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1 Introduction

In bureaucratic organizations such as firms, government agencies, and militaries, some
decisions are made through a hierarchical structure. Actions or control variables are as-
sociated with operatives at the bottom of the hierarchy. The upper tiers of the hierarchy
perform the administrative task of coordinating the operatives in response to information
about the environment. Information flows up from the operatives; each node of the hierarchy
receives information from its subordinates, aggregates this information, and communicates
to its superior. Decisions are recursively disaggregated through a flow of information down
the hierarchy. For example, resources may be allocated this way: each node receives a
budget from its superior, and divides this budget among its subordinates. The hierarchy,
which may be depicted by an organizational chart, is a coarse description of the structure
of decision making, rather than a detailed description of the flow of information between
every member (clerk, secretary, manager, technician) of the administrative staff.

This paper studies a reduced-form model of such hierarchical decision procedures. It
views these procedures as ways for organizations to make effective decisions in environments
that are complex relative to the cognitive abilities of any single human. The complexity is
tied to the changing nature of the environment and the scale of the operations.

In a conventional model with fully rational agents, a single manager can run a firm of any
size or control any number of its operatives, instantly responding to new information. Even if
this agent is controlling other agents with conflicting objectives and private information, the
manager can use a direct revelation mechanism in which the manager receives all information
and makes decisions centrally, according to a prearranged rule.

However, because humans can only make use of limited amounts of information in a
given period of time, a single person can effectively control operations only if their scale
is small or the environment is changing slowly. By sharing the administrative task among
many agents, information can be aggregated and used more quickly because the agents can
perform certain tasks concurrently (Radner (1993)); this is an analogue to the speed-up
entailed by parallel processing in computer systems. Still, the nature of coordination limits
the speed-up that such decentralization can achieve, because not all the different tasks
into which decision making can be divided can be performed concurrently. This inexorable
increase in delay can lead to another form of decentralization. By having some decisions
made in lower levels of a hierarchy, these decisions can be made using less aggregate and
hence more recent information.

We set up the model by first describing informally the parameters such hierarchical
procedures may have and how the performance should depend on these parameters and then
stating a formula for the profit of a hierarchy as a function of these parameters. We hope
that some readers will become sufficiently curious (or suspicious) to read Van Zandt (2003b,
2003a), in which the formula is derived “from first principles”, using an explicit model of
the resource allocation problem, of the computational abilities of the administrative staff,
and of the decision procedures that lie behind each hierarchical form. However, the current
paper is self-contained.

Our goal is to characterize the shape and returns to scale of hierarchies and how these
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properties depend on the speed at which the environment changes and on information
technology. In Section 3, we characterize the returns to scale of the hierarchical procedures.
If the number of tiers is fixed, and hence decentralization of decision making is limited,
then there is a bound on the optimal size of hierarchies even if the managerial wage is zero.
However, when the number of tiers in the optimal hierarchies is allowed to increase with
the number of operatives, computational delay alone does not inexorably lead to eventually
decreasing returns to scale. This is because expected shop costs can always be reduced
by joining independent hierarchies under a central office that coordinates allocations to
these hierarchies. The former decentralization of decision making between independent
organizations then becomes decentralized decision making within a single organization.
Nevertheless, when instead the wage is positive and the hierarchies are large, the value
of this coordination is lower than the administrative cost because of cumulative delay.
Therefore, managerial wages combined with delay lead to a bounded size of hierarchies.

In Section 4, we characterize the spans in optimal hierarchies. We show, for example,
that spans are single-peaked and that, in particular, they tend to decrease moving down the
hierarchy. In Section 5, we characterize how the optimal firm size and shape of the hierar-
chies depend on the speed with which the environment changes. We find that organizations
are smaller and more internally decentralized the more rapidly the environment changes.
An increase in managerial speed, which might result from improvements in information
technology, has the opposite effect. This provides a framework for the empirical study of
trends in firm structure (which have involved both downsizing and mergers) and how they
relate to improvements in information technology and the endogenous increases in the rate
of change of firms’ strategic environments.

2 A model decision-making hierarchies

We consider a model of hierarchical decision procedures, coordination mechanisms, or
organizations. It is a reduced form of the model of balanced CF hierarchies, developed in
Van Zandt (2003b, 2003a) from two components: (a) a stochastic control problem, which
is to allocate resources to “shops” whose valuations or payoffs change over time, and (b) a
model of the information processing capabilities of the managers who decide the resource
allocations.

