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1 Introduction

This paper develops a tractable framework that determines jointly trading connections

and risk allocation among banks. We analyze how risk-taking incentives at the individual

level a�ect the aggregate trading network. In an environment where all banks are ex-ante

homogeneous and risk-averse, we show that the network is unique and generally asym-

metric, where risks are concentrated among a subset of banks, consistent with observed

empirical regularities in OTC markets.

The degree of network asymmetry is determined by the tension between the bene�t of

risk-sharing vs. risk-concentration. Our tractable characterization allows us to analyze

how the underlying network responds to varied policies and/or the riskiness of underlying

assets. We are thus able to provide new insights on how and when the interconnections

and risk exposure of large �nancial institutions may change.

The framework contributes to the literature on OTC markets by explicitly modeling

the formation of bilateral trading relationships under limited information. The informa-

tion friction arises from the uncertainty on other banks' asset positions when bankers

form trading relationships and their limited capacity in creating trading relationships.

We further allow banks to choose an individual action to minimize their private costs

of bearing risks. These actions include, for example, whether to access a multilateral

trading platform that allows participants to better share risks or whether to default to

o�oad downside risks to outside creditors.

Banks choose their trading partners sequentially for multiple trading rounds as well as

their �nal actions, matching with one counterparty in each round. The bilateral match-

ing in each round is based on potential counterparties' identity and, more importantly,

beliefs about their asset positions. We apply pairwise stability to determine equilibrium

matching for each trading rounds. The collection of a bank's counterparties over multiple

trading rounds forms its trading links.

Our framework highlights the interdependence between bilateral connections, the risk

taking actions that each bank takes, and the risk allocation among them. Despite all

banks being ex ante homogeneous and risk averse, they may use their bilateral networks

to concentrate risks on certain banks which in turn have higher incentives to take actions

to reduce their �nal private risk exposures. As a result, the resulting network features
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risk concentration, and banks end up with heterogeneous risk exposures.

Formally, the key dynamic element in our model is the public belief about a bank's

asset positions at a trading round, which endogenously depends on with whom it has

traded with and how it has traded with its counterparties. We establish that the su�cient

statics is the variance of a bank's position, which can be interpreted as the risk that a

bank bears. When banks' payo�s are convex in their risk positions (which arises naturally

due to their optimal decision at the terminal period), those with higher risk positions are

matched with each other and the risk-allocation within any pair is generally asymmetric.

That is, in each trading round, there is positive sorting matching on the risk banks bear;

moreover, the distribution of risk across banks becomes more dispersed after trades.

De�ning the risk-bearing capacity of a bank as its marginal value over the variance

of its asset holding, we establish that, �xing any connections, the e�ective risk-bearing

capacity of a bank at period t can be characterized recursively as the harmonic mean of its

and its period-t counterparty's next period risk-capacity. Moreover, the optimal network

must result in more symmetric risk capacity in earlier matches so that risk-concentration

arise later rather than earlier.

Thanks to this property, in the simple case with binary actions for risk taking (where

we refer banks that take the action to reduce their costs of holding risks as core banks),

the number of core banks an agent is directly or indirectly connected with at any period

becomes the su�cient static of an agent's e�ective risk-capacity at that period. The

optimal network is then reduced to choosing the optimal core size.

We then use this analytical characterization to study the positive and normative im-

plications of reforms that promote central clearing and/or discourage risk taking, taking

into account the equilibrium response of the underlying market structure. When banks

can choose whether to have platform access, the aggregate market structure can be sum-

marized by the ratio between the cost of bearing risks and the entry cost to access multi-

lateral clearing platform to reduce risk exposure. Consistent with empirical evidence, our

model predicts that policies that increase balance sheet costs relative to the entry cost

could result in a more symmetric market structure. Nevertheless, it can have ambiguous

e�ects on transaction costs measured by bid-ask spreads.

In the second application, we consider banks' default behaviors and the interbank

lending network. We assume that the default probability increases in their �nal risk-
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positions. We show that a small increase banks' risk-taking incentives can result in a

dramatic shift in the interbank network, whereupon banks switch from sharing risks

with each other through the network to concentrating risks to a small set of banks. The

switch to risk concentration results in a discontinuously large increase in aggregate default

probability. In this sense, a small shock can trigger �crises� through �nancial networks.

In this application, our notion of default risks is distinct from standard theories of

�nancial contagion, which highlight how bank defaults propagate through given network

connections.1 In our framework, the aggregate default risks increase because banks sys-

tematically change their lending behaviors through the interbank network.

Related Literature Methodologically, our dynamic framework with repeated bilateral

matching2 contributes a tractable approach to studying the formation of trading network.

Our method di�ers from the existing network formation literature3 as it breaks down a

complex network formation game into a sequence of subgames, each of which involves one

round of bilateral matching together with asset trading, and a subsequent sub-game. How

an agent traded in the past is summarized by his characteristic, which becomes the state

variable governing how he trades in later periods. By imposing sequential rationality, we

can solve the network formation problem through backward induction.

While we use pairwise stability to characterize the equilibrium matching in a subgame,

a deviating agent in a subgame can change all his future links, not just one link as in the

static setup that the literature adopt. This method derives a unique solution. It is thus

in sharp contrast to the standard network formation problem where agents form multiple

1A growing literature focuses on the role of the architecture of �nancial systems as an ampli�cation
mechanism. For example, Allen et al. (2000)(Allen and D. Gale 2000), Acemoglu et al. (2014)(Acemoglu,
Ozdaglar, and Tahbaz-Salehi 2013), Elliott et al. (2014)(Elliott, Golub, and Jackson 2014), Cabrales et
al. (2014)(Cabrales, Gottardi, and Vega-Redondo 2014), and Gofman (2014) (Gofman 2014) study the
�nancial contagion in given networks.

2Most works in the matching literature involve a static environment, with only a few exceptions.
Corbae, Temzelides, and Wright (2003) introduced directed matching into the money literature, where
the key state variable is the traders' money holding. Because there are no information frictions in
Corbae, Temzelides, and Wright (2003), belief updating is not essential for their analysis, whereas it is
a key component of our theory. With regard to the labor market, Anderson and Smith (2010) analyzed
the dynamic matching pattern for which the public belief about a trader's skill (i.e., his reputation)
evolves according to matching decisions. In our trading environment, the updating process depends
endogenously on both the traders' matching decisions and the terms of trade within a match.

3See the survey in Jackson 2005 for overview. Speci�cally, papers that have studied network formation
in the �nancial market include Hojman and Szeidl (2008), D. M. Gale and Kariv (2007), Babus and Hu
(2017), and Cabrales, Gottardi, and Vega-Redondo (2017), Farboodi (2014), Wang (2016)), where the
last two papers in particular focuses on the core-periphery structure.
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links simultaneously, which is often subject to the curse of dimensionality and prone to

multiple equilibria, because pairwise stability allows for the deviation of only one pair of

traders even though traders form multiple links.

A similar approach has been used in our previous work, Chang and Zhang (2018),

where we consider a pure bilateral OTC market with risk-neutral agents and an indivisible

asset. This paper allows for risk-averse agents and unrestricted asset holdings, which

allows us to analyze risk concentration within the network.

The common approaches to modeling OTC markets are based on random matching

(e.g., Du�e, Gârleanu, and Pedersen (2005)) or exogenous networks.4 Relative to the

literature that takes the network as given, our model provides a formal analysis of how

the underlying structure of the OTC market might respond to policies.

Because one of our applications is on the joint determinations of bilateral network

and platform access, our paper also sheds new lights on the literature on the costs and

bene�ts of centralized vs. decentralized markets.5 Instead of focusing on the trade-o�

between these two markets, we allow for nonexclusive participation and emphasize the

interdependence between these two choices. The paper is related to recent works that

studies the co-existence of these two venues and market fragmentation, including Dugast,

Üslü, and Weill (2019) and Babus and Parlatore (2017). Our framework is designed to

analyze the network response and the results can be generalized to multiple types of

platforms.

