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Decentralized Exchanges

Preliminary

Abstract

Uniswap is one of the largest decentralized exchanges with a liquidity balance of over 3
billion USD and daily trading volume of over 700 million USD. It is designed as a system
of smart contracts on the Ethereum blockchain, and is a new model of liquidity provision,
so called automated market making. We collect and analyze data on all 19 million Uniswap
interactions from 2018 to the current time. For this new market, we characterize equilibrium
liquidity pools and provide evidence that they are stable. We compare this automated market
maker to Binance and establish absence of arbitrage and show conditions under which the
AMM dominates a limit order market.



1 Introduction

Uniswap is a decentralized exchange that launched in November 2018. To date, committed
liquidity supply tops 3 billion USD among various cryptocurrencies. This liquidity facilitates
transactions worth over 700 million USD per day. One of the striking features of this successful
exchange is that instead of a centralized limit order book, it uses a novel model of liquidity
provision. In this paper, we provide a detailed empirical analysis of UniSwap and analyze the
way in which “automated market making” provides liquidity and what this new protocol informs
us about centralized order limit order markets.

In an automated market maker (AMM) such as Uniswap, each asset pair comprises a distinct
pool or market. Agents supply liquidity by adding both assets in proportion to the existing
pool size. Agents demand liquidity by adding one asset and removing the other. The ratio of
the two traded assets, is the average price paid and is calculated according to a predetermined
downward sloping, convex relationship. This is referred to as a bonding curve. The convexity
implies that larger orders have a larger price impact. In addition, all liquidity demanders pay a
proportional fee to the liquidity suppliers.

We focus on two key differences between an AMM and a limit order market. First, in the
AMM, the benefits and costs of supplying liquidity are mutualized: Liquidity suppliers are not
in competition. In contrast, in the limit order book, strategic liquidity suppliers actively compete
with each other – the costs and benefits of supplying liquidity are individual to each liquidity
supplier. Second, in the AMM price impact is deterministic. In particular, the transaction price
is determined by the bonding curve and is perfectly predictable given the size of the liquidity
pool. By contrast, in the limit order market, liquidity suppliers choose the price impact that
maximizes their profits.

We investigate the equilibrium effect of these two key differences in a market for an asset
whose fundamental value is volatile. Risk neutral liquidity suppliers, a liquidity demander and
an arbitrageur all interact. In both markets, liquidity suppliers may be adversely selected as
liquidity is posted before any potential asset innovation. In a stylized limit order book market,
competing liquidity suppliers post prices to trade off adverse selection risk against profitable
liquidity supply. Of course, if two liquidity suppliers are competing in the same market, each
earns zero in expectation. Because of this, each liquidity supplier has an incentive to invest in
monitoring technology to find trading opportunities in which he does not have to compete. This
captures the idea that liquidity is cheap if two suppliers are competing on price. However, if
they compete on other dimensions such as in speed, it may increase the cost of liquidity.

In the AMM, we consider the expected payoff to liquidity provision. This comprises the direct
payoff to supplying liquidity (typically in the form of fees) and the indirect cost of supplying
liquidity which is the loss of committed capital if the liquidity supplier trades against an informed
arbitrageur. Recall, that a liquidity supplier deposits assets in the pool. Thus, if the relative
price of one of the asset shifts, an arbitrageur would find it profitable to buy the underpriced
asset. The arbitrageur effectively rebalances the liquidity suppliers’ portfolio at disadvantageous
terms. The equilibrium size of a pool balances the fee revenue against this “picking off” risk.
Equilibrium is reached through a change in the size of a pool rather than a change in price
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because larger pools mechanically have a smaller price impact.

Intuitively, in the limit order market liquidity suppliers retain all the price impact revenue from
supplying liquidity, whereas in the AMM, arbitrageurs obtain this benefit and liquidity suppliers
only earn the fees. In this way, the overall gains from trade in the each market is split differently
among the various market participants, which affects agents’ incentives to supply liquidity. In
the limit order market, the fact that there can be both competition that decreases transaction
costs and competition that increases transaction costs means that it does not always dominate
the AMM. Indeed, for assets that have lower volatility (and hence adverse selection) the AMM
can be more effective (i.e., is cheaper) at providing liquidity. This observation depends on the
fundamental parameters of the tokens traded.

In order to verify our predictions, we collected a detailed data set of 43,349,198 interactions with
the Uniswap smart contract. These allow us to identify all flows into and out of 36,958 liquidity
pools as well as all the token trades. We can trace how liquidity is both supplied and demanded
for each set of asset pairs. The preponderance of liquidity provision is for wrapped Ether and
US dollar stablecoin pools.

Our data is consistent with an equilibrium pool size – for large pools an increase in liquidity
flows leads to future liquidity withdrawals, while for smaller pools growth in pool size lead to
more liquidity additions. Further, high past returns lead to future inflows while low past returns
lead to future outflows. We also find that liquidity use is persistent. These results suggest that
the AMM provides stable liquidity in comparison to a limit order market.

We compare prices and volume for tokens listed on both Uniswap and Binance and find that
prices are close. Pricing error is smaller when trading volume is somewhat evenly distributed
between exchanges, when token price volatility is small, trading volume in general is high,
transaction costs on the Ethereum blockchain are low, and when price impact is low. Consistent
with our model, we find that price impact on Uniswap is small with low volatility, while price
impact on Binance is higher and exhibits a high volatility. Of course, we observe this difference
because of the equilibrium choice of pool size and trading venue. Thus, there are assets for
which a liquidity trader would prefer an automated market maker.

Although time priority (or first in, first out queuing) is standard practice in most markets,
there has been little research to determine the optimality of this precedence rule: Lawrence R.
Glosten (1998) is a rare exception. In this paper, he shows that pro rata rationing changes the
marginal payoff to liquidity provision and hence the posted volume. Richard Haynes & Esen
Onur (2020), using a natural experiment from the Treasury Futures market, find that under pro
rata rationing, while order sizes and profitability of later submissions are higher, price efficiency
is lower.

There is a large literature on liquidity provision in limit order markets. Since Lawrence R.
Glosten (1994), the efficiency of the limit order book in supplying liquidity has been widely
accepted. Most modern markets operate as a form of an open electronic limit order book. More
recently, the rise of high frequency traders has generated research into competition that does
not lead to cheaper liquidity. Bruno Biais, Thierry Foucault & Sophie Moinas (2015) present
a nuanced view of the effect of speed on market competition as it generates both positive and
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negative externalities. Empirically, Jonathan Brogaard, Terrence Hendershott & Ryan Riordan
(2019) examine the limit orders submitted by HFT on a Canadian exchange. They document
high limit order submission and cancellation (95% of the message traffic), which is consistent
with strategic liquidity provision.

A few papers have analyzed the theoretical properties of constant function market makers. In a
general framework, Guillermo Angeris & Tarun Chitra (2020) show how this class of mechanisms
can reflect “true” prices. They also provide a bound on the minimum value of assets held by such
an automated system. These two concepts are related because of the increasing price impact
faced by a potential arbitrageur. Further, Guillermo Angeris, Hsien-Tang Kao, Rei Chiang &
Charlie Noyes (2019) presents a more specific analysis of Uniswap, while Andreas Park (2021)
points out blockchain related costs inherent in AMM’s. Further, Jun Aoyagi (2020) characterizes
the effect of information asymmetry on these types of markets and shows that the equilibrium
liquidity supply size is stable. Most closely related to our work is Agostino Capponi & Ruizhe
Jia (2021). They present a model and test of an AMM with a focus on competition among
arbitrageurs. This competition allows them to consider the joint determination of gas fees and
pool size. By contrast, our focus is on the comparison of a limit order market with AMM as
markets for liquidity.

1.1 Detailed Description of Constant Product, Automated Market Making

A general analysis of constant function market makers appears in Angeris & Chitra (2020);
while Angeris et al. (2019) examine the Uniswap protocol specifically. In this subsection we
describe the market making mechanics, for readers unfamiliar with this protocol. We present
an additional numerical example in Appendix B. Our model section follows in Section 2 below.

Providing Liquidity: Each swap pool comprises a pair of cryptocurrencies. Most frequently,
as we document below, one of the currencies is Eth, the native cryptocurrency on the Ethereum
Blockchain. We will typically use Eth as the numeraire, and refer to the other generic coin as
the ‘token.’ An agent wishing to provide liquidity to their preferred pool deposits both Eth and
the token into the pool. The deposit ratio of Eth to token is determined by the existing ratio in
the pool, which implicitly defines the Eth price of the token.

An agent who makes such a deposit receives a proportional amount of a liquidity token. This
third token is specific to the pool and represents an individual liquidity provider’s share of the
total liquidity pool. As the pool trades with users, the value of the liquidity pool may rise or fall
in value. Liquidity providers can redeem their liquidity tokens at any time and get their share of
the liquidity pool paid out in equal value of ETH and tokens. Providing liquidity is potentially
profitable because each trade faces a tax of 30bps which is redeposited into the pool. Of course,
in keeping with any form of passive liquidity there is the possibility of being adversely selected.

Consummating Trade: Suppose a trader wishes to buy the token. In this case, he will deposit
Eth into the pool, and withdraw the token. The amount that he has to deposit or withdraw
depends on the bonding curve which is illustrated in Figure 1. Before the trade, there are E0

Eth and T0 tokens. The ratio of Eth to tokens is the implied price quoted by the pool. Someone
who is interested in selling an arbitrarily small amount of the Token, would pay or receive E0.
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To trade a larger quantity, consider someone who wishes to sell some of the Token. This would
mean that the trader deposits some amount T1 − T0 of the token into the pool. In return, he
would receive E1 − E0, and the amount of Eth in the pool drops. If the seller was a liquidity
trader, the post trade price in the pool is now too low and a potential arbitrageur would enter
the market to restore the ratio to equilibrium.

Eth

Token

E0

T0 T1

E1

Figure 1. A bonding curve. From an initial amount of Eth and Tokens of E0 and T0 respectively, a
trader deposits T1 − T0 tokens (sells) in exchange for E1 − E0 Eth. the price impact of this trade is
determined by the bonding curve.

