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1 Introduction

Consider procedures for allocating resources (e.g., capital) within large organizations such
as governments, firms, and universities. The flow of information in these procedures may
resemble the hierarchical flow depicted in Figure 1.1. At the bottom of the hierarchy are the
production shops, operatives, or whoever ultimately uses the resources. In the upper tiers
are managers or administrators, who are independent of the shops. Information about the
shops’ valuations of the resource is aggregated by a flow of information up the hierarchy.
Resources are recursively disaggregated by a flow of information down the same hierarchy.
These procedures exhibit both decentralized information processing, which means that the
resource allocations are calculated jointly by the members of the administrative staff, and
decentralized decision making, which means that each node makes decisions constraining the
resource allocations and that the decisions of different nodes of the hierarchy are calculated
using different information.

This is an example of the complex flow of information and of the decentralization of
decision making that exist in organizations (and in markets). Such decentralization cannot
be explained solely by incentive problems, because an unboundedly rational principal would
have no need to delegate decision-making tasks to other agents; if, for other reasons, it is
necessary to contract with agents who have private information, then the principal can do
no worse than use a direct revelation mechanism in which all agents communicate directly
with the principal. Information transmission costs can lead to decentralization of decision
making to agents who are exogenously endowed with private information, but such costs
cannot alone account for transmission of information through those intermediaries (such as
the administrators in Figure 1.1) who are not.

This paper presents a model of such hierarchically decentralized decision making that is
driven by the bounded rationality of potential administrators. As in the “batch processing”
models of Mount and Reiter (1990), Radner (1993), and Bolton and Dewatripont (1994),
bounded rationality is modeled by constraints on the information processing that an agent
can perform in a given amount of time. However, rather than modeling how best to calculate
a single function, this paper builds a real-time model in which resources must be allocated
each period and the shops’ payoff functions are changing over time. Decision at any point in
time can thus be based on information of heterogeneous lags. As a consequence, decentralized
decision making can have benefits even in the absence of communication costs. Offices at the
bottom of multilevel hierarchies allocate resources to a small number of shops and can thus use
disaggregate and hence recent information, while offices at higher levels use more aggregate and
hence older information but can still coordinate advantageous transfers between the divisions.

Van Zandt (2003b) presented an abstract version of such a model, which was used to convey
basic ideas about decentralization and to compare batch and real-time processing. However,
it did not permit the statistical assumptions necessary to calculate the profit for each hierar-
chical structure. In this sequel, we assume that each operative has a simple quadratic payoff
function whose single parameter follows a stationary AR(1) process and is independent of the
parameters of the other operatives. Besides being more quantitative, the current paper com-
plements the methodological discussions in Van Zandt (2003b) with more formal definitions of
the computation model and hierarchically decomposed decision procedures. We use the static
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Figure 1.1. Hierarchically decomposed decision procedure. Payoff information may be
aggregated through an upward flow of information. Allocations are disaggregated through
a downward flow of information.

team theory model of hierarchical resource allocation in Geanakoplos and Milgrom (1991) as a
tool for suggesting decision rules that take into account the stochastic properties of the payoff
parameters and for deriving the expected payoffs for these rules. This team theory model is
also used to clarify the meaning of decentralized decision making in our real-time computation
model.

We ultimately derive a tractable reduced form. Our analysis of this reduced form is limited
to basic results on the optimal scale of integration. There are several papers that establish
limits to the optimal scale of centralized decision making (see e.g. Keren and Levhari (1983),
Radner and Van Zandt (1992), and Van Zandt and Radner (2001)) even when administrative
costs are not taken into account. However, because of the possibility of internal decentraliza-
tion in our model, there is a limit to the optimal scale of integration only if the managerial
wage is positive or if one bounds the extent of decentralization by restricting the number of
tiers in the hierarchies.

The model is analyzed further in other work. Van Zandt (2003a) derives a much simpler
model by restricting attention to balanced hierarchies (offices in the same tier have the same
span and each office aggregates information with the same delay for each source) and making
some continuous approximations. That paper also provides considerable “evidence” that op-
timal hierarchies are balanced, so that restricting attention to balanced hierarchies is without
loss of generality. This result relies on the symmetry of the underlying model but does not
follow trivially from it.

The reduced-form model of balanced hierarchies is then used in Van Zandt (2003c) to
quantify the costs and benefits of decentralized decision making, to obtain results on the
optimal scale of organization that are tighter than those reported in this paper, to characterize
the optimal spans, and to show how optimal organizations depend on the speed at which
the environment changes and on the managerial wage. For example, that paper finds that
organizations are smaller and more internally decentralized the more rapidly the environment
changes.
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The rest of this paper is organized as follows. In Section 2 we specify the temporal
resource allocation problem and then the decentralized computation model. The resulting
temporal decision model with explicit rationality constraints is very flexible and could be
used to represent a variety of market and nonmarket resource allocation procedures; however,
we restrict our attention to a class of hierarchical procedures. Some general properties of
hierarchical procedures are defined in Section 3. Then, after stating the statistical assumptions
in Section 4, we define a specific class of hierarchical procedures in Section 5 and calculate their
payoffs and administrative costs. Section 6 characterizes the optimal scale of integration, and
Section 7 considers some perturbations to the model. Section 8 reviews some related papers,
especially Geanakoplos and Milgrom (1991).

2 A boundedly rational real-time decision model

2.1 Overview

This paper views the administrative staff of an organization as a group of people with
bounded computational ability who jointly calculate decisions in a temporal decision problem.
This is called real-time decentralized information processing.1

In Section 2, we specify the two components of such a model:

1. a decision problem with uncertainty and multiple decision epochs and infusions of infor-
mation;

2. a model of the decision process by which informational inputs are transformed into
decisions.

A policy is a decision rule for each decision epoch that is a function of available information.
A computation procedure is a description of the processing of information. A policy and a
computation procedure that calculates the policy are together called a decision procedure.

If this paper were about stochastic control by an unboundedly rational decision maker,
then we would only specify the decision problem and would characterize policies that maximize
the decision-theoretic payoff. Instead, we characterize the performance of decision procedures.
Constraining decision making ability introduces an administrative cost of calculating decisions
and also limits the set of feasible policies.

The decision problem is to allocate a resource to shops whose valuations of the resource
change stochastically; it is described in Section 2.2. For the decision process, we use a simple
model of parallel computation; we describe it informally in Section 2.3 and then give a formal
axiomatic definition of computation procedures in Section 2.4. Decision procedures and their
performance are defined in Section 2.5.

1See Radner and Van Zandt (1992), Van Zandt (1999), and Van Zandt and Radner (2001) for other examples.



Van Zandt : Real-Time Hierarchical Resource Allocation with Quadratic Payoffs 4

2.2 The decision problem

We consider an organization that allocates a single resource over time to n > 2 recipients,
which we call shops and index by i ∈ I. We let there be a double infinity Z of time periods
(decision epochs) so that we can define stationary decision procedures without having to make
exceptions for the first or last few periods. Let xit ∈ R be the allocation to shop i in period
t; an allocation in period t is then {xit}i∈I . The organization’s payoff in period t given such
an allocation is

∑
i∈I u(xit, γit), where u(xit, γit) is shop i’s payoff and γit ∈ R is a random

variable called i’s payoff parameter.

The payoff parameters are the source of uncertainty in this model; they are also the data
from which resource allocations are computed. Realizations of the period-t parameters are
freely observable at the beginning of period t, but we model the fact that it takes time for
administrators to make decisions using new information. Hence, the allocations in each period
are functions of past observations of the payoff parameters.

The additivity of the payoff across shops means that there are no externalities. The source
of the coordination problem is that the system is closed and hence the resource is in fixed
supply. For simplicity, we assume that the resource is perishable and cannot be reallocated
intertemporally. Thus, the only intertemporal link in the model is the informational link
between data and decisions. We assume that the amount of the resource available is not only
deterministic but also the same in each period. Let x̄ be the per-shop amount. An allocation
{xit}i∈I must therefore satisfy

∑
i∈I xit

a.s.= nx̄, where we use the notation a.s.= (“almost surely
equals”) to emphasize that at least one side of an equality is a random variable.

This is the classic resource allocation problem that is so central to economics. The shops
may be business units in a firm; the resource affects each unit’s profitability given unmodeled
decisions made within the unit. The shops may be production shops, where u inversely
measures the cost of production; the resource may be an input that lowers each shop’s cost
given a fixed production assignment, or the resource may represent output and an allocation
is an assignment of production targets meant to minimize the total cost of a given level of
aggregate output. The shops may be consumers; the resource is then a consumption good
that is allocated to maximize total welfare.

2.3 The computation model

As in actual organizations, the administrative staff consists of people (whom we call agents)
who are hired not because they are exogenously endowed with private information about the
organizations’ payoff parameters but rather because their time and mental skills are needed in
order to make decisions using available information. With the goal of parsimony, we introduce
only those constraints on human information processing that are needed for the economic
conclusions of the paper. These conclusions depend on delay in aggregating information.
As explained in Van Zandt (1999), such aggregation delay could be due to either of two
limits on human information processing: (a) the time it takes humans to read, understand,
and interpret information; or (b) the time it takes humans to calculate using information
they have already internalized. However, the delay cannot be due to the time and cost of
transmitting information through a physical network. We incorporate only the constraints on
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calculation because constraints on “reading and understanding” could be confused with the
communication costs that have been used in team theory to explain the decentralization of
decision making to agents who are exogenously endowed with private information.

Thus, the agents’ computational abilities are given by a set of elementary operations—
functions that can be applied to raw data and prior results—and by the time each operation
takes. Otherwise, there are no constraints. For example, agents have unlimited memory,
can freely and instantaneously communicate (e.g., read and understand messages), and can
synchronously execute the organization’s bureaucratic procedures. Furthermore, agents are
identical, are drawn from an unlimited pool, and receive the same per-period wage only
while busy performing operations. There are no other managerial costs.2 Such parsimony
strengthens the results by demonstrating that they can follow from just one limitation on
human information processing. We also do not model any incentive problems that might
arise, but we note that these would work against decentralization.

