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1 Overview

Van Zandt (2003a) develops a model of administrative procedures, called CF hierarchies,
for allocating resources in a changing environment. Decision making is decentralized along a
hierarchy, that is, a rooted tree whose leaves are passive recipients of resources (called shops)
and whose nonleaf nodes are multiperson administrative offices. Each office constantly
aggregates information about its subordinates and disaggregates resource allocations to
these subordinates. The advantage of such decentralization—compared to having a single
office calculate all resource allocation—is that offices lower in the hierarchy use less aggregate
and hence more recent information.

In this paper, we develop a simpler model, called BCF hierarchies, by restricting atten-
tion to CF hierarchies that are balanced (symmetric) both in their hierarchical structure
and in the way each office aggregates information. The goal is to develop and justify a
model that is more amenable to analysis and comparative statics than the general model of
CF hierarchies. The reduced-form model of BCF hierarchies uses some continuous approx-
imations, and we derive bounds on the resulting errors. In the main results of this paper
(Section 4), we provide evidence that optimal CF hierarchies are approximately balanced.

We say “approximately balanced” because the discrete nature of the underlying model
is bound to lead to some “leftover” imbalancedness. The evidence in favor of balancedness
involves showing that optimal aggregation is balanced if the hierarchical structure is bal-
anced and vice versa. One of the results relies on continuous approximations and a mix of
analytic and numerical methods for demonstrating the concavity of a function. Although
these results fall short of a proof that optimal CF hierarchies are balanced, they justify
studying the reduced-form model of BCF hierarchies for the purpose of characterizing the
scale and structure of optimally decentralized organizations. Such an exercise—with a focus
on comparative statics with respect to the speed of change of the environment, managerial
costs, and information technology—is carried out in Van Zandt (2003b).

2 CF hierarchies

2.1 Parameterization

Van Zandt (2003a) models the administrative apparatus of an organization as a pro-
cedure for calculating resource allocations in a changing environment, with the following
general features.

• A nonstorable good is allocated each period to a set I of shops, which are indexed by
i or k. The intertemporal link is that allocations are computed from past observations
of the changing environment.

• Shop i’s period-t payoff, as a function of its allocation xit, is uit(xit) = ū− (xit−γit)2,
where γit is a parameter that follows an AR(1) process γit =

√
bγi,t−1 + εit. The

variance of γit is denoted by σ2. The autoregressive coefficient
√

b ∈ (0, 1) is important
because it inversely measures the speed at which the environment is changing. The
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Definition 2.1 A hierarchy is rooted tree. It is denoted by 〈I, J, R, {Θj}j∈J〉, where I is
the set of leaves (called shops), J is the set of nonleaf nodes (called offices), R is the root
(called the center), and, for j ∈ J , Θj is the set of j’s children (called subordinates).

(a) Denote the number |I| of shops by n and the number |J | of offices by q.

(b) For k1, k2 ∈ I ∪ J , write k1 � k2 if k1 is above k2 in the tree (with the convention that
the tree grows down from the root) and write k1 � k2 if k1 � k2 or k1 = k2.

(c) For j ∈ J , let




the span of office j be sj ≡ |Θj |;
division j be θj ≡ {i ∈ I | j � i};

the size of division j be nj ≡ |θj |.
For i ∈ I, let θi ≡ {i} and ni ≡ 1.

(d) For k1, k2 ∈ I ∪ J such that k1 � k2, let Pk1k2 be the path from k1 to k2. (Pk1k2 is the
set of pairs 〈�1, �2〉 such that �1 ∈ J , �2 ∈ Θ�1 , and k1 � �1 � �2 � k2.) |Pk1k2 | is the
length of this path.

(e) Define the tier hk of node k ∈ I ∪ J to be the length of the longest path from k to a
leaf below k: max {|Pji| | i ∈ θj}. Note that each shop is in tier 0, all the offices are
in higher tiers, and the root is in the highest tier, which we denote by H and call the
height of the hierarchy. Furthermore, for j ∈ J , hj = 1 + max {hk | k ∈ Θj}.

Table 2.1. Definitions and notation for hierarchies.

model is symmetric with respect to the shops in that uit has the same functional
form for each shop and the processes {γit} are i.i.d. across shops. The constant ū is
normalized so that the payoff in the absence of information processing is zero.

• The computation model is a parallel random access machine, which means that the
only constraint is the time it takes to perform elementary operations. The managers
performing these calculations are homogeneous.

Van Zandt (2003a) defines a class of decision procedures called CF hierarchies. A de-
cision procedure is literally a distributed computation algorithm, but each CF hierarchy is
parameterized by two components.

1. The first component is a hierarchy 〈I, J, R, {Θj}j∈J〉 (a rooted tree) that represents the
organizational structure (specifically, the structure of decentralized decision making).
In this hierarchy, I is the set of leaves, which are the shops; J is the set of nonleaf
nodes, which represent multiperson offices that are the decision-making units; R is
the root or center; and, for j ∈ J , Θj is the set of children or subordinates of j. The
span sj (number of subordinates) of each office j must be at least 2. (See Table 2.1
for further definitions and notation regarding hierarchies.)

2. The second component is, for each j ∈ J , a binary tree Tj whose leaves are Θj .
The binary tree Tj describes the way in which office j aggregates information. (See
Table 2.2 for definitions and notation regarding binary trees.)
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Definition 2.2 A binary tree is a tree such that each nonleaf node has exactly two children.
Let T be a binary tree.

(a) The depth δ(k, T ) of a node k in T is the length of the path from the root to k.

(b) The depth δ(T ) of T is the maximum depth of its nodes.

(c) T is balanced if the depth of each leaf in T is either δ(T ) or δ(T ) − 1.

(d) T is serial if no nonleaf node in T has two children that are also nonleaf nodes.

Table 2.2. Definitions and notation for binary trees.

Information processing within each office is decentralized, meaning that subtasks can be
performed concurrently by different agents in the office. The decisions each office makes
concern how to subdivide (among its subordinates) the resource allocations sent from its
superior. Each office also aggregates information received from subordinates, both for its
own decision making and to pass this information on to its superior.

2.2 Profit

For the policy calculated by a CF hierarchy H, the total expected payoff of the shops
is constant over time; this amount is called the payoff of H and is denoted U(H). A
CF hierarchy also has an administrative cost C(H). The profit is defined to be Π(H) ≡
U(H) − C(H).

The key information processing constraint represented in the model is that information
processing takes time. The resulting delays can be reduced but not eliminated through
parallelization. As a consequence, each office j ∈ J adds a lag Ljk to the information it
receives from each subordinate k ∈ Θj , where

Ljk ≡ α + δ(k, Tj) + (hj − hk − 1)τ.(2.1)

The term α > 0 is due to operations that either do not depend on the number of subor-
dinates or can be performed concurrently. The delay that increases with the number of
subordinates is due to the aggregation of information, but there is flexibility in how this
delay is distributed among the data. The delay in aggregating information received from
subordinate k is δ(k, Tj), which denotes the depth of leaf k in the binary tree Tj . The final
term, (hj − hk − 1)τ , is not present if k is one tier below j because then hj − hk − 1 = 0.
Otherwise, k is said to skip hj − hk − 1 levels when reporting j. There is an extra lag of
τ > 0 per level skipped that is due to the need to synchronize resource allocations.

Each aggregate datum is a sufficient statistic of the data from which it is calculated
(for the use to which it is put), so that these lags are the only loss in data that results
from aggregating information up the hierarchy. It is as if office j were using disaggregate
information about each shop in its division, but with a lag Lji that is a sum of the lags
added to the data by j and the other offices between i and j: Ljk =

∑
〈k1,k2〉∈Pji

Lk1k2 .
The payoff can therefore be written as a function of these cumulative lags. It has the form
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Figure 2.1. Two aggregation trees for four data.