Each organization is represented by a hierarchy, which is a tree whose leaves are the
shops or recipients of resources and whose nonleaf nodes are multiperson offices that are the
decision-making units. The shops’ resource allocations are periodically updated through a
recursive downward flow of decisions through the hierarchy. Each office is informed by its
superior of the amount of resource available for the shops below it in the hierarchy, and the
office decides how to divide this amount among its subordinates. These decisions require
aggregate information about the shops’ payoff functions, so that each office can implicitly
calculate a shadow price and the marginal valuations of its subordinates. This aggregation
occurs periodically through a recursive upward flow of information. Each office receives
information about its subordinates and aggregates this information, both in order to pass
this information to its superior and in order to allocate resources to its subordinates.
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The key information processing limitation is that it takes managers time to process
information. This time is costly because of managerial wages that must be paid. A more
important implication, however, is that decisions are always based on old information.
The organizational structure determines how effectively the organization keeps up with its
changing environment. The role of the recursive disaggregation of allocations, which is a
form of decentralized decision making, is as follows. If there is a single office that makes
all decisions, then all resource allocations are based on very aggregate and hence very old
information. By delegating some decisions to offices lower in the hierarchy, each of which is
above a smaller number of shops than is the root node, these decisions are made using less
aggregate and hence more recent information.

To obtain a simple model, Van Zandt (2003b, 2003a) imposes considerable symmetry by
assuming that the managers are homogeneous and the shops are identical (or, more precisely,
that the shops’ payoff functions are i.i.d.) and by restricting attention (in Van Zandt (2003a))
to balanced hierarchies. A hierarchy is balanced if all shops are the same distance from the
root and if each office in the same tier has the same span or number of subordinates.

The balanced hierarchies have a simple parameterization. We index the tiers of such
a hierarchy from bottom to top by h = 0, 1, . . . , H, where H is called the height of the
hierarchy. We denote the number of nodes in tier h by qh. Since there should always be
a single root, we set qH = 1. Since the shops are in the bottom tier, q0 is the number of
shops; we also denote this by n. Sometimes the number of shops is fixed and sometimes
we allow it to vary. As a continuous approximations, we treat sh ≡ qh−1/qh as the span of
each office in tier h. To do anything useful, an office has to have at least two subordinates,
and so we require that sh ≥ 2 for h = 1, . . . , H. Otherwise we ignore integer constraints on
the numbers of nodes in each tier. Then the set of hierarchies of height H is

QH ≡ {
q = 〈q0, q1, . . . , qH−1〉 ∈ R

H
∣∣ qh−1/qh ≥ 2 ∀h = 1, . . . , H

}
and the set of hierarchies of height H with n shops is QH(n) ≡ {q ∈ QH | q0 = n}.

The underlying statistical model, based on Geanakoplos and Milgrom (1991), is such that
the total payoff for the policy that the hierarchy calculates can be decomposed into the no-
information payoff, which we normalize to zero, and the value of information processing by
each office. The value of information processing by an office depends on both the hierarchical
structure and on the information that the office implicitly uses to allocate resources to its
subordinates. Recall that the office uses aggregate information about the shops’ payoffs.
The underlying model is such that an aggregate datum is a sufficient statistic for the data
from which it is calculated. However, information processing takes times and the resulting
lags affect the quality of the office’s information.

We denote by dh the delay between when an office in tier h collects information from its
subordinates and when it uses this information to allocate resources to these subordinate.
This delay is divided between delay in aggregating information and delay in disaggregating
resource allocations. The delay increases (by dh) the lag not only of the office’s own in-
formation but also of the information of offices further up the hierarchy. The aggregation
delay slows down how quickly the office can pass information up to its superior; the disag-
gregation delay means that the superior has to inform the office of its resource allocations
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with a lead time. Therefore, the cumulative lag of the information that an office in tier h

uses about shops below it in the hierarchy is Lh ≡ ∑h
η=1 dη. That is, the office calculates

the period-t allocation of its subordinates from the aggregate of raw data gather in period
t − Lh.

The parameters of the stochastic processes that govern the payoff functions are σ2 > 0,
which measures the overall volatility of the environment, and b ∈ (1/2, 1), which measures
the correlation between old and new information and hence inversely measures the speed at
which the environment is changing.1 The value of the information processing by an office
in tier h is

vh ≡ σ2(sh − 1)bLh .(2.1)

We remind the reader that sh is the span of an office in tier h, qh is the number of offices in
tier h, and qhsh = qh−1. Therefore, the total value of the information processing by offices
in tier h is

qh

(
σ2(sh − 1)bLh

)
= σ2(qh−1 − qh)bLh .

The payoff of the hierarchy is

UH(q) ≡ σ2
H∑

h=1

(qh−1 − qh)bLh .

To complete the model, we specify, for each tier h, the delay dh and the managerial
cost of each office in that tier. These are derived from a model of information processing.
Consider first the managerial cost. The workload of calculating each resource allocation is
proportional to sh. We introduce a parameter µ that is a linear measure of how long it
takes managers to perform tasks, so that the workload is µsh. Let w be the managerial
wage, so that the total managerial cost of the office is wµsh. The total managerial cost of
the offices in tier h is qh(wµsh) = wµqh−1 and the total managerial cost of the hierarchy is
CH(q) ≡ wµ

∑H−1
h=0 qh.