One consequence of these assumptions is that an operation can be assigned to any agent
who is not otherwise busy because each agent has free and immediate access to all available
information, including the results of previous operations. Hence, which agent performs each
operation and what messages are sent between individual agents are not determinate. We
therefore cannot derive results about the agent-level structure of organizations, but such
micro structure is not the subject of this paper.

The appropriate representation of data and the appropriate set of elementary operations
both depend on details of the decision problem; these should be rich enough to allow for
the computation of a suitably rich set of decision rules. In Section 4, we impose various
assumptions on the payoff function u and on the stochastic processes governing the payoff
parameters such that linear decision rules are adequate. Hence, we let the set of elementary
operations be addition, subtraction, and multiplication. We represent data and allocations
as real numbers, as an approximation for fixed-precision arithmetic.3 We assume that these
three elementary operations take the same amount of time—namely, one period.

We do not literally consider that constraints on the human ability to do arithmetic are
important in organizations. Instead, the simplicity of the information processing tasks (com-
puting linear decision rules) has been forced on us by the adoption of a concrete statistical
decision problem with a finite-dimensional state space. The cost and benefits of decentraliza-
tion that arise in this paper can also be illustrated qualitatively in an abstract model with
complex elementary operations (see Van Zandt (2003b)). However, without the additional
structure on the decision problem, we cannot obtain a quantitative model and hence can nei-
ther characterize optimal organizations nor perform comparative statics. Because economists
find simple numerical decision problems to be useful proxies for actual complex economic
situations, we must consider the computation of simple decision rules by simple agents to
be a useful proxy for the computation of complex decision rules—using soft information and
heuristic procedures—by complex human agents. What is important for this paper is that
aggregating information takes time, both for the proxy and for real human decision making.

2In computer science, this simple model is called a “parallel random access machine”.

3With the limited set of elementary operations, the subtle complications that can arise with computation

on real numbers (dealt with in Mount and Reiter (1996)) do not arise here.
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2.4 Computation procedures

Section 2.3 described the computation informally. We could proceed to describe computa-
tion procedures informally as well. This can be an appropriate tactic, given the laboriousness
of a formal specification. However, owing to the relative novelty of such modeling in economics,
we consider it useful to give a formal axiomatic definition of computation procedures.

As discussed in Section 2.3, this model of computation is anonymous in that we cannot pin
down the activities of individual agents. This greatly simplifies the formal model. To describe
the decisions and managerial costs that result from the calculation of resource allocations, we
need only record the operations performed at each point in time, identify the operands of these
operations (either payoff parameters, numerical constants, or outputs of previous operations),
and then identify which partial results are allocations. In particular, we do not need to record
where information resides or who performs each operation.

Imagine the computation of a policy based on the informal description of computation
from Section 2.3. Suppose that we form a graph whose nodes are the operations, allocations,
data, and constants. Each edge connects an operand to its operation or connects a partial
result to an allocation. Order the two edges that go to each operation so that they reflect the
ordering of operands (since the order matters for subtraction). We thereby obtain an ordered
directed acyclic graph (DAG), which is similar to the DAGs in Mount and Reiter (1990, 1998)
and Reiter (1996) and to other types of graphs used to represent and analyze algorithms in
computer science. This is how we represent a computation procedure.

We begin by defining a DAG to be any ordered directed acyclic graph (Definition 2.1).
We then define some labels, called “attributes”, for identifying what each node in the DAG
represents (Definition 2.2). In order to describe a computation procedure, a DAG should
respect rules about (a) the number of operands (immediate predecessors) that each node
should have and (b) the timing of operations—no operation at time t can have an operand
that does not already exist (Definition 2.3). We then specify how the value of a node is
determined recursively by the values of its operands (Definition 2.4).

Definition 2.1 A DAG is an ordered directed acyclic graph. Each node of a DAG is called
a statement, and each statement’s immediate predecessors are called its operands.

Definition 2.2 An attribute is a string of one of the forms

ADD(t) SUB(t) MUL(t) ALLOCATION(t,i) DATA(t,i) CONSTANT(r)

where t ∈ Z, i ∈ I, and r ∈ R. The value of t is called the execution time.

The attributes are used to label the statements in a DAG according to what the state-
ments represent. ADD, SUB, and MUL statements represent addition, subtraction, and multi-
plication (respectively), and are called operations. Such statements have two operands each.
An ALLOCATION(t,i) statement has one operand, which is thereby identified as the period-t
allocation for shop i. A DATA(t,i) statement stands for γit and a CONSTANT(r) statement
stands for the constant r, so that these can be operands of other statements. Such statements
do not have their own operands.



Van Zandt : Real-Time Hierarchical Resource Allocation with Quadratic Payoffs 7

This description of operands is formalized in Definition 2.3, which also incorporates the
following assumptions about timing: allocations are made and data become available during
the instant that begins each period; operations take place during the rest of the period; and
constants are timeless.

Definition 2.3 A computational procedure is a DAG in which each statement has finitely
many predecessors, together with an assignment of an attribute to each statement, such that:

1. operations (ADD, SUB, and MUL statements) have two operands, ALLOCATION statements
have one operand, and DATA and CONSTANT statements have no operands; and

2. an operand of a statement with execution time t1 is either (a) an operation with execution
time t2 < t1, (b) a DATA statement with execution time t2 ≤ t1, or (c) a CONSTANT

statement.

We typically denote a computation procedure by P. Where no confusion can arise, we use
P to denote just the set of statements, and we commonly refer to a statement solely by its
attribute.

Definition 2.4 gives substance to our interpretation of the statements by defining, for each
statement, a random variable that is called its value and that is a function of the value of its
operands.

Definition 2.4 Let P be a computation procedure. The value of each statement p ∈ P is
a random variable, denoted v(p). These values are defined recursively (starting at CONSTANT

and DATA statements) as follows:

Attribute Operands Value

CONSTANT(r) r

DATA(t,i) γit

ALLOCATION(t,i) o v(o)
ADD(t, i) o1 & o2 v(o1) + v(o2)
SUB(t, i) o1 & o2 v(o1) − v(o2)
MUL(t, i) o1 & o2 v(o1) × v(o2)

The value of an edge in the DAG of P is the value of its initial vertex.

Computation procedures may have infinitely many statements. However, we can illustrate
part of a procedure by showing the subgraph containing a finite set of statements and the
edges between these statements. For example, Figure 2.1 shows a computation procedure
that calculates α1γ1t + α2γ2t, where α1, α2 are constants and it is presumed that {1, 2} ⊂ I.
Although we cannot pin down the agents involved in this calculation, we can see that there
is decentralized information processing. The two MUL operations are performed at the same
time and hence must be performed by different agents. Although there are a total of three
operations, the delay is two thanks to this decentralization.
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ADD(t + 1) [α1γ1t + αtγ2t]

[α1γ1t] MUL(t)

CONSTANT(α1)

[α1]

DATA(t,1)

[γ1t]

MUL(t) [α2γ2t]

CONSTANT(α2)

[α2]

DATA(t,2)

[γ2t]

Figure 2.1. A procedure for calculating α1γ1t + α2γ2t. Each node is labeled with its
attribute and, in square brackets, its value.

2.5 Decision procedures

A decision procedure is a computation procedure that calculates the resource allocation
for each period.

Definition 2.5 A decision procedure is a computation procedure P with the following prop-
erties.

1. For all i ∈ I and t ∈ Z: there is a unique statement pit ∈ P whose attribute is
ALLOCATION(t,i).

2. For all t ∈ Z:
∑

i∈I v(pit)
a.s.= nx̄.

Then P’s policy is {xit ≡ v(pit)}i∈I,t∈Z
.

In this paper, we study only those decision procedures for which the expected payoffs
and the number of operations in each period are time-invariant. Therefore, we define perfor-
mance measures only for such decision procedures, rather than specifying a general rule for
aggregating payoffs and managerial costs across periods.

Definition 2.6 Let P be a decision procedure and let {xit}i∈I,t∈Z
be the allocation computed

by P. Suppose
∑

i∈I E[u(xit, γit)] is the same in each period; let U be the constant value.
Suppose the number of operations in P whose execution time is t is the same in each period;4

let Y be the constant value. Then U is called P’s expected payoff and Y is called P’s admin-
istrative load. There is a parameter w ≥ 0 called the managerial wage, and wY is called P’s
cost. We denote P’s profit as Π ≡ U − wY .

4The number of operations executed each period is deterministic because our computation model does not

include conditional flow control.
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3 Hierarchically decomposed decision procedures

3.1 Overview on the role of organizational structures

The computation model is quite flexible and the set of decision procedures is expansive.
The question “which decision procedure has the highest profit?” is well-posed once we add
assumptions on payoffs, but it is not easily answered. It may not even be the most interesting
question; given the discrete nature of the model, the details of the best decision procedure are
likely to obscure more robust qualitative properties. The purpose of this paper is not to answer
that question but rather to define a restricted class of decision procedures with interesting
identifiable properties. Their comparative advantages and disadvantages are qualitatively
robust and quantifiable.

The procedures in that class have hierarchical structures in which the flow of information
is as pictured in Figure 1.1. However, the notion of “structure” that we develop is different
from that of other models of networks—such as those described by Geanakoplos and Milgrom
(1991), Radner (1993), and Mookherjee and Reichelstein (1996)—in which the nodes represent
individual agents. Although we used a graph-theoretic construct in the computation model,
those DAGs have no direct relationship to organizational structure. Furthermore, we cannot
base a notion of structure on the flow of information between individual agents because the
assignment of operations to agents is arbitrary and we cannot differentiate the knowledge of
different agents.