If T0 is the amount of tokens and E0 the amount of ETH in the contract’s liquidity pool, then
the terms of trade are set such that for any post trade quantities before any fee revenue T1, E1

k := T1 · E1 = T0 · E0. (1)

In other words, the product of the Token and ETH quantities is always on the bonding curve.
For each pool, the constant k, depends on the amount of liquidity that has been deposited in
the pool up to this point. We note that if more liquidity is posted, the constant changes. This
is the mechanism through which the market equilibrates.

Assessing Liquidity Fees: The previous clarifies the terms of trade absent the liquidity fee.
Of course, remuneration is important for the liquidity providers. To see how the fee affects
trades and prices, suppose that an agent wants to trade e ETH in exchange for tokens. The
exchange collects a fee τ , which benefits liquidity holders.1 Thus the effective amount of ETH
that gets traded is (1 − κ)e. This leads to a post trade, but before fee revenue liquidity pool
balance of E′ = E+ (1− τ)e. Following the logic of the bonding curve (1), the post trade token
balance must be

T ′ =
T · E
E′

=
T · E

E + (1− τ)e
. (2)

The smart contract which executes the trade accepts the e ETH and returns the difference
between the pre and post trade token balances. Or, the amount of token t that the trader

1Uniswap collects a fee of 30bps per trade.
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receives is given by

t = T − T ′ = (1− τ)eT

(1− τ)e+ E
. (3)

Therefore, the terms of trade expressed in ETH/token is given by

ptot =
e

t
=
e

T
+

E

(1− τ)T
. (4)

The liquidity fee generates what is essentially a tick size that is distinct from the volume-induced
price impact that the trader pays when he moves long the bonding curve, then

lim
e→0

ptot

p0
=

ET

ET (1− τ)
=

1

1− τ
(5)

That is, when buying tokens, traders have to pay a fixed spread of 1
1−τ p0. Similarly for token

sales traders have to pay a fixed spread of (1− τ)p0.

Pool size: The price that a trader gets is determined by the bonding curve and the volume of
posted liquidity. In particular, the price impact of a marginal increase in the order is ∂p/∂e =
1/T . As the liquidity pool grows, the price impact of a fixed order size decreases. Thus,
understanding the payoff to liquidity provision is an important determinant of AMM market
quality.

Figure 2 presents an example of an ‘orderbook’ that an incoming trader might face. The blue
line is for a small pool and the orange line for a large pool. Because Uniswap has a unique
mapping of trading quantity to price, the graph shows the exact amount that is traded at any
price. The spread or fixed cost of trading is manifested in the interval around the mid-price of
10 for which no quantities can be bought.

2 Framework

Consider a market with one asset, with current value p0. With probability α there is an innova-
tion and the asset is equally likely to jump up or down to p0 + σ or p0 − σ respectively, else the
asset value remains p0. A potentially informed trader monitors the market and trades whenever
profitable, otherwise a passive trader, who trades a fixed quantity q, arrives. The passive trader
is equally likely to buy or sell, at any price p ∈ [p0 − σ, p0 + σ] at the extreme prices a trading
crowd stands ready to execute orders.

There are two rational, deep pocketed, liquidity suppliers who potentially enter the market
before the passive trader and supply liquidity that optimally trades off the surplus they can
extract from the liquidity trader against the possibility of being “picked off” by an arbitrageur.
We focus on the case of two liquidity suppliers as it is the minimum required for competition.

If needed, rational liquidity suppliers can search over profitable asset markets in which to supply
liquidity. The probability that a liquidity supplier finds a profitable market in which to post

5



8 9 11 12

1

2

3

4

5

A
m
o
u
n
t
o
f
T
o
k
en

B
tr
a
d
ed

a
t
p
ri
ce

Price Token A / Token B

Figure 2. Uniswap orderbook depth The graph shows how many Token B could be bought or sold
at a given price for a large (orange) and small (blue) liquidity pool, respectively. The parameters are:
κ = 0.003 and T = 20, E = 200 for the large pool, and T = 10, E = 100 for the small pool.

liquidity is γ. This is determined by an ex ante investment in monitoring technology; at a
cost I(γ) = aγ2. The monitoring technology captures the fact that in some markets, liquidity
provision may require active monitoring.

To simplify the exposition, in the text we describe the case where the informed trader buys, i.e.,
if there is an innovation the asset value jumps up. The case where the informed trader sells is
symmetric. We characterize symmetric equilibria.

2.1 Limit order market

The sequence of events in the limit order market is as follows: First, each liquidity supplier
chooses their level of investment in the monitoring technology. Second, in any specific asset
market, nature determines the number of limit order submitters, then the limit order submitters
post their orders. Nature then determines the new asset value. If there is no information event,
the liquidity trader arrives and trades against the best quote or randomizes if indifferent. If
there was an information event, the informed trader trades if it is profitable.

Liquidity suppliers may be alone or competing in a market. We characterize their optimal
trading strategies in both cases, and then consider the investment in monitoring technology.
The amount that the liquidity trader trades is fixed, q, and so this is also the amount that
the liquidity suppliers post. Notice, that the informed trader will trade the maximum amount
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Liquidity Sup-
pliers invest in
Monitoring Tech-
nology

Nature Allocates
LS to a market

LS post optimal
orders

Nature draws an
asset innovation

Liquidity Trader
or Arbitrageur
Trades

Figure 3. Sequence of Events in the Limit Order Market

possible if it is profitable, i.e., 2q.

If a liquidity supplier is alone in the market, then he will always post a sell price of p0 + σ.
Posting at this high price completely mitigates adverse selection, and at the same time extracts
maximal surplus from the passive trader.

Lemma 1 A monopolist liquidity supplier in the market, will post a sell price of p0 + σ, and a
buy price of p0 − σ to obtain an ex ante profit of q(1− α)σ.

By contrast, if two competing liquidity suppliers are in the market then a liquidity supplier who
charges the highest feasible price will always be undercut and lose out on the profitable trade
against the passive trader. In this way, rivalrous liquidity provision will make them aggressively
undercut. The symmetric equilibrium is in mixed strategies.

Lemma 2 If two competing liquidity suppliers are in the market offering orders to sell, then in
the symmetric, mixed strategy equilibrium each will choose a distribution over prices F s(·) over
[psmin, p

s
max], where

F s(p) =
(p− p0)− ασ

(p− p0)(1− α)
,

with psmin = p0 + ασ and psmax = p0 + σ.

A symmetric expression holds for competing liquidity buyers. Each competing liquidity supplier
makes zero profits.

A sole liquidity supplier makes positive profits, while those in competition make zero profits.
Increasing investment in the monitoring technology makes it more likely that a liquidity sup-
pliers finds a profitable market in which to post liquidity and potentially make positive profits.
The logic in support of competitive liquidity provision is that competition leads to lower prices.
However, this is only true if the only dimension on which firms are competing is price. Given the
complexity of modern electronic markets, liquidity suppliers compete for more profitable oppor-
tunities. Such competition does not necessarily lead to lower prices and may even be inefficient.
In the context of our framework, we capture this through liquidity suppliers’ investment in a
monitoring technology.
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Proposition 3 Each trader chooses a monitoring intensity, γ∗ = (1−α)σ
2a+(1−α)σ . The optimal mon-

itoring intensity is increasing in σ, the size of the asset innovation, and decreasing in α.

The limit order traders find it profitable to trade with the noise traders, and σ captures the
extent to which they can extract surplus from them. They make no profits on trading with the
informed trader, and so are less likely to invest in monitoring if informed trade is more likely.

2.2 Automated Market Maker

In the AMM or bonding curve market, liquidity suppliers choose a market and commit quantities
of both Eth and Tokens. The first thing to observe is that liquidity provision is not rivalrous
and there is no incentive to monitor the market. The second thing to observe is that the AMM
requires committed capital.

Suppose that investors have each committed E0 Eth and T0 tokens. Two identities from the
bonding curve will be useful: First, the ratio of Eth to tokens, in equilibrium, is the Eth price
of tokens implied by the bonding curve market or

E0

T0
= b0. (6)

We will start our analysis under the assumption that the price in the bonding curve market is
equal to the equilibrium price, or b0 = p0. Second, any transactions must occur along the curve.
Specifically, if an amount t tokens and e ether are traded, then

E0T0 = k, (7)

and (E0 + e)(T0 + t) = k (8)

where k is the constant of the bonding curve. We simplify the algebra that follows by assuming
that liquidity fees do not change the size of the pool, but are placed into a separate account. In
reality, liquidity fees are paid into the pool and therefore change the bonding curve constant.
The timing of events is show in Figure 4 below.

First consider the payoffs to liquidity provision if a liquidity trader arrives. If the liquidity trader
buys tokens, they will remove q tokens, and will buy these with the numeraire good, Eth. Thus,
they add in eb` to the Eth pool. The specific amount of Eth they add is determined by the
bonding curve, so

(E0 + eb`)(T0 − q) = E0T0

eb` =
E0T0
T0 − q

− E0.

Per the protocol, liquidity providers receive a fee for facilitating this transaction. We model this
by assuming that a fee is deposited into a separate account. The fees paid by this noise trader
are τeb`.
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Figure 4. Sequence of Events in the Automated Market Maker

Reversing this trade (so selling tokens to the pool) is profitable for the arbitrageur if eb`(1− τ) <
p0. If τ is sufficiently small, there is an arbitrage opportunity, and therefore the arbitrageur
will add tokens and remove Eth. (We note in passing that this is a simplification. In reality, an
arbitrageur will trade slightly less than eb`. The size of this effect is negligible and of the order
τ2.) To effect this trade he also pays the fee. Under our maintained assumptions, the payoff to
liquidity provision is twice the fee paid by the liquidity trader.2 Or, 2τeb`.

Symmetrically, if the liquidity trader is a seller, they will deposit q tokens and remove es` =
E0 − E0T0

T0+q
. The arbitrageur will buy tokens. These two transactions generate a fee revenue of

2τes` .