U(H) =
∑

j∈J vj , where vj measures the value of office j’s information processing and is
equal to

vj ≡ σ2
∑
k∈Θj

(
1
nk

− 1
nj

) ∑
i∈θk

bLji .(2.2)

The amount of information processing performed each period is proportional to the
number of subordinates in the hierarchy. There are n + q − 1 subordinates, since each shop
and each office (except the root) is a subordinate. Thus C(H) ≡ (n+ q− 1)w, where w ≥ 0
measures the managerial wage.

We thus have a fully specified formula for the profit of each CF hierarchy. A CF hierarchy
is optimal if it has highest profit of all CF hierarchies with shops I.

2.3 Aggregation

The part of the calculations performed by a CF hierarchy that we need to understand
for this paper is the aggregation of payoff information. It is an associative and commutative
binary operation; denote it by ⊕. Suppose that one has to aggregate s data {Xk | k ∈ Θ}
indexed by the set Θ. The calculation of

⊕
k∈Θ Xk can be represented by a binary tree

in which the leaves are Θ (representing the data), the nonleaf nodes represent the s − 1
operations ⊕, and the children of any nonleaf node are the two inputs of that operation.
We call such a tree an aggregation tree.

Different aggregation trees correspond to different ways in which the data are ordered
and operations are grouped. For example, suppose Θ = {1, 2, 3, 4} and consider the two
trees in Figure 2.1. The tree Ta represents the calculation (X1 ⊕X2)⊕ (X3 ⊕X4), whereas
Tb represents the calculation ((X1 ⊕ X2) ⊕ X3) ⊕ X4.

If the calculation is done in parallel by multiple people or processors, then the aggre-
gation tree determines which operations can be performed concurrently. If the aggregation
tree is Ta in Figure 2.1, then (X1 ⊕X2) and (X3 ⊕X4) can be performed concurrently. The
total time it takes to complete the calculation is two periods. If instead the aggregation tree
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is Tb, then the operations must be performed one at a time; the calculation is completed in
three periods. In general, the total delay is equal to the depth of the aggregation tree.

In a model of real-time computation in which there is a constant inflow of new data,
what matters is not a single measure of delay but rather the lead time with which each data
stream must be sampled before the computation is completed. For a fixed aggregation tree,
these lead times (lags) are minimized by performing each operation as late as possible. Then
datum k ∈ Θ is used δ(k, T ) periods before the computation is completed. For example,
suppose the calculation of X1 ⊕ · · · ⊕ X4 must be completed by period t, and consider the
two aggregation trees in Figure 2.1. If the aggregation tree is Ta, then all the data are used
as inputs in period t − 2, since δ(1, Ta) = · · · = δ(4, Ta) = 2. The two partial results are
then aggregated in period t−1. In contrast, if the aggregation tree is Tb then the data from
sources 1 and 2 are used as inputs in period t−3; the data from source 3 is then aggregated
with this partial result in period t − 2, and finally the data from source 4 is aggregated in
period t − 1. (Observe that δ(1, T ) = δ(2, T ) = 3, δ(3, T ) = 2, and δ(4, T ) = 1.) When
comparing these two aggregation trees, some data have lower lags and some have higher,
so neither tree dominates the other.

This is why the definition of CF hierarchies allows for flexibility in the way the data are
aggregated. If Tj is the aggregation tree for the way office j aggregates information about
its subordinates for the calculation of each period’s resource allocation, then the data about
subordinate k ∈ Θj is used δ(k, Tj) periods before the aggregation is completed.

3 BCF hierarchies

3.1 Completely balanced CF hierarchies

We develop a simpler model by restricting attention to CF hierarchies that have sym-
metry or “balancedness” both in their hierarchical structure and in their aggregation of
information. Our definition of balanced hierarchies is from Van Zandt (1995).

Definition 3.1 A hierarchy is completely balanced (resp., balanced) if it has no skip-level
reporting and if offices in the same tier have the same spans (resp., have spans that differ
by at most 1).

The definition of completely balanced hierarchies is very restrictive. Owing to integer con-
straints, it is typically impossible to equalize spans within a tier just by redistributing
subordinates among the offices. Hence, the definition of balanced hierarchies allows for a
little “leftover” imbalancedness. Nevertheless, it still precludes skip-level reporting.

By balanced aggregation, we mean that each of the aggregation trees is balanced. As
defined in Table 2.2, a binary tree is balanced if the depths of its leaves differ by at most
1. For example, the aggregation tree Ta in Figure 2.1 is balanced whereas Tb is not. The
depth of a balanced binary tree with s leaves is 
log2 s�. All leaves have either this depth
or a depth of �log2 s
; they have the same depth if and only if s is a power of 2, since then
log2 s is an integer.
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The following definition of a balanced CF hierarchy combines both forms of balanced-
ness.

Definition 3.2 A CF hierarchy H ≡ 〈I, J, R, {Θj}j∈J , {Tj}j∈J〉 is balanced if 〈I, J, R,

{Θj}j∈J〉 is a balanced hierarchy and if Tj is a balanced binary tree for j ∈ J . If also
〈I, J, R, {Θj}j∈J〉 is completely balanced and if each span is a power of 2, then we say that
H is completely balanced.

We will derive a simple functional form for the payoff of a completely balanced CF
hierarchy and show that it provides an approximation for the payoff of a balanced CF
hierarchy. We begin by introducing the following notation for any balanced hierarchy. Let
qh be the number of nodes in tier h ∈ {0, . . . , H}. Thus, n = q0 > · · · > qH = 1. For
h ∈ {1, . . . , H}:

1. let Jh be the set of offices in tier h;

2. let sh ≡ qh−1/qh be the “average” span of offices in tier h; and

3. let nh ≡ n/qh be the “average” size of a division in tier h.

Note that s1 · · · sh = nh and that sh and nh are integers if the hierarchy is completely
balanced.

Consider a completely balanced CF hierarchy and consider an office j in tier h. Because
aggregation is balanced and sh is a power of 2, we have δ(k, Tj) = log2 sh for k ∈ Tj . Since
there is no skip-level reporting, Ljk = α+log2 sh. We denote this amount by dh ≡ α+log2 sh

and call it the lag or delay of tier h.

Consider again an office j in tier h and let i ∈ θj . Because there is no skip-level reporting,
the path from j to i contains one office in each tier η = 1, . . . , h. Hence,

Lji =
h∑

η=1

dη =
h∑

η=1

(α + log2 sη) = αh + log2(s1 · · · sh) = αh + log2

n

qh
.

We denote this quantity by Lh ≡ αh + log2(n/qh) and call it the cumulative lag of tier h.
By substituting Lji = Lh into equation (2.2), we obtain

vj = σ2
∑
k∈Θj

(
1
nk

− 1
nj

) ∑
i∈θk

bLh(3.1)

= σ2
∑
k∈Θj

(
1
nk

− 1
nj

)
nk bLh

= σ2
∑
k∈Θj

(
1 − nk

nj

)
bLh .

Since the hierarchy is completely balanced, nk/nj is equal to 1/sh and there are sh subor-
dinates in Θj , so that

vj = σ2sh(1 − 1/sh)bLh = σ2(sh − 1)bLh .(3.2)
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We denote this quantity by vh.

Since there are qh offices in tier h and since qhsh = qh−1, the total value of the information
processing by offices in tier h is

qhvh = qh(σ2(sh − 1)bLh) = σ2(qh−1 − qh)bLh .

Therefore, the payoff of the hierarchy is

U(H) = σ2
H∑

h=1

(qh−1 − qh)bLh .

We thus have the following proposition.

Proposition 3.1 Assume that H is a completely balanced CF hierarchy. Then the value
of information processing of an office in tier h is

vh = σ2(sh − 1)bLh ,(3.3)

where Lh ≡ αh + log2(n/qh). The payoff of H is

U(H) = σ2
H∑

h=1

(qh−1 − qh)bLh .(3.4)

The administrative cost of H is C(H) = w
∑H−1

η=0 qη.

