjt raises bond yields in country j. Since the foreign currency and bonds in country j′ are traded

by different agents than those trading bonds in country j, their prices do not depend on βjt.

Consider next an one-off increase in γt at time zero, and denote by κγ the rate at which γt

reverts to its mean of zero. The exchange rate at time t is

et = e
−
[
AiHeiHt−AiFeiFt+Aγeγt+Ce+ψe

αe
t
]
, (A.16)
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where ({Aije}j=H,F , Aγe, Ce) are scalars. The counterpart of (3.9) is

−AiHeκiH(iH − iHt) +AiFeκiF (iF − iFt) +Aγeκγγt −
ψe
αe

+
1

2
A2
iHeσ

2
iH +

1

2
A2
iFeσ

2
iF + iFt − iHt

= ae

[
ζe + θeγt + ψet− αe

(
AiHeiHt −AiFeiFt +Aγeγt + Ce +

ψe
αe
t

)] (
A2
iHeσ

2
iH +A2

iFeσ
2
iF

)
.

(A.17)

Identifying terms in (iHt, iFt) and constant terms, we find (3.10) and (3.11), respectively. Identifying

terms in γt, we find

κγAγe = ae(θe − αeAγe)
(
A2
iHeσ

2
iH +A2

iFeσ
2
iF

)
⇒ Aγe =

aeθe
(
A2
iHeσ

2
iH +A2

iFeσ
2
iF

)
κγ + aeαe

(
A2
iHeσ

2
iH +A2

iFeσ
2
iF

) . (A.18)

Since θe is positive, so is Aγe. Hence, (A.18) implies that an increase in γt causes the foreign

currency to depreciate. Since bonds in each country are traded by a separate set of agents than

those trading foreign currency, their prices do not depend on γt.

Proof of Proposition 4.1: Applying Ito’s Lemma to (4.1) for j = H, we find the following

counterpart of (3.13):

dP
(τ)
Ht

P
(τ)
Ht

= µ
(τ)
Htdt−AiHH(τ)σiHdBiHt −AiHF (τ)σiFdBiF t, (A.19)

where

µ
(τ)
Ht ≡A

′
iHH(τ)iHt +A′iHF (τ)iFt + C ′H(τ)−AiHH(τ)κiH(iH − iHt)−AiHF (τ)κiF (iF − iFt)

+
1

2
AiHH(τ)2σ2

iH +
1

2
AiHF (τ)2σ2

iF . (A.20)

Likewise, (4.1) for j = F and (3.2) yield the following counterpart of (3.15):

d(P
(τ)
Ft et)

P
(τ)
Ft et

− det
et

= µ
(τ)
Ft dt−AiFH(τ)σiHdBiHt −AiFF (τ)σiFdBiF t, (A.21)

where

µ
(τ)
Ft ≡A

′
iFH(τ)iHt +A′iFF (τ)iFt + C ′F (τ)−AiFH(τ)κiH(iH − iHt)−AiFF (τ)κiF (iF − iFt)

+
1

2
AiFH(τ) (AiFH(τ) + 2AiHe)σ

2
iH +

1

2
AiFF (τ) (AiFF (τ)− 2AiFe)σ

2
iF . (A.22)

50



Substituting the returns (3.4), (A.19) and (A.21) into the arbitrageurs’ budget constraint (2.3), we

can write their optimization problem (2.4) as

max
WFt,{X

(τ)
jt }τ∈(0,T ),j=H,F

WFt (µet + iFt − iHt) +
∑
j=H,F

∫ T

0
X

(τ)
jt

(
µ

(τ)
jt − ijt

)
dτ

−a
2

∑
j=H,F

WFtAije(−1)1{j=F} +
∑

j′=H,F

∫ T

0
X

(τ)
j′t Aij′j(τ)dτ

2

σ2
ij

 . (A.23)

The first-order condition with respect to WFt is (4.2), and the first-order condition with respect to

X
(τ)
jt is (4.3).

Using (3.7) and (3.18), we can write λijt as

λijt = aσ2
ij

− ∑
j′=H,F

∫ T

0
Z

(τ)
j′t Aij′j(τ)dτ − ZetAije(−1)1{j=F}



= aσ2
ij

 ∑
j′=H,F

∫ T

0

[
αj′(τ) log

(
P

(τ)
j′t

)
+ ζj′(τ) + θj′(τ)βj′t

]
Aij′j(τ)dτ

+ [αe log(et) + ζe + θeγt + ψet]Aije(−1)1{j=F}

)

= aσ2
ij

 ∑
j′=H,F

∫ T

0

[
ζj′(τ) + θj′(τ)βj′t − αj′(τ)

(
Aij′H(τ)iHt +Aij′F (τ)iFt + Cj′(τ)

)]
Aij′j(τ)dτ

+

[
ζe + θeγt + ψet− αe

(
AiHeiHt −AiFeiFt + Ce +

ψe
αe
t

)]
Aije(−1)1{j=F}

)

= aσ2
ij

(
λ̄ijjijt + λ̄rj′jij′t + λ̄ijC

)
, (A.24)

where the second step follows from (2.5) and (2.7), the third step follows from (3.2) and (4.1), and

the fourth step follows from βHt = βFt = γt = 0 and the definitions of (λ̄ijj , λ̄ijj′ , λ̄ijC) in the

statement of the proposition. We next substitute (µet, {µ(τ)
jt , λijt}j=H,F ) from (3.5), (A.20), (A.22)

and (A.24) into the arbitrageurs’ first-order condition. Substituting into (4.2) and identifying terms

in (iHt, iFt) and constant terms, we find (4.5) and (4.6), respectively. Substituting into (4.3) and

identifying terms in ijt, terms in ij′t and constant terms, we find (4.7), (4.8) and (4.9), respectively.
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Proof of Corollary 4.1: When a = 0, (4.5) implies Aije = 1
κij

, (4.7) with the initial condition

Aijj(0) = 0 implies Aijj(τ) = 1−e−κijτ
κij

, and (4.8) with the initial condition Aijj′(0) = 0 implies

Aijj′(τ) = 0. Substituting into (4.6), we find (3.12). Substituting into (4.2), we find µet = iHt− iFt,

and substituting into (4.3), we find µ
(τ)
jt = ijt.

When a goes to zero, (4.5) implies that Aije converges to 1
κij

, (4.7) with the initial condition

Aijj(0) = 0 implies that Aijj(τ) converges to 1−e−κijτ
κij

, and (4.8) with the initial condition Aijj′(0) =

0 implies that Aijj′(τ) converges to zero. When, in addition, (3.12) does not hold, (4.6) and (4.12)

imply that Ce converges to plus or minus infinity at the rate 1
ae

, and (A.24) implies that λijt

converges to a non-zero limit for j = H,F . Hence, (4.2) implies that µet does not converge to

iHt − iFt, and (4.3) implies that µ
(τ)
jt does not converge to ijt.

Proof of Proposition 4.2: We start by proving a series of lemmas.

Lemma A.1. The matrix

M ≡
(
κiH − aσ2

iH λ̄rHH −aσ2
iF λ̄rHF

−aσ2
iH λ̄rFH κiF − aσ2

iF λ̄rFF

)
(A.25)

has two positive eigenvalues.

Proof: The characteristic polynomial of M is

Π(λ) ≡
(
κiH − aσ2

iH λ̄rHH − λ
) (
κiF − aσ2

iF λ̄rFF − λ
)
− a2σ2

iHσ
2
iF λ̄rHF λ̄rFH . (A.26)

For λ = 0, Π(λ) takes the value

Π(0) =
(
κiH − aσ2

iH λ̄rHH
) (
κiF − aσ2

iF λ̄rFF
)
− aσ2

iHσ
2
iF λ̄rHF λ̄rFH

> a2σ2
iHσ

2
iH

(
λ̄rHH λ̄rFF − λ̄rHF λ̄rFH

)
= a2σ2

iHσ
2
iH

[(∫ T

0
αH(τ)AiHH(τ)2dτ +

∫ T

0
αF (τ)AiFH(τ)2dτ + αeA

2
iHe

)

×
(∫ T

0
αH(τ)AiHF (τ)2dτ +

∫ T

0
αF (τ)AiFF (τ)2dτ + αeA

2
iFe

)

−
(∫ T

0
αH(τ)AiHH(τ)AiHF (τ)dτ +

∫ T

0
αF (τ)AiFH(τ)AiFF (τ)dτ − αeAiHeAiFe

)2
]
.

(A.27)
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The second step in (A.27) follows because (κiH , κiF ) are positive and because (4.10) implies that

(λ̄rHH , λ̄rFF ) are non-positive. The third step in (A.27) follows from (4.10) and (4.11). The

Cauchy-Schwarz inequality associated to the scalar product

X · Y ≡
∫ T

0
αH(τ)XH(τ)YH(τ)dτ +

∫ T

0
αF (τ)XF (τ)YF (τ)dτ + αexy

where X ≡ (XH(τ), XF (τ), x), Y ≡ (YH(τ), YF (τ), y), (XH(τ), XF (τ), YH(τ), YF (τ)) are functions

of τ , and (x, y) are scalars, implies that (A.27) is non-negative. Hence, Π(0) > 0.

For λ = κiH −aσ2
iH λ̄rHH and λ = κiF −aσ2

iF λ̄rFF , Π(λ) takes the value −a2σ2
iHσ

2
iF λ̄rHF λ̄rFH ,

which is non-positive because (4.11) implies λ̄rHF = λ̄rFH . Since (κiH , κiF ) are positive and

(λ̄rHH , λ̄rFF ) are non-positive, κiH − aσ2
iH λ̄rHH and λ = κiF − aσ2

iF λ̄rFF are positive. Since Π(λ)

is a quadratic function of λ, is positive for λ = 0, is non-positive for two positive values of λ, and

converges to infinity when λ goes to infinity, it has two positive roots.

The matrixM plays an important role in the determination of (AiHH(τ), AiHF (τ), AiFH(τ), AiFF (τ))

and (AiHe, AiFe). Equation (4.5) gives rise to the linear system

M

(
AiHe
AiFe

)
=

(
1
1

)
. (A.28)

SinceM has two positive eigenvalues, it is invertible, and hence (A.28) can be solved for (AiHe, AiFe).

Equations (4.7) and (4.8) give rise to the linear system

(
AiHH(τ)
AiHF (τ)

)′
+M

(
AiHH(τ)
AiHF (τ)

)
=

(
1
0

)
(A.29)

for (j, j′) = (H,F ), and to

(
AiFH(τ)
AiFF (τ)

)′
+M

(
AiFH(τ)
AiFF (τ)

)
=

(
0
1

)
(A.30)

for (j, j′) = (F,H). Since M has two positive eigenvalues, the solutions (AiHH(τ), AiHF (τ)) to

(A.29) and (AiFH(τ), AiFF (τ)) to (A.30) converge to finite limits when τ goes to infinity.