Lemma 4 Suppose that the aggregate amount of Eth and Tokens in a liquidity pool are E0 and
T0 respectively, and τ is sufficiently small. With probability (1 − α), there is a liquidity event
and the fee revenue for liquidity provision is:

2τp0q

(
T0

T 2
0 − q2

)
. (9)

Now suppose that there was a positive innovation event so that an informed trader arrives. Since
the pricing is deterministic she will trade an amount that maximizes her profit. She will buy
tb tokens and pay ebI for them. The Eth payment is pinned down by the bonding curve, which
requires that (T0 − tb)(E0 + ebI) = E0T0 which gives her a profit function of

πbI = (p0 + σ)tb − (1 + τ)

[
E0T0
T0 − tb

− E0

]
. (10)

2In reality, the arbitrageur faces a different size pool than the liquidity trader as the liquidity fee has been
paid into the pool. To simplify the algebra, we do not consider this incremental effect.
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Given the convexity of the bonding curve, the optimal trading amount is determined by the first
order condition,

(p0 + σ)− (1 + τ)
E0T0

(T0 − tb)2
= 0, (11)

which implies

tb = T0 −

√
(1 + τ)E0T0
p0 + σ

(12)

ebI =

√
E0T0(p0 + σ)

(1 + τ)
− E0. (13)

We note that is optimal for the informed trader only if tb ≥ 0, or τ ≤ σ
p0

, so that the transaction
cost is low relative to the innovation.

After the innovation, absent informed trading, the Eth value of the total supplied capital would
be E0 + (p0 + σ)T0. Given the informed trade, the Eth value of the supplied capital is

E0 + ebI + (p0 + σ)(T0 − tb)

=
√
E0T0(p0 + σ)

(
2 + τ√
(1 + τ)

)

Therefore, the change in value of supplied capital for liquidity suppliers after an increase in the
value of the asset is: (

2 + τ√
(1 + τ)

)(√
T0E0(p0 + σ)

)
− (E0 + (p0 + σ)T0) (14)

This change in value corresponds to “picking off” risk, in the sense that the informed trader
rebalances the amount of Eth and Tokens to reflect the value in the wider market. In addition,
however, the arbitrageur pays a liquidity fee. Consistent with the previous case, we assume that

this is levied on the Eth total, for an amount equal to τ
(√

E0T0(p0+σ)
(1+τ) − E0

)
.

Lemma 5 Suppose that the aggregate amount of Eth and Tokens provided are E0 and T0 re-
spectively, and τ ≤ σ

p0
. With probability α

2 , the asset value jumps up and the payoff to liquidity
provision is:(

2 + τ√
(1 + τ)

)
T0

(√
p0(p0 + σ)

)
− (T0p0 + (p0 + σ)T0)︸ ︷︷ ︸

Picking off

+ τ

(
T0

√
p0(p0 + σ)

(1 + τ)
− p0T0

)
︸ ︷︷ ︸

liquidity provision

. (15)

A symmetric expression holds for a jump down in the asset value.
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Armed with Lemmas 4 and 5 we can determined the overall payoff to liquidity provision for the
entire pool and thus the equilibrium size of the pool.

Proposition 6 Suppose that 0 < τ < σ
p0

, then the equilibrium supply of Tokens is given by

T0 = q

[√
1 +

(1− α)2τ2p20
α2ω2

− (1− α)τp0
αω

]
(16)

Where ω =
√
p0(p0 + σ)(1 + τ) +

√
p0(p0−σ)

1+τ − 2p0.

The parameter restrictions under which equation 16 characterizes pool size are intuitive. If the
payoff to liquidity suppliers is too small, then pools are not sustainable. If the payoff to liquidity
provision is too large, then arbitrageurs will not find it lucrative to trade on information, and will
also not trade to ensure that the price implied by the pool corresponds to the true value of the
token. Going forward, we assume that these conditions hold because our empirical focus is on
the pools which we observe; further as we show in our empirical analysis, the prices implied by
Uniswap consistently track traded prices on Uniswap which suggests that cross-market arbitrage
is profitable.

3 Data and stylized facts

Decentralized exchanges (DEX) are smart contracts mostly deployed on the Ethereum blockchain.
Users initiate trade as an Ethereum transaction that sends tokens to a smart contract which calls
a function to perform the exchange. The smart contract then sends trade proceeds in the form
of the appropriate tokens back. Since transactions on Ethereum are atomic, or in other words
they either execute completely or fail, there is no settlement risk and users do not have to hand
over custody of their digital assets to a third party. In keeping with other DeFi protocols, the
source code for many DEXs is public and users can verify that the code is not fraudulent. They
also allows them to perfectly predict how the smart contract will perform and more specifically,
the terms of trade.

Uniswap is open source with no owner or operator. It was launched in November 2018 at
Devcon 4, and the first pool allowed swaps between ETH and the Maker token (MKR). In its
first release, Uniswap V1, allowed exchange between any ERC20 tokens against Ether (ETH). If
no pool exists for a specific token pair, it can be freely created by invoking the Uniswap factory
contract, and specifying the token for which a new pool should be created. The factory contract
will then deploy a new pool for that specific token on the Ethereum blockchain, and enable
subsequent trade.

Uniswap V2 was launched on May 18, 2020. The update allows direct trade of any ERC 20
token pairs and includes Tether (USDT). As we document below, most V2 pools trade tokens
against wrapped Ether (WETH), which is a ERC 20 representation of Ether (ETH). In addition,
V2 generates a moving average of past prices which other smart contracts can use as a reference
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price or “oracle.” Many other smart contracts use Uniswap as a price feed, in the same way that
traders in traditional financial markets use Bloomberg. 3 Because Uniswap has no designated
operator, V1 pools cannot be deleted from the blockchain and exist in parallel to V2 pools.

Before we describe the data, it is important to note that in contrast to traditional exchanges,
UniSwap liquidity pools are not certified. There are no listing requirements. A consequence
of this is that some of the token pools are purposely misleading. For example, five different
tokens in our sample share the same ticker symbol USDC. A naive user, who does not verify
the relevant smart contract addresses could be tricked into buying a worthless coin with the
same ticker.4 Overall trading activity in these fradulent pools is limited and will not affect our
results. We provide detailed information on fake tokens in Appendix ??.

To collect our data, we obtained a list of all Uniswap V1 and V2 liquidity pools from the original
factory contract transactions. Our sample comprises 36,958 individual liquidity pools, consisting
of 3,937 V1 pools and 33,021 V2 pools. We matched transactions into and out of these liquidity
pools with block-by-block transactions on the Ethereum block chain. In total we have 47,204,920
transactions on Uniswap from its inception on November 2, 2018 until May 20, 2021. From the
Ethereum blockchain we observe 1,084,581 liquidity injections into a pool, 582,063 withdrawals
of liquidity from a pool, and 45,481,500 trades of tokens.

A Uniswap transaction is a set of instructions that are processed in the same block. Apart from
implicit limits on transaction sizes given by Ethereum block size, there is no limit on how many
interactions with Uniswap liquidity pools can be done in one transaction. In our sample 79.7%
of Ethereum transactions only have one interaction with one liquidity pool, another 18.4% have
two interactions. 1615 transactions or 0.006% if the sample have 10 or more interactions with a
liquidity pool. The most complex transaction in our sample has 60 interactions with 6 different
Uniswap liquidity pools.5 It is important to recognize that our analysis is on liquidity supply
on both a limit order market and an AMM. Therefore, we do not consider market access fees –
either on the limit order market (e.g., co-location) or on the AMM (e.g., gas fees). The latter
are analyzed in Capponi & Jia (2021).

Transactions are finalized if they are incorporated onto the Ethereum blockchain, and anything
that happens in the same block effectively happens at the same time. For this reason, flash
swaps were introduced in Uniswap V2. This feature allows a user to borrow any amount up to
the total liquidity available in a pool, only if the whole sum gets returned in the same Ethereum

3Oracles provide information to other smart contracts. There have been cases of oracle manipulation: traders
placed large orders on Uniswap V1 to affect the price used by other smart contracts to value loan collateral. Once
prices revert to normal they default on the undercollateralized loan.

4The ‘real’ USDC stable coin resides under address 0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48 and
has over 4 million token transactions on the Ethereum blockchain. A token with the same ticker is
0x0xEFb9326678757522Ae4711d7fB5Cf321D6B664e6. Somebody created a Uniswap liquidity pool for this copy-
cat token at the address 0x1bffb8a3fede9f83a3adc292ebf1716d40b220c1, which has a total of 10 trades and the
size of the pool never exceeded 50 ETH.

5see Ethereum transaction 0x2d732ab5aeb05eeb52eebb9a6086e77b15198fe61a827648b2e43a79fb1902ec.
Uniswap V2 introduced router contracts that can perform complex transactions with one function call. Assume
for example that a pool exists that trades tokens A and B, another pool trades tokens B and C, and there is no
pool to swap A and C. The router contract can then be instructed to swap A and C by trading through token B.
In our sample such a transaction would show up as two separate transactions, one for each of the two involved
pools.
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transaction. Because an Ethereum transaction is atomic, – i.e., it is either executed in its entirety
or not at all – there is no credit risk for lenders as the loan is both originated and repaid in
the same transaction.6 In our data, 56,606 transactions combine liquidity additions or removals
with swaps or flash swaps. To be consistent with websites like uniswap.info we include flash
swaps in volume computations in this paper. Liquidity providers earn a fee identical to the one
on regular token swaps that is based on the gross amount of the flash loan regardless whether
the repayment is the same token that was borrowed or not. For liquidity providers flash swaps
offer a risk free way to earn earn higher fees.

Most pools trade against WETH. To compute volume we take the WETH part of the trade and
convert it to USD using Binance minute by minute data. Most of the remaining pools trade
against a USD stablecoin. For those pools we convert the amount traded in the stablecoin to
USD. For all remaining pools we search for all pools where one of the tokens trades against
WETH and convert it using the prices from the pool with the highest volume.