Proof. See the preceding discussion. �

3.2 Balanced CF hierarchies

If a CF hierarchy is balanced but not completely balanced, then the formulae in Propo-
sition 3.1 are well-defined but hold only approximately. They involve various “continuous
approximations”. First, if sj is not a power of 2, then Ljk is equal to α + 
log2 sj� for
some subordinates and to α + �log2 sj
 for others, whereas the formulae presume that
Ljk = α + log2 sj for all subordinates. Second, if sh is not an integer, then sj = �sh
 for
some j in tier h and sj = 
sh� for others, whereas the formulae presume that sj = sh for all
j in tier h. Similarly, nj may be slightly larger than nh for some j in tier h and slightly less
than nh for others, but the formulae presume that nj = nh for all j in tier h. We obtain
the following bounds on the errors that result from these approximations.

Proposition 3.2 Assume that H is a balanced CF hierarchy. Let h ∈ {1, . . . , H} and let
j ∈ Jh. Then, for i ∈ θj,

|Lji − Lh| < h(3.5)

and

bh <
vj

σ2(sj − 1)bLh
< b−h.(3.6)

Furthermore,

bh <
U(H)

σ2
∑H

h=1(qh−1 − qh)bLh

< b−h.(3.7)
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Proof. See Appendix A. �

The formulae for the payoff, cost, and profit of completely balanced CF hierarchies,
as shown in Proposition 3.1, depend only on the parameters 〈n, q1, . . . , qh−1〉. We define
a reduced-form model, called BCF hierarchies, in terms of these parameters. Based on
Proposition 3.2, we view it as an approximate model of balanced CF hierarchies.

Definition 3.3 The reduced-form model of BCF hierarchies is as follows. A BCF hierarchy
of height H is specified by q = 〈q0, q1, . . . , qH−1〉 ∈ R

H
+ such that qh/qh+1 ≥ 2 for h =

1, . . . , H − 1 (where qH = 1). The payoff UH(q) of such a BCF hierarchy is given by
equation (3.4), with n = q0. The administrative cost is CH(q) ≡ w

(∑H−1
h=0 qh

)
and the

profit is ΠH(q) ≡ UH(q) − CH(q).

Given Definition 3.3, it follows that the comparison of BCF hierarchies (to quantify the
benefits and costs of decentralization), the characterization of optimal BCH hierarchies,
and the returns to scale of BCH hierarchies are well-posed problems; these are taken up in
Van Zandt (2003b).

4 Evidence in favor of balanced CF hierarchies

4.1 Overview

Having first defined CF hierarchies and then derived balanced CF hierarchies (or the
reduced form BCF hierarchies) as a subclass, a natural question is whether optimal CF
hierarchies are balanced. An answer is not required to justify the study of BCF hierarchies;
few eyebrows would have been raised if we had, for simplicity, imposed balancedness as
a restriction throughout the definition of CF hierarchies. Nevertheless, it would be an
interesting characterization of CF hierarchies. Besides telling us when restricting attention
to balanced CF hierarchies is nonbinding, it would also tell us when the asymmetries we
observe in organizations are due to asymmetries—among managers, activities, and recipients
of resources—that are not present in the model of CF hierarchies.

We cannot expect balancedness to be a trivial consequence of the model’s symmetry. The
literature on organizations contains several examples in which hierarchies are imbalanced
even though the underlying model is symmetric. For example, in the batch processing
models of Radner (1993) and Bolton and Dewatripont (1994), the optimal hierarchies are
highly irregular. Van Zandt (1998, Section 3.2.3) shows that the optimal hierarchies in a
symmetric version of Geanakoplos and Milgrom (1991) may also be imbalanced. We will
provide yet another example by showing that optimal CF hierarchies are not balanced if
b < 1/2.

We do not have a calibration of the model that tells us what are plausible values of b, but
one would say casually that b < 1/2 for an AR(1) process implies that the environment is
changing extremely quickly. For the range b > 1/2, which we consider more relevant, we have
evidence that optimal CF hierarchies are approximately balanced. We say “approximately”
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because the discreteness of hierarchies will likely lead to some “leftover” skip-level reporting,
which is not allowed by our definition of balanced hierarchies.

The evidence consists of two parts:

1. in Section 4.2, we show that optimal aggregation is balanced if we restrict the hierarchy
to be completely balanced;

2. in Section 4.4, we show that optimal hierarchies are balanced if we restrict the aggre-
gation to be balanced and prohibit skip-level reporting.

The main gap is that we do not show simultaneously that balanced hierarchies and balanced
aggregation are optimal. Furthermore, in the second part, we use continuous approximations
and rely on a mix of analytic and numerical methods to check the concavity of a key function.
We take a critical look at these gaps in Section 5.

The arguments involve changes to CF hierarchies that do not affect the managerial costs
and hence depend only on the formula for the payoff. The variance σ2 merely scales the
payoff; we normalize σ2 = 1 for the rest of this paper.

4.2 Balanced aggregation

Optimal aggregation is defined as follows.

Definition 4.1 Two CF hierarchies are structurally equivalent if their hierarchies are the
same. A CF hierarchy has optimal aggregation if there is no structurally equivalent CF
hierarchy with a higher payoff.

Note that the managerial cost does not depend on the aggregation trees, which is why this
cost does not enter into the definition of optimal aggregation.

Consider first a centralized CF hierarchy, meaning that it has a single office R whose
subordinates are thus all shops. We use the notation ΘR (though this is the same as θR

and I) to ease the extension of the argument to general CF hierarchies. The payoff of the
hierarchy is vR. Substituting j = R, nk = 1, nj = n, θk = {k}, and Ljk = α + δ(k, TR) into
equation (2.2) yields

vR = bα

(
1 − 1

n

) ∑
k∈Θj

bδ(k,TR).

Therefore, if the aggregation tree TR is chosen to maximize the payoff then it should max-
imize

∑
k∈Θj

bδ(k,TR).

What aggregation tree maximizes this quantity? Let us rephrase this question ab-
stractly. For any binary tree T , let T ◦ be the leaves of T and, for b ∈ (0, 1), let V (T, b) =∑

k∈T ◦ bδ(k,T ). For s ∈ {1, 2, . . .}, let Ts be the set of binary trees with s leaves, and for
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b ∈ (0, 1), let Vs(b) = max {V (T, b) | T ∈ Ts}.1 What binary trees T with s leaves maximize
V (T, b) so that V (T, b) = Vs(b)?

Note that d �→ bd is a convex function. Hence, if the average depth of the leaves were
the same for all binary trees with s leaves, then the trees that maximize V (T, b) could not
be balanced because it would be better for the leaves to have diverse depths. However, the
average depth of the leaves is lowest for a balanced binary tree. Since d �→ bd is a decreasing
function (given b ∈ (0, 1)), this factor works in favor of balanced trees. As long as d �→ bd

is not too convex—that is, as long as b is not too low—the trees that maximize V (T, b)
are balanced, as shown in Lemma 4.1. Otherwise, the trees that maximize V (T, b) are the
“opposite” of balanced; they are serial, meaning (see Table 2.2) that each nonleaf node has
at least one child that is a leaf. For example, the aggregation tree Tb in Figure 2.1 is serial.

Lemma 4.1 Let s ∈ {1, 2, . . .} and b ∈ (0, 1).

1. If b > 1/2, then T solves maxT ′∈Ts V (T ′, b) if and only if T is balanced.

2. If b < 1/2, then T solves maxT ′∈Ts V (T ′, b) if and only if T is serial.

3. If b = 1/2, then V (T, b) = 1 for all T ∈ Ts.

Proof. See Lemmas B.3 and B.4 in Appendix B. �

Corollary 4.1 If b > 1/2, then a centralized hierarchy has optimal aggregation if and only
if TR is balanced; if b < 1/2, then it has optimal aggregation if and only if TR is serial; if
b = 1/2, then any aggregation tree generates the same profit and hence is optimal.