If the resource allocation by an office in tier h for any period were calculated by a single
manager, then the office’s delay would equal the total managerial time required for such
a calculation: µsh. However, by decentralizing information processing within the office,
the delay can be reduced to dh ≡ µ(α + log sh). (Throughout this paper, log denotes
base-2 logarithm.) The delay µ log sh is from the aggregation of information, which is the
essence of coordination in this decision problem. It increases with the amount of data to
be aggregated because the operations cannot all be performed concurrently. The delay µα

is from statistical filtering of the data and disaggregation of the resource allocations. It
does not depend on sh because some steps involve a single operation no matter how many
subordinates the office has and others involve operations that can be performed concurrently
for all the subordinates. For example, once information has been aggregated and implicitly

1Although the model is well-defined for b ∈ (0, 1/2], we assume b > 1/2 because otherwise (a) optimal

hierarchies are not balanced and (b) the concavity of certain objective functions in this paper would not

hold.
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a shadow price has been calculated, the individual resource allocations can be computed
concurrently.

Since dh = µ(α+2sh), we have Lh = µ(αh+log(s1 · · · sh)). Define nh ≡ s1 · · · sh = q0/qh,
which is the number of shops below an office in tier h. Then Lh = µ(αh + log nh); this
equals the delay µαh in having information pass up and down through h levels and the
cumulative delay µ log nh in aggregating information about nh shops.

We have thus defined the payoff UH(q) and the managerial cost CH(q) of a hierarchy of
height H ≥ 1. Its profit is defined to be ΠH(q) ≡ UH(q) − CH(q). Combining the various
formulae, we have

ΠH(q) = σ2
H∑

h=1

(qh−1 − qh)(bµ)αh+log(q0/qh) − wµ
H−1∑
h=0

qh.(2.2)

Finally, since the number of shops can vary, we want to allow for the special case of a
hierarchy that has a single shop and hence no coordination; then H = 0, q0 = 1, and
U0(q) = C0(q) = Π0(q) = 0.

The exogenous parameters that interest us are σ2, b, w, and µ. The main purpose of this
paper is to characterize optimal hierarchies and how they depend on these four parameters.
Note that this dependence is only through bµ and wµ/σ2; that is, there are only two degrees
of freedom. To simplify notation in what follows, we normalize µ = 1 until Section 6, when
we consider what happens to optimal hierarchies when µ varies.

3 Returns to scale

3.1 Motivation

Although the hierarchies we study permit internal decentralization, they still resemble
tightly integrated, bureaucratic organizations such as firms and governments. In reality,
there appear to be limits to the scale of such integration, since economic activity is carried
out by many independent organizations that interact through spot markets or not at all. It
has been conjectured, at least since the 1930’s, that information processing constraints are
a source of such limits.2

A proper model of these limits would allow for market interaction, but we address them
using a simpler extension to our model in which allocations can be coordinated by multiple
hierarchies that do not interact at all. Such a collection of independent hierarchies is called
a forest. The total profit of a forest is the sum of the profits of the hierarchies in the forest.
We say that, for a given number n of shops, a forest with a total of n shops is optimal if
it has the highest profit of all such forests. Is there a limit to the size of the hierarchies in
optimal forests?

If there were no information processing constraints, full integration would be optimal
because larger organizations can take advantage of greater gains from trade and risk sharing.
(This benchmark model is obtained by considering a one-tier hierarchy with zero lag and

2See Van Zandt (1998) and Van Zandt and Radner (2001) for references and discussion.
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zero administrative cost. The profit is then σ2(n − 1); the per-shop profit is σ2(n − 1)/n,
which is increasing in n.) Thus, it is significant if this conclusion is reversed by the presence
of information processing constraints.

The exercise tends to overestimate the optimal size of organizations, because it presumes
that the coordination of resource allocations is only possible within the hierarchical proce-
dures constructed in this paper, and hence allocations between independent organizations
cannot be coordinated through markets. However, our main conclusion is that there is a
limit to firm size due to the combined effects of delay and administrative expenses; the
bound would become smaller rather than cease to exist if we were to allow coordination
within markets. A full model of the determinants of organization size, which is a question
of what transactions take place within bureaucratic organizations and what transactions
take place in markets, would have to include a model of decision procedures that resemble
market mechanism.

3.2 Net value of the root

A tool we use for characterizing the size of hierarchies in optimal forests is the net value
V net

R of the root of a hierarchy, which is defined as follows. Consider a hierarchy q of height
H. Suppose that the root is eliminated, so that the sH subhierarchies become independent
hierarchies. V net

R is the amount by which the total profit falls. That is, it equals the profit of
the original hierarchy minus the total profit of the independent subhierarchies. This helps
us characterize limits to firm size because

1. if V net
R is positive, then the subhierarchies cannot exist independently in an optimal

forest because merging them would increase the profit by V net
R ;

2. if V net
R is negative, then the hierarchy cannot exist in an optimal forest because split-

ting it up would increase the profit by −V net
R .