2 Model

We consider a trading game in an economy that lasts N + 1 periods and is populated by

a set of banks, each with a �xed identity i ∈ I = [0, 1]. Banks trade among each other

for N periods and allow to take an optimal action to minimize their risk exposure at the

terminal period N + 1. We allow for a general payo� function at the terminal period and

characterize how the payo� function a�ects the trading network through N rounds of

bilateral connections.
4For example, see Gofman (2011), Babus and Kondor (2018), and Malamud and Rostek (2014).
5Speci�cally, existing studies (e.g., Malamud and Rostek (2014), Glode and Opp (2019), and Yoon

(2017)) consider other dimensions such as price impact and asymmetric information. They show that
OTC markets can be bene�cial for certain types of traders. In our model, a centralized platform is
assumed to be a superior trading technology but requires a higher participation cost.
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There are two types of consumption goods, numeraire goods and dividend goods, and

one type of asset. The asset generates a unit stream of dividend goods in each period. All

banks are endowed with an initial asset position which is an i.i.d. draw from a symmetric

distribution with mean zero, variance v1, and distribution function π1(a).

The heterogeneity in asset positions is the source of gains from trade in the economy.

Banks can trade their asset positions with numeraire goods, of which they have deep

pockets. The �ow utility at period t of a bank i that has asset position ai,t ∈ R and

receives transfer xi,t ∈ R is ut(ai,t) + xi,t. We assume that a bank derives mean-variance

utility from dividend goods and normalize the mean to zero; above, ut(ai,t) = −κta2
i,t with

κt ≥ 0 for all t ≤ N .6 In other words, the ideal asset position of a bank is normalized

zero. Parameter κt represents the balance sheet cost of holding nonzero asset positions

at period t, which can be associated with the riskiness of the asset.

Contacting Frictions in Bilateral Trades From period 1 to period N , banks can

connect sequentially to N counterparties with no extra cost to engage in N rounds of

bilateral trades. Bilateral trades are subject to limited information that prevents banks

from locating ideal trading counterparties.

We explicitly model this friction by assuming that an bank can only observe another

bank's asset position after the two have contacted one another. In other words, each

bank faces uncertainty about the counterparty's asset position before making the con-

tact. Thus, there is limited information at the matching stage but complete information

between matched banks after they make contact.

Observe that, given the assumed payo� structure, if all banks could observe each

other's realized positions before they choose their matches, it is straightforward to show

that the economy achieves perfect risk sharing with one round of trade. In this case,

banks with position a are matched with banks with the opposite position −a, and their

posttrade positions would net out to zero (i.e., there would be perfect negative sorting

on asset positions.) Hence, the assumed contacting frictions aim to capture the spirit of

conventional search frictions.
6More generally, ut(ai,t) = κ0,tai,t + κ1,ta

2
i,t. Because κ0,t does not contribute to the heterogeneity

in marginal utility, it is without loss of generality to set it to zero.
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Post-Trade Risk Exposures To study the interaction of banks' risk-taking behavior

and the OTC network, we assume that the expected payo� of an bank depends on the

variance of his asset position after OTC trades, denoted by WN+1(vi,N+1), where vi,N+1

is the variance of πi,N+1(a). Observe that, if there were no additional actions at N + 1,

then the �nal payo� for a bank is simply WN+1(vi,N+1) = EuN+1(ai,N+1) = −κN+1vi,N+1.

In general, we assume that WN+1(·) is a decreasing function of post-trade risk-exposure

vi,N+1.

As will be explained later, the interesting case is when WN+1(·) is convex. The

convexity naturally arises when banks can potentially choose di�erent actions given their

risk positions vi,N+1. Assumption 1 below allows �nite possible actions, denoted by z, and

assumes that, give any action z, the payo� is linear in their risk exposure v.

Assumption 1: Given any action z, the payo� is linear in their risk exposure v.

Banks' �nal payo� WN+1(v) is given by

WN+1(v) = max
z
{−γN+1(z)v − φN+1(z)} .

For example, one can interpret z as di�erent trading platforms, where lower γN+1(z)

means agents can have lower post-trade exposure in that platform and φN+1(z) represents

its corresponding entry cost. For example, a fully competitive centralized market can be

understood as a platform that allows fully risk-sharing; hence, γN+1(z) = 0.

We will study two applications where banks' risk-taking behavior interacts with the

bilateral OTC market structure. First, allowing banks to access multilateral clearing

platforms by paying a �xed costs. Second, the moral hazard of taking risks when the

asset positions represent a bank's net debt positions and banks have limited commitment

to debt repayment, where we assume that banks' default probability increases in banks'

�nal exposures. In both cases, WN+1(v) is convex in v.

2.1 Matching and Trading Decisions

Given the uncertainty, the matching decisions are thus based on the identities of their

counterparties. Formally, the choice of counterparties is modeled as choosing N coun-

terparties sequentially at t = 0; that is, banks decide ex ante bilateral matches for each

trading round.
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Ex Ante Network Denote the trading counterparty of a bank i at period t ji,t. The

collection of a bank i's counterparties ji,t over N rounds of trade forms his trading links.

We assume that banks form their trading links before their asset holdings and valuations

are realized. Therefore, our setup e�ectively has a network formation stage ex ante, and

we can interpret trading links as permanent trading relationships between banks. Since

trading needs are banks' private information at the trading stage, the assumption that

banks form trading links ex ante and cannot be contingent on realized trading needs also

avoids some technical complications in matching models under asymmetric information.7

Terms of Trade: Contingent Asset Flows and Prices While the connections are

determined ex ante, trades are contingent on the realized asset positions of a bank and

her counterparty in a match, because trading takes place after she and her counterparty

make their contact and observe each other's realized asset positions. Thus, if we think

of the economy as a trading game within a trading day and repeat it over time, even

though the network remains the same, banks' realized asset positions change how they

trade (i.e., the asset �ows) within the network from day to day.

Formally, the terms of trade within a match, including both asset allocations and

transfers of numeraire goods, are contingent on the realized positions of a bank i and her

counterparty j, denoted by ai and aj respectively. Let y(i, j) = {ãk(ai, aj), x̃k(ai, aj), k ∈
{i, j}} be the terms of trade within the match (i, j), where ãk(ai, aj) denotes the posttrade

asset holding of bank k, and x̃k(ai, aj) denotes the transfer to bank k, k ∈ {i, j}. The

within-match transfers sum up to zero,

Σk=i,jx̃k(ai, aj) = 0. (1)

The within-match asset allocation is feasible if

Σk=i,j ãk(ai, aj) = ai + aj. (2)

The allocation of asset positions is associated with the allocation of risks from uncertain

7Without this assumption, banks can in theory signal their types through di�erent matching decisions
and the equilibrium would depend on how we specify o�-equilibrium beliefs and require heavier notations.
One can in theory impose o�-equilibrium beliefs that support a pooling equilibrium and obtain the same
outcome.
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asset positions because given a distribution of banks i and j's pretrade asset positions, the

posttrade positions also follow a distribution. This is the key characteristic that governs

bilateral matching.

Sequential Choices of Trading Links and Terms of Trade When banks decide

trading links and terms of trade ex ante, they make decisions for earlier trading rounds

�rst. All trading links and terms of trade before a period t are public information when

banks decide matching and within-match terms of trade for the period. Thus, links

and terms of trade are sequentially optimal in the sense that when a bank chooses his

counterparty and terms of trade for a period t, he takes into account all banks' matches

and terms of trade before the period.

A bank i's strategy at period t conditional on the public information at that period

includes the choice of his counterparty, ji,t, and the terms of trade with the counterparty,

yt(i, j) for j = ji,t.

We can summarize the public information for period t strategies by the public belief

of joint distribution of banks' asset positions.8 Now that banks' strategies are contingent

on the public belief of banks' trading needs, characterizing its evolution over time is an

essential part of our analysis. Denote the joint distribution of banks' asset holdings at

the beginning of period t πt : R[0,1] → [0, 1] and the marginal distribution of bank i's

asset position at the beginning of period πi,t(a) : R→ [0, 1].

Evolving Characteristics To understand how a bank's asset holding distribution

evolves over time, consider the following example: suppose a bank i bears all position

exposures within her match at period 1. That is, her asset position in the next period

equals the sum of her and her counterparty j's current asset positions, ai,2 = ai,1 + aj,1.

Her posttrade asset distribution πi,2(a) now has mean zero and a variance of 2v1 when her

pretrade position is uncorrelated with her counterparty's. On the other hand, under this

�rst-period strategy, her counterparty's posttrade asset position is always zero, aj,2 = 0

(i.e., πj,2(a) is degenerate with both its mean and variance being zero).

In general, the law of motion of the asset distribution of a bank i, πi,t(a), is given by

8As we will show later, the gains from trade from period t onwards depend on the trading history
only through the public belief of banks' asset positions.