To understand the role that structure plays in our theory, consider the role it plays in
actual organizations. At a micro level (and to an outsider who spends a day in an unfamiliar
firm), an organization consists of a collection of people, some coming and going in the same
day, with a constant buzz of activities and exchanging of information. An organizational chart
or other formal model of the organization’s structure is an attempt to see the forest through
the trees—to step back and see order and structure that exist only at a macro level. It is
useful both as a way to understand what is actually happening in an organization and as a
way to design organizations. The basic component of such a model is not an employee but
rather a set of activities or responsibilities, because who performs them may change from day
to day and some employees even split their time across several parts of the organization. The
distinction between offices, departments, and other parts of the structure is blurry; different
observers can come up with different macro models of the same micro activity, depending
on what features of the organization they want to emphasize. Yet some models are more
compelling than others.

This is the kind of structure that we want to represent in our model. As in real orga-
nizations, we limit ourselves to a macro model of hierarchical structures. We use the model
not simply to make sense of given decision procedures but also as a framework for designing
them. One purpose is to distinguish between decentralized decision making and decentralized
information processing. We defend the model not as the only possible representation of the
structure of the decision procedures we study but rather as a particularly compelling one.
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Definition 3.1 A hierarchy is a rooted tree. It is represented by 〈I, J, R, {Θj}j∈J〉, where
I is the set of leaves, J is the set of nonleaf nodes, R ∈ J is the root, and Θj is the set of
children of j ∈ J . We say that the root is at the top and thus moving away from the root
means moving down the hierarchy. For a hierarchy 〈I, J, R, {Θj}j∈J〉, we define the following.

1. Nodes are also called units; leaf nodes are also called shops; nonleaf nodes are also called
offices.

2. A child is also called a subordinate and a parent is also called a superior.

3. For k1, k2 ∈ I ∪ J : k1 ≺ k2 means that k1 is below k2, and k1 � k2 means that either
k1 ≺ k2 or k1 = k2.

4. For j ∈ J : The span of j, denoted sj , is equal to the number of j’s subordinates. That
is, sj ≡ #Θj , where # denotes the number of elements in a set.

5. For k ∈ I ∪ J : Division k, denoted θk, is equal to the set of leaves below k in the
hierarchy. That is, θk ≡ {i ∈ I | i � k}. The size of division k is nk ≡ #θk.

6. For k ∈ I ∪ J : The tier hk of node k ∈ I ∪ J is the length of the longest path from k

to a leaf in division k. Thus, the tier of each leaf is 0, whereas the root has the highest
tier, which we denote by H and call the height of the hierarchy. Note that, for j ∈ J ,
hj = 1 + max {hk | k ∈ Θj}.

Table 3.1. Definitions and notation for hierarchies.

3.2 Hierarchical decompositions

We divide our definition of hierarchical structure into two steps.

The first step (Definition 3.2) is meant to capture two ideas and a restriction. The first idea
is that the basic unit of an organizational structure is a set of activities or responsibilities. In
our model, such a unit is a set of statements in the decision procedure. The second idea is that
the interesting pattern of communication between the units of an organization is given not by
the physical network through which information is transmitted but rather by who produces
and who uses information. In our model, a message is an edge in the DAG connecting two
statements that belong to different units. The restriction is that we consider only hierarchical
structures, meaning that the messages connect the units of the structure to form a tree whose
leaves represent shops. (The reader should consult Table 3.1 for a definition of hierarchy;
although just a tree, we use special terminology and notation.)

Thus, given a decision procedure, a hierarchical structure is any partitioning of the set of
statements such that: the elements of the partition can be identified with nodes of a hierarchy
(items 1 and 2 in Definition 3.2); the leaves of the hierarchy correspond to the shops (item 3);
and communication is only between subordinates and superiors (item 4).

Definition 3.2 A hierarchical structure for a decision procedure P is 〈J, R, {Θj}j∈J , {Pk}k∈I∪J〉
such that:
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1. 〈I, J, R, {Θj}j∈J〉 is a hierarchy for which sj ≥ 2 for j ∈ J ;

2. {Pk}k∈I∪J is a partition of P;

3. for each shop i ∈ I, Pi consists of shop i’s DATA and ALLOCATION statements in P;

4. for k1, k2 ∈ I ∪ J such that k1 
= k2, there is an edge in the DAG from a statement in
Pk1 to a statement in Pk2 (called a message from k1 to k2), or vice versa, if and only if
k1 is a superior or subordinate of k2.

For k ∈ I ∪ J , the statements in Pk are said to be assigned to or performed by k. A message
is considered to be sent in the period in which the initial vertex is executed.

The second step (Definition 3.3) relates organizational structure to decision making in an
organization. Every relevant message has some effect on organization behavior and hence
represents a decision in a weak sense. Yet there is an intuitive distinction between purely
informational messages and messages that represent decisions and so constrain others. For
example, consider the hierarchical procedure depicted in Figure 1.1. If a unit ignores a message
from a subordinate about payoff parameters, the only consequence is that the quality of
decisions is degraded. In contrast, a unit cannot ignore a message from a superior about
an aggregate allocation without violating feasibility constraints. We identify such resource
allocation messages as decisions.

Let P be a decision procedure and let 〈J, R, {Θj}j∈J , {Pk}k∈I∪J〉 be a hierarchical structure
for P. For k ∈ I ∪ J and t ∈ Z, the aggregate allocation to division k is xkt ≡ ∑

i∈θk
xit.

For each period t ∈ Z, each office j ∈ J , and each subordinate k ∈ Θj , we want to identify
a message X(k, t) from j to k whose value is xkt and which we interpret as a decision by j

about the aggregate allocation of division k. Furthermore, having identified also the message
X(j, t) by which j (if not the root) is informed of its own period-t allocation, we require that
office j perform all the operations that lie between X(j, t) and X(k, t) in the DAG; we can
then adopt the view that j decides how to subdivide its allocation among its subordinates.

Definition 3.3 A hierarchical decomposition of a decision procedure P is 〈J, R, {Θj}j∈J ,

{Pk}k∈I∪J , X〉 such that 〈J, R, {Θj}j∈J , {Pk}k∈I∪J〉 is a hierarchical structure for P and such
that X is a function from (I ∪ J \ {R}) × Z to the set of messages with following properties.

1. For 〈k, t〉 ∈ (I ∪ J \ {R}) × Z: X(k, t) is a message from k’s superior to k.

2. All messages from superiors to subordinates are in the range of X.

3. For k ∈ I ∪ J \ {R} and t ∈ Z: xkt
a.s.= v(X(k, t)).

4. For i ∈ I and t ∈ Z: the attribute of the terminal vertex of X(i, t) is ALLOCATION(t,i).

5. For j ∈ J \ {R}, k ∈ Θj , and t ∈ Z: any path in the DAG from the terminal vertex of
X(j, t) to the initial vertex of X(k, t) lies in Pj .
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Definition 3.3 is very restrictive. The only messages are between an office and its subor-
dinates, and the only information an office sends to its subordinates are resource allocations.
This precludes, for example, that offices in the same tier of a hierarchy share information or
that offices send informational statistics that help subordinate offices predict their payoffs.
Such information sharing would be advantageous if the payoff parameters of different shops
were correlated, and yet could be consistent with an identifiable hierarchical disaggregation of
resource allocations. We opted for the restrictive definition because it does not preclude the
procedures defined in Section 5.

3.3 Team statistically optimal decision rules

The notion of a hierarchical decomposition as a representation of decentralized decision
making still lacks content. For example, every decision procedure has a trivial centralized
hierarchical decomposition with a single office; if it has others, how do we identify which
is the right one? Furthermore, a hallmark of decentralized decision making is that different
offices use different information to calculate the period-t allocations of their subordinates; how
can we formally define what information is used in a decision and ensure that it is used in
a meaningful way? This section addresses these questions by identifying (in Definition 3.4)
the information each office uses to compute allocations and then defining (in Definition 3.5)
a distributed “statistical optimality” condition that is drawn from Geanakoplos and Milgrom
(1991).

The information set ϕjt from which office j computes the period-t allocation of its sub-
ordinates is identified roughly as follows. For a subordinate k of j, we already identified a
message X(k, t) as j’s decision about k’s period-t allocation. Consider the sub-DAG consist-
ing of X(k, t) and its predecessors; the sources (nodes without predecessors) are CONSTANT

and DATA statements. These data are the information from which the organization computes
X(k, t). We do not treat all this information as j’s dataset because offices other than j may
perform some of the processing that lies in the DAG between these data and X(k, t). Instead,
traversing the DAG backward from X(k, t), we stop each time that we encounter a message to
j (i.e., each time we would otherwise leave the set of statements performed by j). We repeat
this for k ∈ Θj and let ϕjt be the vector of values of the messages thus found—but excluding
j’s own allocation X(j, t) so that we can treat it separately.

Definition 3.4 Let 〈J, R, {Θj}j∈J , {Pk}k∈I∪J , X〉 be a hierarchical decomposition of a pro-
cedure P.

1. For all t ∈ Z, j ∈ J , and k ∈ Θj : Office j is said to use a message to calculate k’s
period-t allocation if there is a path in the DAG from the final vertex of the message to
X(k, t) such that the vertices of the path are all in Pj .

2. For all t ∈ Z and j ∈ J : Let ϕjt be the vector of the values of the messages (other than
X(j, t) if j 
= R) that office j uses to calculate the period-t allocation of at least one of
its subordinates. Then ϕjt is called j’s period-t information set.

3. For all t ∈ Z and j ∈ J : For k ∈ Θj , let fkt be the function such that 〈ϕjt, xjt〉 fkt�−→ xkt.
Then {fkt}k∈Θj ,t∈Z

is called office j’s period-t decision rule.
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Geanakoplos and Milgrom (1991) present a team theory model in which resources are
allocated by a recursive disaggregation of allocations down a hierarchy. There is no upward
flow of information; instead, offices (which are called managers in their model) are endowed
with a set of feasible signals. Other differences between that model and ours is that the
former is static and has no constraints on computation. Yet their static “limited-information,
unlimited-computation” model is useful for our temporal “unlimited-information, limited-
computation” model. For a given hierarchical decomposition and a given period t, we can
treat the period-t information of each office as exogenously fixed and ask whether the decision
rules for that period would be optimal in the team theory model, given the fixed information
structure. We call this criterion team statistical optimality.