Such a divestiture causes the payoff to decrease by the value of the root’s information:
vH = σ2(sH − 1)bLH . However, the administrative cost also falls, by wsH , because the sH

offices in tier H −1 are no longer subordinates of any office. Therefore, the net fall in profit
due to this divestiture is

V net
R ≡ vH − wsH = σ2(sH − 1)bLH − wsH .(3.1)

3.3 Benchmark: zero wage and bounded height

As a benchmark, consider optimal forests when (a) the managerial wage is zero and (b)
we limit internal decentralization by bounding the height of hierarchies.

For example, suppose we allow for no decentralization at all, so that each hierarchy has
height 1. The per-shop payoff as function of the number n of shops in the hierarchy is

σ2

(
n − 1

n

)
bL1 .
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Figure 3.1. Per-shop payoff for 2-tier and 3-tier BCF hierarchies, as a function of
organization size n. Parameter values are σ2 = 100, b = .95, and w = 0.

We can see that if L1, which is the center’s delay, were constant as n increased, then
the per-shop payoff would increase monotonically. However, L1 = α + log n and hence
limn→∞ L1 = ∞. Therefore, limn→∞ bL1 = 0 and the per-shop payoff converges, as n → ∞,
to the per-shop payoff when there is no coordination. That is, asymptotically the per-shop
realized gains from trade are zero, because delay causes the allocations to be based on old
information.

In fact, there is a limit to firm size whenever the number of tiers of a hierarchy is bounded.
For three-tier hierarchies, it is only the root node whose cumulative lag increases inexorably
with firm size (it is at least log n). As n increases, the root node becomes irrelevant because
of this lag and the size of the subhierarchies under the root converges to the size that
maximizes the per-shop payoff for two-tier hierarchies. However, at intermediate values of
n, the root’s information processing is valuable. Figure 3.1 shows the per-shop payoff for
optimal two- and three-tier balanced hierarchies as a function of n when the wage is zero
(for b = .95 and σ2 = 100). Observe that the per-shop payoff for three-tier hierarchies
is higher than for two-tier hierarchies (illustrating the benefit of decentralization), but the
per-shop payoff is eventually decreasing for both classes of hierarchies.

A complete proof that there is a bound on firm size when we limit decentralization is
given in Van Zandt (2003b, Section 6) for general (nonbalanced) CF hierarchies. Because
that proof is readily adapted to this model of balanced hierarchies, we omit the details.
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3.4 Benchmark: zero wage and unbounded height

Next suppose that we do not limit the height of the hierarchies. Suppose that a forest
has M identical hierarchies of height H with a total of n shops and that these are integrated
under a new root, to form a new hierarchy of height H +1. This integration does not affect
the value of information processing of any of the offices in the existing hierarchies. The
change in payoff equals the value of the new root’s information: σ2(M − 1)bα(H+1)+log2 n.
Since this value is always positive, the integration raises the profit of the forest. We have
thus proved the following proposition.

Proposition 3.1 Suppose that w = 0. Then no optimal forest has two hierarchies of the
same size. Therefore, there is no bound on firm size.

Van Zandt (2003b) proves a stronger result for general CF hierarchies: that any optimal
forest has a single hierarchy if w = 0. That proof is similar to the one given above. Since
the value of the root of any CF hierarchy is positive, the payoff can be increased by merging
independent CF hierarchies in a CF forest. The proof does not work for balanced hierarchies
because, if two hierarchies are not identical, then merging them under a new root does not
result in a balanced hierarchy.

3.5 Positive managerial wage

Next we establish that there is a limit to firm size whenever w > 0. A necessary condition
for the optimality of a forest is that the profit cannot be increased by eliminating the root of
one of the hierarchies to form independent hierarchies. If the hierarchy has height H and n

shops, then the per-subordinate value of the root’s information processing is approximately
σ2bαH+log2 n, which decreases to zero as limn→∞. However, the per-subordinate cost of the
root’s information processing is wsH/sH = w and hence does not depend on n. Therefore,
for large n, V net

R < 0.

Proposition 3.2 If w > 0, then max{1, (w/σ2)1/ log2 b} is a limit to firm size.

Proof of Proposition 3.2. From equation (3.1), the condition V net
R ≥ 0 implies

sR

(
σ2bαH+log2 n − w

) ≥ σ2bαH+log2 n

⇒ σ2bαH+log2 n − w > 0
⇒ blog2 n > w/σ2

⇒ n < (w/σ2)
1

log2 b .

This formula applies only when the r.h.s. is at greater than 2. Otherwise, when (w/σ2)1/ log2 b ≤
2, the optimal firm size is 1 and there should be no administrative apparatus coordinating
allocations. �

Thus, there are limits to the size of hierarchies because, in a large hierarchy, the central
office is using such old information that the value of its decisions is less than the wages
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that must be paid to the agents in this office. In other words, the central office is too far
removed from the daily operations of the organization, not in a spatial sense nor due to a
lack of access to raw data about the daily operations, but because of the cumulative delay
in aggregating information about these operations.