Table 1 provides an overview of the 10 largest Uniswap V1 and V2 pools by total aggregate
volume in ETH. V1 pools are smaller both in terms of volume as well as in number of trades,
mostly because the introduction of V2 coincided with a huge boom in Decentralized Finance and
caused most traders and liquidity providers to converge on the new protocol. The largest pool
in terms of total volume traded is Tether (USDT) - Wrapped ETH with an aggregate volume
(over all days) of over 26.5 billion USD. This pool also has the highest number of total trades
in our sample –over 2.75 million trades. The “on average” largest pool in ETH is FEI-WETH
with an average size of around 375 thousand ETH.

While some of the pools are very active, many are not: 24,466 pools in our sample have fewer
than 100 transactions. Figure 5 shows the number of trades by pool. With the release of V2
trading activity in V1 declined. We also observe that for V2 pools trading against WETH
(orange) dominates direct trading of other tokens (red).

Figure 6 illustrates the trading volume per day. Computing volume is not straightforward in
Bonding curve markets as attackers often deliberately push markets out of equilibrium. The
highest volume in our sample is on March 31, 2021 with a volume of 18.33 billion USD. On
that day, a trader moved 5.5. billion USD of a token back and forth between her own wallets.
Another spike was on October 26 with a volume of over 5.5 million ETH or USD 2.1 billion,
and is linked to an attack on Harvest Finance using a flash swap. A more detailed discussion of
this incident and implications for Uniswap volume can be found in Appendix A. Use of Flash
Swaps varies in our sample. Out of the 379 days when V2 was deployed, flash swaps occurred
on 339 days. The median flash swap volume per day was 41,265 USD and the maximum was
17,1 billion USD on March 30, 2021.

The largest non-flash swap trade in our sample was on December 17, 2020 when a trader swapped
48,584,947.17 DAI for 342,252.89 WETH, worth about USD 220.4 million at the time as part of
an attack on the platform Warp finance. Many large trades are part of an exploit that targets
weaknesses in a platform’s code. On June 18, 2020, a trader swapped 100,000.39 WETH (about

6Other protocols also offer flash loans, but Uniswap is unique because the borrowed amount can be repaid in
any combination of pool tokens as long as the value repaid equals the value borrowed. Borrowers pay a fee on
amounts borrowed.
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Token 1 Token 2 Number Volume Volume Pool size
Transactions (ETH) (USD) (ETH)

Panel A: Uniswap V2

Wrapped Ether WETH Tether USD USDT 7,516.2 83,445 72,383,925 211,915
USD Coin USDC Wrapped Ether WETH 5,757.4 81,018 71,535,793 197,864
Dai Stablecoin DAI Wrapped Ether WETH 3,008.9 46,683 36,897,989 162,671
Uniswap UNI Wrapped Ether WETH 2,429.9 31,156 26,624,652 53,511
Wrapped BTC WBTC Wrapped Ether WETH 957.9 29,277 23,932,848 284,151
Fei USD FEI Wrapped Ether WETH 288.6 26,780 68,605,073 374,990
yearn.finance YFI Wrapped Ether WETH 872.1 19,994 9,318,935 27,322
Tendies Token TEND Wrapped Ether WETH 144.3 16,260 24,569,585 724
SushiToken SUSHI Wrapped Ether WETH 894.5 14,860 6,750,425 77,097
Wrapped Ether WETH Truebit TRU 3,680.3 14,171 43,746,104 1,647

Panel B: Uniswap V1

Ether ETH Dai Stablecoin DAI 540.6 2,681 524,088 9,226
Ether ETH HEX HEX 219.4 1,801 378,702 22,300
Ether ETH USD Coin USDC 258.0 1,274 287,165 6,858
Ether ETH Maker MKR 118.3 1,101 217,221 11,010
Ether ETH LoopringCoin V2 LRC 20.5 983 365,065 794
Ether ETH Sai Stablecoin v1.0 SAI 166.4 770 153,078 5,030
Ether ETH Synthetix Network Token SNX 124.8 700 130,702 3,480
Ether ETH Synth sETH sETH 44.1 576 110,465 26,579
Ether ETH UniBright UBT 108.0 279 58,212 635
Ether ETH Pinakion PNK 40.7 197 59,877 1,544

Table 1. Ten largest exchanges for Uniswap V1 and V2, respectively, sorted by volume.
Number transactions is the daily average number of transactions, Volume (ETH) is the daily average
volume in Ether, Volume (USD) is the daily average volume in USD, and Pool size (ETH) is the daily
average pool size in Ether. We exclude pools with less than 5,000 total transactions. .

USD 23.2 million USD at the time) for 1,695,998.19 UniBomb tokens as part of another exploit.7

The median trade size in our sample is 845.21 USD. 33.5% of trades are below 0.5 ETH and
15.3% are below 100 USD. We provide details on our methodology in Appendix A.

Figure 7 presents the network of pools between all tokens that are part of the 50 largest pools by
volume. The thickness of the line corresponds to the trading volume between the tokens and the
color of the token-markers is proportional to the log of the depth of the liquidity pools for that
token with red marking the most liquid tokens. We can see that Wrapped Ether (WETH) takes
a central position in the Uniswap network. For our whole sample of 36,958 tokens we find that
30,912 tokens, or 73.64%, trade directly against WETH. The second highest number of tokens,
1,538, trade against USDT. The highest volume and the most connections are between WETH
and USD stable coins such as USDT, USDC, and DAI. 2,913 tokens or 7.88% of tokens are
trading directly against these three stablecoins. We note in passing that the Uniswap network
has a core-periphery structure similar to many other financial networks. 27,773 tokens or 89%

7See transaction 0x0x8492ce3b1ea8ec796471997731e557c057c2fb0a3ade7f9c0477450d53ad4791. Unibomb is de-
flationary token that burns 1% of the each transaction, thus increasing its value. Somebody seems to have borrowed
100.000 ETH from the lending platform dXdY and converted them to Unibomb. The transaction decreased token
supply and the user could reconvert the Unibomb tokens to ETH with a slight gain in price, leaving a profit after
the repayment of the loan.
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Figure 5. Number of transactions on Uniswap.
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of tokens trade only against one other token.

For our subsequent econometric analysis we purge pools that are very small or were only used
for a few days. Those are likely to be used for experiments, development, or exploits such as
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Figure 7. Network graph of pools between all tokens that are part of the 50 largest pools
by volume.

the fake tokens mentioned above. Specifically, we drop pools with less than 30 trading days and
with less than 100 ETH average balance. The reduced sample has 37,902,764 observations in
1,376 pools.

4 Liquidity provision

4.1 Pool size

We have demonstrated empirically that there is heterogeneity in pools. The equilibrium pool
size in Equation 16, permits us to derive comparative statics.

Corollary 1 Suppose that τ < σ
p0

, then the equilibrium size of a liquidity pool is

i. Linear in the size of the liquidity trade.

ii. Is decreasing in the size of the innovation, σ.

iii. Is decreasing in informed trades, α.
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In equilibrium, pool size adjusts so that a pool’s per token fee revenue balances the cost from
being picked off by arbitrageurs if the pool posts stale prices. When innovations, σ, are larger,
the informed trader will ceteris paribus place larger trades, and losses for liquidity providers
will therefore be larger. By contrast, fee revenue from the liquidity trader is independent of
movements in the fundamental price. This implies that to increase the expected payoff per unit
of liquidity, the pool in equilibrium must be smaller. As the pool shrinks, price impact increases
and so the informed trader places a smaller order. These comparative statics highlights how
the AMM reaches equilibrium – as the price impact is a deterministic function of the pool size,
the size of the pool adjusts to ensure that the liquidity suppliers receive the opportunity cost of
their capital.

The equilibrium pool size also decreases in α, the intensity of informed trading, i.e. an arbitrageur
trading because of an innovation. As α increases the fraction of liquidity traders decreases and
the pool is more likely to be picked off by arbitrageurs. The pool size again shrinks in equilibrium,
increasing price impact, and reducing optimal the trade size of the informed trader. Figure 8
shows the poolsize as a function of σ and α for a numerical example.
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Figure 8. Poolsize as function of σ and α. Unless otherwise stated the parameters are α = 0.01, P0 =
10, σ = 4, q = 3, τ = 0.003

To test these predictions, we collect daily data on all 1,376 pools in our sample. For the average
exchange, we observe 208 days, while the median is 205. In Table 2 we regress pool size on price
volatility and measures of uninformed trading. Consistent with our theoretical predictions, we
find that pool size decreases in token price volatility, which is our empirical proxy of the size
of the innovation σ. Higher token price volatility means that the pool loses more when it gets
picked off, thus liquidity providers in equilibrium are compensated with higher fee revenue which
is achieved by reducing the pool size.

If innovations to the price are exogenous, for example because they are caused by new informa-
tion, then higher trading volume must come from more noise trading. Consistent with this idea
we find in columns (2) and (3) that pool size increases in trading volume. If new information
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arrives with an exogenous intensity then a higher number of trades in a given interval must
correspond to more noise trading. In column (4) we confirm that pools with a higher number
of trades per day are on average larger. Finally we examine reversals, which we define as a
trade that is immediately followed by an opposite trade of at least 50% of the size of the orig-
inal trade. This pattern is observed whenever a noise trader who pushes the price away from
its fundamental value is followed by an arbitrageur who brings the pool quoted price back to
the fundamental value. Consistent with the ideas of our model we find that pools with more
reversals are larger.

(1) (2) (3) (4) (5)

Volatility -14646277.8∗∗∗ -14193779.4∗∗∗ -13976232.8∗∗∗ -15986481.5∗∗∗

(1907118.6) (1742450.0) (1615636.4) (2208943.9)
Volume (USD) 0.255∗∗∗ 0.255∗∗∗

(0.0739) (0.0739)
Number trades 3051.9∗∗

(1521.2)
Reversals 18963.9∗∗

(9073.6)

R2 0.000925 0.0498 0.0507 0.0338 0.0264
Observations 263,750 279,040 263,750 263,750 263,750

Table 2. Regression explaining pool size as a function of price volatility and measures of
uninformed trading. Pool size is the daily average size of the liquidity pool measured in USD. Volatility
is the daily standard deviation of block by block price changes of the pool. Volume (USD) is the daily
trading volume in USD, Number Trades is the number of trades for a pool per day, and Reversals are
defined as a trades that are immediately followed by an opposite trade of at least 50% of the size of the
original trade. Regressions include pool fixed effects and standard errors are clustered by pool. One, two,
and three stars indicate significance at the 10%, 5%, and 1% level, respectively.