9



the Bayes' rule,

πi,t+1(a) =

ˆ ˆ
I(ãi,t(ai, aj) ≤ a)πi,j,t(dai, daj), for a ∈ R, (3)

where πi,j,t(ai, a−i) denotes the joint distribution of bank i and her counterparty j's

period-t pretrade asset positions. This again highlights the fact that bank i's posttrade

asset distribution, πi,t+1(a), depends on the the joint distribution of the pretrade asset

positions of bank i and her optimally chosen counterparty, and on how she trades with

her counterparty, ãi.t(ai, aj).

To sum up, we study a dynamic matching model with evolving characteristics; the

marginal asset distribution πi,t(a) and the correlation pattern between the marginal dis-

tributions depend on past matching and trading decisions. We can think of the joint

distribution πt of all banks' asset positions as the aggregate state variable.

2.2 Equilibrium

2.2.1 Equilibrium De�nition

Denote the joint payo� between two banks i and j, Ωt(i, j). Given the aggregate distri-

bution at period t as

Ωt(i, j) ≡ max
ãi,t,ãj,t

−κt
ˆ ˆ

[(ãi,t)
2 + (ãj,t)

2]πi,j,t(dai, daj) + Ŵt+1(i) + Ŵt+1(j) (4)

subject to feasibility constraints, which depends on the pretrade joint asset distribution

of banks i and j, πi,j,t(ai, aj). The within-match transfers do not show up in (4) because

they sum up to zero.

Here, we use Ŵt+1(i) to denote the bank's maximum payo� in the next period with

any marginal distribution πi,t(a) and joint distribution with other banks' asset holding,

taking the aggregate distribution πt+1 and other banks' equilibrium payo�s Wj+1(j) as

given, which yields

Ŵt+1(i) ≡ max
j

Ωt+1(i, j)−Wj+1(j). (5)

On the equilibrium path, a bank's payo� is given by Wt+1(i), which equals Ŵt+1(i) for a
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bank i that adopts equilibrium strategies before period t+ 1.

De�nition 1. Given π0, an equilibrium consists of strategies {s∗i,t}∀i,t, market utilities
Wt(i), and a path of common beliefs π∗t such that the following properties hold for all

t ∈ {1, . . . , N + 1}:

1. Pairwise stability at t ≤ N : if j ∈ jt(i),

Wt(i) = max
j

Ωt(i, j)−Wt(j),

where the post-trade position {ãi,t, ãj,t} maximizes Equation (4).

2. Feasibility of bilateral matching at t ≤ N .

3. Dynamic Bayesian consistency: The joint asset distributions evolves following the

Bayes rule given banks' strategies.

Our equilibrium notion can be understood as multiple rounds of pairwise stabile

matching. Bilateral matches across all banks at period t are stable if no individuals

in a match can be better o� by forming new matches, conditional on providing the coun-

terparty at least the latter's equilibrium market utility, denoted by Wt(j).

Our notion, however, does allow for joint deviations with multiple banks that occur

sequentially, which is thus di�erent from the standard pairwise stability in simultaneous-

move network formation games. Speci�cally, when a bank deviates at period t, the bank

is also allowed to switch own future trading partners accordingly, conditional on providing

own counterparties with equilibrium payo� Wt+1(j). The deviation payo� is described by

Equation (5), which allows banks to re-optimize their future counterparties.

2.2.2 Equivalence and Uniqueness

Denote the aggregate payo� of the economy at period t to be Πt, which depends on the

joint asset distribution πt. Given a strategy st at period t, the aggregate payo� equals

Πt(πt) = −κt
ˆ 1

0

Et(ãi,t
2)di+ Πt+1(πt+1). (6)

where Et(ãi,t2) =
´ ´

ãi,t(ai, ajt(i))
2πi,jt(i),t(dai, dajt(i)). E�cient strategies maximize Π1(π1)

subject to the contacting frictions.
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Proposition 1. Strategies {si,t}∀i,t are equilibrium strategies if and only if they maximize

Π1(π1).

Proposition 1 has three implications. First, without any deviation between private

and social values, the equilibrium is e�cient. Second, when a deviation arises for varied

reasons, one can implement the social planner's solution through taxes by simply align-

ing costs. Third, it implies that the equilibrium market structure and asset allocations

through the market structure are payo� unique. The multiplicity that often makes it

hard to characterize �nancial networks does not show up in our framework. This gives

the theoretical foundation to solve the trading network numerically.

3 Characterization

3.1 Variance Representation

Within a match (i, j), the posttrade positions ãk(ai, aj) depend on the realized positions

of the two banks (ai, aj). Given any allocation rule, let ṽk ≡ V ar(ãk(ai, aj)) denote the

variance of posttrade positions and Vij ≡ V ar(ai + aj) denote the variance of the sum

of pretrade positions. The feasibility constraint on bilateral trade, Equation (2), implies

the following connection between pretrade and posttrade risk:

ṽi + ṽj + 2ρ̃ij
√
ṽiṽj = Vij, (7)

where ρ̃ denotes the correlation of posttrade positions of two banks, which depends en-

dogenously on the allocation rule.

Lemma 1. The socially optimal posttrade positions must have zero mean for all banks,

and the posttrade positions for any two matched banks are perfectly positively correlated.

Moreover, the pretrade positions of any two matched banks in the e�cient solution are

uncorrelated.

Under the quadratic utility, the aggregate payo� decreases with the variance and

mean, which explains why it is optimal to maintain the mean of posttrade positions at

zero and change only their correlation and variances.
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Moreover, positive correlation between pretrade positions of two matched banks neces-

sarily increases the variance of their total pretrade positions, which is the right-hand-side

of the feasibility constraint for variance allocation, Equation (7). This implies that, all

else equal, it is optimal to match banks with zero correlations. This observation allows

us to solve the model by focusing on the variance of individual banks' positions. It also

implies that it is not optimal to match two banks twice because asset positions of any

two previously matched banks are positively correlated. The pretrade variance on any

path of optimal matches can thus be simpli�ed to Vij = vi + vj.

Given that the asset positions for all agents are uncorrelated on the path, the su�cient

statics of an agent's characteristic is his pre-trade variance vi,t. In other words, vi,t is the

state variable and thus, we use Wt(vi,t) to denote the bank's maximum payo� given his

characteristic vi,t.

Corollary 1. At each period t, within any pair (i, j), the post-trade variance (ṽi, ṽj)

maximizes

Ωt(i, j) = max
ṽi,ṽj

Σk=i,j {−κtṽk +Wt+1(ṽk)} (8)

s.t. ṽi + ṽj + 2
√
ṽiṽj = vi,t + vj,t.

In other word, we can reformulate the asset allocation problem as choosing the

posttrade variances of the marginal asset distributions for banks in a match, denoted

by (ṽi, ṽj). This is because any variance allocation (ṽi, ṽj) can be mapped to an as-

set allocation rule, where bank i holds a share αi ∈ [0, 1] of total position, so that

ãi(ai, aj) = αi(ai + aj). A bank who holds a larger share of the total position will then

have a higher variance on her posttrade asset position than her counterparty. In the

special case where two matched banks have the same cost of absorbing risk, one would

expect that they will share risks equally, i.e., αi = αj = 1
2
, as this minimizes the total

variance within the match, ṽi + ṽj.

3.2 Risk Concentration and Interconnectedness

In our framework, not only agents change the risk allocation within the match but also

whom they trade with. As shown in Corollary (1), choosing di�erent agents results
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in di�erent per-trade variance Vij, which in turns a�ect the post-trade variance of an

agent. The joint determination of these two decisions thus allows us to characterize the

endogenous network e�ect on risk-allocation.

Allocation of Risks We �rst look at the risk allocation given any match. Let v∗θ(Vij)

denote the post-trade variance within the pair with Vij = vi,t + vj,t, where θ ∈ {h, l} and
v∗h(Vij) ≥ v∗l (Vij). From Equation (8), the FOC condition yields

v∗θ(Vij) =

(
κt +W ′

t+1(v∗−θ(Vij))

Σθκt +W ′
t+1(v∗θ(Vij))

)2

Vij. (9)

First of all, observe that, when Wt+1(v) is concave, the standard predictions on risk-

sharing are obtained: agents share their exposure equally with any match and thus

v∗h(Vij) = v∗l (Vij) =
Vij
4
. Moreover, since all agents share the risk equally, there is no

cross-sectional dispersion of vi,t, the matching outcome is equivalent to random match-

ing. In this sense, the trading outcome is the same as in Afonso and Lagos (2015), which

can be nested in our framework as WN+1(v) = −κN+1v.
9 10

We thus focus on the case when Wt+1(v) is convex throughout the rest of the paper.