4 Optimal structure of the hierarchical procedures

In this section, we study the hierarchies that maximize profit for fixed height and number
of shops or that maximize per-shop profit for fixed height and endogenous number of shops.
When the number of shops is endogenous, we are treating the set of potential shops as if
it were infinite or at least large, so that the forest that maximizes profit consists of many
hierarchies, each of which maximizes per-shop profit without constraints on the number of
shops. In each case, we refer to the profit-maximizing hierarchies as optimal hierarchies.

We characterize the optimal hierarchies by studying the first-order conditions of

max
q1,...,qH−1

ΠH(n, q1, . . . , qH−1) and(4.1)

max
n,q1,...,qH−1

1
n

ΠH(n, q1, . . . , qH−1)(4.2)

without paying attention to the integer constraints on the number of managers. The error
from ignoring these constraints is smaller for lower tiers in the hierarchy, which have more
managers. Leaving this caveat aside, we show, in each of the two cases, that a solution to
the first-order conditions corresponds to a unique global maximum.

Consider optimal hierarchies for fixed height and number of shops.

Proposition 4.1 ΠH is a strictly concave function of 〈q1, . . . , qH−1〉. Therefore, a solution
to the first-order conditions of equation (4.1) corresponds to a unique global maximum.

Proof. Proposition 4.4 of Van Zandt (2003a) demonstrates the strict concavity of UH .
(Note that the “proof” of Proposition 4.4 relies in part on a numerical test.) Since ΠH(q) =
UH(q) − CH(q) and CH is linear, ΠH is strictly concave. �

Proposition 4.2 The tier sizes 〈q1, . . . , qH−1〉 satisfy the first-order conditions for maxi-
mizing profit for fixed H and n if and only if the spans 〈s1, . . . , sH〉 satisfy s1 · · · sH = n

and

sh = 1 − 1
log b

+
bdh+1

log b
− w/σ2

bLh log b
for h = 1, . . . , H − 1(4.3)

Proof. See Appendix A. �

One conclusion we can derive from these first-order conditions is that the spans are
single-peaked.

Corollary 4.1 The spans 〈s1, . . . , sH〉 that solve equation (4.3) and s1 · · · sH = n are single-
peaked. That is, for h = 2, . . . , H − 1, if sh ≤ sh+1, then sh−1 < sh.
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Proof. Let h ∈ {2, . . . , H − 1}. Compare sh−1 and sh as defined by equation (4.3). Can-
celling common additive terms and factoring out the positive term −1/ log b yields

sign(sh − sh−1) = sign
((

w/σ2

bLh
− bdh+1

)
−

(
w/σ2

bLh−1
− bdh

))
.

Since Lh > Lh−1, bLh < bLh−1 . If sh ≤ sh+1, then also dh ≤ dh+1 and so bdh+1 ≤ bdh .
Therefore, sh > sh−1. �

Next we consider the hierarchies that maximize per-shop profit for fixed H but endoge-
nous n. If H were endogenous, then such a maximization problem would have a solution if
and only if w > 0. (We showed in Section 3 that there is a bound on firm size if and only
if w > 0.) However, for fixed H, there is a bound on firm size even if w = 0 because fixing
H constrains the internal decentralization of decision making.

Proposition 4.3 A solution to the first-order conditions of equation (4.2) corresponds to
a unique global maximum.

Proof. See Appendix A. The proof uses a change of variables to obtain a strictly-concave
objective function. The strict concavity is demonstrated using a combination of analytic
and numerical results. �

Proposition 4.4 For fixed H, 〈n, q1, . . . , qH−1〉 satisfy the first-order conditions for maxi-
mizing per-shop profit if and only if the spans 〈s1, . . . , sH〉 satisfy equation (4.3) and

sH = 1 − 1
log b

− w/σ2

bLH log b
.(4.4)

Proof. See Appendix A. �

When w = 0, the term in equations (4.4) and (4.3) involving Lh disappears. Therefore,
these equations provide a recursive formula, starting at sH , for the unique solution to the
first-order conditions, and this solution does not depend on σ2 or H. That is, from the top
down, the optimal CF hierarchies look alike, whatever is the fixed height of the hierarchies.
When w > 0, equations (4.4) and (4.3) do not give a recursive formula, because bLh is a
function of s1, . . . , sh−1. However, these equations still provide a useful characterization of
the optimal span which aids in their numerical calculation and which can be used to derive
further qualitative results. For example, the next proposition states that the spans of an
optimal hierarchy decrease from upper to lower tiers.

Proposition 4.5 Let s1, . . . , sH be the solution to equations (4.3) and (4.4). Then sh >

sh−1 for h = 2, . . . , H.