4.2 Stability in Liquidity provision

One of the characteristics of modern limit order markets is the rapid posting and cancelling
of liquidity. Liquidity pools are not subject to this short term evaporation of liquidity. We
only observe 445,136 liquidity withdrawals which are 1.17% of all the interactions with Uniswap
liquidity pools in our sample. Many withdrawals small in size or are from small and illiquid
pools.

It is also noteworthy that liquidity in pools also does not get suddenly withdrawn in extreme
market events. On May 19, 2021 Ether dropped from over USD 3,400 to 2,014, a 41% decline.
To put this in perspective, on October 19, 1987 the S&P 500 index only dropped by 20.5%.
The orange area in Figure 9 shows minute by minute pricing data from Binance. We examine
liquidity withdrawals from the large USD stablecoin pools that trade against ETH, USDT,
TSDC, and DAI. The blue line shows aggregate withdrawals from these pools in percent of
pre-event poolsize. When Ether reached its lowest price, traders only about 2% of liquidity
was withdrawn and users could trade with minimal price impact. Most withdrawals of liquidity
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happen an 53 minutes or 245 blocks after the big decline when prices have already recovered.
Overall only 17% of the liquidity gets withdrawn in this extreme price movement, which could
also reflect reduced expectations for future trading activity and thus fee revenue.
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Figure 9. Liquidity withdrawals and extreme market events. The graph shows the minute by
minute price of Ether from Binance around March 19 (in orange) and the aggregate percentage liquidity
withdrawals from the four largest ETH - USD stablecoin pools on Uniswap.

To see if certain liquidity providers engage in high frequency strategic liquidity provision we track
liquidity providers by the wallet address where they store their liquidity tokens. Out of our 48
million observations we find only 1,801 events where the same person deposited (withdrew)
liquidity and withdrew (deposited) liquidity in the same pool within 50 blocks. Most of these
withdrawals or additions are small, the median size is USD 146.75 or 0.0159% of the pool, which
practically has zero impact on trading costs. Many liquidity additions or withdrawals are in
small pools most likely because of testing or because of exploits. We find only 18 observations
in total that are in pools with over USD 10,000, where the deposit or withdrawal is for more
than USD 1,000, and where the gap between deposit and withdrawal is no more than 5 blocks.
It seems therefore safe to conclude that liquidity providers on Uniswap do not engage in high
frequency strategic liquidity provision and withdrawals.

Rapid withdrawls of liquidity supply as we highlighted in our model are a feature of modern
limit order markets. Further, such withdrawls have contributed to “flash crashes.” By contrast,
liquidity suppliers in Uniswap pools are very stable. In as much as deep and constant liquidity
is socially beneficial, the design of the AMM is effective. We note in passing that Ethereum gas
fees act as a commitment device for liquidity suppliers to remain in pools.
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5 Ranking Exchanges

5.1 Theory

To compare the limit order market with an automated market maker we focus on the total
trading cost for a liquidity trader, which consist of fees and price impact.

Proposition 7 The expected cost to the liquidity trader in a rivalrous limit order market is

E(climit) = γ2

((
α

(1− α)

)2

Γ(α, σ)− p0

)
+ (1− γ2)σ,

where Γ(α, σ) = σ
[
1− α2 + 2α ln(α)

]
In the AMM, the expected cost to the liquidity trader is

E(cAMM ) = p0(1 + τ)

(
λb + λs

2

)
− p0,

where λb > 1 and λs > 1 are constants.

The limit order market does not always dominate the automated market maker. When informed
trading is low, the liquidity pool is large, price impact is low and thus cheaper for the liquidity
trader. The price impact in the limit order market does not decrease in informed trading to the
same extent because liquidity provision is not as competitive. Liquidity providers seek to find
opportunities that allow them to extract rents from imperfectly competitive liquidity provision.
In our model the cost of finding liquidity provision opportunities, a, captures these incentives
in a stylized way. When a is high, liquidity provision is less competitive. We link a to several
stylized facts in financial markets. Market makers invest heavily in high frequency trading,
with the main objective to carve out a niche with less competition by, for example, receiving
information faster than competitors or by detecting institutional traders earlier than rivals. Such
investment is wasteful from the perspective of a liquidity trader. The cost a can also be seen
as costs that deter entry to liquidity provision, leading to the high concentration of liquidity
provision we see in financial markets today.

Our model also implies that price impact in limit order markets is more volatile because the
trader does not know ex-ante if he will face a monopolist liquidity provider or a competitive
market. For automated market papers price impact is known ex-ante and can be very low when
the pool is sufficiently large. We summarize this intuition below.

Proposition 8 The limit order market does not dominate the automated market maker.

i. There exists an a∗, so that for a > a∗, trading in the AMM is cheaper for the liquidity
trader.
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Figure 10. Region of the parameter space where AMMs dominate limit order markets.
The graph shows the region of the parameter space where trading costs for the liquidity trader in the
liquidity pool are lower than in the limit order market. Unless otherwise stated the parameters are
P0 = 100, σ = 10, q = 10, a = 20, τ = 0.003

ii. Conditional on trading quantity q, price impact is more volatile in the limit order market
than the AMM.

Figure 10 depicts the region of the parameter space where total trading costs for the liquidity
trader in the liquidity pool are lower than in the limit order market. The left panel shows that
automated market makers are the better trading venue for the liquidity trader when either the
innovation in prices or the intensity of informed trading are sufficiently small. In those cases
the pool is large and the liquidity trader can trade without much price impact. In line with
proposition 8 the right panel shows that for high costs of finding liquidity provision opportunities,
a, automated market makers dominate limit order markets.

5.2 Empirical analysis

To compare Uniswap to traditional exchanges we collect minute by minute trading data from
Binance, one of the largest crypto-exchanges by volume. Many of the 1,251 token pairs listed on
Binance trade against fiat currencies. We find 384 token pairs that trade on both, Uniswap and
Binance, however many of these pairs are very infrequently traded. We eliminate all pairs with
an average daily volume of less than 10 ETH on either market and an average daily Uniswap
pool size of less than 10 ETH. We treat WETH and ETH as identically given the easy and cheap
conversion. We end up with 27 token pairs that are cross listed on Uniswap and Binance.
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Arbitrage between the two markets is not instant. Binance, like all ‘traditional’ crypto exchanges
retains custody of the traded assets. Any tokens that a user wants to trade on the exchange
must be transferred out the user’s personal wallet into the exchange wallet and the exchange
has to give the user credit for these assets in their own internal ledger before they can be
traded. Once they are in the exchange system, tokens can be traded with minimal delay and
high frequency. Uniswap, in contrast, is non-custodial, meaning that the user initiate a trade
directly out of their personal wallet and keep custody of traded assets until they are swapped in
an atomic transaction. Since Uniswap is on-chain trading is tied to the transaction processing
of the Ethereum blockchain. Ethereum is designed to be faster than Bitcoin with about 10-20
seconds between blocks, however, execution of trades on Uniswap can never be as fast as on
traditional exchanges.
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Figure 11. Pricing error and pool size Pricing difference for the USDC/ETH pair when comparing
Binance to Uniswap in percent of the Binance price (blue line, right axis) and pool size of the Uniswap
USDC/ETH pool (orange, log-scale, left axis).

Pricing differences between Uniswap and Binance are small except in the startup-phase of the
Uniswap pool when liquidity is scarce. Figure 11 shows the pricing in blue and pool size (in
orange) for the USDC/ETH pool. When the pool starts, as long as the poolsize is below 100
ETH, pricing errors are huge reaching over 40%. This is not surprising as a small invariant k
will cause a very steep bonding curve (see equation 1). Once the poolsize is above 700 ETH,
the pricing difference stays below 1% with an average of -0.026% for this pool.

We examine determinants of price differences between Binance and Uniswap for the broader
sample in Table 3. We examine the absolute percentage pricing error defined as the absolute
value of the price differential between Binance and Uniswap divided by the price on Binance.
Pricing error is lower for large pools, which are the ones that have more liquidity and are also
the more commonly traded tokens. When fx-volatility is high, arbitrageurs find it harder to
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keep keep up with price changes and we see prices diverging across markets. Higher volume,
measured here as volume on Binance is associated with smaller price differences. On Uniswap
liquidity is defined by the poolsize and independent of trading activity, on Binance, however,
higher liquidity is volume may be indicative of higher liquidity. Relative volume is defined as
volume on Uniswap over combined volume. A negative coefficient on relative volume and a
positive coefficient on squared relative volume indicates that the pricing error is u-shaped in
relative volume, i.e. it is high when most trading activity is concentrated on one exchange and
lower when both exchanges have a somewhat even share of trading volume. Pricing errors are
larger for tokens with very low prices relative to ETH. We use the Binance price as a reference
point. This might be similar to a penny stock effect, as some of the tokens trade at prices with
four or five leading zeros. Traders might not realize that a price difference of 0.00001 ETH
can be a huge percentage difference. Price differences also increase in gas prices. To trade on
Uniswap users must pay the miner to record the transaction on the Ethereum blockchain. When
mining costs, i.e. gas prices, are high small price differences are not profitable to arbitrage away.
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Figure 12. Price Impact of USDC/ETH on Uniswap (orange, green) and Binance (blue).
Price impact is computed as change in price over volume (green and blue lines) as well as analytically as
the price change for a marginal unit bought using the bonding curve formula (green line).

In columns (8) and (9) of Table 3 we examine price impact as an explanatory variable. We
define price impact as the absolute price change over trading volume computed over one minute
intervals. For the regression we average the price impact measures on a daily basis. We have
to control for pool size as price impact, i.e. the curvature of the bonding curve, is in Uniswap
mechanically related to pool size. We find that higher price impact is associated with higher price
differences between exchanges, which is intuitive as price impact reduces profits for arbitrageurs.
Figure 12 shows our measures for price impact for the USDC/ETH pair. We can see that price
impact on Binance almost always exceeds that on Uniswap. Binance’s price impact also varies a
lot over time while the price impact on Uniswap stays pretty much constant. We also compute
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the theoretical price impact for Uniswap which we derive analytically from the bonding curve
in Equation (1) assuming zero fees. We find that our analytical measure of price impact on
Uniswap (green line) corresponds closely to our empirical measure (orange line).