We first define a version of the model in Geanakoplos and Milgrom (1991) for fixed hier-
archies, which we call the team theory model. Its exogenous components are:

1. a set I of shops;

2. a per-capita quantity x̄ of a resource to be allocated to the shops in I;

3. for each shop i ∈ I, a payoff function ui such that, for xi ∈ R, ui(xi) is a random
variable;

4. a hierarchy 〈I, J, R, {Θj}j∈J〉; and

5. an information structure {ϕj}j∈J where, for j ∈ J , ϕj is a random object that has
sample space Φj and is called office j’s information set.

A decision rule for office j is a collection {fk: Φj × R → R}k∈Θj
of functions, where fk(ϕj , xj)

represents j’s allocation to k, that satisfies the following resource constraints:
∑
k∈Θj

fk(ϕj , xj)
a.s.= xj for xj ∈ R.

Given a decision rule for each office, we can recursively calculate the allocation of each node
of the hierarchy as follows. The allocation of the root is xR ≡ nx̄. Given that the allocation
of office j is the random variable xj , it follows that the allocation of k ∈ Θj is the random
variable xk ≡ fk(ϕj , xj). The expected payoff is then

∑
i∈I E[ui(xi)]. The decision rules are

optimal in this team theory model (for the given hierarchy and information structure) if they
yield the highest expected payoff of all decision rules.

Definition 3.5 A decision procedure P and its hierarchical decomposition 〈J, R, {Θj}j∈J ,

{Pk}k∈I∪J , X〉 are said to be team statistically optimal if, for all t ∈ Z, the decision rules{{fkt}k∈Θj

}
j∈J

are optimal in the team theory model when (i) the set of shops is I, (ii) the
per-capita resource is x̄, (iii) for i ∈ I, shop i’s payoff function is u( · , γit), (iv) the hierarchy
is 〈I, J, R, {Θj}j∈J〉, and (v) the information structure is {ϕjt}j∈J .

Optimal hierarchically decomposed decision procedures need not be team statistically op-
timal. Statistically suboptimal decision rules might be less complex or might generate bet-
ter information for other offices. However, under the statistical assumptions we impose in
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Section 4, team statistically optimal decision rules are computationally simple and provide
superiors with sufficient statistics for relevant information.

In subsequent sections, team statistical optimality plays three roles. The first is to give
credibility to our identification of an office’s information by ensuring that the office actually
uses this information. The second is to give credibility to our identification of a hierarchical
decomposition by ensuring uniqueness. (If we coarsen a hierarchical decomposition then the
team statistical optimality condition becomes stronger, because some decisions previously
assigned to different offices must now be optimal using pooled information.) The third role
is operational: the characterization of team statistically optimal decision rules is useful for
designing and describing simple but “statistically aware” decentralized decision procedures.

4 Statistical assumptions

Before presenting (in Section 5) the hierarchically decomposed procedures, we state our
statistical assumptions and give a characterization of team statistical optimality.

We assume that the payoff functions are quadratic. This is motivated purely by analytic
simplicity. Such payoffs are nonmonotonic and hence are at best a local approximation for
most applications.

Assumption 4.1 u(x, γ) = ū − (x − γ)2.

We can now obtain a simple characterization of team statistical optimality. Fix a hierar-
chically decomposed decision procedure. For each office j and period t, let γjt ≡

∑
i∈θj

γit be
the sum of the period-t payoff parameters of the shops under j; we call γjt the aggregate payoff
parameter of office or division j. (Note the recursion γjt =

∑
k∈Θj

γkt.) For j ∈ J , k ∈ Θj ,

and t ∈ Z, let γ̂j
jt ≡ E[γjt |ϕjt ] and γ̂j

kt ≡ E[γkt |ϕjt ]. (Thus, in the notation γ̂j
kt as compared

to γkt, the “hat” indicates that it is an expected value and the superscript j indicates that
the expectation is conditional on j’s information.)

The assumption in Proposition 4.1 is that j’s superiors do not have additional information
that would help j estimate the aggregate payoff parameters of its subordinates. This holds if
office j’s information is a sufficient statistic for γkt, for k ∈ Θj , with respect to the information
of offices above it in the hierarchy.

Proposition 4.1 Assume that, for j ∈ J and k ∈ Θj,

E[γkt |ϕjt ]
a.s.= E[γkt |{ϕ�t | � ∈ J, � � j}].

The hierarchically decomposed decision procedure is team statistically optimal if and only if

fkt(ϕjt, xjt)
a.s.= γ̂j

kt +
nk

nj
(xjt − γ̂j

jt)(4.1)

for all j ∈ J , k ∈ Θj, and t ∈ Z.
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The expected payoff each period is then equal to Πni +
∑

j∈J vj, where

Πni ≡ nū − 1
n

(nx̄ − E[γRt])
2 −

∑
i∈I

Var(γit)(4.2)

is the no-information maximized expected payoff and

vj ≡

 ∑

k∈Θj

1
nk

Var(γ̂j
kt)


 − 1

nj
Var(γ̂j

jt)(4.3)

is called the value of j’s information. If the estimates {γ̂j
kt}k∈Θj are independent, then

vj =
∑
k∈Θj

(
1
nk

− 1
nj

)
Var(γ̂j

kt).(4.4)

Proof. Geanakoplos and Milgrom (1991) characterized the optimal decision rules for a more
general version of this static team theory model. Their characterization is an extension of
Crémer (1980). �

We impose the following statistical assumptions in the rest of this paper.

Assumption 4.2

1. The stochastic processes {{γit}t∈Z}i∈I are identically and independently distributed (i.i.d.).

2. For i ∈ I, {γit}t∈Z
is a stationary first-order autoregressive process,

γit = βγi,t−1 + εit,(4.5)

such that |β| < 1 and the random variables {εit}t∈Z,i∈I are i.i.d. and have mean 0.

Under Assumption 4.2, the problem is symmetric with respect to the shops. The mean of
γit is 0. Let σ2 ≡ Var(γit), which is equal to Var(εit)/(1 − β2). Let b ≡ β2.

Consider the no-information benchmark. In this case, each shop’s allocation is x̄ and the
expected payoff is equal to n(ū − x̄2 − σ2), from equation (4.2). The constant term ū does
not affect the relative profit of different hierarchies (since it does not figure in equation (4.3)).
Therefore, we normalize ū so that the no-information expected payoff is 0.

Assumption 4.3 ū = x̄2 + σ2.

5 A class of hierarchical organizations

5.1 CF hierarchies

We study a particular class of hierarchically decomposed decision procedures, called CF
hierarchies. The “CF” stands for “constant flow”, reflecting the fact that the calculations and
information flows are the same in each period. Formally, a CF hierarchy is defined to be not
the decision procedure itself but rather a list of the key parameters of the decision procedure,
as follows.
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Definition 5.1 A CF hierarchy is a quintuple 〈I, J, R, {Θj}j∈J , {Tj}j∈J〉 such that 〈I, J, R,

{Θj}j∈J〉 is a hierarchy and, for j ∈ J , Tj is a binary tree with leaves Θj (which is called j’s
aggregation tree).

(By binary tree we mean a rooted tree in which every interior node has exactly two children.)

In Sections 5.2–5.7, we define the decision procedure P and hierarchical decomposition
〈J, R, {Θj}j∈J , {Pk}k∈I∪J , X〉 corresponding to each CF hierarchy 〈I, J, R, {Θj}j∈J , {Tj}j∈J〉
and then derive the profit. We build up the definition step by step so as not to get lost in
the details. The binary trees {Tj}j∈J are used to describe the way in which information is
aggregated, but we do not reach this until Section 5.5.

5.2 Decision rules

The decision procedure and hierarchical decomposition are team statistically optimal, so
the policy calculated by each office j has fkt(ϕjt, xjt)

a.s.= γ̂j
kj + (nk

nj
)(xjt − γ̂j

jt). The stream

of partial results {γ̂j
jt}t∈Z is the information that office j sends up to its superior. The only

information flowing down the hierarchy are the resource allocations.

Thus, office j receives from a subordinate k that is not a shop the stream {γ̂k
kt}t∈Z. For

a subordinate i that is a shop, the stream is the raw data {γit}t∈Z. To maintain common
notation, we define γ̂i

it ≡ γit for i ∈ I and t ∈ Z.

Given that the shops’ payoff parameters are independent, only those data sent by subor-
dinate k help j estimate γkt. Let’s take as given that the calculations are stationary and that,
as a consequence, the stream {γ̂k

kt′}t′∈Z is itself a Markov process (this is easily verified once
we complete the specification of the calculations). Then office j’s estimate of γkt uses only one
of the messages sent by k, meaning that γ̂j

kt
a.s.= E[γkt | γ̂k

k,t−Ljk
] for some integer Ljk. Because

{γkt} is also (This holds if office j’s information is a sufficient statistic for γkt with respect to
the information of offices above it in the hierarchy.) an AR(1) process with coefficient β and
γ̂k

k,t−Ljk
is independent of the innovation terms between t − Ljk and t (being itself calculated

prior to t − Ljk), we have γ̂j
kt = βLjk γ̂k

kt.

5.3 Payoffs

We can think of Ljk as the extra lag that j adds to the information about k, owing to
as-yet unspecified computational delay. We can calculate the expected payoff in terms of these
lags even before we derive the lags from the computation model.

The information for different subordinates is statistically independent and hence so are
the estimates {γ̂j

kt}k∈Θj . Therefore, by Proposition 4.1,

vj =
∑
k∈Θj

(
1
nk

− 1
nj

)
Var(γ̂j

kt).(5.1)

We can derive Var(γ̂j
kt) recursively. Since γ̂j

kt = βLjk γ̂k
kt, we have Var(γ̂j

kt) = bLjk Var(γ̂k
kt)

(recall that b ≡ β2). However, it is useful to derive a nonrecursive formula by viewing office j’s
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information as summary statistics of individual payoff parameters. As we move up a hierarchy,
each office adds an extra lag to the data. For k1, k2 ∈ I ∪ J such that k1 � k2, we define
the cumulative lag Lk1k2 of k1’s information about k2 to be the sum of L�1�2 for �1 ∈ J and
�2 ∈ Θ�1 such that �1 and �2 are on the path from k1 to k2 in the hierarchy:

Lk1k2 ≡
∑

�1∈J, �2∈Θ�1
k1��1��2�k2

L�1�2 .(5.2)

(If k1 = k2, then trivially Lk1k2 = 0; if k1, k2, k3 ∈ I ∪ J and k1 � k2 � k3, then Lk1k3 =
Lk1k2 +Lk2k3 .) Then office j’s information consists of summary statistics of

{
γi,t−Lji

}
i∈θj

. As

shown in Proposition 5.1, these summary statistics are as good as the raw data
{
γi,t−Lji

}
i∈θj

for the purpose of calculating γ̂j
kt.