Note that balanced aggregation entails maximal decentralization of information process-
ing. Serial aggregation entails minimal decentralization; the aggregation can be performed
by a single person, since no two operations are concurrent. The model of computation in
Van Zandt (2003a) has no communication or other managerial costs to decentralization;
hence, in a batch processing model, maximal decentralization is always optimal. Yet in
this model decentralized information processing is not optimal (during the aggregation of
information) if b < 1/2. This is another example of the decision-theoretic cost of decentral-
izing information processing that was pointed out in Van Zandt (1999): aggregating reports
precludes processing current information.

Consider optimal aggregation in an arbitrary CF hierarchy. We will ultimately obtain a
result only for completely balanced hierarchies, but we will proceed as far as possible with
arbitrary hierarchies in order to show where the difficulty arises.

The following notation will be useful. For any �1, �2 ∈ I ∪ J such that �1 � �2, define
L�1,�2 ≡

∑
〈k1,k2〉∈P�1�2

Lk1k2 . That is, L�1,�2 is the cumulative lag from �2 to �1. This is

1To make Ts well-defined, we should first fix a set of potential nodes for the binary trees. Note that

Vs(b) is well-defined because V (T1, b) = V (T2, b) if T1 and T2 are isomorphic, and hence {V (T, b) | T ∈ Ts}
contains finitely many values.
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a generalization of our definition of Lji for j ∈ J and i ∈ θj . If �1 = �2, then trivially
L�1�2 = 0. If �1, �2, �2 ∈ I ∪ J and �1 � �2 � �3, then L�1�3 = L�1�2 + L�2�3 .

Suppose that we modify H by changing the aggregation tree Tj of a single office j ∈ J .
This modification does not affect the sizes of the divisions, which appear in the formulae
(2.2) for the values of the offices’ information. All it changes are the values of {Ljk}k∈Θj

,
which affect the value of information for office j and j’s superiors but not for any other
office. Thus, a necessary condition for H to have optimal aggregation is that (for each
j ∈ J) it is impossible to increase

∑
��j v� merely by changing the aggregation tree of office

j.

We can decompose the value of information of an office �1 ∈ J above j so that it is
written as a function of {Lji}i∈θj

. Let �2 be the unique element of Θ�1 such that �2 � j.
Then

v�1 =
∑

k∈Θ�1
\{�2}

(
1
nk

− 1
n�1

) ∑
i∈θk

bL�1i

+
(

1
n�2

− 1
n�1

) ∑
i∈θ�2

\θj

bL�1i +
(

1
n�2

− 1
n�1

) ∑
i∈θj

bL�1i .

(4.1)

The first two terms in equation (4.1) do not depend on {Ljk}k∈Θj
and hence do not depend

on Tj . They are denoted by “constant” in equation (4.2). Since L�1i = L�1j +Lji for i ∈ θj ,
we have

∑
i∈θj

bL�1i = bL�1j
∑

i∈θj
bLji . Hence

v�1 = constant +
(

1
n�2

− 1
n�1

)
bL�1j

∑
i∈θj

bLji .(4.2)

Thus, Tj maximizes v�1 if and only if it maximizes
∑

i∈θj
bLji .

However, this conclusion may not hold for vj . According to equation (2.2), vj is a

weighted sum of
{∑

i∈θk
bLji

}
k∈Θj

, where the weights are
{(

1
nk

− 1
nj

)}
k∈Θj

. Maximizing

this weighted sum is the same as maximizing
∑

i∈θj
bLji if and only if the weights are the

same, which in turn holds if and only if nk is the same for all k ∈ Θj . This is true for an
office in tier 1 (since then nk = 1 for all k ∈ Θj) and is true if the hierarchy is completely
balanced, but it may not be true otherwise. As a consequence, the payoff-maximizing Tj

may depend on the aggregation trees of all the offices superior and inferior to j, and there
is typically no recursive procedure for selecting the aggregation trees of the offices in a fixed
hierarchy in order to maximize the payoff.

Assuming, then, that nk is the same for all k ∈ Θj , we have that Tj should maxi-
mize

∑
i∈θj

bLji . Observe that
∑

i∈θj
bLji =

∑
k∈Θj

bLjk
∑

i∈θk
bLki . If also

∑
i∈θk

bLki is
the same for all k ∈ Θj , then (denoting the common value by B) we have

∑
i∈θj

bLji =
B

∑
k∈Θj

bα+δ(k,Tj) = BbαV (Tj , b). Thus, Tj should be chosen to maximize V (Tj , b). This
proves the following lemma.

Lemma 4.2 Fix a CF hierarchy H. Let j ∈ J and suppose that nk is the same for each
k ∈ Θj. Suppose that Tj is unilaterally modified in order to maximize the payoff. Then Tj

should maximize
∑

i∈θj
bLji (over the set of aggregation trees for office j). If also

∑
k∈Θj

bki

is the same for all k ∈ Θj, then Tj should maximize V (T, b).
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Corollary 4.2 In any CF hierarchy with optimal aggregation, if office j is in tier 1 then
V (Tj , b) = Vsj (b).

We now use Lemma 4.2 to recursively show that, for completely balanced hierarchies,
aggregation is optimal if and only if Tj maximizes V (Tj , b), just as we have already shown
to hold for a centralized hierarchy and for any tier-1 office in an arbitrary hierarchy.

Lemma 4.3 Suppose 〈I, J, R, {Θj}j∈J〉 is completely balanced and V (Tj , b) = Vsj (b) for all
offices in tiers 1, . . . , h. Let j be an office in tier h. Then

∑
i∈θj

bLji = bαh
∏h

η=1 Vsη(b) and

vj =
(

1
nh−1

− 1
nh

)
bαh

h∏
η=1

Vsη(b).(4.3)

Proof. Equation (4.3) follows directly from
∑

i∈θj
bLji = bαh

∏h
η=1 Vsη(b). We prove the

latter condition, which we denote by P(h), by induction. Let j be an office in tier 1. Since∑
k∈Θj

bLjk = bαV (Tj , b) and we assume V (Tj) = Vsj (b), it follows that P(1) holds. Let
h > 1 and suppose P(h − 1) holds. Let j be an office in tier h. Then

∑
i∈θj

bLji =
∑
k∈Θj

bLjk
∑
i∈θk

bLki = bα(h−1)
h−1∏
η=1

Vsη(b)
∑
k∈Θj

bLjk = bαh
h∏

η=1

Vsη(b).

Thus, P(h) holds. �

Proposition 4.1 Suppose 〈I, J, R, {Θj}j∈J〉 is completely balanced. Then H has optimal
aggregation if and only if V (Tj , b) = Vsj (b) for all j ∈ J .

Proof. We show by induction on the tiers that V (Tj , b) = Vsj (b) for all j ∈ J is a necessary
condition for optimality. Sufficiency then follows because, according to equation (4.3) in
Lemma 4.3, all structurally equivalent hierarchies with that property have the same payoff.

The basis of induction is Corollary 4.2. The inductive step is as follows. Let h ∈
{2, . . . , H}, and suppose V (Tj , b) = Vsj (b) for all offices in tiers lower than h. Then,
by Lemma 4.3,

∑
i∈θk

bLki is the same for all offices k in tier h − 1. By Lemma 4.2,
V (Tj , b) = Vsj (b) for all offices j in tier h. �

Corollary 4.3 Suppose that H ≡ 〈I, J, R, {Θj}j∈J , {Tj}j∈J〉 is a CF hierarchy such that
〈I, J, R, {Θj}j∈J〉 is completely balanced.

1. If b > 1/2 (resp., b < 1/2), then H has optimal aggregation if and only if Tj is balanced
(resp., serial) for all j ∈ J .

2. If b = 1/2, then all CF hierarchies that are structurally equivalent to H have the same
payoff.

Proof. The corollary follows from Proposition 4.1 and Lemma 4.1. �
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4.3 Subhierarchies that maximize the value of superiors’ information

We approach the question of whether optimal hierarchies are balanced. We begin with
a step that ends up closely related to our characterization of optimal aggregation.