Proof. By Corollary 4.1, it suffices to show that sH > sH−1. The proof is similar to
that of Corollary 4.1. Compare sH−1 as defined by equation (4.3) and sH as defined by
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equation (4.4). Cancelling common additive terms and factoring out the positive term
−1/ log b yields

sign(sH − sH−1) = sign
(

(w/σ2)
(

1
bLH

− 1
bLH−1

)
+ bdH

)
.

Since LH > LH−1, bLH < bLH−1 . Therefore, sH > sH−1. �

5 Comparative statics

When w = 0, the optimal hierarchies depend only on the parameter b. When w >

0, they also depend on the ratio W ≡ w/σ2. In this section, we characterize how the
optimal hierarchies depend on these parameters. We are particularly interested in how
organizational size and structure depend on b, which inversely measures the speed at which
the environment changes.

Consider first optimal firm size when w > 0. From Proposition 3.2, max{1, W 1/ log2 b}
is a bound on firm size. If W ≥ 1, then the optimal firm size is 1: there is no information
processing. Therefore, we restrict attention throughout this section to 0 ≤ W < 1. Then,
since log2 b < 0, this bound is decreasing in W and increasing in b. Furthermore, as b ↑ 1,
the bound increases to infinity.

To actually show that firm size increases as W ↓ 0 or b ↑ 1, we need to derive a lower
bound on firm size. Let AΠ(n) be the maximum per-shop profit for hierarchies with n

shops. It follows from the existence of limits on firm size that

N(b, W ) ≡ min
{
n ∈ N

∣∣ AΠ(n) ≥ AΠ(n′) ∀n′ ∈ N
}

exist when w > 0. The following proposition states in what sense N(b, W ) is a lower bound
on the size of hierarchies in a forest.

Proposition 5.1 There is an upper bound, which is independent of the total number of
shops, on the number of hierarchies smaller than N(b, W ) in an optimal forest.

Proof. See Appendix B. �

We can derive a lower bound on N(b, W ) based on the following observation. It cannot
be possible to raise the profit by combining under a new root several hierarchies that
maximize the per-shop profit.

Proposition 5.2 As either b ↑ 1 or W ↓ 0, N(b, W ) → ∞.

Proof. See Appendix B. �

We thus obtain the following comparative statistics on limits to firm size: For any
positive wage, there is a limit to firm size, and when the wage/variance ratio is large
enough or the environment changes quickly enough, the limit to firm size is 1. However,
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as the wage/variance ratio falls (W ↓ 0) or the environment changes more slowly (b ↑ 1),
optimal firm size increases without bound.

Next we consider comparative statics on the spans for fixed H and endogenous n.

Proposition 5.3 Let H ∈ N. The spans 〈s1, . . . , sH〉 that maximize the per-shop profit are
increasing in W and in b.

Proof. See Appendix B �

That the spans are increasing in b is as expected and is consistent with the conclusion
that, asymptotically as b ↑ 1, firm size is increasing in b. However, it may seem surprising
that the spans, and hence firm size, are increasing in W even though we concluded that,
asymptotically as W ↓ 0, firm size is decreasing in W . This is a consequence of restricting
the height of the hierarchy in Proposition 5.3. Merging hierarchies of height H by “firing”
the root of all but one of the hierarchies, which becomes the root of the merged hierarchy
with height H, economizes on managerial costs.

So does dividing a hierarchy of height H by “firing” the root and thereby creating
smaller hierarchies of height H − 1. It is through this process that the hierarchies become
smaller as W increases. Overall, we conjecture that, as W rises, over certain ranges the
height of the optimal hierarchies remains fixed and the spans and size increase. Then, at
certain thresholds, the height falls by 1 and the size falls as well.

6 Technological change

When we drop the normalization that µ = 1, the parameter b is replaced by bµ and the
parameter w becomes wµ.

Suppose that µ falls, meaning that managers become more productive, but the man-
agerial wage stays constant. Then, with regards to our previous comparative statics result,
the effect is like an increase in b and a decrease in w. Both factors lead to larger and more
centralized firms. If the wage increases so that wµ stays constant, then the effect is identical
to an increase in b, and once again the firms become larger and more centralized.

This raises interesting empirical questions. On the one hand, in the last decades infor-
mation processing has become quicker (a decrease in µ). However, we cannot immediately
conclude from our model that firms should have become larger and more centralized. Al-
though not reflected in our model, in fact a firm’s environment consists mainly of other
economic actors. If these speed up their own responses due to improvements in informa-
tion technology, then an endogenous consequence is that the firm’s strategic environment
changes more quickly, corresponding to a decrease in b. Other things equal, this leads to
smaller and more decentralized firms. The net effect of the exogenous change in information
technology and the endogenous change in the speed of change of the strategic environment
is ambiguous, and would need to be studied in a multi-firm equilibrium model.
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A Proofs of results on spans of balanced hierarchies

We frequently use the fact that, for x, y > 0, xlog y = ylog x and

d

dy
xlog y =

d

dy
ylog x = ylog x log x

y
= xlog y log x

y
.