Proposition 5.1 For j ∈ J and k ∈ Θj,

γ̂j
kt

a.s.=
∑
i∈θk

βLji γi,t−Lji ,(5.3)

γ̂j
jt

a.s.=
∑
i∈θj

βLji γi,t−Lji .(5.4)

Proof. The proof is by induction on the tier of the office. As the basis of induction, we note
that equation (5.4) would hold trivially if j were in tier 0 and hence a shop. As the inductive
step: (a) we show below that equation (5.3) holds for an office j in tier h ≥ 1 if equation (5.4)
holds for all offices and shops in lower tiers; and (b) we note that, if equation (5.3) holds for
k ∈ Θj then equation (5.4) follows from E

[∑
k∈Θj

γkt

∣∣∣ϕjt

]
a.s.=

∑
k∈Θj

E[γkt |ϕjt ].

Consider then part (a) of the inductive step. Let h ∈ {1, . . . , H} and suppose that equa-
tion (5.4) holds for j ∈ I ∪ J such that hj < h. Let j ∈ J be such that hj = h. For each
k ∈ Θj , we have hk < h and thus equation (5.4) holds when the symbol j is replaced by k in
that equation. Since γ̂j

kt = βLjk γ̂k
kt, it follows that

γ̂j
kt = βLjk

∑
i∈θk

βLki γi,t−Lki−Ljk
=

∑
i∈θk

βLji γi,t−Lji ,

which is equation (5.3). �

Proposition 5.2 The expected payoff is
∑

j∈J vj, where

vj = σ2
∑
k∈Θj

(
1
nk

− 1
nj

) ∑
i∈θk

bLji .(5.5)

Proof. In equation (5.6), the first equality follows from Proposition 5.1 and the second
follows from the fact that {γi,t−Lji}i∈θk

are independent.

Var(γ̂j
kt) = Var


∑

i∈θk

βLjiγi,t−Lji


 = σ2

∑
i∈θk

bLji .(5.6)

Substituting equation (5.6) into equation (5.1) yields equation (5.5). �
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Figure 5.1. The sub-DAG for the calculation of
∑

k∈Θj
γ̂j

kt in the example of Section 5.4

(γ̂k represents γ̂j
kt).

5.4 An example of the calculations of a tier-1 office

Now we get to the actual calculations, which determine the lags and the managerial costs.
Consider first an example in which j is an office in tier 1. All subordinates are shops, but we
will favor the notation Θj for the set of subordinates, sj for their number, and k for a typical
subordinate. Suppose that sj = 16.

Office j should finish calculating {xkt}k∈Θj by the beginning of period t. It begins this
calculation some time before then, say in period t−L. Suppose that it gathers all its data in
that period, so that this data is {γk,t−L}k∈Θj . It has L periods to calculate

xkt = γ̂j
kt +

1
nj

(xjt − γ̂j
jt)

for each k ∈ Θj , where γ̂j
kt = βLγk,t−L and γ̂j

jt =
∑

k∈Θj
γ̂j

kt. There are five steps.

(a) The first is to calculate γ̂j
kt = βLγk,t−L for each subordinate. There are sj = 16 of these

MUL operations, but—by assigning them to different agents within the office—they can
all be done during period t − L.

(b) Next, the office must add these 16 partial results to calculate γ̂j
jt =

∑
k∈Θj

γ̂j
kt. This

requires sj − 1 = 15 ADD operations, which cannot be performed at the same time. Still,
some decentralization is possible, as seen in the sub-DAG shown in Figure 5.1. The
inputs {γ̂j

kt}k∈Θj are divided into 8 pairs and assigned to different agents, so that the
pairs can be summed concurrently in period t−L+1. The eight partial results are then
divided into four pairs that are summed concurrently in period t − L + 2. The partial
results are divided into two pairs that are summed in period t−L− 3. The calculation
is completed by summing these two partial results in period t − L − 4. During the
computation, the number of partial results is divided in half each period, so that the
answer is obtained in log2 sj = 4 periods.
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(c) Then the office subtracts xjt − γ̂j
jt in period t − L + 5 and

(d) multiplies (1/nj) times (xjt − γ̂j
jt) in period t − L + 6.

(e) Finally, for each k ∈ Θj , it adds the partial results γ̂j
kt and (1/nj)(xjt − γ̂j

jt). These
sj = 16 operations can be done concurrently in period t − L + 7.

In order for the entire calculation to be finished just in time (by the beginning of period t),
we should set L = 8. Note that 8 is the total delay or number of periods it took to calculate
the allocation.

What we have described are just the calculations of the period-t allocation. There are
other calculations going on in office j at the same time. For example, in period t − 7, the
office begins calculating the allocation for period t + 1.

Sections 5.5–5.7 describe the computation in its full generality. Section 5.5 explains how
we allow for flexibility in the aggregation of information. Sections 5.6 and 5.7 extend the
description to offices in arbitrary tiers; it is similar except for some tricky timing issues.

5.5 Associative computation

The summation
∑

k∈Θj
γ̂j

kt is a key step in the calculations. It is through this aggregation
of information that coordination of allocations to j’s subordinates takes place—that is, by
which the allocation for one subordinate depends on information about other subordinates.
Furthermore, this aggregation creates the cumulative lags that cannot be eliminated through
decentralized information processing and therefore make decentralized decision making ad-
vantageous.

Let T be the sub-DAG for this summation. Then T is necessarily a binary tree whose leaves
are the sj data and whose interior nodes are the sj − 1 ADD operations. It can be balanced
(meaning that the depths of the leaves are within 1 of each other as in Figure 5.1) but need
not be. Up to isomorphism, any binary tree with sj leaves is possible; Figure 5.2 shows
three examples. The aggregation tree Tj pins down or “describes” how office j aggregates
information, as follows: T is isomorphic to Tj , such that the leaf γ̂j

kt in T corresponds to the
leaf k in Tj .

To understand the lags that aggregation imposes, suppose that Θj = {1, . . . , 5} and that
j’s only task is to sample each data stream {γkt}t∈Z and compute the sum of the sample by
period 0. Let −Ljk be the period in which stream k is sampled, so that the lag of this datum
is Ljk. We time the operations in order to minimize the lags. Then Ljk equals the number
of ADD operations in the DAG on the path from the datum γk,−Ljk

to the root, which in turn
equals the depth of this datum in the DAG. This is also the depth of k in Tj , which we denote
by δ(k, Tj). For example, if the aggregation tree is Ta in Figure 5.2, then the ADD operations
above datum 3 are performed in periods −2 and −1, respectively, so that datum 3 is first used
in period −δ(3, Ta) = −2.

Among binary trees with sj nodes, the balanced ones have the lowest maximum aggregation
delay. However, the profile of depths of such a tree does not dominate that of other binary trees
with the same number of leaves. Compare the balanced tree Ta in Figure 5.2, whose profile
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Figure 5.2. Three binary trees for aggregating 5 numbers.

of depths is {3, 3, 2, 2, 2}, with the imbalanced trees Tb and Tc, whose profiles are {3, 3, 3, 3, 1}
and {4, 4, 3, 2, 1}, respectively. The maximum depth is higher in Tc than in Ta, but datum
5 has a lower depth in Tc than in Ta. By not restricting attention to balanced aggregation
trees, we allow offices to treat subordinates asymmetrically and to use recent data about at
least some of the them.

Consider how this aggregation fits into the overall computation of resource allocations.
Suppose again that j is the sole office in the hierarchy and there are five shops. Suppose
Tj is the binary tree Ta in Figure 5.2. Then the sub-DAG for the calculation of the period-t
allocation is shown (along with the times of the operations) in Figure 5.3. The lag Ljk is equal
to the number of operations on the path from the datum to the allocation. The operations
other than the aggregation incur a lag of 4, as in Section 5.4, while the aggregation incurs a
lag of δ(k, Tj), as described in the preceding paragraphs. Thus, Ljk = 4 + δ(k, Tj).

5.6 Calculation of decision rules

Consider the calculation of the period-t decision rule by an arbitrary office j ∈ J . Recall
that this decision rule is

xkt = γ̂j
kt +

nk

nj
(xjt − γ̂j

jt)(5.7)

for each k ∈ Θj , where γ̂j
kt = βLγk,t−L and γ̂j

jt =
∑

k∈Θj
γ̂j

kt. We extend the example
in Section 5.4 by allowing an arbitrary number of subordinates, allowing flexibility in the
aggregation of information as described in Section 5.5, and adjusting the timing in case the
office is not in tier 1.

We have to adjust the timing if j is not in tier 1 because then j has at least one subordinate
that is an office. This subordinate (and other offices below this one, if any) needs time to
disaggregate its period-t allocation and hence must learn it before period t. Let τj be the
integer such that j communicates the period-t allocation to its subordinates in period t − τj .
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t

Period

t − 1

t − 2

t − 3

t − 4

t − 5

t − 6

t − 7

x1t

ADD

x2t

ADD

x3t

ADD

x4t

ADD

x5t

ADD

MUL

1/n SUB

xRt ADD

ADD

ADD

MUL

β7 γ1,t−7

MUL

β7 γ2,t−7

MUL

β6 γ3,t−6

ADD

MUL

β6 γ4,t−6

MUL

β6 γ5,t−6

β7 , for example, denotes a CONSTANT(β7) statement.