Suppose that, given a CF hierarchy, we “redesign” one of the subhierarchies—keeping
fixed its root and shops—in order to maximize the total profit. Modifying the subhierarchy
affects the value of the information of the offices in the subhierarchy and also their admin-
istrative cost; the impact outside the subhierarchy is only on the value of information of
offices superior to the subhierarchy. We characterize this impact, under the restrictions that
the subhierarchy has no skip-level reporting and that the height of the subhierarchy remain
fixed.

Let j be the root of the subhierarchy. Let �1 be an office above j. Let �2 be the unique
subordinate of �1 such that �2 � j. Recall from equation (4.2) in Section 4.2 that we can
write

v�1 = constant +
(

1
n�2

− 1
n�1

)
bL�1j

∑
i∈θj

bLji ,(4.4)

where the constant term does not depend on the subhierarchy with root j. Hence, this
subhierarchy maximizes v�1 if and only if it maximizes

∑
i∈θj

bLji .

There is a nonrecursive way to write the cumulative lag Lji that will help us to see how∑
i∈θj

bLji depends on the subhierarchy rooted at j. We restrict the subhierarchy at j to
have no skip-level reporting and to have height hj . Then

Lji =
∑

〈k1,k2〉∈Pji

α + δ(k2, Tk1) = αhj +
∑

〈k1,k2〉∈Pji

δ(k2, Tk1).

Define T̂j to be the tree constructed, starting with Tj , by recursively replacing each leaf k

that is not a shop with Tk. The binary tree T̂j is called j’s cumulative aggregation tree;
it represents the way in which, collectively, j and the offices that are subordinate to j

aggregate cost information about the shops in θj . (Figures 4.1 and 4.2 show two examples.
At the top of each figure is a hierarchy; at the bottom is the cumulative aggregation tree
of the root, presuming that each office’s aggregation tree is balanced.) It is straightforward
that

∑
〈k1,k2〉∈Pji

δ(k2, Tk1) = δ(i, T̂j) and hence that Lji = αhj + δ(i, T̂j).

We can therefore rewrite equation (4.4) as

v�1 = constant +
(

1
n�2

− 1
n�1

)
bL�1jbαhjV (T̂j , b).

In order to maximize v�1 , the subhierarchy should be designed to maximize V (T̂j , b). For
example, if b > 1/2 then v�1 is maximized by making T̂j balanced. This result is summarized
Proposition 4.2.

Proposition 4.2 Consider a CF hierarchy. Let j be an office other than the root and
let � be an office above j. Suppose that the subhierarchy with root j is designed in order
to maximize v�, keeping fixed the number of shops and the height of the subhierarchy and
precluding skip-level reporting. Then it should be designed to maximize V (T̂j , b).
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R

a b c d

T̂R

Nonleaf

nodes of TR

Nonleaf

nodes of Td

Figure 4.1. A hierarchy is shown at the top. If the aggregation tree of each office is
balanced, then the cumulative aggregation tree of the root is isomorphic to the binary
tree at the bottom. Because both the hierarchy and the aggregation trees are balanced,
the cumulative aggregation tree is balanced.
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R

a b c d

Nonleaf

nodes of TR T̂R

Ta Tb Tc Td

Figure 4.2. A hierarchy is shown at the top. If the aggregation tree of each office is
balanced, then the cumulative aggregation tree of the root is isomorphic to the binary
tree at the bottom. With this unbalanced hierarchy, it is impossible to adjust the
aggregation trees of the offices to make the cumulative aggregation tree balanced.

Consider the implications for the subhierarchy that maximizes v�. Figure 4.1 shows a
balanced hierarchy with five offices and sixteen shops, in which each office has a span of 4.
It also shows T̂R, assuming that Tj is a balanced binary tree for all j. Observe that T̂R is
balanced. Consider, in contrast, the example in Figure 4.2; this hierarchy differs in that it
is not balanced. As a consequence, even though aggregation by each office is balanced, the
cumulative aggregation tree T̂R is not balanced. Moreover, there is no way to change the
aggregation trees of the individual offices so that T̂R becomes balanced. These two examples
illustrate that the hierarchy constrains the ways in which data are collectively aggregated
by offices. A sufficient condition for T̂j to be balanced is that both the hierarchy and the
aggregation be balanced.

4.4 Balanced hierarchies

Next we show that optimal hierarchies are balanced if b > 1/2, under the ad hoc
restrictions that there be no skip-level reporting and that the aggregation trees be balanced.
Let the CF hierarchies that satisfy these restrictions be called CF* hierarchies. Our proof is
by induction on the number of tiers, and it uses a continuous approximation in the inductive
step.
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We henceforth assume b > 1/2. This assumption is not merely to justify the restriction
that aggregation be balanced. Even with that restriction, there are several places in the
proofs where the results would change if b < 1/2. The only clear idea we have of the
structure of optimal CF hierarchies when b < 1/2 is that they are not balanced.

We make use of the following notation. Define a ≡ bα ∈ (0, 1). For s > 0, let g(s) ≡
blog2 s = slog2 b. Since log2 b < 0, it follows that g is strictly convex. Furthermore, the
function s �→ sg(s) = slog2 b+1 is concave because b > 1/2 and hence log2 b + 1 is between 0
and 1.

We first consider 3-tier hierarchies (H = 2) and then generalize the argument to arbitrary
H. Consider, then, the CF hierarchies with H = 2 when there is no skip-level reporting.
(We delay the restriction that the aggregation trees be balanced so that the reader can see
where it is needed.) We fix n and the number sR of offices in tier 1. How should the shops
be distributed among the tier-1 offices? In particular, should they be distributed unevenly
(as in Figure 4.1) or evenly (as in Figure 4.2)?

The distribution of shops affects the payoff but not the administrative cost. We want to
show that, if we chose the {sj}j∈ΘR

that sum to n in order to maximize the payoff, then the
spans should be equal to each other. Our strategy is to rearrange U(H) = vR +

∑
j∈ΘR

vj

so that it can be written
∑

j∈ΘR
F (sj), where F is a strictly concave function. The result

then follows.

According to Corollary 4.2 and Lemma 4.1, since b > 1/2 it is optimal for the aggregation
of a tier-1 office to be balanced (in any CF hierarchy). As a continuous approximation, we let
Lji ≡ α + log2 sj for j ∈ ΘR and i ∈ θj . Then, for j ∈ ΘR, we have vj = (sj − 1)bα+log2 sj =
a(sj − 1)g(sj). The function s �→ (s − 1)g(s) is strictly concave (since g is strictly convex
and s �→ sg(s) is strictly concave), so the total value of the tier-1 offices is maximized by
distributing the shops evenly among them.

However, consider the value of the root:

vR =
∑

j∈ΘR

(
1
sj

− 1
n

)
sjb

2α+log2 sj+δ(j,TR)

= a2
∑

j∈ΘR

(
1 − sj

n

)
g(sj)bδ(j,TR).

The value vR is maximized by distributing the shops unevenly, because then the root per-
forms more direct allocation of resources. We need to show that this fact is outweighed by
the concavity of s �→ (s − 1)g(s). However, we can write vR +

∑
j∈ΘR

vj =
∑

j∈Θj
F (sj)

only if δ(j, TR) is the same for each j ∈ Θj—that is, only if TR is balanced. Although we
know from Section 4.2 that TR should be balanced if the hierarchy is balanced, we can also
see that TR should not be balanced if the hierarchy is not balanced: TR should give a lower
depth (delay) for those subordinates for which (1− sj/n)g(sj) is higher (i.e., for which sj is
smaller). To proceed with our method of proof, we henceforth impose the ad hoc restriction
that aggregation be balanced; that is, we restrict attention to 3-tier CF* hierarchies.