Lemma A.2. The normalized factor prices λ̄rHF = λ̄rFH are non-negative.
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Proof: Suppose, proceeding by contradiction, that λ̄rHF = λ̄rFH are negative. The solution to

(A.28) is

AiHe =
κiH − aσ2

iH(λ̄rHH + λ̄rFH)(
κiH − aσ2

iH λ̄rHH
) (
κiF − aσ2

iF λ̄rFF
)
− a2σ2

iHσ
2
iF λ̄rHF λ̄rFH

, (A.31)

AiFe =
κiF − aσ2

iF (λ̄rFF + λ̄rHF )(
κiH − aσ2

iH λ̄rHH
) (
κiF − aσ2

iF λ̄rFF
)
− a2σ2

iHσ
2
iF λ̄rHF λ̄rFH

. (A.32)

The denominator in (A.31) and (A.32) is Π(0) > 0. The numerators in (A.31) and (A.32) are

positive because (κiH , κiF ) are positive and (aλ̄rHH , aλ̄rFF , aλ̄rHF , aλ̄rFH) are non-positive. Hence,

AiHe and AiFe are positive.

When a = 0, (4.8) with the initial conditions AiHF (0) = AiFH(0) = 0 implies AiHF (τ) =

AiFH(τ) = 0 for all τ > 0. Since, in addition, AiHe > 0 and AiFe > 0, (4.11) implies λ̄rHF =

λ̄rFH ≥ 0, a contradiction.

When a > 0, (4.7) and (4.8) with the initial conditions AiHH(0) = AiFF (0) = AiHF (0) =

AiFH(0) = 0 imply A′iHH(0) = A′iFF (0) = 1 and A′iHF (0) = A′iFH(0) = 0. Moreover, differentiating

(4.8), we find A′′iHF (0) = aσ2
iH λ̄rFHA

′
iHH(0) < 0 and A′′iFH(0) = aσ2

iF λ̄rHFA
′
iFF (0) < 0. Hence,

AiHH(τ) > 0, AiFF (τ) > 0, AiHF (τ) < 0 and AiFH(τ) < 0 for τ close to zero. We define τ0 by

τ0 ≡ sup
τ
{AiHH(τ ′) > 0, AiFF (τ ′) > 0, AiHF (τ ′) < 0 and AiFH(τ ′) < 0 for all τ ′ ∈ (0, τ)}.

If τ0 is finite, then (i) AiHH(τ0) = 0, A′iHH(τ0) ≤ 0, AiFF (τ0) ≥ 0, AiHF (τ0) ≤ 0 and AiFH(τ0) ≤ 0,

or (ii) AiHH(τ0) > 0, AiFF (τ0) = 0, A′iFF (τ0) ≤ 0, AiHF (τ0) ≤ 0 and AiFH(τ0) ≤ 0, or (iii)

AiHH(τ0) > 0, AiFF (τ0) > 0, AiHF (τ0) = 0, A′iHF (τ0) ≥ 0 and AiFH(τ0) ≤ 0, or (iv) AiHH(τ0) > 0,

AiFF (τ0) > 0, AiHF (τ0) < 0, AiFH(τ0) = 0 and A′iFH(τ0) ≥ 0. Case (i) yields a contradiction

because (4.7) for j = H, AiHH(τ0) = 0, AiHF (τ0) ≤ 0 and λ̄rHF < 0 imply A′iHH(τ0) ≥ 1. Case (ii)

yields a contradiction by using the same argument as in Case (i) and switching H and F . Case (iii)

yields a contradiction because (4.8) for (j, j′) = (H,F ), AiHH(τ0) > 0, AiHF (τ0) = 0 and λrFH < 0

imply A′iHF (τ0) < 0. Case (iv) yields a contradiction by using the same argument as in Case

(iii) and switching H and F . Therefore, τ0 is infinite, which means AiHH(τ) > 0, AiFF (τ) > 0,

AiHF (τ) < 0 and AiFH(τ) < 0 for all τ > 0. Since, in addition, AiHe > 0 and AiFe > 0, (4.11)

implies λ̄rHF = λ̄rFH ≥ 0, a contradiction. Hence, λ̄rHF = λ̄rFH are non-negative.

Lemma A.3. The functions AiHH(τ) and AiFF (τ) are positive for all τ > 0.
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• When a > 0 and αe > 0, the functions AiHF (τ) and AiFH(τ) are positive for all τ > 0.

• When a = 0 or αe = 0, the functions AiHF (τ) and AiFH(τ) are zero.

Proof: Consider first the case a > 0 and αe > 0. If λ̄rHF = λ̄rFH = 0, then (4.8) with the

initial conditions AiHF (0) = AiFH(0) = 0 implies AiHF (τ) = AiFH(τ) = 0 for all τ > 0. Since,

in addition, (A.31) and (A.32) imply AiHe > 0 and AiFe > 0, (4.11) implies λ̄rHF = λ̄rFH > 0, a

contradiction. Hence, Lemma A.2 implies λ̄rHF = λ̄rFH > 0.

Equations (4.7) and (4.8) with the initial conditions AiHH(0) = AiFF (0) = AiHF (0) =

AiFH(0) = 0 imply A′iHH(0) = A′iFF (0) = 1 and A′iHF (0) = A′iFH(0) = 0. Moreover, differen-

tiating (4.8), we find A′′iHF (0) = aσ2
iH λ̄rFHA

′
iHH(0) > 0 and A′′iFH(0) = aσ2

iF λ̄rHFA
′
iFF (0) > 0.

Hence, AiHH(τ) > 0, AiFF (τ) > 0, AiHF (τ) > 0 and AiFH(τ) > 0 for τ close to zero. We define τ0

by

τ0 ≡ sup
τ
{AiHH(τ ′) > 0, AiFF (τ ′) > 0, AiHF (τ ′) > 0 and AiFH(τ ′) > 0 for all τ ′ ∈ (0, τ)}.

If τ0 is finite, then (i) AiHH(τ0) = 0, A′iHH(τ0) ≤ 0, AiFF (τ0) ≥ 0, AiHF (τ0) ≥ 0 and AiFH(τ0) ≥ 0,

or (ii) AiHH(τ0) > 0, AiFF (τ0) = 0, A′iFF (τ0) ≤ 0, AiHF (τ0) ≥ 0 and AiFH(τ0) ≥ 0, or (iii)

AiHH(τ0) > 0, AiFF (τ0) > 0, AiHF (τ0) = 0, A′iHF (τ0) ≤ 0 and AiFH(τ0) ≥ 0, or (iv) AiHH(τ0) > 0,

AiFF (τ0) > 0, AiHF (τ0) > 0, AiFH(τ0) = 0 and A′iFH(τ0) ≤ 0. Case (i) yields a contradiction

because (4.7) for j = H, AiHH(τ0) = 0, AiHF (τ0) ≥ 0 and λ̄rHF > 0 imply A′iHH(τ0) ≥ 1. Case (ii)

yields a contradiction by using the same argument as in Case (i) and switching H and F . Case (iii)

yields a contradiction because (4.8) for (j, j′) = (H,F ), AiHH(τ0) > 0, AiHF (τ0) = 0 and λrFH > 0

imply A′iHF (τ0) > 0. Case (iv) yields a contradiction by using the same argument as in Case

(iii) and switching H and F . Therefore, τ0 is infinite, which means AiHH(τ) > 0, AiFF (τ) > 0,

AiHF (τ) > 0 and AiFH(τ) > 0 for all τ > 0.

Consider next the case a = 0. The properties of (AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ)) follow

from Corollary 4.1.

Consider finally the case a > 0 and αe = 0. Suppose, proceeding by contradiction, that λ̄rHF =

λ̄rFH are positive. The argument in the case a > 0 and αe > 0 implies AiHH(τ) > 0, AiFF (τ) > 0,

AiHF (τ) > 0 and AiFH(τ) > 0 for all τ > 0. Since αe = 0, (4.11) implies λ̄rHF = λ̄rFH ≤ 0, a

contradiction. Hence, Lemma A.2 implies λ̄rHF = λ̄rFH = 0.
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Since λ̄rHF = λ̄rFH = 0, (4.8) with the initial conditions AiHF (0) = AiFH(0) = 0 implies

AiHF (τ) = AiFH(τ) = 0. Since AiHF (τ) = AiFH(τ) = 0, (4.7) with the initial conditions

AiHH(0) = AiFF (0) = 0 implies that AiHH(τ) and AiFF (τ) are positive for all τ > 0.

Lemma A.4. The functions AiHH(τ) and AiFF (τ) are increasing. When a > 0 and αe > 0, the

functions AiHF (τ) and AiFH(τ) are also increasing.

Proof: Consider first the case a > 0 and αe > 0. Equations A′iHH(0) = A′iFF (0) = 1, A′iHF (0) =

A′iFH(0) = 0, A′′iHF (0) = aσ2
iH λ̄rFHA

′
iHH(0) > 0 and A′′iFH(0) = aσ2

iF λ̄rHFA
′
iFF (0) > 0 imply

A′iHH(τ) > 0, A′iFF (τ) > 0, A′iHF (τ) > 0 and A′iFH(τ) > 0 for τ close to zero. We define τ0 by

τ0 ≡ sup
τ
{A′iHH(τ ′) > 0, A′iFF (τ ′) > 0, A′iHF (τ ′) > 0 and A′iFH(τ ′) > 0 for all τ ′ ∈ (0, τ)}.

If τ0 is finite, then (i) A′iHH(τ0) = 0, A′′iHH(τ0) ≤ 0, A′iFF (τ0) ≥ 0, A′iHF (τ0) ≥ 0 and A′iFH(τ0) ≥ 0,

or (ii) A′iHH(τ0) > 0, A′iFF (τ0) = 0, A′′iFF (τ0) ≤ 0, A′iHF (τ0) ≥ 0 and AiFH(τ0)′ ≥ 0, or (iii)

A′iHH(τ0) > 0, A′iFF (τ0) > 0, A′iHF (τ0) = 0, A′′iHF (τ0) ≤ 0 and A′iFH(τ0) ≥ 0, or (iv) A′iHH(τ0) > 0,

A′iFF (τ0) > 0, A′iHF (τ0) > 0, A′iFH(τ0) = 0 and A′′iFH(τ0) ≤ 0. To analyze Cases (i)-(iv), we use

A′′ijj(τ) + κijA
′
ijj(τ) = aσ2

ij λ̄ijjA
′
ijj(τ) + aσ2

ij′ λ̄ijj′A
′
ijj′(τ), (A.33)

A′′ijj′(τ) + κrj′A
′
ijj′(τ) = aσ2

ij λ̄rj′jA
′
ijj(τ) + aσ2

ij′ λ̄rj′j′A
′
ijj′(τ), (A.34)

which follow from differentiating (4.7) and (4.8), respectively.

Case (i) yields a contradiction. Indeed, if A′′iHH(τ0) = 0, then (A.33) for j = H, A′iHH(τ0) = 0

and λ̄rHF > 0 imply A′iHF (τ0) = 0. The unique solution to the linear system of ODEs (A.33) for

j = H and (A.34) for (j, j′) = (H,F ) with the initial condition (A′iHH(τ0), A′iHF (τ0)) = (0, 0) is the

function that equals (0,0) for all τ . This yields a contradiction because (A′iHH(0), A′iHF (0)) = (1, 0).