γ1,t−7 , for example, denotes a DATA(t − 7, 1) statement.

x1t , for example, denotes an ALLOCATION(t,1) statement.

Figure 5.3. The subgraph of the DAG of a two-tier hierarchy, containing the statements
for the period-t allocation. The shaded area is the subgraph of the calculation of

∑
i∈I γ̂R

it ,
which is isomorphic to the binary tree Ta in Figure 5.2.
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Periods Operations
Step t − τj − . . . Calculation Type # Delay

(a) djk

{
γ̂j

kt := βLjk × γ̂k
t−Ljk

}
k∈Θj

MUL sj 1

(b) djk − 1, . . . , 4 γ̂j
jt :=

∑
k∈Θj

γ̂j
kt ADD sj − 1 δ(k, Tj)

(c) 3 xjt − γ̂j
jt SUB 1 1

(d) 2
{

∆kt := nk

nj
× (xjt − γ̂j

jt)
}

k∈Θj

MUL sj 1

(e) 1
{

xkt := γ̂j
kt + ∆kt

}
k∈Θj

ADD sj 1

Total: 4sj 4+
δ(k, Tj)τj = 3(hj − 1)

djk = 4 + δ(k, Tj)

Ljk = djk + 3(hj − hk − 1)

Table 5.1. The calculations performed by office j ∈ J for the allocation of resources
in period t. In step (b), γ̂j

kt is used as an input in period t − τj − (djk − 1); the entire
summation is completed in period t − τj − 4.

Taking τj as given (we characterize it in Section 5.7), the following describes j’s calculation
of equation (5.7). The steps are listed in Table 5.1; here we outline them in reverse order.

(e) Define ∆kt ≡ (nk/nj)(xjt − γ̂j
jt). The last step is to calculate xkt := γ̂j

kt + ∆kt for each
k ∈ Θj . There are sj of these operations, but they are performed concurrently in period
t − τj − 1.

(d) In period t− τj −2, ∆kt is calculated by multiplying nk/nj and xjt − γ̂j
jt. There are also

sj of these operations,5 which are performed concurrently in period t − τj − 2.

(c) The coefficients {(nk/nj) | k ∈ Θj} are constants and hence these fractions need not
be calculated. Instead, the step that precedes (d) is to calculate xjt − γ̂j

jt; this single
operation is performed in period t − τj − 3.

(b) The preceding step is to calculate the sum γ̂j
jt =

∑
k∈Θj

γ̂j
kt so that the calculation is

completed just before period t − τj − 3. We described how this is done in Section 5.5.
The ADD operation p of which γ̂j

kt is an operand is executed in period t−τj −3−δ(k, Tj).
There are sj − 1 ADD operations in this step.

(a) The first step is to calculate γ̂j
kt := βLjk γ̂k

k,t−Ljk
for k ∈ Θj . There are sj of these MUL

operations. Note that γ̂j
kt is calculated in period t − τj − 4 − δ(k, Tj), just before it is

used as an operand in step (b).

5There may be subordinates k1, k2 ∈ Θj such that nk1 = nk2 , in which case this calculation needs only

be performed for one of these subordinates. However, we ignore this potential labor-saving improvement and

instead always count sj operations for this step.
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The time between (i) when office j uses γ̂k
k,t−Ljk

as an input, which is period t−τj−4−δ(k, Tj),
and (ii) when j finishes calculating the period-t allocation of its subordinates, which is period
t − τj , is thus equal to 4 + δ(k, Tj); we denote this delay by djk.

5.7 Staying synchronized

We still have to determine τj and the lags Ljk.

If office j is in tier 1, then the lags simply equal the delays: Ljk = djk for each k ∈ Θj .
Office j informs each subordinate (which is a shop) of its period-t allocation in period t, so
that τj = 0. It uses the datum about subordinate k in period t − djk, at which point γk,t−djk

is the most recent payoff parameter.

Consider the lead time τj for an office that is higher than tier 1. (There is a single lead
time rather than a different one for each subordinate because office j finishes calculating
the period-t allocations of all subordinates at the same time.) Recall that it takes time for
resource allocations to be recursively disaggregated through a hierarchy, so offices further up
in the hierarchy must inform their subordinates of their period-t allocations with greater lead
time. Specifically, if j ∈ J and k ∈ Θj ∩ J , then j must send xkt to k by the beginning
of period t − τk − 3, because k uses xkt in step (c) of Table 5.1. Thus, we recursively set
τj = max{τk + 3 | k ∈ Θj ∩ J}; this is equivalent to τj = 3(hj − 1) for all j ∈ J .

One might expect the lead times to add to the lags so that, for offices higher in the
hierarchy, Ljk = djk + τj . However, there is a countervailing factor. If k ∈ Θj is an office,
then, for each t, γ̂k

kt is available as a partial result following step (b) of Table 5.1, three periods
before k finishes calculating the period-t allocation of its subordinates and just before it needs
xkt as in input. As a result, typically Ljk = djk.

The exception is when subordinate k is located more than one tier below j; then k is said to
skip hj−hk−1 levels when reporting to j. (For example, in the hierarchy in Figure 1.1, manager
d skips one level when reporting to R but no other managers skip a level.) Subordinate k

learns its period-t allocation three periods earlier than necessary for each level skipped, so
that Ljk = djk + 3(hj − hk − 1).

This “technicality” corresponds to a real need for synchronization. For example, consider
a hierarchy that has many tiers but in which the root has one subordinate � that is a shop.
Because of the time it takes resource allocations to be disaggregated by the offices in the
hierarchy, the center may have to inform its subordinates, including shop �, of their May
allocations in February. In February, shop � must stick to its February allocation (which it
learned several months before) rather then switching to its May allocation, even though the
May allocation is based on more recent information. Otherwise, shop �’s allocation would not
be synchronized with those of other shops and the February allocation would not be balanced.
(This is just one example of the synchronization that must be achieved in coordination prob-
lems. As another example, if a general transmits an order to attack through a hierarchical
chain of command, soldiers may receive the order at different times but must move at the
same time.)

Further details can be found in the proof of Proposition 5.3. The flow of information in
period t is illustrated in Figure 5.4.
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4
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d
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Figure 5.4. Flow of information in period t.

Proposition 5.3 Suppose, for j ∈ J , that j’s calculations are as shown in Table 5.1, with
the summation

∑
k∈Θj

γ̂j
kt represented by Tj. Suppose further that, for j ∈ J and k ∈ Θj,

the integers τj, djk, and Ljk are set to the smallest values such that the set of statements is
consistent. Then

τj = 3(hj − 1),

djk = 4 + δ(k, Tj),

Ljk = djk + 3(hj − hk − 1).

Proof. We showed that τj = 3(hj − 1) in the first paragraph of this section; we explained
that djk = 4 + δ(k, Tj) in Section 5.6.

Let j ∈ J and k ∈ Θj . Recall that office j needs γ̂k
k,t−Ljk

in period t − τj − djk. If k is a
shop then we can set Ljk = τj + djk, since γk,t−τj−djk

is available at the beginning of period
t − τj − djk. Since τj = 3(hj − 1) and hk = 0, it follows that Ljk = djk + 3(hj − hk − 1).

If instead k is an office, then we set Ljk so that k completes the calculation of γ̂k
k,t−Ljk

just
before period t − τj − djk. From Table 5.1, we see that k finishes calculating γ̂k

k,t−Ljk
in step

(b), three periods before it finishes calculating the period-(t − Ljk) allocation and hence just
before period (t − Ljk) − τk − 3. Therefore, Ljk is the solution to

t − Ljk − τk − 3 = t − τj − djk

Ljk + 3(hk − 1) + 3 = 3(hj − 1) + djk

Ljk = djk + 3(hj − hk − 1).
�
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5.8 Summary

This concludes our definition of the organization P and hierarchical decomposition 〈J, R,

{Θj}j∈J , {Pk}k∈I∪J , X〉 that corresponds to the CF hierarchy H. We may summarize as
follows.

1. For j ∈ J : ϕjt = {γ̂k
k,t−Ljk

}k∈Θj
, where Ljk = 4 + δ(k, Tj) + 3(hj − hk − 1).

2. For i ∈ I: Pi contains only i’s DATA and ALLOCATION statements.

3. For j ∈ J : Pj contains the operations listed in Table 5.1 for all t ∈ Z as well as CONSTANT
statements for any constants used in these operations.

4. For j ∈ J , k ∈ Θj , and t ∈ Z: the initial vertex of X(k, t) (the message from j specifying
k’s period-t allocation) is the ADD operation γ̂j

kt + ∆kt in step (e) of Table 5.1.

5. For j ∈ J and k ∈ Θj :
{
γ̂k

kt

}
t∈Z

are the only messages sent from k to j and {xkt}t∈Z
are

the only messages sent from j to k.

Recall that the number of offices in J is denoted by q.

Theorem 5.1 The per-period administrative load of the CF hierarchy H is 4(q +n− 1). The
payoff is

∑
j∈J vj, where vj is defined by equations (5.5) and (5.2) and by Ljk = 4+ δ(k, Tj)+

3(hj − hk − 1). Therefore, the profit is

Π(H) ≡
∑
j∈J

vj − 4(n + q − 1)w.

Proof. From Table 5.1, the number of operations per period for office j is 4sj . Since∑
j∈J sj = n + q − 1, the administrative load is 4(n + q − 1). The formulae for the pay-

off and the lags come from Propositions 5.2 and 5.3. �

6 Returns to scale

6.1 Nature of the exercise

As a simple extension to our model, we can allow allocations to be coordinated within
multiple independent hierarchies, thereby foregoing coordination and gains from trade between
shops in different hierarchies. Call such a collection of CF hierarchies a CF forest.

We can then ask whether it is always optimal to group all shops in the same hierarchies,
in which case we say that there are uniformly increasing returns to scale, or whether instead
there is an upper bound n̄ on the number of shops in any CF hierarchy within an optimal CF
forest, in which case we say that n̄ is a limit to firm size.