In this case, asymmetric risk-allocation can be optimal: Agent i unloads more risk to

her counterparty j if Agent j has a lower marginal cost of risk-bearing the next period,

captured by W ′
t+1(v∗h(Vij)) ≥ W ′

t+1(v∗l (Vij)).

In the static case with N = 1, the amount of concentration thus only depends on the

exogenous convexity of WN+1(v). In our dynamic environment, the value function Wt(v)

further depends on the optimal choice of counterparties, which is given by

Wt(vi) = max
j

{Ωt(i, j)−Wt(vj)} .

Proposition 2. (Sorting) When WN+1(v) is convex in v, the optimal sorting outcome is

9Afonso and Lagos (2015) predicts that post-trade exposure is given by akt+1 =
ait+a

j
t

2 , which implies

that the post-trade variance is reduced to half, vit+1 =
vit+v

j
t

4 . Since all agents share the risk equally, their

characteristics remains the same (vit =
(
1
2

)t
v0 ∀i).

10More generally, concavity in WN+1(v) predicts negative sorting. Even if the economy starts with
two di�erent initial values (say half of agents start with low (high) exposure vL0 (vH0 )), all agents again
become homogeneous next periods under NAM.
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PAM on vt ∀t. When WN+1(v) is concave in v, the unique trading network is full risk-

sharing, where vi,t = 1
2
vi,t−1 =

(
1
2

)t
v0 ∀i, t, and the matching outcome is equivalent to

random matching.

The positive sorting establishes how risks are concentrated over the networks: agents

that accumulate risks from others (higher post-trade variance vi,t+1) are matched among

with each other. Hence, on the equilibrium path, Vij = 2vi for any match. In particular,

compare to the random matching, where the risk exposure of his counterparty next period

is drawn randomly, these agents thus handle more risks on average.

E�ective Risk-Bearing Costs through Connections The key object in our frame-

work is the risk-bearing costs of an agent through his connections. While an agent might

have higher cost γN+1 at the �nal period, he can connect counterparties with lower cost

γN+1 and unload more risks to them. In other words, by using his network, he can

e�ectively enjoys lower risk-bearing costs.

The risk-bearing cost of Agent i at period t should depend on his own action as well

as the actions of all agents that he directly or indirectly connected. To highlight the

relationship between risk-bearing costs and network, we de�ne the network at time t

as gt ≡ {jτ (i), zi}∀i,t≤τ≤N . That is, a network is determined by agents' connections and

their �nal action zi. For any given gt, let Ŵt(vi,t|gt) represent the payo� of an agent with

vi,t. Lemma 3 shows that the network e�ect on risk-bearing cost can be characterized

recursively.

Lemma 2. Under A1, given any gt, Ŵ
′
t(vi,t|gt) = γi,t ∀t, where the risk-capacity of agent

i at period t is given by

γi,t =
1

2
H
(
κt + γi,t+1, κt + γjt(i),t+1

)
∀t ≤ N, (10)

where γi,N+1 = γN+1(zi).

Equation 10 has a simple interpretation: the risk-bearing cost of Agent i at period t is

the harmonic mean11 of the post-trade risk-bearing cost of Agent i and her counterparty

jt(i). It also shows that, while two matching agents can have di�erent capacity next

11The harmonic mean of any two variables γj and γj is
2

γ−1
i +γ−1

j

.
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Figure 1: Late vs. early Concentration (N = 2)

period, they must have the same capacity at period t, given they allocate the risks jointly,

taking into their future connections.

For any given network gt, we have now characterized agents' risk-capacity and hence

the corresponding risk allocations among this network. This is because the optimal

risk-allocation within any pair must satisfy the FOC condition (Equation (9)), where

Ŵ ′
t+1(vi,t+1|gt+1) is valued at γi,t+1(gt+1) (given by Lemma 3) and Vij = 2vi,t (given

PAM). Next, we analyze which network is optimal.

3.3 Properties for Optimal Network

We now turn to analyze the equilibrium network, which, according to Prop 1, is unique.

Speci�cally, given that Wt(v) is convex, the set of networks characterized in Section 3.2

corresponds to the set of multiple local optimal solutions.12

To given a concrete example, 1 considers binary actions with N = 2 with four banks.

Agents 3 and 4 (Agent 1 and 2) chooses an action with lower (higher) risk-bearing costs,

denoted by γlN+1 (γhN+1) at period N + 1. For example, only Agent 3 and 4 have access

to a centralized market at period N + 1.

These two graphs di�er in terms of their dynamic bilateral connections {jt(i)}. In the

left graph of Figure 1, an agent is �rst connected with another with the same platform

access (i.e., {(1, 2), (3, 4)} at t = 1) and then connected with another agent with with

di�erent platform access i.e., {(1, 3), (2, 4)}at t = 2). This order is reversed in the right

graph.

For both graphs, the e�ective risk-bearing costs for all agents at period t = 1 is given

by Lemma 2, which crucially depends on the timing of the matching plan as it results in

di�erent γk,t+1. To see this, in the illustrative example, since agents with di�erent access

12Under A1, one can see that second order conditions are also satis�ed, which yields{
−κt +W ′t+1(ṽj)

}
(ṽi)

− 3
2
√
Vij < 0.
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are matched at period 2 in the left graph, their e�ective risk-bearing capacity at period

2 is thus symmetric, with γ̄t+1 = 1
2
H
(
κt+1 + γhN+1, κt+1 + γlN+1)

)
.

In the right graph, on the other hand, since agents with the same access are matched at

period 2, their e�ective risk-bearing capacity at period t = 2 are thus heterogeneous, with

γθt+1 = 1
2

(
κt+1 + 1

2
H(γθN+1, γ

θ
N+1)

)
and θ ∈ {h, l}. One can show that the the e�ective

risk-bearing cost at period t = 1 under the right graph is higher than the left graph, as

for any κt > 0,
1

2
H(κt + γlt+1, κt + γht+1) >

1

2
(κt + γ̄t+1) .

Intuitively, the right graph results in more asymmetric γt+1 and thus early risk con-

centration. The left graph, on the other hands, implies more symmetric γt+1. For any

κt > 0, early risk-concentration is dominated by late concentration. Hence, it's optimal

to have a more symmetric risk capacity γt+1, which in turn lowers the needs for risk

concentration at period t and thus results in lower e�ective risk-bearing cost γt.

In the special case where κt = 0 ∀t, one can show that ordering no long matters. The

e�ective risk-bearing cost in this case is reduced to the harmonic mean of the risk-capacity

at N + 1 of all connected agents (i.e., γi,t =
(

Σk
1

γk,t+2

)−1

) and thus di�erent timing does

not matter. gt ≡ {jτ (i), zi}∀i,t≤τ≤N .
Lemma 3 generalizes the result for any period t. Fixing any network gt+2 and thus

γk,t+2, the optimal matching at period t+ 1 must be such that agents have similar γk,t+1

at period t+ 1, which implies negative sorting on γk,t+2.

Lemma 3. Under A1, for any vk,t+2(vt) and the corresponding γk,t+2, any matching plan

that violates negative sorting on γk,t+2 is dominated.

3.4 Full Characterization for Binary Choices

We now show that, with binary choices zi ∈ {0, 1}, Lemma 3 pins down the unique

connections, given the set of agents that choose zi = 1. We refer these agents are core

agents i ∈ C i� zi = 1, as these agents have lower costs of holding risks and thus would

absorb more risks and thus have higher trading volume from his counterparties.

Optimal Connections to Cores Give gt, let ci,t denote the number of core agents

that Agent i is directly and indirectly connected, which is de�ned recursively as ci,t =

17



ci,t+1 + cjt(i),t+1,with ci,N+1 = zi. We thus refer ci,t as the core access, in the sense that

agents have higher ci,t at time t are connected to more core agents. By de�nition, only

the core agent has access at period N + 1. However, for any t ≤ N, any non-core agent

can obtain core access through bilateral connections.

In general, the risk capacity of Agent i at time t generally depends on the underlying

network gt according to Equation 10. We now shows that, given any ci,t, there is an

unique network that satis�es Lemma 3. Hence, the core access cit becomes the su�cient

statistic. We thus use γ∗t (ci,t) denote the risk capacity for agent with core access ci,t at

time t under the optimal connections.