Hence, A′′iHH(τ0) < 0, which combined with (A.33) for j = H, A′iHH(τ0) = 0 and λ̄rHF > 0

implies A′iHF (τ0) < 0, again a contradiction. Case (ii) yields a contradiction by using the same

argument as in Case (i) and switching H and F . Case (iii) yields a contradiction because (A.34) for

(j, j′) = (H,F ), AiHH(τ0) > 0, AiHF (τ0) = 0 and λrFH > 0 imply A′′iHF (τ0) > 0. Case (iv) yields

a contradiction by using the same argument as in Case (iii) and switching H and F . Therefore, τ0

is infinite, which means that (AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ)) are increasing.
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In the case a = 0 or αe = 0, Lemma A.3 implies AiHF (τ) = AiFH(τ) = 0. Since AiHF (τ) =

AiFH(τ) = 0, (4.7) with the initial conditions AiHH(0) = AiFF (0) = 0 implies that AiHH(τ) and

AiFF (τ) are increasing.

Lemma A.5. The scalars AiHe and AiFe are positive.

Proof: Consider first the case a > 0 and αe > 0. Since λ̄rHF = λ̄rFH > 0 and AiHH(τ) >

0, AiFF (τ) > 0, AiHF (τ) > 0 and AiFH(τ) > 0 for all τ > 0 (Lemma A.3), (4.11) implies

AiHeAiFe > 0. Hence, (AiHe, AiFe) are either both positive or both negative. Suppose, proceeding

by contradiction, that they are both negative. Equations (A.31) and (A.32) imply

κiH − aσ2
iH λ̄rHH < aσ2

iH λ̄rFH , (A.35)

κiF − aσ2
iF λ̄rFF < aσ2

iF λ̄rHF . (A.36)

Since the left-hand side in each of (A.35) and (A.36) is positive, (A.35) and (A.36) imply

Π(0) =
(
κiH − aσ2

iH λ̄rHH
) (
κiF − aσ2

iF λ̄rFF
)
− aσ2

iHσ
2
iF λ̄rHF λ̄rFH < 0,

a contradiction. Hence, AiHe and AiFe are positive.

Consider next the case a = 0. Corollary 4.1 implies that AiHe and AiFe are positive. Consider

finally the case αe = 0 and a > 0. Since λ̄rHF = λ̄rFH = 0 and (λ̄rHH , λ̄rFF ) are non-positive,

(A.31) and (A.32) imply that AiHe and AiFe are positive.

Lemma A.6. The functions AiHH(τ)−AiFH(τ) and AiFF (τ)−AiHF (τ) are positive for all τ > 0.

Proof: In the case a = 0 or αe = 0, the lemma follows from Lemma A.3. To prove the lemma in

the case a > 0 and αe > 0, we proceed in two steps. In Step 1, we show that AiHH(τ)− AiFH(τ)

and AiFF (τ) − AiHF (τ) are positive in the limit when τ goes to infinity. In Step 2, we show

that AiHH(τ) − AiFH(τ) and AiFF (τ) − AiHF (τ) are either increasing in τ , or increasing and

then decreasing. The lemma follows by combining these properties with AiHH(0) − AiFH(0) =

AiFF (0)−AiHF (0) = 0.

Step 1: Limit at infinity. Since the matrix M has two positive eigenvalues, the functions

(AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ)) converge to finite limits when τ goes to infinity. These
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limits solve the system of equations

κijAijj(∞)− 1 = aσ2
ij λ̄ijjAijj(∞) + aσ2

ij′ λ̄ijj′Aijj′(∞), (A.37)

κrj′Aijj′(∞) = aσ2
ij λ̄rj′jAijj(∞) + aσ2

ij′ λ̄rj′j′Aijj′(∞), (A.38)

which are derived from (4.7) and (4.8) by setting the derivatives to zero. Subtracting (A.38) for

(j, j′) = (F,H) from (A.37) for j = H, we find

κiH(AiHH(∞)−AiFH(∞))− 1

= aσ2
iH λ̄rHH(AiHH(∞)−AiFH(∞)) + aσ2

iF λ̄rHF (AiHF (∞)−AiFF (∞)). (A.39)

Subtracting (A.38) for (j, j′) = (H,F ) from (A.37) for j = F , we similarly find

κiF (AiFF (∞)−AiHF (∞))− 1

= aσ2
iH λ̄rFH(AiHF (∞)−AiHH(∞)) + aσ2

iF λ̄rFF (AiFF (∞)−AiHF (∞)). (A.40)

The solution to the system of (A.39) and (A.40) is

AiHH(∞)−AiFH(∞) =
κiH − aσ2

iH(λ̄rHH + λ̄rFH)(
κiH − aσ2

iH λ̄rHH
) (
κiF − aσ2

iF λ̄rFF
)
− a2σ2

iHσ
2
iF λ̄rHF λ̄rFH

= AiHe,

(A.41)

AiFF (∞)−AiHF (∞) =
κiF − aσ2

iF (λ̄rFF + λ̄rHF )(
κiH − aσ2

iH λ̄rHH
) (
κiF − aσ2

iF λ̄rFF
)
− a2σ2

iHσ
2
iF λ̄rHF λ̄rFH

= AiFe,

(A.42)

where the second equality in (A.41) and (A.42) follows from (A.31) and (A.32), respectively. Since

(AiHe, AiFe) are positive (Lemma A.5), so are (AiFF (∞)−AiHF (∞), AiFF (∞)−AiHF (∞)).

Step 2: Monotonicity. Equations (4.7) and (4.8) with the initial conditions AiHH(0) =

AiFF (0) = AiHF (0) = AiFH(0) = 0 imply A′iHH(0) = A′iFF (0) = 1 > 0 and A′iHF (0) = A′iFH(0) =

0. Hence, A′iHH(τ)−A′iFH(τ) > 0 and A′iFF (τ)−A′iHF (τ) > 0 for τ close to zero. We define τ0 by

τ0 ≡ sup
τ
{A′iHH(τ ′)−A′iFH(τ ′) > 0 and A′iFF (τ ′)−A′iHF (τ ′) > 0 for all τ ′ ∈ (0, τ)}.

If τ0 is infinity, then AiHH(τ) − AiFH(τ) and AiFF (τ) − AiHF (τ) are increasing in τ . Suppose

instead that τ0 is finite. Then, either (i) A′iHH(τ0) − A′iFH(τ0) = 0, A′′iHH(τ0) − A′′iFH(τ0) ≤ 0

and A′iFF (τ0) − A′iHF (τ0) ≥ 0, or (ii) A′iHH(τ0) − A′iFH(τ0) > 0, A′iFF (τ0) − A′iHF (τ0) = 0 and

A′′iFF (τ0)−A′′iHF (τ0) ≤ 0. To analyze Cases (i) and (ii), we use

A′iHH(τ)−A′iFH(τ) + κiH(AiHH(τ)−AiFH(τ))− 1

= aσ2
iH λ̄rHH(AiHH(τ)−AiFH(τ)) + aσ2

iF λ̄rHF (AiHF (τ)−AiFF (τ)), (A.43)
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which follows by subtracting (4.8) for (j, j′) = (F,H) from (A.37) for j = H, and

A′iFF (τ)−A′iHF (τ) + κiF (AiFF (τ)−AiHF (τ))− 1

= aσ2
iH λ̄rFH(AiHF (τ)−AiHH(τ)) + aσ2

iF λ̄rFF (AiFF (τ)−AiHF (τ)), (A.44)

which follows by subtracting (A.38) for (j, j′) = (H,F ) from (A.37) for j = F . Differentiating

(A.43) and (A.44), we find

A′′iHH(τ)−A′′iFH(τ) + κiH(A′iHH(τ)−A′iFH(τ))

= aσ2
iH λ̄rHH(A′iHH(τ)−A′iFH(τ)) + aσ2

iF λ̄rHF (A′iHF (τ)−A′iFF (τ)) (A.45)

and

A′′iFF (τ)−A′′iHF (τ) + κiF (A′iFF (τ)−A′iHF (τ))

= aσ2
iH λ̄rFH(A′iHF (τ)−A′iHH(τ)) + aσ2

iF λ̄rFF (A′iFF (τ)−A′iHF (τ)), (A.46)

respectively. Equations (A.45) and (A.46) are a linear system of ODEs in the functions (A′iHH(τ)−

A′iFH(τ), A′iFF (τ)−A′iHF (τ)).

Consider first Case (i). If A′′iHH(τ0) − A′′iFH(τ0) = 0, then (A.45), A′iHH(τ0) − A′iFH(τ0) = 0

and λ̄rHF > 0 imply A′iFF (τ0) − A′iHF (τ0) = 0. The unique solution to the linear system of

ODEs (A.45) and (A.46) with the initial condition (A′iHH(τ0)−A′iFH(τ0), A′iFF (τ0)−A′iHF (τ0)) =

(0, 0) is the function that equals (0,0) for all τ . This yields a contradiction because (A′iHH(0) −

A′iFH(0), A′iFF (0) − A′iHF (0)) = (1, 1). Hence, A′′iHH(τ0) − A′′iFH(τ0) < 0, which combined with

(A.45), A′iHH(τ0)−A′iFH(τ0) = 0 and λ̄rHF > 0 implies A′iFF (τ0)−A′iHF (τ0) > 0. Since A′iHH(τ0)−

A′iFH(τ0) = 0 and A′′iHH(τ0) − A′′iFH(τ0) < 0, A′iHH(τ) − A′iFH(τ) < 0 for τ larger than and close

to τ0. We define τ ′0 by

τ ′0 ≡ sup
τ
{A′iHH(τ ′)−A′iFH(τ ′) < 0 and A′iFF (τ ′)−A′iHF (τ ′) > 0 for all τ ′ ∈ (τ0, τ)}.

If τ ′0 is finite, then either (ia) A′iHH(τ0)−A′iFH(τ0) = 0, A′′iHH(τ0)−A′′iFH(τ0) ≥ 0 and A′iFF (τ0)−

A′iHF (τ0) ≥ 0, or (ib) A′iHH(τ0)−A′iFH(τ0) < 0, A′iFF (τ0)−A′iHF (τ0) = 0 and A′′iFF (τ0)−A′′iHF (τ0) ≤

0. In Case (ia), the same argument as for τ0 implies A′′iHH(τ ′0)−A′′iFH(τ ′0) > 0, which combined with

(A.45), A′iHH(τ0)−A′iFH(τ0) = 0 and λ̄rHF > 0 implies A′iFF (τ ′0)−A′iHF (τ ′0) < 0, a contradiction.

In Case (ib), the same argument as for τ0 implies A′′iFF (τ ′0)− A′′iHF (τ ′0) < 0, which combined with

(A.46), A′iFF (τ0)−A′iHF (τ0) = 0 and λ̄rFH > 0 implies A′iHH(τ ′0)−A′iFH(τ ′0) > 0, a contradiction.
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Therefore, τ ′0 is infinite, which means that AiFF (τ)−AiHF (τ) is increasing, and AiHH(τ)−AiFH(τ)

is increasing in (0, τ0) and decreasing in (τ0,∞).

Consider next Case (ii). A symmetric argument by switching H and F implies that AiHH(τ)−

AiFH(τ) is increasing, and AiFF (τ)−AiHF (τ) is increasing in (0, τ0) and decreasing in (τ0,∞).