If there were no information processing constraints then full integration would be optimal,
because larger organizations can take advantage of greater gains from trade and risk sharing.
(Under the statistical assumptions, the full-information maximized payoff is σ2(n − 1)/n per
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shop.) Thus, it would be significant if this conclusion is reversed by the presence of information
processing constraints.

Our tool for answering this question is the net value V net
R of the root of a CF hierarchy,

which is the difference between the profit of the CF hierarchy and the total profit of the sub-
hierarchies below the root if they were independent. Specifically, consider a CF hierarchy 〈I, J,

R, {Θj}j∈J , {Tj}j∈J〉. For j ∈ J , let Hj be the CF hierarchy 〈θj , Jj , j, {Θk}k∈Jj , {Tk}k∈Jj 〉,
where Jj = {� ∈ J | � � j}. That is, {Hj}j∈ΘR

denotes the “CF subhierarchies” coordinated
by the root. Then

V net
R ≡ Π(H) −

∑
j∈ΘR

Π(Hj);

it is equal to the value of the root’s information minus the root’s administrative cost. That
is,

V net
R = vR − 4wsR,(6.1)

where

vR = σ2
∑

j∈ΘR

(
1
nj

− 1
n

) ∑
i∈θj

bLji .(6.2)

We conclude this subsection with two remarks, as follows.

1. If V net
R is always positive then returns to scale must be uniformly increasing, because

we can improve on a CF forest with multiple CF hierarchies by adding a new root who
coordinates the allocations to these hierarchies.

2. If there is a size n̄ of shops such that V net
R is always negative in a CF hierarchy with

more than n̄ shops, then n̄ is a limit to firm size. This is because we can improve on a
CF forest that contains a CF hierarchy with more than n̄ shops by eliminating the root
of that hierarchy and thus dividing the hierarchy into smaller parts.

6.2 Benchmark: Zero managerial cost

As a benchmark, suppose w = 0. The models presented by Keren and Levhari (1983),
Radner (1993), and Van Zandt and Radner (2001) do not allow for internal decentralization,
which means that all decisions must be made with the same highly lagged information when
the organization is large. As a consequence, information processing delay by itself is enough
to limit the size of organizations. Yet for the model presented here, if there are multiple
independent CF hierarchies then the payoff can necessarily be increased by adding a new
center above them—a center that coordinates allocations between these hierarchies without
disrupting the existing decentralized decision making. Hence, there are uniformly increasing
returns to scale, as stated in Proposition 6.1.

Proposition 6.1 If w = 0 then any optimal CF forest must be fully integrated.

Proof. If w = 0 then V net
R = vR > 0. �
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6.3 Benchmark: Limit on decentralization

Proposition 6.1 depends on the potential for internal decentralization of decision making.
If instead the number of tiers is fixed, then there would be a limit to firm size, as we now
show.

For numbers H and n, let AVH(n) be the maximum per-shop payoff for CF hierarchies of
height H with n shops and let AV ∗

H ≡ sup{AVH(n) | n = 1, 2, . . .}. Note that AV ∗
0 is defined

to be 0, which is trivially the maximum payoff of hierarchies of height 0, because such a
hierarchy is a single shop and has no administrative staff.

Proposition 6.2

1. For each H ∈ {1, 2, . . .}, max{AVH(n) | n = 1, 2, . . .} exists.

1. The sequence 〈AV ∗
0 , AV ∗

1 , AV ∗
2 , . . .〉 is strictly decreasing.

1. For H ∈ {1, 2, . . .}, limn→∞ AVH(n) = AV ∗
H−1.

Proof. See Appendix. �

What Proposition 6.2 tells us is that, even if w = 0, there is a limit to firm size when we
fix the number of tiers (part 1). Furthermore, the maximum payoff that can be achieved is
higher the more tiers twe allow, as this enables greater internal decentralization (part 2). If
we force more shops into a hierarchy containing a fixed number of tiers, then the information
the center uses is so highly aggregate and hence so old on average that the per-shop value of
the center’s information processing goes to zero (part 3). These conclusions, by standing in
contrast to Proposition 6.1, show that decentralization of decision making (by adding more
tiers) is important in order for large organizations to avoid the inexorable degradation of
decision-making that results from computational delay.

6.4 Positive managerial cost

Suppose, however, that w > 0. As already indicated, in a large firm the information used
by the center is necessarily rather old, on average. As a consequence, for a large enough
firm, the value of the center’s information processing is lower than the cost of its information
processing. The profit is then increased by disbanding the center and creating independent
hierarchies.

Proposition 6.3 If w > 0 then there is a limit to firm size.

Proof. From the definition of vR and since LRi ≥ 3H for i ∈ I, we have

vR < σ2
∑

j∈ΘR

1
nj

∑
i∈θj

b3H = σ2b3HsR.
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Therefore, the condition, V net
R ≥ 0 implies σ2b3HsR > 4wsR and hence b3H > w/σ2, or

H < log(w/σ2)/(3 log b). Thus, there is a bound on the height of a CF hierarchy in an
optimal CF forest. According to Proposition 6.2, for H ∈ {

1, . . . , H̄
}

there is also a bound
on the size of hierarchies of height H in an optimal CF forest. �

Compare this result with Geanakoplos and Milgrom (1991), in which returns to scale are
uniformly increasing.6 In their model, if there are two independent hierarchies A and B, then
the payoff can be increased by making the root RA of hierarchy A a subordinate of the root
RB of hierarchy B, as in the following example,

RB

1 2 3 RA

4 5 6

This is true even when RB acquires no information about the shops in hierarchy A. The
new subordinate does not increase RB’s administrative costs, and RB can make advantageous
transfers to RA based only on information about the shops in hierarchy B.

A similar argument may seem, at first, to work in the current model. After merging,
RB’s aggregation tree can be set so that RA’s aggregate payoff information is processed first
and RB’s processing lags for data from its original immediate subordinates do not change.
However, such merging does not necessarily increase the profit in the current model. First, the
additional subordinate increases office RB’s administrative costs. Second, unless the heights
HA and HB of the two hierarchies are such that HA < HB, the lag of the data that RB

uses about the shops in hierarchy B increases by 3(HA − HB + 1) because RB’s immediate
subordinates in hierarchy B skip HA − HB + 1 additional tiers when reporting to RB in the
new hierarchy.7

7 Robustness

The most important and basic theme of this model is that decentralized decision making
can be advantageous in group decision problems because it allows for small coordination prob-
lems to use recent information without foregoing coordination at a larger scale, which must use
more aggregate and hence less recent information. This robust principle is also demonstrated
in an abstract version of this hierarchical resource allocation model (see Van Zandt (2003b)).

However, the particular hierarchical procedures defined in the current paper and the for-
mulae for their profits depend on various restriction and assumptions.

6In the absence of a restriction to balanced hierarchies; see Van Zandt (1998a).

7Both of these effects are present even if we allow RB to allocate resources to RA without processing

information about the shops in hierarchy A.
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First, note that the particularly tractable formulae for the team statistically optimal de-
cision rules and for the profit in this model are entirely dependent on the quadratic payoff
functions and on the assumption that the payoff parameters follow AR(1) processes that are
independent across shops. Under other assumptions, it may be analytically intractable to
derive team statistically optimal decision rules, or the computational complexity of the team
statistically optimal decision rules may make them poor candidates for decision rules of hier-
archically decomposed decision procedures.8 Without the Markovian assumption, there may
be no single statistic that an office can send to its superior that adequately summarizes the of-
fice’s information about its aggregate payoff parameter. Without the statistical independence
of payoff parameters of different shops, it may be useful for the upper-level offices to provide
their subordinates with statistics that help them estimate their current payoff parameters, or
for offices in the same level of the hierarchy to share payoff information directly.

Second, note that—after defining (in Section 2) a real-time decentralized information pro-
cessing model that could be used to represent a wide variety of decision procedures—we
exogenously restricted attention to a class of hierarchical procedures. The set of CF hierar-
chies is rich enough to exhibit a nexus of decision making, as offices in lower tiers have fewer
shops below them and hence control smaller coordination problems using less aggregate and
more recent information, while offices in higher tiers coordinate further gains from trade be-
tween the subordinate divisions using more aggregate but older information. Furthermore, the
decomposition of the decision problem and the flow of information resembles that of various
hierarchical decision procedures observed in organizations (e.g., budgeting in firms), and the
identification of nodes of the hierarchy with offices rather than individual managers is also
consistent with the structure of actual organizations. However, absolutely no claim is being
made that these hierarchal procedures have higher profits than all other decision procedures
that could have been defined.

That we do not show CF hierarchies dominating all other decision procedures is at-
tributable more to a feature of the model than to a deficiency in the analysis. It is com-
mon in the study of organizations to begin with a model that permits the representation of
only a limited range of organizational forms. In contrast, the model in this paper is rich
and can represent an enormous range of decision procedures. We have been able to derive a
reduced-form model of hierarchies with interesting properties, so we have not entirely forsaken
simplicity. On the other hand, as an extension to the current research we could also compare
these hierarchical procedures with others, such as those mentioned previously or drastically
different ones that resemble various market mechanisms or networks of decentralized bilateral
trade. Because this resource allocation problem without externalities is the easiest problem
for markets to solve, it seems likely that bilateral-trade procedures could have higher profits
than the CF hierarchies for some parameter values. We might therefore address the question
of when markets are better than hierarchies for allocating resources. It could also be possible
to define decision procedures in which the inferred organizational structures change over time.

8Nevertheless, in Van Zandt (1996) it is shown that, with logarithmic utility functions, the aggregate payoff

functions have simple formulae and certainty equivalence holds.
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8 Related literature

These bibliographic notes complement those in Van Zandt (2003b).

8.1 Overview

This paper builds on several strands of the literature on information processing in orga-
nizations. We study a resource allocation problem with quadratic payoffs and no externali-
ties, which is a dynamic version of the problem studied by Crémer (1980), Aoki (1986), and
Geanakoplos and Milgrom (1991). We use the methodology of dynamic control with real-time
parallel computation introduced by Radner and Van Zandt (1992) and Van Zandt (1999) to
the study of organizations.