Proof of Proposition 4.2. Fix H. From equation (2.2),

ΠH(q) = σ2
H∑

h=1

(qh−1 − qh)bLh − w

H−1∑
h=0

qh.

Let h ∈ {1, . . . , H − 1}. Since nh = n/qh, we have Lh = αh + log n − log qh, bLh =
bαh+log n b− log qh , and hence

∂bLh

∂qh
= bαh+log n ∂b− log qh

∂qh
= bαh+log n b− log qh(− log b)/qh = −bLh(log b)/qh.

If η 
= h, then ∂Lη/∂qh = 0. Therefore,

∂ΠH

∂qh
= σ2(bLh+1 − bLh) − σ2(qh−1 − qh)q−1

h bLh(log b) − w.

Since Lh+1 = dh+1 + Lh and qh−1/qh = sh,

∂ΠH

∂qh
= −σ2bLh(1 − bdh+1) − σ2bLh(sh − 1)(log b) − w.

Dividing the first-order condition ∂ΠH/∂qh = 0 by σ2bLh(log b) and solving for sh yields

sh = 1 − 1
log b

+
bdh+1

log b
− w/σ2

bLh log b
.

We have changed the first-order conditions from a set of H − 1 equations involving the
variables 〈q1, . . . , qH−1〉 to a set of H − 1 equations involving 〈s1, . . . , sH〉. The additional
variable is fixed by the constraint that s1 · · · sH = n. �

Proof of Proposition 4.3. The objective function is Π̄H(q) ≡ (1/q0)ΠH(q). We show,
using a mix of analytic results and numerical tests, that a transformation of the choice
variables leads to a strictly concave function.

Specifically, we define the invertible function 〈q0, . . . , qH−1〉 �→
RH

〈r1, . . . , rH〉 by rh =

qh/q0 for h = 1, . . . , H. (In certain formulae involving such a vector r = 〈r1, . . . , rH〉, we
define r0 ≡ 1.) The Jacobian matrix DRH(q) is non-singular for all q since

DRH(q) =




−q1/q2
0 1/q0 0 · · · 0

−q2/q2
0 0 1/q0 · · · 0

...
...

...
. . .

...
−qH−1/q2

0 0 0 · · · 1/q0

−1/q2
0 0 0 · · · 0




.



Van Zandt : Structure and Returns to Scale of Real-Time Hierarchical Resource Allocation 14

We define below a function Π̂H(r) such that Π̄H(q) = Π̂H ◦RH(q). Then let q be a solution
to DΠ̄H(q) = 0. Since DΠ̄H(q) = DΠ̂H(RH(q)) × DRH(q) and DRH(q) is non-singular,
DΠ̂H(RH(q)) = 0. We show that Π̂H is strictly concave, which implies that a solution r∗

to DΠ̂H(r) = 0 is the unique global maximizer. Since RH is invertible, q∗ = R−1
H (r∗) is

the unique global maximizer of Π̄H .

We are left with defining Π̂H and showing that it is concave. We can write

Π̄(q0, q1, . . . , qH−1) = σ2
H∑

h=1

(
qh−1

q0
− qh

q0

)
bαh+log(q0/qh) − w

(
1 +

H−1∑
h=1

qh/q0

)
.(A.1)

Define ĝ(s) ≡ b− log s and a ≡ bα. Then

Π̄(q0, q1, . . . , qH−1) = σ2

H∑
h=1

ah(rh−1 − rh)ĝ(rh) − w − w
H−1∑
h=1

rh =: Π̂H(r1, . . . , rH) .

Π̂H is concave if and only if

GH(r) ≡
H∑

h=1

ah(rh−1 − rh)ĝ(rh)

is concave.

The proof of Proposition 4.4 in Van Zandt (2003a) shows that GH is concave in r1, . . . , rH−1.
(The proof uses the restriction that rh−1/rh ≥ 2, which holds here since rh−1/rh = qh−1/qh.)
Although the proof relies partly on a numerical test, its analytic parts imply that

∂2GH

∂r2
h

< 0 and
∂2GH

∂r2
h

∂2GH

∂r2
h′

−
(

∂2GH

∂rh∂rh′

)2

> 0

for h, h′ ∈ {1, . . . , H − 1} such that h 
= h′. One can easily check that, although such a
result was not needed in that proof, the derivation also applies when h = H.

These are necessary but not sufficient conditions for the Hessian matrix of GH to be
negative definite. We also tested and confirmed the strict concavity condition

GH

(
λr + (1 − λ)r′) > λGH(r) + (1 − λ)GH(r′)

in 108 trials, with parameters and variables chosen randomly as follows (in each case, se-
lection is with uniform distribution on indicated range). (i) α ∈ (0, 10), (ii) b ∈ (1/2, 1),
H ∈ {2, . . . , 24}, (vi) λ ∈ (0, 1), (vii) rH , r′H ∈ (0, 1/2H), (viii) for h ∈ {1, . . . , H − 1}, given
rh+1 and r′h+1, rh ∈ (2rh+1, 1/2h) and r′h ∈ (2r′h+1, 1/2h). These ranges reflect a lower
bound on q0 of 2H and the restriction that spans be at least 2. �

Proof of Proposition 4.4. A hierarchy that maximizes per-shop profit for fixed H but
endogenous n must satisfy the first-order conditions (equation (4.3)) for maximizing total
profit for fixed H and n. The span sH of the root must then also solve the first-order condi-
tion for maximizing per-shop profit when the remaining spans are fixed but n is endogenous.