Using Lemmas A.1-A.6, we next prove the proposition. Since (AiHe, AiFe) are positive (Lemma

A.5), (3.2) implies ∂et
∂iHt

< 0 and ∂et
∂iFt

> 0. When a > 0 and αe > 0, (4.10) implies that (λ̄rHH , λ̄rFF )

are negative, and the proof of Lemma A.3 implies that (λ̄rHF , λ̄rFH) are positive. Hence,

aσ2
iH λ̄rHHAiHe − aσ2

iF λ̄rHFAiFe < 0, (A.47)

aσ2
iF λ̄rFFAiFe − aσ2

iH λ̄rFHAiHe < 0. (A.48)

Combining (A.47) and (A.48) with (4.5), we find AiHe <
1
κiH
≡ AUIPiHe and AiFe <

1
κiF
≡ AUIPiFe .

Combining (A.47) and (A.48) with (4.2) and (A.24), we find ∂(µet+iFt−iHt)
∂iHt

< 0 and ∂(µet+iFt−iHt)
∂iFt

>

0. This establishes the first bullet point of the proposition.

Since (AiHH(τ), AiFF (τ)) are positive for all τ > 0 (Lemma A.3), (2.1) and (4.1) imply that

(
∂y

(τ)
Ht

∂iHt
,
∂y

(τ)
Ft

∂iFt
) are positive. When a > 0 and αe > 0, Lemma A.3 implies that (AiHF (τ), AiFH(τ)) are

positive for all τ > 0, and Lemma A.4 implies that (AiHF (τ), AiFH(τ)) are increasing. Equation

(4.8) for (j, j′) = (H,F ) implies

aσ2
iH λ̄rFHAiHH(τ) + aσ2

iF λ̄rFFAiHF (τ) > 0. (A.49)

Multiplying both sides of (A.49) by λ̄rHH
λ̄rFH

< 0, we find

aσ2
iH λ̄rHHAiHH(τ) + aσ2

iF

λ̄rHH λ̄rFF
λ̄rFH

AiHF (τ) < 0

⇒ aσ2
iH λ̄rHHAiHH(τ) + aσ2

iF λ̄rHFAiHF (τ) < 0, (A.50)

where the second step follows from AiHF (τ) > 0 and from the inequality λ̄rHH λ̄rFF−λ̄rHF λ̄rFH < 0

established in the proof of Lemma A.1. We likewise find

aσ2
iF λ̄rHFAiFF (τ) + aσ2

iH λ̄rHHAiFH(τ) > 0, (A.51)

aσ2
iF λ̄rFFAiFF (τ) + aσ2

iH λ̄rFHAiFH(τ) < 0, (A.52)
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by switchingH and F . Equations (A.50) and (A.52) hold also when a > 0, αe = 0 and (αH(τ), αF (τ))

are positive in a positive measure set of (0, T ). Indeed, the proof of Lemma A.3 implies λ̄rHF =

λ̄rFH = 0, and since (AiHH(τ), AiFF (τ)) are positive, (4.10) implies that (λ̄rHH , λ̄rFF ) are neg-

ative. Combining (A.50) and (A.52) with (4.7), we find AiHH(τ) < 1−e−κiHτ
κiH

≡ AEHiHH(τ) and

AiFF (τ) < 1−e−κiF τ
κiF

≡ AEHiFF (τ). Combining (A.50) and (A.52) with (4.3) and (A.24), we find

∂
(
µ
(τ)
Ht−iHt

)
∂iHt

< 0 and
∂
(
µ
(τ)
Ft−iFt

)
∂iFt

< 0. This establishes the second bullet point of the proposition.

When a > 0 and αe > 0, (AiHF (τ), AiFH(τ)) are positive for all τ > 0, and hence (2.1) and

(4.1) imply that (
∂y

(τ)
Ht

∂iFt
,
∂y

(τ)
Ft

∂iHt
) are positive. Moreover, combining (A.49) and (A.51) with (4.3) and

(A.24), we find
∂
(
µ
(τ)
Ht−iHt

)
∂iFt

> 0 and
∂
(
µ
(τ)
Ft−iFt

)
∂iHt

> 0. This establishes the third bullet point of the

proposition. The fourth bullet point follows from Lemma A.6, (2.1) and (4.1).

Proof of Proposition 4.3: Using (3.4), (4.2), (4.3), (4.13), (A.19) and (A.21), we can write the

expected return of the hybrid CCT as

µ
(τ)
hCCTt ≡ λiHt(AiHe +AiFH(τ)−AiHH(τ))− λiF t(AiFe +AiHF (τ)−AiFF (τ)). (A.53)

Using (A.24), we find

∂µ
(τ)
hCCTt

∂iHt
= aσ2

iH λ̄rHH(AiHe +AiFH(τ)−AiHH(τ))− aσ2
iF λ̄rHF (AiFe +AiHF (τ)−AiFF (τ)),

(A.54)

∂µ
(τ)
hCCTt

∂iFt
= aσ2

iH λ̄rFH(AiHe +AiFH(τ)−AiHH(τ))− aσ2
iF λ̄rFF (AiFe +AiHF (τ)−AiFF (τ)).

(A.55)

When a > 0, and αe > 0 or αj(τ) > 0, (λ̄rHH , λ̄rFF ) are negative. Since, in addition, (λ̄rHF , λ̄rFH)

are non-negative, (AiHe, AiFe) are positive and AiHH(0)−AiFH(0) = AiFF (0)−AiHF (0) = 0, (A.54)

and (A.55) imply that there exists a threshold τ∗ > 0 such that
∂µ

(τ)
hCCTt
∂iHt

< 0 and
∂µ

(τ)
hCCTt
∂iFt

> 0

for all τ ∈ (0, τ∗). Since at least one of (AiHH(τ) − AiFH(τ), AiFF (τ) − AiHF (τ)) is increasing

(proof of Lemma A.4), they are both increasing when countries are symmetric. Since, in addition,

(AiHH(∞) − AiFH(∞), AiFF (∞) − AiHF (∞)) = (AiHe, AiFe) (proof of Lemma A.6), (A.54) and

(A.55) imply that when countries are symmetric,
∂µ

(τ)
hCCTt
∂iHt

< 0 and
∂µ

(τ)
hCCTt
∂iFt

> 0 for all τ > 0, which

means τ∗ =∞.
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Since (4.2) implies that the expected return of the basic CCT is

µCCTt ≡ µet + iFt − iHt = λiHtAiHe − λiF tAiFe,

(A.24), (A.54) and (A.55) imply

∂
(
µ

(τ)
hCCTt − µCCTt

)
∂iHt

= λ̄rHH(AiFH(τ)−AiHH(τ))− λ̄rHF (AiHF (τ)−AiFF (τ)) > 0,

(A.56)

∂
(
µ

(τ)
hCCTt − µCCTt

)
∂iFt

= λ̄rFH(AiFH(τ)−AiHH(τ))− λ̄rFF (AiHF (τ)−AiFF (τ)) < 0,

(A.57)

where the inequalities follow because (λ̄rHH , λ̄rFF ) are negative, (λ̄rHF , λ̄rFH) are non-negative,

and (AiHH(τ)−AiFH(τ), AiFF (τ)−AiHF (τ)) are positive for all τ > 0 (Lemma A.6). Hence, the

sensitivity of the hybrid CCT’s expected return to (iHt, iFt) is smaller (less negative in the case of iHt

and less positive in the case of iFt) than for the basic CCT. Since (AiHH(∞)−AiFH(∞), AiFF (∞)−

AiHF (∞)) = (AiHe, AiFe), (A.53) implies that µ
(τ)
hCCTt goes to zero when τ goes to infinity, and

(A.54) and (A.55) imply the same for
∂µ

(τ)
hCCTt
∂iHt

and
∂µ

(τ)
hCCTt
∂iFt

.

Using (3.2), (4.1) and (4.14), we can write the return of the long-horizon CCT as

AiHeiHt −AiFeiFt + Ce − (AiHeiH,t+τ −AiFeiF,t+τ + Ce)

+AiFF (τ)iFt +AiFH(τ)iHt + CF (τ)− (AiHH(τ)iHt +AiHF (τ)iFt + CH(τ)) .

Hence, (3.1) implies that the expected return of the long-horizon CCT is

µ
(τ)
`CCTt ≡ AiHe(1− e

−κiHτ )(iHt − iH)−AiFe(1− e−κiF τ )(iFt − iF )

+AiFF (τ)iFt +AiFH(τ)iHt + CF (τ)− (AiHH(τ)iHt +AiHF (τ)iFt + CH(τ)) ,

and its sensitivity to (iHt, iFt) is

∂µ
(τ)
`CCTt

∂iHt
= AiHe(1− e−κiHτ ) +AiFH(τ)−AiHH(τ), (A.58)

∂µ
(τ)
`CCTt

∂iFt
= −AiFe(1− e−κiF τ ) +AiFF (τ)−AiHF (τ). (A.59)

When a > 0, and αe > 0 or αj(τ) > 0, AiHe <
1
κiH

and AiFe <
1
κiF

. (These properties are shown in

Proposition 4.2 for a > 0 and αe > 0. They also hold for a > 0 and αj(τ) > 0 since (λ̄rHH , λ̄rFF )
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are negative and (λ̄rHF , λ̄rFH) are non-negative.) Since, in addition, A′iHH(0) = A′iFF (0) = 1 and

A′iHF (0) = A′iFH(0) = 0, the derivative of (A.58) with respect to τ at τ = 0 is negative, and

the derivative of (A.59) with respect to τ at τ = 0 is positive. Hence, there exists a threshold

τ∗ > 0 such that
∂µ

(τ)
`CCTt
∂iHt

< 0 and
∂µ

(τ)
`CCTt
∂iFt

> 0 for all τ ∈ (0, τ∗). When countries are symmetric,

we set κr ≡ κiH = κiF , σr ≡ σiH = σiF , Aie ≡ AiHe = AiFe, ∆A(τ) ≡ AiHH(τ) − AiFH(τ) =

AiFF (τ)− AiHF (τ), ∆λ̄ ≡ λ̄rHH − λ̄rFH = λ̄rFF − λ̄rHF < 0. Taking the difference between (4.7)

and (4.8) yields

∆A′(τ) + κr∆A(τ)− 1 = aσ2
r∆λ̄∆A(τ),

which integrates to

∆A(τ) = Aie

(
1− e−(κr−aσ2

r∆λ̄)τ
)

since ∆A(0) = 0 and ∆A(∞) = Aie. Substituting into (A.58) and (A.59), we find

∂µ
(τ)
`CCTt

∂iHt
= −

∂µ
(τ)
`CCTt

∂iFt
= Aie(e

−(κr−aσ2
r∆λ̄)τ − e−κrτ ) < 0. (A.60)

Hence, τ∗ =∞.

The expected return of the sequence of basic CCTs is

µ
(τ)
CCTt ≡ Et

∫ t+τ

t
(λrHt′AiHe − λrF t′AiFe) dt′.