Lemma 4. With binary actions, core access ci,t is the su�cient statics for agent i's risk

capacity at period t, where γ∗t (ci,t) decreases in ci,t and

γ∗t (ci,t) =
1

2
H
(
κt + γ∗t+1(bci,t

2
c), κt + γ∗t+1(dci,t

2
e)
)
∀t ≤ N. (11)

Note that, by de�nition, if two agents (i, j) are matched at period t, they have the

same pre-trade core-access, ci,t = cj,t, as it represents the sum of their core access next

period. Equation 11 thus implies that the optimal core access must be distributed evenly

within the pair. That is, ci,t+1 = b ci,t
2
c and cj,t+1 = d cj,t

2
e. The intuition is the same as

shown in the illustrative example in Figure 1. Negative sorting on γk,t+2 minimizes the

di�erence in γk,t+1 and thus reduces the needs for earlier concentration.

Optimal Core Size Since we have established that there is a unique optimal market

structure given any core size c. Recall that, an agent i can connect, directly or indirectly,

to at most 2N agents in N rounds of trade. The problem can thus be solved as if solving

the optimal network among 2N agents. To map the �nite network among 2N agents to the

market structure for a continuum of agents of total measure 1, we interpret our results

here as if there were 2N �types� of agents and each had a measure of 1
2N
. Thus, if there

are c cores among 2N agents, the total measure of core agents would be c
2N
. Then, there

are 1/2N identical replica of the �nite network of size 2N .

The optimal network can be further reduced to choosing the number of core agents
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in the beginning of the trading game among 2N agents, which can be expressed as

Π = max
c

{
−γ∗1(c)v1 −

c

2N
φ
}
. (12)

Given any c, γ∗1(c) represents the risk capacity for all agents, taking into account the

future connections. It again highlights that while each agent might have asymmetric

access over time, their e�ective risk exposures are the same ex ante, as they optimize

jointly the allocation over their core access.

Proposition 3. (Optimal Network and Risk-Allocation with Binary Actions) All agents

start with core access ci,1 = c∗ ∀i, where the optimal core size c∗ solves Equation (12).

For any two matching matching i and j at period t, they must have the same core access

ci,t = cj,t and their post-trade core access are adjacent integers, ci,t+1 = b ci,t
2
c and cj,t+1 =

d cj,t
2
e. Their posttrade variance is given by vi,t+1 =

(
κt+γ∗t+1(cj,t+1)

Σk(κt+γ∗t+1(ck,t+1))

)2

(2vi,t) .

4 Application 1: Platform Access

Many �nancial over-the-counter (OTC) markets operate as classical two-tiered markets

where a few core banks have exclusive access to an exchange-like interdealer market.

Such a structure have been the focus of regulation and policy debates after the 2007-08

�nancial crisis. In particular, post crisis reforms have increased dealer banks' balance

sheet costs through tightened capital requirements and additional liquidity requirements

and have promoted all-to-all exchanges.13

We now apply our framework to study the positive and normative implications of

reforms, taking into the equilibrium response of the market structure. Speci�cally, the

underlying environment is an example of having a binary action, where zi = 1 if banks

enter the platform and zero otherwise.

We think of the trading platform as a superior technology but more expensive trading

technology. That is, it gives better risk-sharing and thus reduce the cost of holding risks

γN+1(1) < γN+1(0). We normalize the cost of a bilateral relationship to be zero, and

assume a �xed cost of using platform, which can be interpreted as the additional cost of

13See detailed discussions in Yellen (2013) and Du�e (2018).
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trading multilaterally with a larger set of market participants.14 Thus, φN+1(1) = φ >

φN+1(0) = 0.

Remark 1. More generally, the usage cost can have variable components beyond the �xed

cost. For example, consider the required collateral may be higher with larger positions

(given by φcv). This would e�ectively lead to higher γN+1(1).

Remark 2. While the timing of our framework implies that the platform entry is at the

end, this assumption can be relaxed as long as there is a �xed cost associated with each

entry. If there is no delay cost, it is indeed optimal to postpone the access until the end,

as agents would prefer to accumulate as much risk as possible from bilateral trades �rst

before joining the platform. 15

4.1 Equilibrium Response of Market Structure

We model the polices that promote central clearing and/or discourage risk taking as

providing subsidy of platform participation and/or taxing banks' net exposure. In other

words, the policy can be understood as increasing κt (i.e., making it more costly for banks

to hold risks) and/or decreasing the entry cost of the platform (φ).

Since these policies change agents' incentives to hold risks and/or the entry cost, the

equilibrium response can thus be understood through comparative statics on κt and φ.16

Importantly, agents in our framework can respond in two margins. First, for �xed agents'

connections gt, the asset and risk allocation can di�er. Such a change is hence similar to

the existing literature with exogenous networks.

The key advantage of our framework is that agents can change their connections and

14This cost can be interpreted as a �xed cost of setting up the platform or more stringent regulatory
requirements, membership, or a collateral requirement associated with a more centralized market. Indeed,
as summarized in the report �Incentives to centrally clear over-the-counter (OTC) derivatives�by Board
2018, �almost all respondents agreed that high �xed costs make clearing services expensive, and that
these costs are substantially higher than the bene�ts that a smaller participant might accrue from central
clearing�. The report further mentions that �survey responses state that providing connectivity to CCPs
requires incurring high �xed costs, which are likely passed on to clients through minimum fees and other
charges, increasing clients' costs of central clearing. For smaller, lower activity clients in particular, this
can raise their cost of cleared trades, and thus can have a material impact on their incentives to centrally
clear.�

15If delay costs are su�ciently high, agents might choose to obtain access earlier at period n∗ < N. In
this case, the result can be understood as applying our characterization for n∗ rounds of bilateral trades
together with N − n∗ rounds of random matching.

16Recall that κ ≡ κN+1 and κt = δκ ∀t ≤ N. Since we assume that the tax τκ applies to all periods,
for private agents it is equivalent to a higher κ.
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access optimally. Moreover, since our predicts that the market structure is unique and

the core size is the su�cient statics. The change in the market structure, which includes

the set of agents who choose to have platform access and peripheral connections, can be

summarized by the core size at the aggregate level.

To explore how the core size depends on the underlying parameters, we now assume

that κt = δκ ∀t ≤ N and κN+1 = κ. In other words, parameter δ captures the cost of

holding risk in an earlier period relative to the terminal period. Given any δ, one can

show that the risk-capacity γ∗t (c) is a homogeneous function of degree 1 in κ. Hence, the

optimal core size depends on the entry cost relative to balance sheet costs, φ
κv1
. Since

agents face the trade-o� between the cost of risk concentration and that of entry, the

model thus predicts a (weakly) larger core size with a lower relative entry costs.

Proposition 4. Given any δ, the optimal measure of cores (weakly) decreases with φ
κv1
.

If δ = 0, the optimal core size is 1
2N

if and only if φ < κv1, and is zero otherwise. If

δ →∞, the optimal core size is 1 if and only if φ <
(

1
2

)N
κv1, and is zero otherwise.

Figure 2 illustrates the change in the market structure before and after such a policy,

which induces an increase in participation in the central platform (i.e., a larger core

size), as tax and subsidy e�ectively increase (decrease) the private cost of holding risk

(respectively, entry).

Our model predicts that the structure becomes more symmetric; nevertheless, the

two-tier market structure persists. This explains why, as discussed in Collin-Dufresne,

Junge, and Trolle (2018) and Du�e (2018), all-to-all trading has not materialized and

the provision of clearing services remains concentrated.

Moreover, as the size of cores increases, banks transit from risk-concentrating, market-

making trades towards risk-sharing trades. Since trades among customers share risks on

asset positions symmetrically and have zero spread, such a structural change could result

in lower average transaction costs despite the increase in the spread that market-makers

charge.

Our prediction is consistent with the empirical �ndings in Choi and Huh (2018) and

rationalizes the seemingly contradicting evidence in the post-Volcker rule era.17 The stan-

17Bao, O'Hara, and Zhou (2016) and Bessembinder et al. (2018) show that the Volcker rule leads to
lower inventories and capital commitment for bank-a�liated dealers. Such a decline, however, does not
worsen the overall market liquidity measured by the bid-ask spread.
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Figure 2: Pre vs. Post-regulation Market Structure.
Each panel shows the graph of the equilibrium trading network. In the network graph, each

node represents a bank. The area of the node represents the gross trading volume involving the

bank. The edges between nodes represent bilateral trading relationships. The width of an edge

represents the bilateral trading volume. The left panel illustrates the pre-regulation market

structure. The right panel illustrates the post-regulation market structure with increased

balance sheet costs and lowered cost of accessing the centralized trading platform.

dard results that banks' balance sheet cost increases the bid-ask spreads and transaction

costs may not hold when the market structure changes in response. Our result further

suggests that under an endogenous market structure, transaction costs are generally no

longer a su�cient measure of welfare.