June July August September October November December 2021 February March April May
Time

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

240,000

260,000

280,000

300,000

V
o

lu
m

e
 (

E
T

H
)

Binance
Uniswap

Figure 13. Trading volume of USDC/ETH on Uniswap (orange) and Binance (blue). The
graph shows the trading volume excluding flash loans in ETH. Trading volume is aggregated over rolling
eight hour intervals.

Figure 13 shows the trading volume of the USDC/ETH pair on Binance and Uniswap, respec-
tively. We can see that trading volume is remarkably correlated across the two markets, which
is surprising given that tokens have to be moved back and forth trough on-chain transactions
between the two markets. We can also see that Uniswap is gaining market share over time and
eventually more trading is happening on Uniswap relative to Binance.

Figure 14 shows intraday prices of the USDC/ETH pair on one day, October 21, 2020. The
patterns is typical for most days in our sample. It seems that often Binance prices are leading
Uniswap prices. and that Binance prices are more volatile that the prices on Uniswap.

6 Conclusion

In 1971, Fischer Black wrote two articles for the Financial Analyst’s Journal speculating on
whether computers or “automation” could ever replace human interaction in financial markets
(Fisher Black (1971a), Fisher Black (1971b)). In these papers, he argued that market liquidity
was constrained by the size of a market maker’s inventory and suggested that a solution would
be to have more direct participation from other market participants.

The Uniswap experiment does not merely increase the supply of liquidity by relaxing market
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Figure 14. Intraday prices for the USDC/ETH pair on October 21, 2020 The graph shows
minute-by-minute prices of the USDC/ETH pair on Binance and Uniswap.

makers’ inventory constraints. It also changes how the benefits and costs of liquidity provision
are shared among market participants. In a limit order market, the exchange sets price and
time priority, which effectively determine the interaction of liquidity demand and supply. Price
impact in a limit order market is the endogenous outcome of the interaction. By contrast, on
an AMM the price impact is programmatically determined by a a bonding curve. However, we
note that this impact is conditional on the size of the pool. Thus, the equilibrium price impact
arises as the pool size adjusts, so that liquidity suppliers trade off potential adverse selection
against fee revenue.

The automated Uniswap protocol has clearly been successful. Further, in July 2021, Swarm a
Berlin based DeFi company announced that it was launching an AMM that was fully licensed
by the German regulator, BaFin. One of the reasons for the uptake of these liquidity sharing
protocols is that we have demonstrated both theoretically and empirically that pools adjust
to tradeoff the benefits and costs of liquidity provision. Further, compared with a centralized
exchange there are some token pairs for which the AMM provides liquidity more efficiently than
a centralized exchange.

We note that Uniswap has recently introduced a V3. Their re-design will give liquidity suppliers
partial ability to associate their liquidity to price ranges. This change re-introduces competition
between liquidity suppliers. In as much as the AMM is effective if it reduces competition between
liquidity suppliers, these changes may drive out non-strategic liquidity suppliers.
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A Measuring volume

Dollar volume is a natural volume measure on US exchanges, and there is typically a recognized
common price. On Uniswap, the US dollar is not the numeraire; most of the trading in the
Uniswap system is against WETH or USD stablecoins. Further, the existence of flash loans
and flash swaps during so called oracle attacks mean that there can be large price discrepancies
across trading venues.

To compute volume, we take the WETH part of the trade and convert it to USD using Bi-
nance minute by minute data. We use the Binance price because the internal UniSwap price is
sometimes purposely distorted. As we have indicated, large trades such as oracle attacks can
push relative token prices out of equilibrium. Most of the remaining pools trade against a USD
stablecoin. For those pools we convert stablecoin to USD. For all remaining pools we search for
all pools where one of the tokens trades against WETH and convert using the prices from the
pool with the highest volume. We then use external data from Binance to convert the ETH to
USD.

As a concrete example of price distortions caused by oracle attacks, a December 17, 2020 trade
against Warp Finance is in our sample. 8 The initiator borrowed about 200 million USD in flash
loans from Uniswap and dYdX to manipulate the DAI/ETH price by trading 48.58 million DAI
against 342,252 WETH. DAI is a USD stablecoin so one side of the trade roughly corresponds
to 40 million USD. One ETH was worth about USD 643 at the time, making the WETH side
of the trade worth about 220 million USD. The relatively complex trade involved depositing
DAI and WETH into a liquidity pool, then using the liquidity tokens as collateral in Warp
Finance. Finally, using a large trade to distort the DAI WETH price which led the Warp code
to overvalue the deposited collateral. Smart contract nuances aside, this trade was designed
to distort the DAI/WETH price which means that using contemporaneous prices may distort
the volume. Thus in the example above we would measure the volume as 220 million USD.
Our approach does not systematically inflate volume because oracle attacks can happen in both
directions and all trades that push prices out of equilibrium also have an opposing trade that
brings prices back to equilibrium.

Many other contracts such as lending platforms rely on decentralized exchanges as price feeds
or oracles to determine, for example, the value of the collateral in relation to the face value
of an outstanding loan. Attackers can exploit poorly written code of such lending platforms
for financial gain. Typically large trades are used to move prices in the bonding curve market
that the lending contract uses as oracle, making the smart contract believe that the collateral is
very valuable. Then the attacker borrows against the collateral, brings the price on the bonding
curve market back to equilibrium, and walks away from the, now under-collateralized, loan. One
such attack happened on Harvest finance, a yield farming cooperative similar to a floating NAV
money market fund. User could deposit tokens with Harvest finance in return for fAsset tokens
(e.g. depositors of USDC receive a fUSDC token). The underlying tokens were invested in high
yielding liquidity pools and the revenues are shared with the holders of fAsset tokens.

On October 26 an attacker borrowed 18 million USDT and 50 million USDC on Uniswap and

8See transaction 0x8bb8dc5c7c830bac85fa48acad2505e9300a91c3ff239c9517d0cae33b595090.
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converted over 17 million USDT to USDC on curve.fi (an automated market maker similar
to Uniswap that specialized in trading stablecoins).9 This temporarily increased the price of
USDC in the curve.fi pool, which is used a price oracle for Harvest finance. The attacker then
deposited USDC with Harvest, in exchange for an inflated number of fUSDC tokens. Specifically,
the price manipulation caused the price of fUSDC to temporarily drop to 0.9712 from 0.98 before
the attack. Then the attacker changed 17 million USDC back to USDT on curve.fi and sold his
fUSDC tokens back to Harvest finance at 0.9833 as Harvest finance’s smart contract updated
the price based on the new information from curve.fi. The net profit of this attack was 619,408
USDC. The hacker then repeated the process 17 times and also attacked other Harvest finance
pools for a total profit of USD 24 million.10

Data Issues:

We also observe some transactions that trade tokens back and forth without apparent reason.
For example in one transaction on March 30, 2021 somebody created a new Uniswap exchange
for a token named SCAMMY, borrowed WETH worth 220 million USD in a flash loan on dYdX,
injected half as liquidity to the pool, and then traded 50 times the other half of the funds back
and forth for a total volume of USD 5 billion.11 The trader then withdrew the liquidity and
repaid the flashloan. There is no obvious profit motive for this transaction. One possibility is
that the trader tried to generate high fee revenue to place the token in a leading position at
one of the yield farming websites in order to attract investment to this scam token (although
naming the token scammy is not helpful for this purpose). We include such events in graphs
and summary statistics. For our econometric analysis we winsorize the data and thus eliminate
such outliers.

Ticker symbols on Uniswap are not protected. Anyone can create a token and assign the ticker
symbol of a popular token like WETH or USDC. Tokens are uniquely identified by their address,
e.g. 0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2 for WETH, which is not easy to work with.
Most people therefore use tickers and are exposed to copycat tokens. Table 4 lists fraudulent
versions of popular tokens. We can see that, for example, Yearn Finance (YFI) has 17 copycat
tokens that use the same ticker symbol. A total of 328 transactions were done on Uniswap with
copycat tokens which is small compared to 257,728 transactions in the legitimate token. Overall
we find that there amount of trading in fake tokens is small and will not affect our findings.

B Numerical Example of an AMM

Assume that the fair exchange rate for a token is 10 ETH/token and a sole liquidity provider
contributed E = 100 ETH and T = 10 tokens to the liquidity pool for which he gets 100 liquidity
tokens in return. Suppose that the fee is κ = 0.003.

9see transaction 0x35f8d2f572fceaac9288e5d462117850ef2694786992a8c3f6d02612277b0877.
10See ‘Harvest Flashloan Economic Attack Post-Mortem’, medium.com, Oct 26, 2020.

https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217
11See transaction 0xa8c00a56cf2455241bbc4b5ef9e3f9e761cdbd7909847ab8274dcd9bd1dded6a.
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Ticker Number of fraudulent tokens Fraudulent transactions Nonfraudulent transactions
WETH 4 5 30,624,081
USDT 17 91 3,062,694
USDC 6 78 2,977,465
DAI 4 7 1,967,084
UNI 14 463 550,393
AMPL 3 15 380,315
WBTC 7 5 350,009
LINK 9 59 349,431
HEX 4 6 271,709
YFI 17 328 257,728
SNX 7 2,388 232,924
MKR 1 332 230,044
SUSHI 6 90 217,765
SAI 3 22 184,963
KP3R 18 227 184,644

Table 4. Fraudulent tokens. The table shows the number of fraudulent tokens, i.e. tokens with the
same ticker symbol as popular tokens but with a different address. Number of fraudulent tokens is the
number of fraudulent tokens found as part of a Uniswap liquidity pool. Fraudulent transactions are the
number of transactions in liquidity pools with these fraudulent tokens. Non-fraudulent transactions is
the number of transactions in the original token in Uniswap pools.