Using (3.1) and (A.24), we find

∂µ
(τ)
CCTt

∂iHt
=

1− e−κiHτ

κiH

(
aσ2

iH λ̄rHHAiHe − aσ2
iF λ̄rHFAiFe

)
=

1− e−κiHτ

κiH
(κiHAiHe − 1), (A.61)

where the second step follows from (4.5). We likewise find

∂µ
(τ)
CCTt

∂iFt
= −1− e−κiF τ

κiF
(κiFAiFe − 1). (A.62)

Combining (A.58) and (A.61), we find

∂
(
µ

(τ)
`CCTt − µ

(τ)
CCTt

)
∂iHt

=
1− e−κiHτ

κiH
+AiFH(τ)−AiHH(τ) > 0,
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where the inequality sign follows from (A.43) by noting that the left-hand side of (A.43) is negative.

Combining (A.59) and (A.62), we likewise find

∂
(
µ

(τ)
`CCTt − µ

(τ)
CCTt

)
∂iFt

= −1− e−κiF τ

κiF
+AiFF (τ)−AiHF (τ) < 0.

Hence, the sensitivity of the long-horizon CCT’s expected return to (iHt, iFt) is smaller (less neg-

ative in the case of iHt and less positive in the case of iFt) than for the corresponding sequence

of basic CCTs. Since (AiHH(∞) − AiFH(∞), AiFF (∞) − AiHF (∞)) = (AiHe, AiFe), (A.58) and

(A.59) imply that
∂µ

(τ)
`CCTt
∂iHt

and
∂µ

(τ)
`CCTt
∂iFt

go to zero when τ goes to infinity.

We next prove a lemma that we use in subsequent proofs.

Lemma A.7. When a > 0 and αe > 0, the functions
(
AiHF (τ)
AiHH(τ) ,

AiFH(τ)
AiFF (τ)

)
are increasing.

Proof: The functions (AiHH(τ), AiHF (τ)) solve the system (A.29) of linear ODEs with constant

coefficients. The solution is an affine function of (e−ν1τ , e−ν2τ ), where (ν1, ν2) are the eigenvalues of

the matrix M . Because of the initial conditions AiHH(0) = AiHF (0) = 0, we can write the solution

as a linear function of
(

1−e−ν1τ
ν1

, 1−e−ν2τ
ν2

)
. Because (A′iHH(0), A′iHF (0)) = (1, 0), the coefficients of

the linear terms sum to one for AiHH(τ) and to zero for AiHF (τ). Hence, we can write the solution

as

AiHH(τ) =
1− e−ν1τ

ν1
+ φHH

(
1− e−ν2τ

ν2
− 1− e−ν1τ

ν1

)
, (A.63)

AiHF (τ) = φHF

(
1− e−ν2τ

ν2
− 1− e−ν1τ

ν1

)
, (A.64)

for scalars (φHH , φHF ). The eigenvalues (ν1, ν2) are positive (Lemma A.1), and without loss of

generality we can set ν1 > ν2. Since AiFH(τ) is positive when a > 0 and αe > 0 (Lemma A.3),

φHF > 0. Since

AiHH(τ)

AiHF (τ)
=

1−e−ν1τ
ν1

φHF

(
1−e−ν2τ

ν2
− 1−e−ν1τ

ν1

) +
φHH
φHF

=
1

φHF

(
ν1
ν2

1−e−ν2τ
1−e−ν1τ − 1

) +
φHH
φHF

,

and the function (ν1, ν2, τ) −→ 1−e−ν2τ
1−e−ν1τ increases in τ because its derivative has the same sign as

eν1τ−1
ν1
− eν2τ−1

ν2
, the function AiHH(τ)

AHF (τ) is decreasing. Hence, the inverse function AiHF (τ)
AHH(τ) is increasing.

A similar argument using (A.30) establishes that AiFH(τ)
AFF (τ) is increasing.
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Proof of Proposition 4.4: We prove the proposition in the case j = H. The proof for the case

j = F is symmetric. Consider a one-off increase in βHt at time zero, and denote by κβH the rate

at which βHt reverts to its mean of zero. Bond prices in country j = H,F at time t are

P
(τ)
jt = e−[Aijj(τ)ijt+Aijj′ (τ)ij′t+AβjH(τ)βHt+Cj(τ)], (A.65)

and the exchange rate is

et = e−[AiHeiHt−AiFeiFt+AβHeβHt+Ce], (A.66)

where ({Aijj′(τ)}j,j′=H,F , {AβjH(τ), Cj(τ)}j=H,F ) are functions of τ , and ({Aije}j=H,F , AβHe, Ce)

are scalars.

The arbitrageurs’ first-order condition (4.2) and (4.3) remains the same, with (µet, µ
(τ)
Ht , µ

(τ)
Ft , λijt)

taking the values

µet =−AiHeκiH(iH − iHt) +AiFeκiF (iF − iFt) +AβHeκβHβHt +
1

2
A2
iHeσ

2
iH +

1

2
A2
iFeσ

2
iF ,

(A.67)

µ
(τ)
Ht =A′iHH(τ)iHt +A′iHF (τ)iFt +A′βHH(τ)βHt + C ′H(τ)−AiHH(τ)κiH(iH − iHt)

−AiHF (τ)κiF (iF − iFt) +AβHH(τ)κβHβHt +
1

2
AiHH(τ)2σ2

iH +
1

2
AiHF (τ)2σ2

iF ,

(A.68)

µ
(τ)
Ft =A′iFH(τ)iHt +A′iFF (τ)iFt +A′βFH(τ)βHt + C ′F (τ)−AiFH(τ)κiH(iH − iHt)

−AiFF (τ)κiF (iF − iFt) +AβFH(τ)κβHβHt +
1

2
AiFH(τ) (AiFH(τ) + 2AiHe)σ

2
iH

+
1

2
AiFF (τ) (AiFF (τ)− 2AiFe)σ

2
iF , (A.69)

λijt =aσ2
ij

(
λ̄ijjijt + λ̄rj′jij′t + λ̄βHjβHt + λ̄ijC

)
, (A.70)

instead of those in (3.5), (A.20), (A.22) and (A.24), and λβHj taking the value

λ̄βHj ≡
∫ T

0
[θH(τ)−αH(τ)AβHH(τ)]AiHj(τ)dτ−

∫ T

0
αF (τ)AβFH(τ)AiF j(τ)dτ−αeAβHeAije(−1)1j=F .

(A.71)

We next substitute (µet, µ
(τ)
Ht , µ

(τ)
Ft , λijt) from (A.67)-(A.70) into the arbitrageurs’ first-order condi-

tion. Substituting into (4.2) and identifying terms in βHt, we find

κβHAβHe = aσ2
iH λ̄βHHAiHe − aσ2

iF λ̄βHFAiFe. (A.72)
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Substituting into (4.3) and identifying terms in βHt, we find

A′βjH(τ) + κβHAβjH(τ) = aσ2
iH λ̄βHHAijH(τ) + aσ2

iF λ̄βHFAijF (τ), (A.73)

which integrates to

AβjH(τ) = aσ2
iH λ̄βHH

∫ τ

0
AijH(τ ′)e−κβH(τ−τ ′)dτ ′+aσ2

iF λ̄βHF

∫ τ

0
AijF (τ ′)e−κβH(τ−τ ′)dτ ′, (A.74)

since AβjH(0) = 0. Substituting AβHe from (A.72) and {AβjH(τ)}j=H,F from (A.74) into (A.71),

we find

(1 + aσ2
iHzHH)λ̄βHH + aσ2

iF zHF λ̄βHF =

∫ T

0
θH(τ)AiHH(τ)dτ, (A.75)

aσ2
iHzFH λ̄βHH + (1 + aσ2

iF zFF )λ̄βHF =

∫ T

0
θH(τ)AiHF (τ)dτ, (A.76)

where

zHH =

∫ T

0
αH(τ)AiHH(τ)

[∫ τ

0
AiHH(τ ′)e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0
αF (τ)AiFH(τ)

[∫ τ

0
AiFH(τ ′)e−κβH(τ−τ ′)dτ ′

]
dτ +

αe
κβH

A2
iHe,

zHF =

∫ T

0
αH(τ)AiHH(τ)

[∫ τ

0
AiHF (τ ′)e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0
αF (τ)AiFH(τ)

[∫ τ

0
AiFF (τ ′)e−κβH(τ−τ ′)dτ ′

]
dτ − αe

κβH
AiHeAiFe,

zFH =

∫ T

0
αH(τ)AiHF (τ)

[∫ τ

0
AiHH(τ ′)e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0
αF (τ)AiFF (τ)

[∫ τ

0
AiFH(τ ′)e−κβH(τ−τ ′)dτ ′

]
dτ − αe

κβH
AiHeAiFe,

zFF =

∫ T

0
αH(τ)AiHF (τ)

[∫ τ

0
AiHF (τ ′)e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0
αF (τ)AiFF (τ)

[∫ τ

0
AiFF (τ ′)e−κβH(τ−τ ′)dτ ′

]
dτ +

αe
κβH

A2
iFe.

Equations (A.75) and (A.76) form a linear system of two equations in the two unknowns (λ̄βHH , λ̄βHF ).
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Its solution is

λ̄βHH =
1

∆z

[
(1 + aσ2

iF zFF )

∫ T

0
θH(τ)AiHH(τ)dτ − aσ2

iF zHF

∫ T

0
θH(τ)AiHF (τ)dτ

]
(A.77)

λ̄βHF =
1

∆z

[
(1 + aσ2

iHzHH)

∫ T

0
θH(τ)AiHF (τ)dτ − aσ2

iHzFH

∫ T

0
θH(τ)AiHH(τ)dτ

]
,

(A.78)

where

∆z ≡ (1 + aσ2
iHzHH)(1 + aσ2

iF zFF )− a2σ2
iHσ

2
iF zHF zFH .

The statements in the proposition concern the signs of (AβHH(τ), AβFH(τ), AβHe). To deter-

mine these signs, we proceed in four steps. In Step 1, we show that ∆z is positive. In Step 2,

we show that (zHF , zFH) are non-negative, and are zero when αe = 0. In Step 3, we show that

AβHH(τ) is positive, and that AβFH(τ) is positive when αe > 0 and zero when αe = 0. In Step 4,

we show that AβHe is positive. The first statement in the proposition follows from the first result

in Step 3. The second statement follows from the second result in Step 3. The third statement

follows from the result in Step 4.

Step 1: ∆z is positive. Since (zHH , zFF ) are non-negative, ∆z is positive under the sufficient

condition

zHHzFF ≥ zHF zFH . (A.79)

The function

F (µ) ≡ zHH + µ(zHF + zFH) + µ2zFF

=

∫ T

0
αH(τ) [AiHH(τ) + µAiHF (τ)]

[∫ T

0
[AiHH(τ) + µAiHF (τ)] e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0
αF (τ) [AiFH(τ) + µAiFF (τ)]

[∫ T

0
[AiFH(τ) + µAiFF (τ)] e−κβH(τ−τ ′)dτ ′

]
dτ

+
αe
κβH

(AiHe − µAiFe)2

is non-negative for all µ if

F0 ≡
∫ T

0
α(τ)A(τ)

[∫ τ

0
A(τ ′)e−κβH(τ−τ ′)dτ ′

]
dτ
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is non-negative for a non-negative and non-increasing α(τ). Since

F0 =

∫ T

0
φ(τ)Φ(τ)

[∫ τ

0
Φ(τ ′)dτ ′

]
dτ,

where

φ(τ) ≡ α(τ)e−2κβHτ ,

Φ(τ) ≡ A(τ)eκβHτ ,

integration by parts implies

F0 =
1

2
φ(T )

[∫ T

0
Φ(τ)dτ

]2

− 1

2

∫ T

0
φ′(τ)

[∫ τ

0
Φ(τ ′)dτ ′

]2

dτ. (A.80)

The first term in the right-hand side of (A.80) is non-negative because α(τ) is non-negative, and

the first term is non-positive because α(τ) is non-increasing. Therefore, F0 is non-negative. Since

F (µ) is quadratic in µ, its non-negativity for all µ implies

4zHHzFF ≥ (zHF + zFH)2

⇒ zHHzFF ≥
1

4
(zHF + zFH)2 = zHF zFH +

1

4
(zHF − zFH)2 ≥ zHF zFH .