With this restriction and the continuous approximation that δ(j, TR) = log2 sR = g(sR)
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for j ∈ ΘR, we have

vR = a2g(sR)
∑

j∈ΘR

(
1 − sj

n

)
g(sj).(4.5)

Since vj = a(sj − 1)g(sj), we have U(H) =
∑

j∈ΘR
F (sj), where

F (s) ≡
(
a(s − 1) + a2g(sR)

(
1 − s

n

))
g(s)(4.6)

= −a (1 − ag(sR)) g(s) + a (1 − ag(sR)/n) sg(s).(4.7)

The first term in equation (4.7) is strictly concave because −a (1 − ag(sR)) < 0 and g is
strictly convex. The second term is strictly concave because a (1 − ag(sR)/n) > 0 and
s �→ sg(s) is strictly concave. Hence F is strictly concave, as desired, and we have shown
that optimal 3-tier CF* hierarchies are balanced.

We now give an inductive proof that optimal CF* hierarchies are balanced for arbitrary
H. The inductive step has two components. First, as a corollary to Proposition 4.2, we show
that, if optimal CF* hierarchies of height H are balanced, then subhierarchies of height H

in an optimal CF* hierarchy of height greater than H are balanced.

Proposition 4.3 Assume b > 1/2 and let H ∈ {1, 2, . . .}. Suppose that optimal CF* hier-
archies of height H are balanced. Consider an arbitrary CF hierarchy of height greater than
H and suppose that a subhierarchy of height H is set to the CF* hierarchy that maximizes
the profit (leaving fixed the number of shops in the subhierarchy, the height of the subhier-
archy, and the other components of the CF hierarchy). Then the subhierarchy should be
balanced.

Proof. Let H be a CF hierarchy of height greater than H. Let j ∈ JH and consider the
subhierarchy with root j. The total value and cost of the offices in the subhierarchy are
the same as if the subhierarchy were an independent CF hierarchy. By assumption, we
know that the CF* hierarchy of height H that maximizes the profit of this subhierarchy
is balanced. The other effect that the subhierarchy has on the profit of the CF hierarchy
is through the value of information processing of each office superior to j. According to
Proposition 4.2 and Lemma 4.1, a balanced CF* hierarchy of height H also maximizes this
value. �

The second component of the inductive step is as follows. Consider all CF* hierarchies of
height H+1 in which the subhierarchies of height H are balanced. We show that, among this
class, the optimal CF* hierarchies are balanced. Observe how the two components complete
the proof. If optimal CF* hierarchies of height H are balanced then, by Proposition 4.3, the
height-H subhierarchies of optimal CF* hierarchies of height H+1 are balanced. Therefore,
from the second component, the optimal CF* hierarchies of height H + 1 are balanced.

Consider a CF* hierarchy H of height H + 1 such that each subhierarchy of height H

is balanced. For j ∈ ΘR and h ∈ {0, 1, . . . , H}, let qj
h be the number of nodes in tier h

of subhierarchy j. (In particular, qj
0 = nj .) Denote the vector 〈qj

0, q
j
1, . . . , q

j
H−1〉 by qj .

We use the model of BCF hierarchies, with its continuous approximations, to measure the
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total value of information processing of the offices in subhierarchy j: UH(qj). Analogous
to equation (4.5), we have

vR = aH+1g(sR)
∑

j∈ΘR

(
1 − qj

0

n

)
g(qj

0).

Therefore, U(H) is approximately equal to
∑

j∈ΘR
FH(qj ; sR, n), where

FH(qj ; sR, n) = UH(qj) + aH+1g(sR)

(
1 − qj

0

n

)
g(qj

0).

Suppose H is not balanced because the BCF hierarchies under the root are not identi-
cal. Suppose then we “smooth” out the offices across the subhierarchies so that each has
q̄h ≡ (1/sR)

∑
j∈ΘR

qj
h offices in tier h. The resulting balanced CF hierarchy has the same

administrative cost as H, but its payoff is sRFH(q̄; sR, n) rather than
∑

j∈ΘR
FH(qj ; sR, n).

The balanced CF hierarchy has a higher payoff if FH is strictly concave in q, which we show
to hold if b > 1/2.

Proposition 4.4 For H ∈ {1, 2, . . .} and n ∈ {2, 3, . . .} such that n ≥ 2H and for sR ≥ 2,
FH(q; sR, n) is strictly concave in q if b > 1/2.

Proof. In Appendix C, we show analytically that ∂FH/∂q2
h < 0 for h ∈ {0, 1, . . . , H − 1}

and that

∂2FH

∂q2
h

∂2FH

∂q2
h′

>

(
∂2FH

∂qh∂qh′

)2

for h, h′ ∈ {1, . . . , H} such that h �= h′. These are necessary but not sufficient conditions
for the Hessian matrix of FH to be negative definite.

The strict concavity condition

FH

(
λq + (1 − λ)q′; sR, n

)
> λFH(q; sR, n) + (1 − λ)FH(q′; sR, n)

was tested and confirmed in 108 trials, with parameters and variables chosen randomly as
follows (in each case, selection is with a uniform distribution on the indicated range):2 (i)
α ∈ (0, 10), (ii) b ∈ (1/2, 1), (iii) n ∈

{
16, . . . , 108

}
, (iv) H ∈ {2, . . . , �log2 n
 − 1}, (v)

sR ∈
{
2, �n/2H


}
, (vi) λ ∈ (0, 1), (vii) q0 ∈ (2H , n− (sR − 1)(2H)), (viii) q′0 ∈ (2H , n− q0 −

(sR − 2)2H), and (ix) for h ∈ {1, . . . , H − 1} given qh−1 and q′h−1, qh ∈ (2H−h, qh−1/2) and
q′h ∈ (2H−2, q′h−1/2). These ranges reflect a bound on n of 108 as well as the restrictions
that spans be at least 2 and that the total number of units among the sR subhierarchies be
n. �

2108 trials is effectively exhaustive search, but this test can be framed probabilistically as follows: The

probability that the strict concavity conditions fails on a set of parameters and variables whose measure

(with respect to the distribution with which they are drawn) is greater than 1.6 · 10−7 is less than 1.6 · 107.
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5 Conclusions

In Section 3, we showed how the formulae for the profit of a CF hierarchy are simplified
when the hierarchy is completely balanced. We then used these formulae as an approxima-
tion for balanced CF hierarchies.

Section 4 presented a series of results and arguments that are meant to show that optimal
CF hierarchies are approximately balanced when b > 1/2. These results fall short of their
target for several reasons.

Some of the shortcomings are due to the discreteness of CF hierarchies. To start with, we
are trying to “prove” a result that is not even precisely defined: that optimal CF hierarchies
are approximately balanced. Furthermore, at various points in which we establish some
balancedness property of optimal CF hierarchies, we then use continuous approximations
in subsequent steps of the proof.

A relatively minor point is that we rely partially on numerical simulations to test the
concavity of a function. However, the simulation test is quite exhaustive and is comple-
mented by analytic verification of certain necessary conditions.

More important is that we assume away skip-level reporting. Yet it is likely that there
would be some skip-level reporting if optimal CF hierarchies were imbalanced. We note that
the optimal hierarchies in Radner (1993) have skip-level reporting; so also may the optimal
hierarchies in the symmetric model of Geanakoplos and Milgrom (1991), as explained in
Van Zandt (1998). Nevertheless, the reasons for the optimality of skip-level reporting in
those models do not arise here. Furthermore, one pays a price for skip-level reporting in
our model because of the need to synchronize resource allocations.

The most significant gap is the following. In Section 4.2 we showed that, taking as
given a completely balanced hierarchy, optimal aggregation is balanced. In Section 4.4
we showed that, if we restrict aggregation to be balanced, then optimal hierarchies are
balanced. However, we do not jointly establish the optimality of balanced aggregation and
balanced hierarchies.

Nevertheless, these results are not needed for the mathematical validity of the model of
BCF hierarchies. Rather, their purpose is to allow one to judge how much effort and im-
portance should be given to the characterization of optimal BCF hierarchies versus optimal
CF hierarchies. Thus, they are useful even if incomplete.