Also related are the models of parallel batch processing, such as Mount and Reiter (1990),
Reiter (1996), Radner (1993), Bolton and Dewatripont (1994), Friedman and Oren (1995),
Van Zandt (1998b), and Meagher and Van Zandt (1998). As in this paper, managers in these
models are described by certain elementary operations and communication capabilities, and
the sequentiality of operations and computational delay are important. However, those pa-
pers examine the optimal procedures for computing exogenously given computation problems,
rather then embedding the computation model in a temporal decision problem. Some ways in
which real-time computation is different include: decisions are computed on an ongoing basis;
the decision in each period may be computed from data of heterogeneous lags; and partial
results may be used in the computation of decisions in multiple periods. All these features
can be seen in the hierarchical procedures studied in this paper.

These features of real-time computation were first illustrated in Radner and Van Zandt
(1992) and Van Zandt (1999). The decision problem in those papers is to predict the sum of a
family of stochastic processes. Information processing is decentralized so that more recent data
can be used in the prediction. However, because a single prediction is made each period, there
is no room for decentralized decision making. In contrast, the resource allocation problem
studied in this paper permits the decentralized decision making that is our main theme.

8.2 Comparison with Geanakoplos and Milgrom (1991)

Crémer (1980) studied a version of the quadratic resource allocation problem that is more
general than the one in this paper. He derived the decision rules and expected payoff for a
single manager who allocates resources directly to a group of shops. This was extended by
Geanakoplos and Milgrom (1991) to the hierarchical disaggregation of resource allocations.

In the general version studied by these authors, xi and γi are vectors and each payoff
function may have multiplicative constants (which take the form of matrices in the quadratic
form). The heterogeneity of these constants and of the distributions of the payoff parameters
play a role in Crémer (1980), who characterizes how differences among shops affect the optimal
grouping of shops into divisions. The multiplicity of goods is important in Aoki (1986), who
considers suboptimal but simpler decision rules that break up the multivariable optimization
problem into single-variable problems.
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Heterogeneity of the distributions of payoff functions and multiplicity of goods could be
incorporated into the model in this paper. Those generalizations would not affect the basic
message about the value of decentralized decision making, but the complementary themes
studied by Crémer (1980) and Aoki (1986) would then also arise. Specifically, the asymmetries
should affect, within the class of CF hierarchies, which shops should be grouped under the
same superior offices. Furthermore, with multiple goods, it would be possible to compare
the CF hierarchies with analogous procedures that ignore the cross-partials between different
goods. The latter procedures would not be team statistically optimal, but they would use
more recent information and would have lower administrative costs.

The model of Geanakoplos and Milgrom (1991) was outlined in Section 3.3. Recall that
multilevel hierarchies compute resource allocations in that model, but the computation is
based on costly information acquisition (reading of external information) as in team theory.
Each node in the hierarchy is called a “manager”. Managers are exogenously restricted from
aggregating information. Instead, the only communication in the hierarchy consists of the
downward disaggregation of allocations. Managers acquire information about the shops’ pay-
offs from outside the hierarchy. As is usual in team theory, the managers can compute any
functions of their information. However, an important simplifying assumption is that man-
agers do not draw inferences from the allocations they receive, even though these allocations
reveal some of their superiors’ information. (Because the managers’ information is endoge-
nous, we cannot simply assume that a manager’s information is a sufficient statistic for her
superior’s information for the purpose of predicting the payoff parameters in the manager’s
division.) The decision rules and payoffs are then the same as those given in Section 3.3.

The two models have some important common features. First, in very general terms, the
value of decentralization is the same in both models: It enables managers or offices lower in
the hierarchy to allocate resources within small groups of shops using high-quality, specialized
information, while managers or offices higher in the hierarchy can still take advantage of
gains from trade between large groups using aggregate information. Second, the model in
Geanakoplos and Milgrom (1991) is used in this paper to represent team statistically optimal
decentralized decision making and to derive the decision rules and expected payoffs.

However, the details of their static limited-information/unlimited-computation model are
quite different from our temporal unlimited-information/limited-computation model. Fur-
thermore, theirs is not a reduced form of ours because the information available to an office
in our model depends on the structure of the hierarchy below it and on the calculations of
subordinate offices and because an office’s administrative cost depends on how many subordi-
nates it has. In contrast, for the Geanakoplos and Milgrom (1991) model, each manager who
may be employed has a fixed set of feasible signals and a fixed wage that do not depend on
the structure of the hierarchy in which the manager is employed.

An example of how these differences affect the results of the models is given in Section 6.
Another example is given in Van Zandt (1998a, Section 3.4.4), where it is shown that—with
the restriction to balanced hierarchies—the statistical assumptions on managers’ information
that are needed to obtain a limit to firm size in Geanakoplos and Milgrom (1991) are not
satisfied in our model. Hence, there would be no limit to firm size in our model if each office’s
cost were independent of the number of subordinates.
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Appendix: Proof of Proposition 6.2

Let N ≡ {1, 2, . . .} be the whole numbers.

Lemma A.1 There is a sequence {an}n∈N
such that an → 0 and, if n ∈ N and vR is the

value of the root’s information in a CF hierarchy with n shops, then an ≥ vR/n.

Proof. Let n ∈ N and let vR be the value of the root’s information in a CF hierarchy H with
n shops. Then

vR < σ2
∑

k∈ΘR

∑
i∈θk

bLRi = σ2
∑
i∈I

bLRi .

For each lag L ∈ N, there is a uniform bound on the number of shops about which an
office can use data whose lag is L or less. Formally, there is a function B: N → N such that,
for any office j in any CF hierarchy, #{i ∈ θj | Lji ≤ L} ≤ B(L). The bound is due to the
delay in aggregating information. In particular, since in any binary tree at most 2d nodes can
have a depth of d or less, B(L) = 2L is such a bound. (See Van Zandt (2003a, Appendix B)
for further details.)

Let {Li}∞i=1 be the sequence such that Li = 1 for the first B(1) terms, Li = 2 for the next
B(2) terms, and so on. Let an = σ2(1/n)

∑n
i=1 bLi . Then vR/n ≤ an. Since the sequence

{Li} increases monotonically to infinity, the sequence {bLi} decreases monotonically to 0 and
hence {an} decreases monotonically to 0. �

For H ∈ N, let AV ∗
≤H ≡ max

{
AV ∗

H′
∣∣ 0 ≤ H ′ ≤ H

}
.

Lemma A.2 For H ∈ N, lim supn→∞ AVH(n) ≤ AV ∗
≤H−1.

Proof. Let H ∈ N. We show that the statement holds if either H = 1 or if H > 1 and it
holds for H ′ such that 1 ≤ H ′ < H.

Let n ∈ N and let H be a CF hierarchy of height H with n shops such that U(H)/n =
AVH(n). For j ∈ ΘR, let Hj be the CF subhierarchy of H with root j, as defined in Section 6.2.
Then U(H) =

∑
j∈ΘR

U(Hj) + vR. Since also n =
∑

j∈ΘR
nj , we have

AVH(n) ≤ U(Hj)
n

=

∑
j∈ΘR

U(Hj)∑
k∈ΘR

nk
+

vR

n
.

For any positive numbers 〈a1, . . . , an, b1, . . . , bn〉,9∑
i ai∑
i bi

≤ max{ai/bi | i = 1, . . . , n}.

9Suppose n = 2 and a1/b1 ≥ a2/b2 and hence a1b2 ≥ a2b1. Then

a1 + a2

b1 + b2
=

1

b1

a1b1 + a2b1

b1 + b2
≤ 1

b1

a1b1 + a1b2

b1 + b2
=

a1

b1
.

The proof for n > 2 then follows by induction.
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Therefore,

AVH(n) ≤ max
j∈ΘR

U(Hj)
nj

− vR

n
.(A.1)

For j ∈ ΘR, the height of Hj is at most H − 1 and hence U(Hj)/nj ≤ AV ∗
≤H−1. Let an

be the term in the sequence given in Lemma A.1, which is such that vR/n ≤ an. Combining
these two inequalities and equation (A.1), we obtain

AVH(n) ≤ AV ∗
≤H−1 + an.

Since limn→∞ an = 0, we have lim supn→∞ AVH(n) ≤ AV ∗
≤H−1. �

Proof of Proposition 6.2. By definition, AV ∗
0 is the maximum payoff of CF hierarchies

of height 0. We prove statements 1–3 for H ∈ N by induction, assuming that the sequence
〈AV ∗

0 , . . . , AV ∗
H−1〉 is well-defined and strictly increasing. Note that this assumption implies

that AV ∗
≤H−1 = AV ∗

H−1.

The main steps are to prove (i) that lim supn→∞ AVH(n) ≤ AV ∗
H−1, which was accom-

plished in Lemma A.2 (given also the fact that AV ∗
≤H−1 = AV ∗

H−1), and (ii) that lim infn→∞ AVH(n) ≥
AV ∗

H−1, which is accomplished below. Then limn→∞ AVH(n) = AV ∗
H−1, which is statement 3

in the proposition. That AV ∗
H is well-defined and less than AV ∗

H−1 then follows from the fact
that there are CF hierarchies of height H whose per-shop payoff is more than AV ∗

H−1. An
example is a CF hierarchy such that the subhierarchies under the root are all isomorphic to
a CF hierarchy HH−1 of height H − 1 whose per-shop payoff is AV ∗

H−1.

Thus, it remains to be shown that lim infn→∞ AVH(n) ≥ AV ∗
H−1. Let HH−1 be a CF

hierarchy of height H − 1 such that U(HH−1)/nH−1 = AV ∗
H−1, where nH−1 is the number of

shops in HH−1. Let n ≥ nH−1 and let H be a CF hierarchy with n shops and height H such
that �n/nH−1� of the root’s subordinates head subhierarchies isomorphic to HH−1 and the
remaining n mod nH−1 subordinates are shops. Then

AVH(n) ≥ U(H)
n

=
�n/nH−1�U(HH−1)

n
.

The limit of the last expression, as n → ∞, is U(HH−1)/nH−1 = AV ∗
H−1. �
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