Therefore, (A.79) holds.

Step 2: (zHF , zFH) are non-negative, and are zero when αe = 0. Since Lemma A.3

implies that AiHH(τ) is positive and AiFH(τ) is non-negative, and Lemma A.4 implies that AiHF (τ)

is non-decreasing and AiFF (τ) is increasing,

zHF ≤
∫ T

0
αH(τ)AiHH(τ)

[∫ τ

0
AiHF (τ)e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0
αF (τ)AiFH(τ)

[∫ τ

0
AiFF (τ)e−κβH(τ−τ ′)dτ ′

]
dτ − αe

κβH
AiHeAiFe

≤
∫ T

0
αH(τ)AiHH(τ)

AiHF (τ)

κβH
dτ +

∫ T

0
αF (τ)AiFH(τ)

AiFF (τ)

κβH
− αe
κβH

AiHeAiFe

= − λ̄rHF
κβH

≤ 0,

where the second step follows because (AiHH(τ), AiFF (τ)) are positive and (AiFH(τ), AiFH(τ)) are

non-negative, the third step follows from (4.11), and the fourth step follows from Lemma A.2. The

inequality zFH ≤ 0 follows similarly.
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When αe = 0, Lemma A.3 implies AiHF (τ) = AiFH(τ) = 0. Therefore, zHF = zFH = 0.

Step 3: AβHH(τ) is positive, and AβFH(τ) is positive when αe > 0 and zero when

αe = 0. Since (∆z, θH(τ), AiHH(τ)) are positive, (AiHF (τ), zFF ) are non-negative, and zHF is

non-positive, (A.77) implies that λ̄βHH is positive. When αe > 0, AiHF (τ) is positive. Since, in

addition, zHH is non-negative and zFH is non-positive, (A.78) implies that λ̄βHF is positive. When

αe = 0, (A.78) and AiHF (τ) = zFH = 0 imply λ̄βHF = 0.

Since (λ̄βHH , AiHH(τ)) are positive and (λ̄βHF , AiHF (τ)) are non-negative, (A.73) implies that

AβHH(τ) is positive. When αe > 0, AiFH(τ) is positive. Since, in addition, (λ̄βHF , AiFF (τ)) are

positive, (A.73) implies that AβFH(τ) is positive. When αe = 0, (A.73) and AiFH(τ) = λ̄βHF = 0

imply AβFH(τ) = 0.

Step 4: AβHe(τ) is positive. Substituting (λ̄βHH , λ̄βHF ) from (A.77) and (A.78) into (A.72),

and using the definitions of (zHH , zHF , zFH , zFF ), we find that AβHe is positive if

ZH

∫ T

0
θH(τ)AiHH(τ)dτ − ZF

∫ T

0
θH(τ)AiHF (τ)dτ > 0, (A.81)

where

ZH ≡ σ2
iH(1 + aσ2

iF zFF )AiHe + aσ2
iHσ

2
iF zFHAiFe

= σ2
iHAiHe

+ aσ2
iHσ

2
iF

∫ T

0
αH(τ)AiHF (τ)

[∫ τ

0
[AiHeAiHF (τ ′) +AiFeAiHH(τ ′)]e−κβH(τ−τ ′)dτ ′

]
dτ

+ aσ2
iHσ

2
iF

∫ T

0
αF (τ)AiFF (τ)

[∫ τ

0
[AiHeAiFF (τ ′) +AiFeAiFH(τ ′)]e−κβH(τ−τ ′)dτ ′

]
dτ,

ZF ≡ aσ2
iHσ

2
iF zHFAiHe + σ2

iF (1 + aσ2
iHzHH)AiFe

= σ2
iFAiFe

+ aσ2
iHσ

2
iF

∫ T

0
αH(τ)AiHH(τ)

[∫ τ

0
[AiHeAiHF (τ ′) +AiFeAiHH(τ ′)]e−κβH(τ−τ ′)dτ ′

]
dτ

+ aσ2
iHσ

2
iF

∫ T

0
αF (τ)AiFH(τ)

[∫ τ

0
[AiHeAiFF (τ ′) +AiFeAiFH(τ ′)]e−κβH(τ−τ ′)dτ ′

]
dτ.

Since (θ(τ), AiHH(τ)) are positive, AiHF (τ) is non-negative, and AiHF (τ)
AiHH(τ) is non-decreasing (in-

creasing when a > 0 and αe > 0 from Lemma A.7, and zero when a = 0 or αe = 0), the ratio
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∫ T
0 θH(τ)AiHF (τ)dτ∫ T
0 θH(τ)AiHH(τ)dτ

is bounded above by AiHF (∞)
AiHH(∞) . Since, in addition (ZH , ZF ) are positive, (A.81)

holds for all positive functions θH(τ) under the sufficient condition

ZHAiHH(∞)− ZFAiHF (∞) > 0. (A.82)

Using the definitions of (ZH , ZF ), we can write (A.82) as

σ2
iHAiHeAiHH(∞)− σ2

iFAiFeAiHF (∞)

+ aσ2
iHσ

2
iF

∫ T

0
αH(τ) [AiHF (τ)AiHH(∞)−AiHH(τ)AiHF (∞)]

×
[∫ τ

0
[AiHeAiHF (τ ′) +AiFeAiHH(τ ′)]e−κβH(τ−τ ′)dτ ′

]
dτ

+ aσ2
iHσ

2
iF

∫ T

0
αF (τ) [AiFF (τ)AiHH(∞)−AiFH(τ)AiHF (∞)]

×
[∫ τ

0
[AiHeAiFF (τ ′) +AiFeAiFH(τ ′)]e−κβH(τ−τ ′)dτ ′

]
dτ > 0. (A.83)

Equation (4.8) for (j, j′) = (H,F ) implies

AiHF (τ) =
aσ2

iH λ̄rFHAiHH(τ)

κiF − aσ2
iF λ̄rFF

−
A′iHF (τ)

κiF − aσ2
iF λ̄rFF

, (A.84)

which for τ =∞ becomes

AiHF (∞) =
aσ2

iH λ̄rFHAiHH(∞)

κiF − aσ2
iF λ̄rFF

. (A.85)

Equation (4.7) for j = F implies

AiFF (τ) =
aσ2

iH λ̄rFHAiFH(τ)

κiF − aσ2
iF λ̄rFF

+
1−A′iFF (τ)

κiF − aσ2
iF λ̄rFF

. (A.86)

Using (A.84)-(A.86) to simplify the terms in the first, second and fourth lines of (A.83), and dividing
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throughout by
aσ2
iHσ

2
iFAiHH(∞)

κiF−aσ2
iF λ̄rFF

> 0, we find that (A.83) is equivalent to(
κiF
aσ2

iF

− λ̄rFF
)
AiHe − λ̄rFHAiFe

−
∫ T

0
αH(τ)A′iHF (τ)

[∫ τ

0
[AiHeAiHF (τ ′) +AiFeAiHH(τ ′)]e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0
αF (τ)(1−A′iFF (τ))

[∫ τ

0
[AiHeAiFF (τ ′) +AiFeAiFH(τ ′)]e−κβH(τ−τ ′)dτ ′

]
dτ > 0.

(A.87)

Equations (4.10) and (4.11) imply

− λ̄rFFAiHe − λ̄rFHAiFe

=

∫ T

0
αH(τ)AiHF (τ)[AiHeAiHF (τ) +AiFeAiHH(τ)]dτ

+

∫ T

0
αF (τ)AiFF (τ)[AiHeAiFF (τ) +AiFeAiFH(τ)]dτ. (A.88)

We next substitute (A.88) into (A.87). Noting that 1− A′iFF (τ) > 0, which follows from (4.7) for

j = F and (A.52), and that (AiHH(τ), AiFF (τ), AiHe, AiFe) are positive and (AiFH(τ), AiFH(τ))

are non-negative, we find that (A.87) holds under the sufficient condition∫ T

0
αH(τ)

{
AiHF (τ)[AiHeAiHF (τ) +AiFeAiHH(τ)]dτ

−A′iHF (τ)

[∫ τ

0
[AiHeAiHF (τ ′) +AiFeAiHH(τ ′)]e−κβH(τ−τ ′)dτ ′

]}
dτ ≥ 0,

which, in turn, holds under the sufficient condition∫ T

0
αH(τ)

{
AiHF (τ)[AiHeAiHF (τ) +AiFeAiHH(τ)]dτ (A.89)

−A′iHF (τ)

[∫ τ

0
[AiHeAiHF (τ ′) +AiFeAiHH(τ ′)]dτ ′

]}
dτ ≥ 0. (A.90)

Equation (A.90) holds under the sufficient condition that the function

G(τ) ≡ AiHF (τ)∫ τ
0 [AiHeAiHF (τ ′) +AiFeAiHH(τ ′)]dτ ′
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is non-increasing because the term in curly brackets in (A.90) is the negative of the numerator of

G′(τ). The function G′(τ) is non-increasing under the sufficient condition that the function

G1(τ) ≡
A′iHF (τ)

AiHeAiHF (τ) +AiFeAiHH(τ)

is non-increasing. Equation (4.8) for (j, j′) = (H,F ) implies

G1(τ) =
aσ2

iH λ̄rFHAiHH(τ) + (aσ2
iF λ̄rFF − κiF )AiHF (τ)

AiHeAiHF (τ) +AiFeAiHH(τ)

=
aσ2

iH λ̄rFH + (aσ2
iF λ̄rFF − κiF )AiHF (τ)

AiHH(τ)

AiHe
AiHF (τ)
AiHH(τ) +AiFe

.

Since λ̄rFH ≥ 0, λ̄rFF ≤ 0 and AiHF (τ)
AiHH(τ) is non-decreasing, G1(τ) is non-increasing.

Proof of Proposition 4.5: Consider a one-off increase in γt at time zero, and denote by κγ the

rate at which γt reverts to its mean of zero. Bond prices in country j = H,F at time t are

P
(τ)
jt = e−[Aijj(τ)ijt+Aijj′ (τ)ij′t+Aγj(τ)γt+Cj(τ)], (A.91)

and the exchange rate is

et = e−[AiHeiHt−AiFeiFt+Aγeγt+Ce], (A.92)

where ({Aijj′(τ)}j,j′=H,F , {Aγj(τ), Cj(τ)}j=H,F ) are functions of τ , and ({Aije}j=H,F , Aγe, Ce) are

scalars.