Appendices: Proofs

A Proof on bounds on errors due to continuous approximations

Lemmas A.1 and A.2 are used in the proof of Proposition 3.2.

Lemma A.1 Let s ≥ 1. Then �log2 s
 = �log2�s

 and 
log2 s� = 
log2
s��.

Proof. For s ≥ 1, log2 s is an integer only at integer values of s. Hence, log2 s cannot
leave an interval between two integers by rounding s up or down. �
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Lemma A.2 Suppose H is a balanced CF hierarchy. For h ∈ {1, . . . , H}, j ∈ Jh, and
k ∈ Θj, we have

−1 + log2 sh < δ(k, Tj) < 1 + log2 sh.(A.1)

Proof. Since Tj is balanced, δ(k, Tj) ≥ �log2 sj
. Since 〈I, J, R, {Θj}j∈J〉 is balanced,
sj ≥ �sh
. Hence, δ(k, Tj) ≥ �log2�sh

. According to Lemma A.1, �log2�sh

 = �log2 sh
.
Since �log2 sh
 > −1 + log2 sh, we have δ(k, Tj) > −1 + log2 sh. A mirror argument shows
that δ(k, Tj) < 1 + log2 sh. �

Proof of Proposition 3.2. Let h ∈ {1, . . . , H}, j ∈ Jh, and i ∈ θj . Since the hierarchy
has no skip-level reporting, the path from j to i has one office in each tier η ∈ {1, . . . , h}.
By summing equation (A.1) along the path from j to i, we obtain

h∑
η=1

−1 + log2 sη <
∑

〈k1,k2〉∈Pji

δ(k2, Tk1) <
h∑

η=1

1 + log2 sη.

Since
∑h

η=1 log2 sη = n/qh, the left-hand expression equals Lh −αh− h and the right-hand
expression equals Lh − αh + h. The center expression equals Lji − αh. Hence, we obtain
equation (3.5) of the proposition.

We obtain the bound on vj , equation (3.6), from the same calculation shown in equa-
tion (3.1) for the value of information in a completely balanced CF hierarchy, but substi-
tuting L−

h ≡ Lh − h or L+
h ≡ Lh + h for Lh.

From equation (3.6) we have vj > bhσ2(sj − 1)bLh . The total value of information of
offices in tier h is therefore greater than

∑
j∈Jh

bhσ2(sj − 1)bLh . The latter amount equals
bhσ2(qh−1 − qh)bLh because

∑
j∈Jh

sj = qh−1 and
∑

j∈Jh
1 = qh. By a mirror argument,

we obtain that the total value of information of offices in tier h is less than b−hσ2(qh−1 −
qh)bLh . By summing over h to obtain bounds on U(H) and then rearranging, we derive
equation (3.7).

�

B Some properties of binary trees

For any binary tree T , define the depth δ(T1, T ) of a subtree T1 to be the depth in T of
the root of T1. Observe that, if T1 is a subtree of a binary tree T , then for a node k in T1

we have δ(k, T ) = δ(T1, T ) + δ(k, T1).

Lemma B.1 Let T be a binary tree, and let {T1, . . . , TM} be a collection of subtrees of T

such that {T ◦
1 , . . . , T ◦

M} is a partition of T ◦. Then, for b ∈ (0, 1),

V (T, b) =
M∑

j=1

bδ(Tm,T )V (Tm, b).
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Proof.

V (T, b) =
M∑

m=1

∑
k∈T ◦

m

bδ(Tm,T )+δ(k,Tm) =
M∑

m=1

bδ(Tm,T )
∑

k∈T ◦
m

bδ(k,Tm) =
M∑

m=1

bδ(Tm,T )V (Tm, b).

�

Definition B.1 Let T be a binary tree that has disjoint subtrees T1 and T2 with roots r1

and r2, respectively. Let p1 and p2 be the parents of r1 and r2, respectively. The tree T ′

obtained from T by switching T1 and T2 is the tree whose nodes and edges are the same as
those of T except that edges 〈p1, r1〉 and 〈p2, r2〉 in T are replaced by 〈p2, r1〉 and 〈p1, r2〉
in T ′.

Lemma B.2 Let T be a binary tree that has disjoint subtrees T1 and T2, and let T ′ be the
tree obtained from T by switching T1 and T2. Then

V (T ′, b) − V (T, b) = (bδ(T2,T ) − bδ(T1,T ))(V (T1, b) − V (T2, b)).(B.1)

Proof. For k ∈ T ◦ \ {T ◦
1 ∪ T ◦

2 }, we have δ(k, T ) = δ(k, T ′). Furthermore, δ(T1, T
′) =

δ(T2, T ) and δ(T2, T
′) = δ(T1, T ). Treating each leaf in T ◦ \ {T ◦

1 ∪ T ◦
2 } as a subtree, it

follows from Lemma B.1 that

V (T, b) = bδ(T1,T )V (T1, b) + bδ(T2,T )V (T2, b) +
∑

k∈T ◦\{T ◦
1 ∪T ◦

2 }
bδ(k,T )

V (T ′, b) = bδ(T2,T )V (T1, b) + bδ(T1,T )V (T2, b) +
∑

k∈T ◦\{T ◦
1 ∪T ◦

2 }
bδ(k,T ).

Subtracting V (T, b) from V (T ′, b) yields equation (B.1). �

Lemma B.3 V (T, 1/2) = 1 for all binary trees T . If b < 1/2, then V (T, b) < 1 for all
binary trees T with at least two leaves.

Proof. If T is a binary tree with one leaf, then it contains just a single node that is length
0 from the root (itself). Hence, V (T, b) = b0 = 1.

Inductive step: Let s ∈ {2, 3, . . .}. Assume that V (T, b) ≤ 1 if b < 1/2 (resp., V (T, b) = 1
if b = 1/2) for any binary tree with fewer than s leaves. Let T be a binary tree with s

leaves. Since s > 1, the root of T has two children; let T1 and T2 be the subtrees under
these children. By Lemma B.1, V (T, b) = b(V (T1, b) + V (T2, b)). Because T1 and T2 each
have fewer than s leaves, it follows that if b < 1/2 then V (T1, b) ≤ 1 and V (T2, b) ≤ 1 and
hence V (T, b) < 1 (resp., if b = 1/2 then V (T1, b) = V (T2, b) = 1 and hence V (T, b) = 1). �

Lemma B.4 Let s ∈ {1, 2, . . .} and b ∈ (0, 1).

1. Suppose b > 1/2. For T ∈ Ts, V (T, b) = Vs(b) if and only if T is balanced. Further-
more,

Vs(b) = (2�log2 s	 − s)b
log2 s� + (2s − 2�log2 s	)b�log2 s	.(B.2)
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r
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Figure B.1. The construction for Case 1 of the proof of Lemma B.4.

2. Suppose b < 1/2. For T ∈ Ts, V (T, b) = Vs(b) if and only if T is serial. Furthermore,

Vs(b) =
b + bs−1 − 2bs

1 − b
.(B.3)

Proof. Let s ∈ {1, 2, . . .} and b ∈ (0, 1).

Case 1: Suppose that b > 1/2. Let T ∈ Ts. We first show that V (T, b) < Vs(b) if T

is not balanced. Then we show that V (T, b) is given by the r.h.s. of equation (B.2) if T is
balanced.

Suppose that T is not balanced. Then there is a leaf k1 such that δ(k1, T ) < δ(T ) − 1.
This implies that s > 1, and hence there are two leaves k2 and k3 such that δ(k2, T ) =
δ(k3, T ) = δ(T ) and such that k2 and k3 have the same parent r. Let T1 be the subtree
consisting just of k1, and let T2 be the subtree with root r and leaves {k2, k3}. Note that
T1 and T2 are disjoint. Let T ′ be the tree obtained from T by switching T1 and T2. An
example is shown in Figure B.1.

We have V (T1, b) = 1 and V (T2, b) = 2b. Thus, by Lemma B.2,

V (T ′, b) − V (T, b) = (bδ(r,T ) − bδ(k1,T ))(1 − 2b).