4.2 Normative Implications

Concentration can be E�cient Our results highlight that the optimal intervention

should not be targeting all-to-all trading or reducing risk concentration because the ex-

istence of exclusive core members and a high concentration of risks and volume can be

e�cient.

Proposition 4 presents two extreme cases that further highlight the bene�t of having

an asymmetric market structure. Such a bene�t is highest if there is no cost of risk

concentration before the terminal period (δ = 0). In this case, it is optimal to concentrate

all variance in the core and thus predicts highest risk-concentration.
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Welfare-maximizing Policy More generally, the optimal intervention in our model

is very simple: whenever there are frictions that lead to a deviation between private

incentives of risk taking and entry-cost, the equilibrium can be ine�cient.

Our model also provides a simple guideline for correcting such an ine�ciency (if it

exists), taking into account the equilibrium response of the trading network. According

to Proposition 1, the optimal policy policy (such as tax and/or subsidy) can restore the

e�cient market structure by aligning private and social value of risk-taking and/or entry.

For example, one common concern is that the platform might be controlled or en-

trenched in by the incumbent dealers. One can capture this in our environment by

assuming that a set I0 of agents with exogenous measure c0
2N

have built relationships

among themselves and collectively operate the trading platform at cost φ. The incum-

bent agents jointly own the platform and decide whether to charge a new entrant to the

platform an exogenous fee ∆ > 0.

Given any fee, this setup can thus be understood as our trading game with heteroge-

neous costs φi where φi ≡ φ + ∆ for potential entrants i /∈ I0 and φi = φ for incumbent

banks i ∈ I0. That is, the incumbent cores have a lower entry cost than the rest of the

market. The existence of the fee thus generate the wedge between private and social

value of platform.

Our model thus predicts that by setting the subsidy for entry so that c∗(φ+∆−sc) =

c∗(φ), or introducing a new platform with entry cost φ will restore the e�cient market

structure.

5 Application 2: Limited liability

A prevalent concern in �nancial intermediation is the risk-taking incentive that results

from limited liability. We use our framework to show that such incentives can be ampli�ed

through the trading network.

We assume that the loss to a bank is capped by φ when it defaults because of limited

liability. Banks' �nal payo�s are thus speci�ed as

WN+1(v) = −[(1− p(v))κN+1v + p(v)φ],
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where p(v) denotes the probability of default when the variance of the bank's asset holding

is v.

One can see that when the probability of default is increasing in the uncertainty of the

asset holding p′(v) > 0, WN+1(v) can become convex.18 This formulation thus captures

the well known channel that limited liability encourages risk-taking.

Regime Shifts in Trading Networks Our framework demonstrates how the risk-

taking incentives a�ect the trading network. Since the network can be asymmetric, the

e�ect on each bank thus depends on their network positions.

Formally, this is captured by banks' risk positions vi,N , which depends on the outcomes

of bilateral trades. Without any interconnectedness or concentration, all banks will have

relative low and symmetric risk positions and thus such incentives might not be relevant.

When banks can use their networks to shift risks, a small change in such incentives at

the individual level can shift the aggregate network from sharing risks to concentrating

risks. It thus can generate a discontinuously large increase in aggregate default probabil-

ity.

We think of lower convexity as the normal regime (represented by the red line): banks

choose to share risks and thus each of them has low �nal risk exposure and default

probability.

Facing a higher convexity, it becomes optimal for banks to concentrate risks to a few

banks (denoted by the blue line), which results in higher aggregate probability of default

(which is proportional to the total variance). In this sense, our model predicts that a

small increase in risk-taking incentives can trigger a �nancial crisis through the network

connections.

Normative Implications In this application, any risk-taking is ine�cient from view-

point of planner, as default e�ectively o�oads downside risks to outside creditors. Since

the planner prefers risk-sharing, for the similar logic as before, the e�cient network can

be restored by increasing the cost of holding risks � such as setting a tax to increase

banks' �ow costs of holding risks κt(1 + τκ).

18This is true as long as W ′′N+1(v) ∝ 2p′(v)κN+1 − p′′(v)φ > 0.
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Figure 3: Regime Shift: WN+1(v) = −1 + e−cv and cH
cL

= 1.1097
1.1096

Relation to Systematic Risk in Networks In the existing literature on �nancial

networks, banks use their links to diversify the risks, while the systemic risk could arise

from cascading failures among banks interconnected through a predetermined �nancial

network. We point out that, apart from the ex post contagion, the aggregate default risk

can increase as banks can change their risk-taking behaviors by changing how banks are

connected and concentrate risks ex ante.

6 Conclusions

In this paper, we develop a tractable framework of endogenous trading networks and use

it to analyze how the market structure may respond to underlying parameters and/or

regulatory changes. Exactly because banks can accumulate risks from others, any policy

must take into account the network e�ect of risk-taking behaviors among banks. Although

the network structure seems complex, our framework provides a tractable and unique

characterization as well as a simple guideline for possible interventions when private

incentives are distorted relative to the social cost.
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A Appendix: Omitted Proofs

A.1 E�ciency and Uniqueness

Because agents' utility is quadratic in their asset holding, only the mean and variance of a

distribution are relevant to their payo�. In general, we can represent the joint distribution by

the means and variances of agents' asset holdings and covariances between their asset holdings.

To do this, we �rst show that it is optimal to keep the means of individual asset holding at zero.

We then show that it is optimal to match agents whose asset holdings are not correlated.

Because agents have quasilinear utility, Pareto optimal allocations are the solution to a sim-

ple social planner's optimization problem where the planer maximizes the present value of total

utility of the economy. The planner's choices at period t include any agent i's counterparty ji,t,

asset allocation within a match, ãi,t+1(ai,t, aji,t,t) and ãji,t,t+1(ai,t, aji,t,t). The planner chooses

period-t counterparties given period-0 information and asset distribution at period t. The plan-

ner's value function at period t has the joint asset distribution across agents as its state variable

and can be characterized as

Πt(πt) = −
ˆ
κi,tEt(ã

2
i,t(ai,t, aji,t,t))di+ βΠt+1(πt+1), for t ≤ N,

ΠN+1(πN+1) =

ˆ
max{−φi,t,−EN+1(a2

i,N+1)κi,N+1}di.

The constraints that the planner faces include:

(1) Given πt, the planner's period-t is feasible if and only if

ˆ i

0
Pr(jι,t ≤ ι)dι ≤ i, (A.1)

ãi,t(ai, aji,t) + ãj(ai, aji,t) = ai + aji,t , (A.2)

where (A.1) is the feasibility constraint of the matching allocation of the planner, ∆(πi,t) refers

to the support of the marginal distribution πi,t; (2) The joint distribution evolves consistently

with the counterparty assignment and within match asset allocations.

Lemma 5. It is optimal to keep the means of individual asset holding at zero.

Proof. Because the utility function of the agent is quadratic, the marginal asset distribution

for Agent i enter the social planner's objective through its expected value and variance. Denote

Etai,t = mi,t, Et(ai,t − mi,t)
2 = vi,t and ρi,j,t =

Cov(ai,t+1,aj,t+1)√
vi,t+1vj,t+1

for all i, j, and t. Let mt =
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{mi,t}∀i, vt = {vi,t}∀i, ρt = {ρi,j,t}∀i,j . Then the period-t state variable of the social planner

can be summarized by (mt,vt,ρt).

The planner's objective function is then

Πt(mt,vt,ρt) = −
ˆ
κi,t
(
m2
i,t+1 + vi,t+1

)
di+ βΠt+1(mt+1,vt+1,ρt+1), for t ≤ N, (A.3)

ΠN+1(mN+1,vN+1,ρN+1) =

ˆ
max{−φi,−(m2

i,N+1 + vi,N+1)κi,N+1}di, (A.4)

given optimal choices for (mt+1,vt+1,ρt+1). The choices at periodN+1 are obvious: the planner

chooses to access multilateral clearing for Agent i if and only if (m2
i,N+1 + vi,N+1)κi,N+1 > φi.

The feasibility of within-match asset allocation between agent i and her counterparty j

implies that ai,t+1 + aj,t+1 = ai,t + aj,t for all t ≤ N , which is translated into two separate

constraints for the mean and the variance of asset allocation to Agents i and j

mi,t+1 +mj,t+1 = mi,t +mj,t, (A.5)

vi,t+1 + vj,t+1 + 2
√
vi,t+1vj,t+1ρi,j,t+1 = vi,t + vj,t + 2

√
vi,tvj,tρi,j,t. (A.6)

Notice that the choice over the expected asset holding is subject to a separate constraint, (A.5),

from the choice over its variance, (A.6). And the law of motion of asset holding variance and

correlation does not depend on the expected asset holding.