The counterparts of (A.72) and (A.74) are

κγAγe = aσ2
iH λ̄γHAiHe − aσ2

iF λ̄γFAiFe (A.93)

and

Aγj(τ) = aσ2
iH λ̄γH

∫ τ

0
AijH(τ ′)e−κγ(τ−τ ′)dτ ′ + aσ2

iF λ̄γF

∫ τ

0
AijF (τ ′)e−κγ(τ−τ ′)dτ ′, (A.94)

respectively, where

λ̄γj ≡ −
∫ T

0
αH(τ)AγH(τ)AiHj(τ)dτ −

∫ T

0
αF (τ)AγF (τ)AiF j(τ)dτ + (θe−αeAγe)Aije(−1)1j=F .
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(A.95)

The counterparts of (A.77) and (A.78) are

λ̄γH =
θe
∆z

[
(1 + aσ2

iF zFF )AiHe + aσ2
iF zHFAiFe

]
(A.96)

λ̄γF = − θe
∆z

[
(1 + aσ2

iHzHH)AiFe + aσ2
iHzFHAiHe

]
, (A.97)

respectively, where

ẑHH =

∫ T

0
αH(τ)AiHH(τ)

[∫ τ

0
AiHH(τ ′)e−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0
αF (τ)AiFH(τ)

[∫ τ

0
AiFH(τ ′)e−κγ(τ−τ ′)dτ ′

]
dτ +

αe
κβH

A2
iHe,

ẑHF =

∫ T

0
αH(τ)AiHH(τ)

[∫ τ

0
AiHF (τ ′)e−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0
αF (τ)AiFH(τ)

[∫ τ

0
AiFF (τ ′)e−κγ(τ−τ ′)dτ ′

]
dτ − αe

κβH
AiHeAiFe,

ẑFH =

∫ T

0
αH(τ)AiHF (τ)

[∫ τ

0
AiHH(τ ′)e−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0
αF (τ)AiFF (τ)

[∫ τ

0
AiFH(τ ′)e−κγ(τ−τ ′)dτ ′

]
dτ − αe

κβH
AiHeAiFe,

ẑFF =

∫ T

0
αH(τ)AiHF (τ)

[∫ τ

0
AiHF (τ ′)e−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0
αF (τ)AiFF (τ)

[∫ τ

0
AiFF (τ ′)e−κγ(τ−τ ′)dτ ′

]
dτ +

αe
κβH

A2
iFe.

To complete the proof, we proceed in two steps. In Step 1, we show that Aγe is positive.

This proves the first statement in the proposition. In Step 2, we show that AγH(τ) is positive and

AγF (τ) is negative. This proves the second and third statements in the proposition.

Step 1: Aγe(τ) is positive. Substituting (λ̄γH , λ̄γF ) from (A.96) and (A.97) into (A.93), ,

and using the definitions of (ẑHH , ẑHF , ẑFH , ẑFF ), we find that Aγe is positive if

ẐHAiHe + ẐFAiFe > 0, (A.98)
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where

ẐH ≡ σ2
iH

[
(1 + aσ2

iF zFF )AiHe + aσ2
iF zHFAiFe

]
= σ2

iHAiHe

+ aσ2
iHσ

2
iF

∫ T

0
αH(τ)[AiHeAiHF (τ) +AiFeAiHH(τ)]

[∫ τ

0
AiHF (τ ′)e−κγ(τ−τ ′)dτ ′

]
dτ

+ aσ2
iHσ

2
iF

∫ T

0
αF (τ)[AiHeAiFF (τ) +AiFeAiFH(τ)]

[∫ τ

0
AiFF (τ ′)e−κγ(τ−τ ′)dτ ′

]
dτ,

ẐF ≡ σ2
iF

[
(1 + aσ2

iHzHH)AiFe + aσ2
iHzFHAiHe

]
= σ2

iFAiFe

+ aσ2
iHσ

2
iF

∫ T

0
αH(τ)[AiHeAiHF (τ) +AiFeAiHH(τ)]

[∫ τ

0
AiHH(τ ′)e−κγ(τ−τ ′)dτ ′

]
dτ

+ aσ2
iHσ

2
iF

∫ T

0
αF (τ)[AiHeAiFF (τ) +AiFeAiFH(τ)]

[∫ τ

0
AiFH(τ ′)e−κγ(τ−τ ′)dτ ′

]
dτ.

Since (AiHe, AiFe, ZH , ZF ) are positive, (A.98) holds.

Step 2: AγH(τ) is positive and that AγF (τ) is negative. We prove that AγH(τ) is positive.

The proof that AγF (τ) is negative is symmetric. Substituting (λ̄γH , λ̄γF ) from (A.96) and (A.97)

into (A.94) for j = H, and using the definitions of (ẑHH , ẑHF , ẑFH , ẑFF ), we find that AγH(τ) is

positive if

ẐH

∫ τ

0
AiHH(τ ′)e−κγ(τ−τ ′)dτ ′ − ẐF

∫ τ

0
AiHF (τ ′)e−κγ(τ−τ ′)dτ ′ > 0. (A.99)

Since (AiHH(τ), ẐH , ẐF ) are positive, AiHF (τ) is non-negative and AiHF (τ)
AiHH(τ) is non-decreasing,

(A.81) holds under the sufficient condition

ẐHAiHH(∞)− ẐFAiHF (∞) > 0. (A.100)
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Using the definitions of (ẐH , ẐF ), we can write (A.100) as

σ2
iHAiHeAiHH(∞)− σ2

iFAiFeAiHF (∞)

+ aσ2
iHσ

2
iF

∫ T

0
αH(τ)[AiHeAiHF (τ) +AiFeAiHH(τ)]

×
[∫ τ

0

[
AiHF (τ ′)AiHH(∞)−AiHH(τ ′)AiHF (∞)

]
e−κγ(τ−τ ′)dτ ′

]
dτ

+ aσ2
iHσ

2
iF

∫ T

0
αF (τ)[AiHeAiFF (τ) +AiFeAiFH(τ)]

×
[∫ τ

0

[
AiFF (τ ′)AiHH(∞)−AiFH(τ ′)AiHF (∞)

]
e−κγ(τ−τ ′)dτ ′

]
dτ > 0. (A.101)

Using (A.84)-(A.86) to simplify the terms in the first, second and fourth lines of (A.101), and

dividing throughout by
aσ2
iHσ

2
iFAiHH(∞)

κiF−aσ2
iF λ̄rFF

> 0, we find that (A.101) is equivalent to(
κiF
aσ2

iF

− λ̄rFF
)
AiHe − λ̄rFHAiFe

−
∫ T

0
αH(τ)[AiHeAiHF (τ) +AiFeAiHH(τ)]

[∫ τ

0
A′iHF (τ ′)e−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0
αF (τ)[AiHeAiFF (τ) +AiFeAiFH(τ)]

[∫ τ

0
(1−A′iFF (τ ′))e−κγ(τ−τ ′)dτ ′

]
dτ > 0.

(A.102)

We next substitute (A.88) into (A.102). Noting that 1−A′iFF (τ) > 0 and that (AiHH(τ), AiFF (τ), AiHe, AiFe)

are positive and (AiFH(τ), AiFH(τ)) are non-negative, we find that (A.87) holds under the sufficient

condition

∫ T

0
αH(τ)[AiHeAiHF (τ) +AiFeAiHH(τ)]

[
AiHF (τ)−

∫ τ

0
A′iHF (τ ′)e−κγ(τ−τ ′)dτ ′

]
dτ ≥ 0,

which, in turn, holds because

AiHF (τ)−
∫ τ

0
A′iHF (τ)e−κγ(τ−τ ′)dτ ′ ≥ AiHF (τ)−

∫ τ

0
A′iHF (τ ′)dτ ′ = AiHF (0) = 0.

Proof of Proposition 5.1: Applying Ito’s Lemma to (5.1), we find the following counterpart of
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(3.4):

det
et

= µetdt−A>e ΣdBt, (A.103)

where

µet ≡ −A>e Γ(q̄ − qt)−
ψe
αe

+
1

2
A>e ΣΣ>Ae. (A.104)

Applying Ito’s Lemma to (5.2) for j = H, we find the following counterpart of (A.19):

dP
(τ)
Ht

P
(τ)
Ht

= µ
(τ)
Htdt−AH(τ)>ΣdBt, (A.105)

where

µ
(τ)
Ht ≡ A

′
H(τ)>qt + C ′H(τ)−AH(τ)>Γ(q̄ − qt) +

1

2
AH(τ)>ΣΣ>AH(τ). (A.106)

Likewise, (5.2) for j = F and (5.1) yield the following counterpart of (A.21):

d(P
(τ)
Ft et)

P
(τ)
Ft et

− det
et

= µ
(τ)
Ft dt−AF (τ)>ΣdBt, (A.107)

where

µ
(τ)
Ft ≡ A

′
F (τ)>qt + C ′F (τ)−AF (τ)>Γ(q̄ − qt) +

1

2
Aj(τ)>ΣΣ> (Aj(τ) + 2Ae) . (A.108)

Substituting the returns (A.103), (A.105) and (A.107) into the arbitrageurs’ budget constraint

(2.3), we can write their optimization problem (2.4) as

max
WFt,{X

(τ)
jt }τ∈(0,T ),j=H,F

WFt (µet + iFt − iHt) +
∑
j=H,F

∫ T

0
X

(τ)
jt

(
µ

(τ)
jt − ijt

)
dτ

−a
2

WFtAe +
∑
j=H,F

∫ T

0
X

(τ)
jt Aj(τ)dτ

>ΣΣ>

WFtAe +
∑
j=H,F

∫ T

0
X

(τ)
jt Aj(τ)dτ


 .
(A.109)

The first-order condition with respect to WFt is (5.3), and the first-order condition with respect to

X
(τ)
jt is (5.4).
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Using (3.7) and (3.18), we can write λt as

λt = aΣΣ>

− ∑
j=H,F

∫ T

0
Z

(τ)
jt Aj(τ)dτ − ZetAe



= aΣΣ>

 ∑
j=H,F

∫ T

0

[
αj(τ) log

(
P

(τ)
jt

)
+ ζj(τ) + θj(τ)βjt + (ζe(τ) + θe(τ)γt) (−1)1{j=H}

]
Aj(τ)dτ

+

[
αe log(et) + ζe + θeγt + ψet+

∫ T

0
(ζe(τ) + θe(τ)γt) dτ

]
Ae



= aΣΣ>

 ∑
j=H,F

∫ T

0

[
ζj(τ) + θj(τ)βjt + (ζe(τ) + θe(τ)γt) (−1)1{j=H}

−αj(τ)
(
Aj(τ)>qt + Cj(τ)

)]
Aj(τ)dτ

+

[
ζe + θeγt + ψet+

∫ T

0
(ζe(τ) + θe(τ)γt) dτ − αe

(
A>e qt + Ce +

ψe
αe
t

)]
Ae



= aΣΣ>

 ∑
j=H,F

∫ T

0
Aj(τ)

(
θj(τ)Eβj + θe(τ)Eγ(−1)1{j=H} − αj(τ)Aj(τ)

)>
dτ

+Ae

(
θeEγ +

∫ T

0
θe(τ)Eγdτ − αeAe

)> qt

+ aΣΣ>

 ∑
j=H,F

∫ T

0

(
ζj(τ) + ζe(τ)(−1)1{j=H} − αj(τ)Cj(τ)

)
Aj(τ)

+

(
ζe +

∫ T

0
ζe(τ)dτ − αeCe

)
Ae


= −(M − Γ>)>qt + λC , (A.110)

where the second step follows from (2.5) and (2.7), the third step follows from (5.1) and (5.2), and

the fifth step follows from the definitions of (M,λC) in the statement of the proposition. We next

substitute (µet, {µ(τ)
jt }j=H,F , λt) from (A.104), (A.106), (A.108) and (A.110) into the arbitrageurs’

first-order condition. Substituting into (5.3) and identifying terms in qt and constant terms, we

find (5.6) and (5.7), respectively. Substituting into (5.4) and identifying terms in qt and constant
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terms, we find (5.8) and (5.9), respectively.