Example 1 A trader wants to buy tokens for e = 10 ETH. He gets 0.997eT
0.997e+E = 0.997·10·10

0.997·10+100 =
0.90661 tokens in return. The pool collects a fee of 0.003e = 0.003 · 10 = 0.03 ETH. The new
token balance post trade is 10− 0.90661 = 9.09339 tokens.

The post trade ETH balance equals the old balance plus what the trader gave for tokens plus the
fee revenue 100 + 0.997e + 0.003e = 100 + 9.97 + 0.03 = 110. The average price the trader got
is p = e

T + E
(1−κ)T = 10

10 + 100
(1−0.0003)10 = 11.0301

Note that the invariant k as defined in Equation 1 is the same pre and post trade only without
fees, i.e. 10 ·100 = 9.09339(100+0.997 ·10) = 1000. Because the fee gets credited to the liquidity
pool after the trade, the invariant increases to 9.09339 · 110 = 1000.27. The next trade will be
priced based on this new invariant. The new mid-price is p0 = 12.0967. In response to a buy
order, the mid-price moved up.

When redeeming her liquidity tokens, the liquidity provider would receive whatever is in the pool,
which is now 110 ETH and 9.09339 token.

Consider two cases:

(a) True price is 10 ETH/token Had she kept her initial investment of 100 ETH and 10
tokens in a private wallet it would now be worth 100 + 10 · 10 = 200 ETH.

When she redeems the liquidity token, she would obtain a total of 110 + 9.09339 · 10 =
200.9339 ETH and makes a profit of 0.9339 ETH. This is the sum of the trading fee
(κe = 0.003 · 10 = 0.03) and the gain from selling to the trader at an average price above
the true price.

30



(b) True price is 12.0967 ETH/token Had she kept her initial investment of 100 ETH and
10 tokens in a private wallet it would now be worth 100 + 10 · 12.0967 = 220.0967

When she redeems the liquidity token she gets 110 + 9.09339 · 12.0967 = 220. She loses
0.0967 ETH, in which the gain from the trading fee is more than offset by the loss from
the exchange selling tokens at stale prices.

As with any passive liquidity provider, the Uniswap pools present a free option to the market.
That is if the quantities in the pool are such that the terms of trade differ from the true
value, arbitrageurs are more likely to pick off stale liquidity. This logic is reflected in the
previous example. However, liquidity demanding trades are always valuable. The liquidity
suppliers receive a fee for the liquidity demanding order and also receive a fee when equilibrium
is replenished by arbitrage traders. They only face potential losses if there has been a permanent
value change in the token.

If the price of a token moves away from the fundamental value because of a large order, an
arbitrageur will initiate an offsetting trade and bring the mid-price of the exchange back to
the fundamental value. Such short term deviations from the fundamental price of a token are
beneficial to liquidity holders. In a pool without fees liquidity-providers will gain zero on such a
trading pattern. Trades are always priced in such a way that the amount of ETH and tokens are
on the bonding curve before and after any trade (see Equation 1). Thus a move from (E, T ) to
(E′, T ′) and then back to (E, T ) will leave the liquidity providers at exactly the same point they
started from. Many crypto-traders refer to gains or losses while the pool is off equilibrium at
value (E′, T ′) as impermanent loss. With positive fees liquidity traders benefit from such short
term deviations as they collect a proportional fee for both trades. In our empirical analysis we
will estimate such short term deviations from a fundamental value as reversals.

Finally, even though arbitrageurs replenish the liquidity pool after a large, they pay a fee for
doing it. This differs from a traditional limit order book in which liquidity is replenished by
rivalrous liquidity suppliers.

Example 2 Continue Example 1, case (a) and suppose that an arbitrageur brings back the price
closer to the fundamental value. Assume that the arbitrageur can buy tokens at the fundamental
value of 10, sells them to the pool at price p(t), and chooses the optimum amount of tokens t
to sell to the pool to maximize profit, π = t(p(t) − 10). By sending t tokens to the pool he will

obtain e = (1−κ)tE′

T ′+t(1−κ) = 0.997·t·110
9.09339+0.997t ETH in return, resulting in a price p(t) = e/t. Solving for

the optimal t that maximizes the arbitrageur’s profit we find t = 0.895648 which is smaller then
the amount of token sold by the pool in Example 1 because (i) the invariant k has changed after
the first trade due to the fee revenue and (ii) fees make it optimal for the arbitrageur to sell a
smaller amount back to the pool. It is easy to verify that without fees, i.e. κ = 0, the invariant
does not change after the first trade and the arbitrageur would sell exactly the same amount of
tokens back to the pool that the pool sold in the previous trade, and the new mid-price of the pool
would exactly equal the fundamental value. With fees, however, the arbitrageur optimally sells
t = 0.895648 tokens to the pool for which he receives 9.836 ETH, leaving the pool with a new
balance of 100.164 ETH and 9.98904 token. The new pool mid-price is 10.0274, which deviates
slightly from the fundamental value of 10. Liquidity providers value their token holdings at the
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fundamental value of 10 and hold a total of 100.164 + 99.8904 = 200.054 which is higher than
their initial investment of 200.

C Proofs

Proof of Lemma 1

If the liquidity supplier is alone in the market, and posts at prices p at which he buys and p̄ at
which he sells, with p < p̄ then

i. With probability (1−α) a noise trader arrives. If the noise trader is a buyer, the liquidity
supplier sells to him at p̄ and obtains a payoff of (p̄ − p0). Symmetrically, if the noise
trader is a seller, the liquidity supplier buys from him at p and obtains a payoff of (p0−p).

ii. With probability α there is an information event. If the informed trader buys, the liquidity
supplier obtains a payoff p̄− (p0 + σ) and if the informed trader sells, he obtains a payoff
of (p0 − σ)− p.

His overall profit is then

(1− α)

[
1

2
(p̄− p0) +

1

2
(p0 − p)

]
+ α

[
1

2
p̄− (p0 + σ) +

1

2
(p0 − σ)− p

]
(17)

Clearly, he will post a sell price at which to sell of p̄ = p0 + σ, and a price at which to buy of
p = p0 − σ, to obtain a profit of (1− α)σ.

Proof of Lemma 2

A limit order submitter in competition chooses a sell price pi to maximize his expected profits,
which comprises:

i. With probability (1 − α) the noise trader arrives. Limit order i gets his sell order filled
with probability 1

2(1− Fj(pi)) and obtains a payoff of (pi − p0)

ii. With probability α
2 there is an information event in which the asset value jumps up. Trader

i will trade with the informed trader for a payoff of (pi − p0 − σ) ≤ 0.

The expected profit for the liquidity provider upon posting a sell order with price pi is then

πi(pi) =
(1− α)

2
(1− Fj(pi))(pi − p0) +

α

2
(pi − p0 − σ).
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In equilibrium, it has to be that each price is offered with some probability and it is not optimal
to deviate from that price. So, the first order condition for any optimal price satisfies

α

2
+

(1− α)

2
(1− Fj(p))−

(1− α)

2
(p− p0)F ′j(p) = 0. (18)

We can solve the differential equation in (18) with the boundary condition F s(p0 + σ) = 1, to
get the symmetric equilibrium schedule:

F s(p) =
(p− p0)− ασ

(p− p0)(1− α)
.

The minimum price psmin that the limit order submitters are willing to offer can be solved from
F (psmin) = 0, to obtain

pmin = p0 + ασ (19)

By symmetry the schedule for the buy orders is given by

F b(p) =
(p0 − p) + ασ

(p0 − p)(1− α)
,

where pbmin = p0 − σ and pbmax = p0 − ασ

Proof of Proposition 3

The ex ante profit for the limit order trader is

γi(1− γj)(1− α)σ − I(γ)

The optimality condition is

(1− γj)(1− α)σ − 2aγi = 0

In symmetric equilibrium, each liquidity supplier will choose a level of monitoring intensity of

γ∗ =
(1− α)σ

2a+ (1− α)σ
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Proof of Lemma 4

The fees accruing to the liquidity providers from accommodating the liquidity trader follows
from the text, and are τes` and τeb`,

where

eb` =
E0T0
T0 − q

− E0

es` = E0 −
E0T0
T0 + q

.

The arbitrageur reverses the trade and pays the same fee in Eth. The overall expected fee
revenue is then

= 2τ

(
1

2

E0T0
T0 − q

− 1

2

E0T0
T0 + q

)
= τE0T0

(
T0 + q − (T0 − q)
(T0 − q)(T0 + q)

)
= 2τp0T

2
0

(
q

T 2
0 − q2

)
,

where the last line uses the fact that p0 = E0
T0

.

Reversing the trade is profitable for the arbitrageur if the AMM price including transaction costs
differs from the fundamental value or

eb`(1− τ) ≥ p0 or
T0q

(T0 − q)
>

1

1− τ
to reverse a liquidity buy order

es`(1 + τ) ≤ p0 or
T0q

(T0 + q)
<

1

1 + τ
to reverse a liquidity sell order,

which yields the conditions,

τ < 1− T0 − q
T0q

To reverse the liquidity buy

τ <
T0 + q

T0q
− 1 To reverse the liquidity sell

Define τ∗ = min
[
1− T0−q

T0q
, T0+q

T0q
− 1
]
. Then, for τ, τ∗, this trade is profitable for the arbi-

trageur.
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Proof of Lemma 5

The change in value to the liquidity providers if there is a positive asset innovation follows
directly from the arguments in the text.

If there is a negative asset innovation, the post innovation value of the committed capital is
E0 + T0(p0 − σ) = 2E0 − σT0. If there is a negative asset innovation, then the informed trader
sells up to the point of no arbitrage, and the trade occurs on the bonding curve, so

(E0 − esI)(T0 + ts) = E0T0. (20)

esI = E0 −
E0T0
T0 + ts

(21)

The profits of the informed trader are given by

πsI = (1− τ)esI − (p0 − σ)ts (22)

= (1− τ)

(
E0 −

E0T0
T0 + ts

)
− (p0 − σ)ts. (23)

The first order condition is

(1− τ)
E0T0

(T0 + ts)2
− (p0 − σ) = 0. (24)

Note, this represents optimal trading if ts =
√

(1−τ)E0T0
p0−σ − T0 ≥ 0, or σ

p0
≥ τ .