The planner's optimization problem at period t can be summarized by the following La-

grangian,

Lt(mt,vt,ρt) = −
ˆ
κi,t
(
m2
i,t+1 + vi,t+1

)
di+ βΠt+1(mt+1,vt+1,ρt+1) (A.7)

+

ˆ
λmi,ji,t,t (mi,t −mi,t+1) di

+

ˆ
λvi,ji,t,t(vi,t +

√
vi,tvji,ttρi,ji,t,t − vi,t+1 −

√
vi,t+1vji,t+1,t+1ρi,ji,t,t+1)di

for all t ≤ N, where λmi,ji,t,t refers to the Lagrangian multiplier for constraint (A.5) for agent i

and his counterparty ji,t, λ
v
i,ji,t,t

refers to the Lagrangian multiplier for constraint (A.6).

For periodN+1,
∂ΠN+1(mN+1,vN+1,ρN+1)

∂mi,N+1
,
∂ΠN+1(mN+1,vN+1,ρN+1)

∂vi,N+1
≤ 0 and

∂ΠN+1(mN+1,vN+1,ρN+1)

∂ρi,j,N+1
=

0 for all i, j.

Using mathematical deduction, we can then show that
∂Πt(mt,vt,ρt)

∂mi,t
≤ 0 for all i and all

t ≤ N , where the inequality is strict if and only if there exits t ≤ t′ ≤ N such that κt′ > 0. This

is because given the counterparty choices, ji,t, the �rst order condition with respect to mi,t+1

27



implies that λmi,ji,t,t < 0 when κt > 0 or
∂Πt+1(mt+1,vt+1,ρt+1)

∂mi,t+1
< 0.

The e�ect of within-match asset allocation on Agent i's expected asset holding can be

summarized by αmi,t, such that mi,t+1 = αmi,t(mi,t + mj,t), mj,t+1 = (1 − αmi,t)(mi,t + mj,t). If
∂Πt+1(mt+1,vt+1,ρt+1)

∂mi,t+1
< 0, it is clear that αmi,t should be between 0 and 1. If αmi,t were greater

than 1 or less than 0, the planner can strictly increase either agent i or her counterparty ji,t's

marginal contribution to the planner's period t objective function without reducing other agents'

contribution. For example, if αmi,t > 1, by setting αmi,t to 1 reduces m2
i,t+1 to (mi,t + mj,t)

2 and

m2
ji,t,t+1 to 0. If

∂Πt(mt+1,vt+1,ρt+1)

∂mi,t+1
= 0, but κi,t > 0, the same argument applies so that

0 ≤ αmi,t ≤ 1. If
∂Πt(mt+1,vt+1,ρt+1)

∂mi,t+1
= 0, and κi,t = 0, it is without loss to the social planner to

impose 0 ≤ αmi,t ≤ 1.

Because the expected value of agents' initial marginal asset distribution is zero, the fact that

0 ≤ αmi,t ≤ 1 implies that mi,t = 0 for all i and all period.

Lemma 5 is the �rst step in characterizing the e�cient asset allocation. It implies that the

socially optimal asset distribution in any period can be represented by the variance of individual

agents' asset holdings and the correlation of their asset holdings.

Lemma 6. In the socially optimal matching assignments and asset allocations, the post trade

asset holdings of two matched Agents i and j are perfectly correlated, and the planner always

match agents with uncorrelated asset holding. That is, ρi,ji,t,t = 0, and ρi,ji,t,t+1 = 1, for any

agent i and their optimal counterparty ji,t.

Proof. The proof takes two steps. First, we show that if ρi,ji,t,t = 0 for for any agent i and their

optimal counterparty ji,t, it is optimal to have within match asset allocation perfectly correlated.

If ρi,ji,t+1,t+1 = 0, then for all i, j such that ρi,j,t+1 > 0, we can show by di�erentiating the

planner's Lagrangian, (A.7), that
∂Πt+1(mt+1,vt+1,ρt+1)

∂ρi,j,t+1
= 0. Following similar argument to that

in the proof for Lemma 5, we can see that the marginal value of increasing an agent's variance

is negative
∂Πt+1(mt+1,vt+1,ρt+1)

∂vi,t+1
≤ 0.

The feasibility of within-match asset allocation implies that variances of asset allocations

satisfy (A.6). According to (A.6), increasing the correlation between the asset allocations to

matched agents reduces the total variance of asset allocation to them, vi,t+1 + vji,t,t+1. Because
∂Πt+1(mt+1,vt+1,ρt+1)

∂ρi,j,t+1
= 0, it is then optimal to set ρi,ji,t,t+1 = 1.

The second step is to show ρi,ji,t,t = 0. Because the initial asset holdings are not correlated, if

ρi,ji,t,t+1 = 1, then the asset allocations are either uncorrelated or perfectly positively correlated.

Because there is a continuum of agents in the economy, for any agent i, if the planner is to match

him with an agent with variance v′, there always exists such an agent whose asset holdings are
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uncorrelated with agent i. According to (A.7), this shadow value of ρi,ji,t,t equals λ
v
i,ji,t,t

, which is

weakly negative. It is then optimal to match two agents whose asset holdings are not correlated.

Lemma 6 implies that even though agents have the option to trade repeatedly with a coun-

terparty, repeated trade without receiving new asset holding shocks is suboptimal. Trading once,

the asset holdings of Agent i and the counterparty become positively correlated. Then, trading

twice is dominated by trading with a new counterparty with the same asset holding variance but

whose asset holding is not correlated with Agent i's. Thus, we can characterize the equilibrium

using a representation of the aggregate asset holding distribution by the variances of individual

agents' asset holding distribution.

A.2 General Properties

A.2.1 Proof for Proposition 2

Proof. Given any variance constraint Vij, the optimization problem can be expressed as

Ωt(Vij) = max
ṽi
−κt

{
Vij − 2

√
ṽi

(√
Vij −

√
ṽi

)}
+Wt+1(ṽi) +Wt+1

((√
Vij −

√
ṽi

)2
)

︸ ︷︷ ︸
≡F (ṽi)

,

(A.8)

where FOC yields

dF (ṽi)

dṽi
= −κt +W ′

t+1(ṽi) +
{
−κt +W ′

t+1(ṽj)
}(

1−
√
Vij
ṽi

)
= 0.

Since the allocation within a pair can be understood as choose the ratio of total variance,

Equation A.8 can be further rewritten as

Ωt(V ) = max
ω

{
κt
(
ω2V

)
+Wt+1(ω2V ) + κt

(
((1− ω)2V

)
+Wt+1((1− ω)2V )

}
.

Let ω∗(V ) =
(−κt+W ′t+1(v∗j (v,v′)))

Σk{−κt+W ′k(v∗k(v,v′))} denote the solution that satis�es the FOC condition.
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Convex WN+1(v) Given that Vij = vi + vj, to establish PAM, it is su�cient to show

that Ωt(V ) is convex in V ∀t. Let ω = ω∗(V ) denote the optimal allocation under V.

Ωt(λV ) + Ωt((1− λ)V )

≥κt
{

(ω2 + (1− ω)2)V
}

+Wt+1(ω2λV ) +Wt+1((1− ω)2λV )

+Wt+1(ω2(1− λ)V ) +Wt+1((1− ω)2(1− λ)V )

≥
{
κt(ω

2 + (1− ω)2)V +Wt+1

(
ω2 (λV + (1− λ)V )

)
+Wt+1

(
(1− ω)2 (λV + (1− λ)V )

)}
= Ωt(V ).

where the �rst inequality follows that the surplus under optimal allocation ω∗(λV ) and

ω∗((1 − λ)V ) is higher than using the allocation rule ω∗(V ). The second follows that

Wt+1(v) is convex in v, which is true for WN+1(v). Assume that Wt+1(v) is convex, it

thus implies that Ωt(Vij) is convex in Vij = vi + vj. Moreover, since

Wt(vi) = max
j
{Ωt(vi + vj)−Wt(vj)} ,

it thus shows that Wt(v) is convex in v ∀t. Hence, by backward induction, Ωt(vi + vj) is

convex in vi + vj and hence PAM ∀t.