B Numerical Solution

B.1 Model Dynamics

Stack the J state variables in a vector yt, which include the H and F short rates iHt, iFt, and all

the demand factors. Dynamics:

dyt = −Γ (yt − y) dt+ σ dBt (A1)

where Γ is a J × J matrix determines the mean reversion of the state, and σ determines the

stochastic properties. Define Σ = σσ>.

Write the habitat demand factors as

β
(τ)
jt = ζjt(τ) + y>t Θj(τ)

γet = ζet + y>t Θe

Note that the vector functions Θj(τ) will typically be zero in most elements.

B.2 Characterizing the Solution

Conjecture that all (log) prices are affine in the state variables:

− logP
(τ)
jt = y>t Aj(τ) + Cj(τ)

− log et = y>t Ae + Ce

Define the following matrix

M = Γ> − a
{∫ T

0
[−αH(τ)AH(τ) + ΘH(τ)] AH(τ)> dτ

+

∫ T

0
[−αF (τ)AF (τ) + ΘF (τ)] AF (τ)> dτ

+ [−αeAe + Θe] A
>
e

}
Σ

(A2)
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Then the solution to the affine functions Aj(τ),Ae:

A′j(τ) + MAj(τ)− ej = 0 (A3)

MAe − (eH − eF ) = 0 (A4)

with initial conditions Aj(0) = 0.

Hence equations (A2), (A3), and (A4) implicitly characterize the solution to the model (al-

though in general, the solution is not available in closed form).

B.3 Laplace Transforms

In order to solve the model numerically, we need to take a stance on the functional forms of the

elasticity and demand functions α,Θ. A numerically tractable approach is to assume that T →∞
and use Laplace transforms. Assume that

α(τ ;α0, α1) ≡ α0 exp(−α1τ)

θ(τ ; θ0, θ1) ≡ θ0θ
2
1τ exp(−θ1τ)

and note this implies
∫∞

0 θ(τ ; θ0, θ1) dτ = θ0.

Eq. (A3) is a differential equation characterizing the coefficient functions Aj(τ). Define the

Laplace transform Aj(s) ≡ L {Aj(τ)} (s). Then Eq. (A3) implies:

sAj(s) + MAj(s)−
1

s
ej = 0

=⇒ Aj(s) = [sI + M]−1

[
1

s
ej

]

Additionally, define Xj(τ) ≡ Aj(τ)Aj(τ)>. Note that from Eq. (A3) we can write

A′j(τ)Aj(τ)> + Aj(τ)A′j(τ)> + MXj(τ) + Xj(τ)M> − ejAj(τ)> −Aj(τ)e>j = 0

⇐⇒ X′j(τ) + MXj(τ) + Xj(τ)M> − ejAj(τ)> −Aj(τ)e>j = 0

Define the Laplace transform Xj(s) ≡ L {Xj(τ)} (s). Then we have

[
1

2
sI + M

]
Xj(s) + Xj(s)

[
1

2
sI + M

]>
= ejAj(s)

> + Aj(s)e
>
j
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This is a Lyapunov equation. A sufficient conditions for a unique solution Xj(s) is if all the

eigenvalues of
[

1
2sI + M

]
have positive real parts. The solution can be written

vecXj(s) =

[
I⊗

[
1

2
sI + M

]
+

[
1

2
sI + M

]
⊗ I

]−1

vec
[
ejAj(s)

> + Aj(s)e
>
j

]

≡
[[

1

2
sI + M

]
⊕
[

1

2
sI + M

]]−1

vec
[
ejAj(s)

> + Aj(s)e
>
j

]
However, for numerically computing the solution, more efficient algorithms exist.

With this notation, we have that∫ T

0
αj(τ)Aj(τ)Aj(τ)> dτ = αj0Xj(αj1) ≡ X̃j

∫ T

0
θjk(τ)Aj(τ)> dτ = −θj0kθ2

j1kA
′
j(θj1k)

>

=⇒
∫ T

0
Θj(τ)Aj(τ)> dτ =


...

−θj0kθ2
j1kA

′
j(θj1k)

>

...

 ≡ Ỹj

and note that the nth derivative is given recursively by

A
(n)
j (s) = [sI + M]−1

[
(−1)nn!

sn+1
ej − nA(n−1)

j (s)

]

Finally, define the exchange rate terms

Z̃ = [−αeAe −Θe] A
>
e

where recall Ae = M−1(eH − eF ).

The terms X̃j , Ỹj , Z̃ are all determined by M. Hence we can write the equation characterizing

M, Eq. (A2), as the solution of a root-finding problem:

F (M) = 0

F (M) = Γ> − a
{
ỸH − X̃H + ỸF − X̃F + Z̃

}
Σ−M

The advantage of this approach is the solution does not require computing the eigen-decomposition

and computing exponentials of the eigenvalues, which can lead to numerical instability.
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B.4 Continuation Solution Algorithm

Given model dynamics parameters Γ,σ, the habitat elasticity parameters αj,0, αj,1, the habitat

demand parameters θj,0, θj,1, and risk aversion a, the following continuation algorithm solves for

the endogenous parameters M:

1. Keeping all other parameters fixed, set risk aversion a(0) = 0. The solution to this simplified

model is M(0) = Γ>.

2. Use the solution M(i) to the model in the i step with risk aversion a(i) as the initial point for a

local root-finding algorithm for a(i+1) = a(i) + s(i+1) for some small stepsize s(i+1).

3. If a(i+1) = a, stop. Otherwise, return to step 2.

The algorithm selects the unique equilibrium (if it exists) that persists when tracing the solution

as risk aversion falls to zero.

C Method of Simulated Moments

Let ρ be the set of parameters to estimate. Set ρ̂ in order to minimize the following loss function:

L(ρ) =
N∑
n=1

wn(m̂n −mn(ρ))2

where m̂n and mn(ρ are the empirical and model-implied covariances involving yields and exchange

rates described below.

Given the dynamics in equation (A1), the long-run (unconditional) variance and autocovariance

of the state is given by:

V ar[yt] = vec−1
[
(Γ⊕ Γ)−1vec(Σ)

]
≡ Σ∞ (B1)

Cov[yt+s,yt] = exp(−Γs)Σ∞ (B2)

Hence, moments involving yields and the exchange rate are straight-forward to compute. For

instance, the covariance of H and F τ yields is given by

Cov(y
(τ)
Ht , y

(τ)
Ft ) = [AH(τ)/τ)]>Σ∞[AF (τ)/τ)]
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Note that computing these moments involves first solving the model for any choice of ρ (using

the continuation algorithm defined above).

C.1 Baseline Calibration

C.1.1 Model Specifics

The baseline calibration model is a 5-factor model: H and F short rates, H and F bond demand

factors, and a currency demand factor. The state vector is therefore

yt =


iHt
iFt
βHt
βFt
γet



The corresponding demand vector functions are:

ΘH(τ) =


0
0

θH(τ)
0
0

 , ΘF (τ) =


0
0
0

θF (τ)
0

 , Θe =


0
0
0
0
θe



We allow for the following correlation structure:

Γ =


ΓiH ΓiH ,rF 0 0 0

ΓiF ,rH ΓiF 0 0 0
ΓβH ,rH ΓβH ,rF ΓβH 0 0
ΓβF ,rH ΓβF ,rF 0 ΓβF 0
Γγe,rH Γγe,rF 0 0 Γγe

 , σ =


σiH 0 0 0 0
σiF ,rH σiF 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



For the habitat elasticity and demand functions, the exponential terms αj,1 and θj,1 are set to

0.4. Hence, we have the following parameters to estimate:

1. 13 parameters in the Γ matrix.

2. 3 parameters in the σ.

3. 3 elasticity size parameters: α0H , α0F , αe.

4. 3 demand size parameters: θ0H , θ0F , θe.
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C.1.2 Target Moments

We use the US and the UK as the Home and Foreign country. The zero-coupon yield curve data is

from Wright (2011) (frequency: monthly, from 1986).

Targeted variances and covariances:

Variable i Variable j Maturity
itH itH
itF itF

∆itH ∆itH
∆itF ∆itF

itH − itF itH − itF
∆itH itH − itF
∆itF itH − itF
∆e ∆e

∆̃e ∆e
itH − itF ∆e

y
(τ)
H − y

(τ)
F ∆e X

∆y
(τ)
H ∆y

(τ)
H X

∆y
(τ)
F ∆y

(τ)
F X

y
(τ)
H − y

(τ)
F y

(τ)
H − y

(τ)
F X

∆y
(τ)
H ∆itH X

∆y
(τ)
F ∆itF X

y
(τ)
H − itH y

(τ)
H − itH X

y
(τ)
F − itF y

(τ)
F − itF X

∆y
(τ)
H y

(τ)
H − itH X

∆y
(τ)
F y

(τ)
F − itF X

y
(τ)
H − y

(τ)
F ∆itH X

y
(τ)
H − y

(τ)
F ∆itF X

For moments involving the “short” rates, we use the 12-month yields for each country. The

∆ prefix denotes the 12-month forward difference. So ∆xt = xt+12 − xt for any variable xt. ∆̃

denotes a “long” 24-month difference. The first ten rows refer to single moments, while the bottom

12 rows refer to collections of moments (as a function of maturities, up to a maximum maturity of

15 years).

Note that, with the exception of the first two rows, all of the moments are either time differences

or country differentials. The variances of the levels of the short rates (H and F) are the only

exception. We remove a common linear time trend from these series before computing this variance
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in the data.

Table B1: Estimation Results

Parameter Value

σiH 1.6909
σiF 1.9486
ΓiH 0.2900
ΓiF 0.6491
σiH ,iF 0.3809
ΓiF ,iH -0.8220
ΓiH ,iF 0.4349
ΓβH 5.0891
ΓβF 0.9081
Γγe 0.1469
ΓβH ,iH -0.8565
ΓβF ,iF -4.3071
Γγe,iH -0.3915
Γγe,iF -0.1599
ΓβH ,iF -0.0089
ΓβF ,iH 6.4928
θH0 3.6420
θF0 0.0274
θe 0.1419
αH0 0.0284
αF0 0.0005
αe 0.0376
θH1 0.2357
θF1 0.1324
αH1 0.1289
αF1 0.2616

Note: The table reports the GMM estimates of the model according to eq. (5.15).

Table B1 reports the results of the calibration exercise.
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