Since δ(k1, T ) < δ(T ) − 1 = δ(r, T ) and b ∈ (0, 1), it follows that bδ(r,T ) < bδ(k1,T ). Since
b > 1/2, we have 1 < 2b. Hence V (T ′, b) > V (T, b).

Suppose that T is balanced. Then every leaf has depth δ(T ) or δ(T ) − 1. Let m be the
number of leaves that have depth δ(T ) − 1, so that s − m have depth δ(T ). Adding two
children below each of the m leaves whose depths are δ(T ) would increase the number of
leaves by m, to s + m. Furthermore, all leaves would have depth δ(T ) and the number of
leaves would be 2δ(T ). Therefore, s+m = 2δ(T ), or m = 2δ(T )−s. We have thus shown that
2δ(T ) − s leaves have depth δ(T ) − 1 and s − (2δ(T ) − s) = 2s − 2δ(T ) have depth δ(T ), so

V (T, b) = (2δ(T ) − s)bδ(T )−1 + (2s − 2δ(T ))bδ(T ).(B.4)

Recall that δ(T ) = 
log2 s� and δ(T ) − 1 = �log2 s
, except when s is a power of 2, and
hence 2δ(T ) − s = 0. Therefore, the r.h.s. of (B.4) is equal to the r.h.s. of (B.2).
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Case 2: Suppose that b < 1/2. Let T ∈ Ts. We first show that V (T, b) < Vs(b) if T is
not serial. Then we show that V (T, b) is given by the r.h.s. of equation (B.3) if T is serial.

Suppose that T is not serial. Then there is a node p with two children, r1 and r2, that
are also nonleaf nodes. Let T1 be a subtree consisting only of a leaf that is inferior to r1, and
let T2 be the subtree whose root is r2. Let T ′ be the tree obtained from T by switching T1

and T2. (This construction is also illustrated by Figure B.1, in reverse, with the following
mapping from this construction to the notation in Figure B.1. The original nonserial tree
T is T ′ in the figure; the node p with two nonleaf children is the root; r1 is the left child
and r2 is the right child of the root; T1 and T2 are as marked in the figure; and the new
tree after the switch is T .)

Then

V (T ′, b) − V (T, b) = (bδ(T2,T ) − bδ(T1,T ))(V (T1, b) − V (T2, b)).

Since (i) δ(T2, T ) < δ(T1, T ), (ii) b ∈ (0, 1), (iii) V (T2, b) < 1 (by Lemma B.3), and (iv)
V (T1, b) = 1 (since T1 contains a single node), we conclude that V (T ′, b) > V (T, b).

Suppose that T is serial. Then δ(T ) = s−1 and only two leaves have depth δ(T ). Thus,

V (T, b) = bs−1 +
s−1∑
d=1

bd =
b + bs−1 − 2bs

1 − b
.

�

C Proofs of necessary conditions for concavity in Proposition 4.4

We check certain necessary conditions for concavity of FH . Recall that g(s) ≡ blog2 s =
slog2 b and a ≡ bα. Let ĝ(s) ≡ b− log2 s = s− log2 b so that, in the formula for UH(q),
Lh = bαh+log2(q0/qh) = ahg(q0) ĝ(qh). Then

UH(q) = g(q0)
H∑

h=1

ah (qh−1 − qh) ĝ(qh)

and

FH(q; sR, n) = UH(q) + aH+1g(sR)
(
1 − q0

n

)
g(q0).

Consider first the second-order conditions that involve only q1, . . . , qH−1. These depend
only on

GH(q) ≡
H∑

h=1

ah (qh−1 − qh) ĝ(qh).

For h ∈ {1, . . . , H − 1},

∂G

∂qh
= −ahĝ(qh) + ah+1ĝ(qh+1) + ah (qh−1 − qh) ĝ′(qh),

∂2GH

∂q2
h

= ah
(
−2ĝ′(qh) + (qh−1 − qh) ĝ′′(qh)

)
.
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Since b ∈ (1/2, 1), we have −1 < log2 b < 0. Let κ ≡ log2 b + 1, so that 0 < κ < 1. Then

ĝ′(s) = −(log2 b)s−κ > 0(C.1)

ĝ′′(s) = (log2 b)κs−κ−1 < 0.(C.2)

Since qh−1 > qh, it follows that ∂2GH/∂q2
h < 0.

Note that, for h, h′ ∈ {1, . . . , H − 1} such that |h − h′| ≥ 2, we have ∂2GH/∂qh∂qh′ = 0
and hence

∂2GH

∂q2
h

∂2GH

∂q2
h′

>

(
∂2GH

∂qh∂qh′

)2

.(C.3)

Next we show that equation (C.3) holds for h ≥ 2 and h′ = h − 1. Let h ≥ 2. Then

∂2GH

∂qh∂qh−1
= ahĝ′(qh).

Let

Γ ≡ 1
ahah−1 ĝ′(qh)2

(
∂2GH

∂q2
h

∂2GH

∂q2
h−1

−
(

∂2GH

∂qh∂qh−1

)2
)

=
(
−2 + (qh−1 − qh)

ĝ′′(qh)
ĝ′(qh)

) (
−2

ĝ′(qh−1)
ĝ′(qh)

+ (qh−2 − qh−1)
ĝ′′(qh−1)
ĝ′(qh)

)
− a.

We show that Γ zFrom equations (C.1) and (C.2) we have

ĝ′′(qh)
ĝ′(qh)

= −κq−1
h ,

ĝ′(qh−1)
ĝ′(qh)

=
q−κ
h−1

q−κ
h

= s−κ
h ,

ĝ′′(qh−1)
ĝ′(qh)

=
κq−κ−1

h−1

−q−κ
h

= −κq−1
h−1s

−κ
h .

Therefore,

sκ
hΓ =

(
2 + (qh−1 − qh) κq−1

h

) (
2 + (qh−2 − qh−1) κq−1

h−1

)
− asκ

h

= (2 + κ (sh − 1)) (2 + κ (sh−1 − 1)) − asκ
h

= 4 + 2κ (sh + sh−1 − 2) + κ2 (sh − 1) (sh−1 − 1) − asκ
h

All terms but the last are positive. Since a < 1 and sh−1 ≥ 2,

sκ
hΓ ≥ 4 + 2κsh − sκ

h =: γ(κ).

We see that γ(κ) > 0 and hence Γ > 0 for all κ ∈ (0, 1), as follows. Note that γ(0) = 3 > 0.
Furthermore, γ′(κ) = 2sh − κsκ−1

h = (2 − κ/sh)sh > 0, since κ < 1 and sh > 1.
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Finally, we show that FH is concave in q0. We can write

FH(q; sR, n) = aq0g(q0)ĝ(q1) −
(

H−1∑
h=1

qh

(
ahg(q0)ĝ(qh) − ah+1g(q0)ĝ(qh+1)

))
(C.4)

− aHg(q0)ĝ(1) + aH+1g(sR)g(q0) − aH+1g(sR)
q0

n
g(q0)

=

(
aH (ag(sR) − 1) −

H−1∑
h=1

ahqh (ĝ(qh) − aĝ(qh+1))

)
︸ ︷︷ ︸

(a)

g(q0)

+
(
aĝ(q1) − aH+1g(sR)/n

)︸ ︷︷ ︸
(b)

q0g(q0).

Since ĝ is an increasing function, qh > qh+1, and a < 1, we have ĝ(qh)−aĝ(qh+1) > 0. Since
g(sR) < 1 and a < 1, we have ag(sR) − 1 < 0. Therefore, term (a) in equation (C.4) is
strictly negative and, since g is strictly convex, term (a) times g(q0) is strictly concave in
q0. Since ĝ(q1) > 1, a < 1, and g(sR) < 1, term (b) in equation (C.4) is strictly positive.
Since q0 �→ q0g(g0) is strictly concave, so is term (b) times q0g(g0). Hence, FH is strictly
concave in q0.
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