Concave WN+1(v) Observe that ifWt+1(v) is concave, we thus have F ′′(v) = W ′′(ṽi)+

W ′′
t+1(ṽj)

(
1−

√
Vij
ṽi

)2

+
{
−κt +W ′

t+1(ṽj)
} √Vij

(ṽi)
3
2
< 0, and thus the unique global optimal

is given by ṽi = ṽj =
vi+vj

4
.

For a similar logic, we now show that the sorting is NAM, as Ωt(V ) is concave when

WN+1(v) is concave.

Ωt(λV ) + Ωt((1− λ)V ) = κt

{
V

4

}
+ 2Wt+1(

1

4
λV ) + 2Wt+1(

1

4
(1− λ)V )

≤ κt

{
V

4

}
+ 2Wt+1(

1

4
V ) = Ωt(V ),

where the inequality uses the fact that Wt+1(V ) is concave in V. While the sorting is

generally NAM in this case, given that all agents start with the same variance v0, we thus

have vi,t+1 =
vi,t+vj,t

4
=

vi,t
2
.
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A.2.2 Proof for Lemma 2

Proof. At period N, given γi,N+1, the optimal allocations within any matched pair (i, j) the

optimal allocations within any matched pair (i, j) thus solve, for t = N,

Ωt(i, j) = max
ṽk
−Σk=i,j {κtṽk + γk,t+1ṽk}

subject to the variance constraint (7). Hence, the optimal posttrade variance is described by

the FOC in Equation (9), for t = N .

Ŵ ′t(vi,t|gt) =
dΩt(i, j)

dvi,t
= Σk

{
(κt + γk,t+1)

(
∂ṽk
∂vi

)}
(A.9)

Given that γt+1 is linear, let γ̂i ≡ κt + γi,t+1; according to Equation (9), we thus have ωij =
γ̂2j

(γ̂i+γ̂j)2
and

γi,t = γ̂iω
2
ij + γ̂j(1− ωij)2 =

γ̂iγ̂
2
j + γ̂j γ̂

2
i

(γ̂i + γ̂j)2

=
γ̂iγ̂j

(γ̂i + γ̂j)
=

1

2
H(κt + γi,t+1, κt + γj,t+1)

which shows that this Lemma holds for period N. By backward induction, given γi,t+1 holds,

Equations (9) and (A.9) can be applied to any t.

A.2.3 Proof For Lemma 3

Proof. Given PAM on vt,for any solution v∗θ(vt) and the corresponding v∗θ′(v
∗
θ(vt)), the

total surplus among these four banks who all start with vt can be expressed as

2Ωt(v|gt) = 2 (Σθκtv
∗
θ(vt)) + Σθ,θ′ {κt+1v

∗
θ′(v

∗
θ(vt)) +Wt+1 (v∗θ′(v

∗
θ(vt)|gt))} .

Given that Wt(v) is piece wise linear ∀t, let γk,t+2(vt) be the corresponding risk-capacity

given v∗θ′(v
∗
θ(vt). Given γk,t+2, any optimal gt must result in lower γi,t(gt),which can be

expressed as

γi,t =
1

2
H
(
κt + γi,t+1, κt + γjt(i),t+1

)
= Γ

{(
γi,t+2, γjt+1(i),t+2

)
,
(
γjt(i),t+2, γjt+1(jt(i)),t+2

)}
,
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which depends on γk,t+2 for four agents and the matching at period t+ 1.

We now show that any gt that violates negative sorting on γk,t+2 is dominated. Rank

agents by their cost γkt+2, where γ
1
t+2 ≤ γ2

t+2 < γ3
t+2 ≤ γ4

t+2. Let

f(γt+2, γ
′
t+2) ≡ 1

κt +
{

1
κt+1+γt+2

+ 1
κt+1+γ′t+2

}−1 ,

we thus have

γit =

{
1

κt + γit+1

+
1

κt + γjt+1

}−1

=
{
f
(
γit+2, γ

j∗t+1(i)

t+2

)
+ f

(
γjt+2, γ

j∗t+1(j)

t+2

)}−1

︸ ︷︷ ︸
=Γ

{(
γit+2,γ

j∗t+1(i)

t+2

)
,

(
γjt+2,γ

j∗t+1(j)

t+2

)}

Since
∂2f

∂γ∂γ′
=

−2κtγγ
′

(γγ′ + κt(γ′ + γ′))3
≤ 0,

Hence, given γkt+2, negative sorting at t+ 1 minimizes γt.

A.3 Binary Actions

A.3.1 Proof for Lemma 4

Proof. Given that γN+1(z) decrease in z ∈ {0, 1}, Equation 10 gives the value of γN(c),

where ci,N = zi + zjt(i) ∈ {0, 1, 2}, and γN(c) decrease in c. For t = N − 1,

ci,N−1 =
{
ci,N , cjN (i),N

}
=
{{
ci,N+1, cjN (i),N+1

}
,
{
cjN−1(i),N+1, cjN (jN−1(i))N+1

}}
.

By Lemma 3, {(1, 1), (0, 0)} is dominated by {(1, 0), (1, 0)} and hence, for any cN−1 ∈
{0, 1, 2, 3, 4},the connections are unique, where ci,N−1 =

{
b ci,N−1

2
c, d ci,N−1

2
e
}
and thus cN−1

is su�cient statics. Given that γN(c) decrease in c, γN−1(c) thus also increases in c.

By backward induction, assume that ci,t = (b ci,t
2
c, d ci,t

2
e) and let γt+1(c) denote its

corresponding risk-capacity, which decrease in c. Suppose that at period t,ci,t = (m,n)

where m− n ≥ 2,then dm
2
e ≥ bm

2
c > dn

2
e ≥ bn

2
c. Hence,

γt(m,n) ≥ γt

(
bm

2
c, dm

2
e
)
,
(
bn

2
c, dn

2
e
)
> γt

(
bm

2
c, dn

2
e
)
,
(
bn

2
c, dm

2
e
)
,
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which is dominated. Thus thus shows that the optimal core access within any pair must

be evenly distributed. Lastly, since γt+1(c) is decreasing in c and, under the optimal access,

γt(c) = 1
2H(κt+γt+1(b c2c), κt+γt+1(d c2e)) is thus increasing in c at period t. This thus establishes

that Lemma 4 must hold for any t.

A.3.2 Proof for Proposition 3

Proof. Since Lemma 4 has shown that, given any ci,t, the optimal connections must

distributed core access evenly within any pair, we thus have ci,t+1 = b ci,t
2
c and cj,t+1 =

d cj,t
2
e with each pair, where by de�nition ci,t = cj,t. Given Proposition 2, we thus have

vi,t = vj,t and, within the pair, Equation 9 is thus reduced to

vi,t+1 =

(
κt + γt+1(cj,t+1)

(κt + γt+1(ci,t+1)) + (κt + γt+1(cj,t+1))

)2

(2vi,t) .

A.3.3 Proof of Proposition 4

Given the expression of γt, we have γt(θκ) = θγt(κ). Hence, Equation (12) can be rewritten as

Π = κv1 maxc

{
−γ∗1(c)− c

2N

(
φ
κv1

)}
, where by comparative statics, c∗

(
φ
κv1

)
increases in φ

κv1
.

We now show that if δ = 0, γt(c) = 0 ∀t, c ≥ 1. As γN+1(1) = 0 and γN+1(0) = κ, we

thus have γN (1) = 1
2H(δ + γN+1(1), δ + γN+1(1)) = 0 if δ = 0. Assume that γt+1(1) → 0,

then γt(1) = 1
2H(δ + γ0

t+1, δ + γ1
t+1) → 0 ∀t by backward induction. Now we show that this

property also holds for any c > 1. Assume that γt+1(c) = 0 holds for any (t, c); we thus have

γt(c) = 1
2H(δ + γt+1(

⌊
c
2

⌋
), δ + γt+1(

⌈
c
2

⌉
)) = 0,∀(t, c).

As δ → ∞, αt(c) → 1
2 . Hence, regardless of the core access, the allocation is always sym-

metric, and thus vi,t+1 = 1
2vi,t for all i, t ≤ N. Hence,

∑
t≤N
´
vi,tdi = δ

(
1
2 +

(
1
2

)2
+ ..

(
1
2

)N)
=

δ
(

1−
(

1
2

)N)
, and thus

Π0 = max
c
−
{
κ
[(

1− 2−N
)
δv1 + (1− 2−Nc)2−Nv1

]
+ 2−Ncφ

}
.

Therefore, c = 2N i�
(

1
2

)N
v0 > φ.
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