Thus, we obtain

ts =

√
(1− τ)E0T0
p0 − σ

− T0

esI = E0 −
√
E0T0(p0 − σ)

1− τ
.

Hence, the value of the committed capital after the asset value has dropped and the informed
trader has traded is

E0 − esI + (T0 + ts)(p0 − σ) =

(
2− τ√
1− τ

)√
E0T0(p0 − σ).

Thus, the change in total value of the committed capital is(
2− τ√
1− τ

)√
E0T0(p0 − σ)− 2E0 + σT0. (25)

The liquidity cost paid by the informed trader is τ

(
E0 −

√
E0T0(p0−σ)

1−τ

)
, so the total payoff to
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liquidity provision if the asset value drops is

(
2− τ√
1− τ

)√
E0T0(p0 − σ)− 2E0 + σT0 + τ

(
E0 −

√
E0T0(p0 − σ)

1− τ

)
(26)

=

(
2− τ√
1− τ

)√
T 2
0 p0(p0 − σ)− 2p0T0 + σT0 + τ

T0p0 −
√
T 2
0 p0(p0 − σ)

1− τ

 (27)

= 2
√

1− τ
√
T 2
0 p0(p0 − σ)− (2− τ)p0T0 + σT0 (28)

Proof of Proposition 6

From Lemmas 4 and 5, the overall payoff to liquidity provision (for the entire pool) and using
the fact that p0 = E0

T0
is

(1− α)2τp0T
2
0

(
q

T 2
0 − q2

)
+

α

2

(
2T0
√

(1 + τ)
√
p0(p0 + σ)− (2 + τ)p0T0 − σT0

)
+
α

2

(
2T0
√

1− τ
√
p0(p0 − σ)− (2− τ)p0T0 + σT0

)
Or,

(1− α)2τp0T
2
0 q

T 2
0 − q2

+ T0α
(√

p0(p0 + σ)(1 + τ) +
√

(1− τ)p0(p0 − σ)− 2p0

)
(29)

The liquidity suppliers have deep pockets with a zero opportunity cost of capital, and are
indifferent between committing extra value when the value to liquidity provision is zero. Thus,
the equilibrium size of the liquidity pool is implicitly defined by setting Equation 29 equal to
zero, which yields,

0 = (1− α)2τp0T0

(
q

T 2
0 − q2

)
+ αω, (30)

where

ω =
(√

p0(p0 + σ)(1 + τ) +
√
p0(p0 − σ)(1− τ)− 2p0

)
Thus,
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T0 = q

[√
1 +

(1− α)2τ2p20
α2ω2

− (1− α)τp0
αω

]
. (31)

A finite pool trades off the fee revenue against the picking off risk, else pool size is infinite. It
also has to be large enough so that T0 > q. Clearly, T0 > q, if and only if (1−α)τp0

αω < 0, which
holds if ω < 0.

Omega reaches a maximum value at zero.

dω

dτ
=

√
p0(p0 + σ)

2
√

(1 + τ)
−
√
p0(p0 − σ)

2
√

1− τ
,

d2ω

dτ2
= −

√
p0(p0 + σ)

4(1 + τ)3/2
−
√
p0(p0 − σ)

2(1− τ)3/2
< 0

dω

dτ
= 0

=⇒ τ =
σ

p0
.

At τ = σ
p0

, ω = 0. Thus, ω is strictly negative for τ 6= σ
p0

Further, to ensure that arbitrageur finds it profitable to trade, from the previous lemmas, τ ≤ σ
p0

.

Proof of Corollary 1

[i.] Immediate.

[ii.]

dT0
dω

= q

(1− α)p0τ

αω2
− (1− α)2p20τ

2

α2ω3

√(
(1−α)2p20τ2

α2ω2 + 1
)
 (32)

Notice that

(1− α)p0τ

αω2
>

(1− α)2p20τ
2

α2ω3

√(
(1−α)2p20τ2

α2ω2 + 1
) ,
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so dT0
dω > 0. Further,

dω

dσ
=

1

2

[√
p0(1 + τ)√
(p0 + σ)

−
√
p0(1− τ)√
(p0 − σ)

]
. (33)

dω
dσ < 0 if τ < σ

p0
.

[iii.]

dT0
dα

=

p0τ

(
1 + p0τ(1−α)√

p20(1−α)2τ2+α2ω2

)
α2ω

< 0,

as ω < 0.

Proof of Proposition 7

The Limit Order Market:

If two traders are in the market, and the liquidity trader buys, the distribution over the lower
of the two prices is given by

Fmin(p) = 1− Pr(p > x)

= 1− Pr(pi > x, pj > x)

= 1− Pr(pi > x) Pr(pj > x)

= 1− [1− F s(p)]2

Where the last two lines follow from the fact that the distributions are independent and identical
in symmetric equilibrium. Thus, the cumulative distribution of the minimum price is given by

Fmin(p) = 1−
(

1− (p− p0 − ασ)

(p− p0)(1− α)

)2

Given the distribution of the minimum prices, the expected transaction price (cost to buy) is
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determined as:

Ecb(q) =

∫ p0+σ

pmin

1− Fc(p)dp

=

∫ p0+σ

pmin

(
α(p− p0 − σ)

(p− p0)(1− α)

)2

dp

=

(
α

(1− α)

)2 ∫ p0+σ

pmin

(
1− σ

(p− p0)

)2

dp

=
α

(1− α)2
Γ(α, σ)

Γ(α, σ) = σ
[
1− α2 + 2α ln(α)

]
E(∆limit

p ) = α
(1−α)2 Γ(α, σ)− p0. A symmetric expression holds for the other side of the market.

If there is a sole liquidity supplier, he places orders at p0 − σ and p0 + σ. The transaction cost
is therefore σ.

The probability that a limit order liquidity supplier is a monopolist is γ∗.

In the AMM:

eb` =
E0T0
T0 − q

− E0

=
p0T

2
0

T0 − q
− p0T0

=

p0

(
q

[√
1 +

(1−α)2τ2p20
α2ω2 − (1−α)τp0

αω

])2

q

[√
1 +

(1−α)2τ2p20
α2ω2 − (1−α)τp0

αω

]
− q

− p0

(
q

[√
1 +

(1− α)2τ2p20
α2ω2

− (1− α)τp0
αω

])

= p0q


[√

1 +
(1−α)2τ2p20

α2ω2 − (1−α)τp0
αω

]2
√

1 +
(1−α)2τ2p20

α2ω2 − (1−α)τp0
αω − 1

−

[√
1 +

(1− α)2τ2p20
α2ω2

− (1− α)τp0
αω

]
= p0q


√

1 +
(1−α)2τ2p20

α2ω2 − (1−α)τp0
αω√

1 +
(1−α)2τ2p20

α2ω2 − (1−α)τp0
αω − 1


= p0qλ

b
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Here,

λb =


√

1 +
(1−α)2τ2p20

α2ω2 − (1−α)τp0
αω√

1 +
(1−α)2τ2p20

α2ω2 − (1−α)τp0
αω − 1


In addition, the liquidity trader also pays the liquidity fee of τ per Eth. Thus, the total payment
is p0q0(1 + τ)λ. Hence, the per unit cost of trading q units is (1 + τ)λ− 1.

es` = E0 −
E0T0
T0 + q

= p0T0 −
p0T

2
0

T0 + q

= p0

(
q

[√
1 +

(1− α)2τ2p20
α2ω2

− (1− α)τp0
αω

])
−
p0

(
q

[√
1 +

(1−α)2τ2p20
α2ω2 − (1−α)τp0

αω

])2

(
q

[√
1 +

(1−α)2τ2p20
α2ω2 − (1−α)τp0

αω

])
+ q

= p0q


√

1 +
(1− α)2τ2p20

α2ω2
− (1− α)τp0

αω
−

(√
1 +

(1−α)2τ2p20
α2ω2 − (1−α)τp0

αω

)2

√
1 +

(1−α)2τ2p20
α2ω2 − (1−α)τp0

αω + 1


= p0q


√

1 +
(1−α)2τ2p20

α2ω2 − (1−α)τp0
αω√

1 +
(1−α)2τ2p20

α2ω2 − (1−α)τp0
αω + 1


= p0qλ

s

where

λs =


√

1 +
(1−α)2τ2p20

α2ω2 − (1−α)τp0
αω√

1 +
(1−α)2τ2p20

α2ω2 − (1−α)τp0
αω + 1


Thus, the expected Eth cost of trading tokens is

= (1 + τ)

(
1

2
p0qλ

s +
1

2
p0qλ

b

)

= p0q(1 + τ)

[√
1 +

(1−α)2τ2p20
α2ω2 − (1−α)τp0

αω

]2
[√

1 +
(1−α)2τ2p20

α2ω2 − (1−α)τp0
αω

]2
− 1
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The trading costs are in excess of the the fundamental value of the asset, p0.

Proof of Proposition 8

[i.] The price impact of trading q tokens is

(1 + τ)p0

(
1

2
λs +

1

2
λb
)
− p0,

whereas, the expected price impact in the limit order market is

E(climit) = γ2[Ec(q)− p0] + (1− γ2)(σ).

From proposition 3 we know that the equilibrium choice of monitoring is γ∗ = (1−α)σ
2a+(1−α)σ , which

is decreasing in a, so the expected price impact in the LO market tends to σ.

As we are considering parameters under which informed traders do trade in the AMM, so if
ts ≥ q, then the price impact of q shares must be less than σ. In what follows, we make use of
the fact that the equilibrium pool size is of the form qk, where k > 1. The condition is√

(1− τ)p0T 2
0

p0 − σ
− T0 ≥ q

k

[√
(1− τ)p0
p0 − σ

− 1

]
≥ 1.

Thus, a sufficient condition is

(1− τ)p0
p0 − σ

> 4

σ ≥ p0
4

(3− τ)
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