Note that
qh

n
=

sh+1 · · · sH

s1 · · · sH
=

1
s1 · · · sh

.
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Therefore, from equation (A.1), we can write the per-shop profit as

σ2
H∑

h=1

(
1

s1 · · · sh−1
− 1

s1 · · · sh

)
bαh+

∑h
η=1 log sη − w

(
H∑

h=1

1
s1 · · · sh

)
.(A.2)

Dropping any additive terms that do not depend on sH leaves

(A.3) σ2

(
1

s1 · · · sH−1
− 1

s1 · · · sH

)
bαh+

∑H
η=1 log sη − w

(
1

s1 · · · sH

)

=
1

s1 · · · sH−1

(
σ2(1 − 1/sH)bαh+

∑H−1
η=1 log sη blog sH − w/sH

)
.

Then the derivative of equation (A.3) with respect to sH , set equal to 0, yields (substituting
qH = 1 and qH−1 = sH)

σ2s−2
H bLH + σ2(1 − 1/sH)bLH (log b)s−1

H + ws−2
H = 0

1 + (sH − 1) log b +
w/σ2

bLH
= 0

1 − 1
log b

− w/σ2

bLH log b
= sH .

σ2(nsH)−1bLH + σ2

(
sH

n
− 1

n

)
bLH (log b)s−1

H + w(nsH)−1 = 0

1 + (sH − 1) log b +
w/σ2

bLH
= 0

1 − 1
log b

− w/σ2

bLH log b
= sH .

�

B Proofs of results on comparative statics

Proof of Proposition 5.1. Fix b and W . Let n∗ ≡ N(b, W ) and π∗ ≡ AΠ(n∗) be the
size and per-shop profit, respectively, of the smallest hierarchy that maximizes the per-
shop profit. Let πmax and πmin be the maximum and minimum values, respectively, of
{AΠ(n) | n < n∗}.

Suppose that, in an optimal forest, there are n shops in hierarchies that are smaller
than n∗. The total profit of these hierarchies is at most nπmax. If these shops were instead
organized into hierarchies of size n∗, there would be at most n∗ − 1 leftover shops in a
smaller hierarchy and so the total profit would be greater (n − n∗)π∗ + n∗πmin. This must
be no higher than nπmax since the original forest is optimal. Therefore,

(n − n∗)π∗ + n∗πmin ≤ nπmax

n(π∗ − πmax) ≤ n∗(π∗ − πmin)

n ≤ n∗ π∗ − πmin

π∗ − πmax
.

This is also a bound on the number of hierarchies that are smaller than n∗. �
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Proof of Proposition 5.2. Fix b and W . Let n∗ ≡ N(b, W ) and H∗ be the size and
height, respectively, of the smallest hierarchy that maximizes the per-shop profit. The
change in profit by combining sR such hierarchies under a new root equals the net value of
the new root:

V net
R = σ2(sR − 1)bα(H∗+1)+log(sRn∗) − wsR.

Since the span of each tier is at least 2, H∗ ≤ log n∗. Therefore,

V net
R ≥ σ2(sR − 1)bα(1+log n∗)+log(sRn∗) − wsR

= σ2(sR − 1)bα b(α+1) log n blog sR − wsR

= σ2(sR − 1)bαn(α+1) log b slog b
R − wsR.

(The last step uses the fact that xlog y = ylog x.) Since the profit cannot be increased by
combining such hierarchies, V net

R ≤ 0 and hence

n(α+1) log b ≤ sR

sR − 1
s− log b
R

W

bα
,(B.1)

n ≥
(

sR

sR − 1
W

bα

) 1
(α+1) log b

s
− 1

α+1

R .(B.2)

This bound must hold for all sR ≥ 2. Observe first that, since log b < 0, the r.h.s. of
equation (B.2) converges to ∞ as W ↓ 0 for any fixed sR. Consider now the comparative
statics with respect to b. Since W < 1, we can choose sR large enough that (sR/(sR −
1))W < 1. As b ↑ 1, (sR/(sR − 1))(W/bα) converges to (sR/(sR − 1))W and the exponent
1/((α + 1) log b) converges to −∞. Therefore, the r.h.s. of equation (B.2) converges to ∞.

�

Proof of Proposition 5.3. The comparative statics with respect to b when w = 0 are the
easiest to see. From equation (4.4), we see that sH is increasing in b. From equation (4.3),
sH−1 is increasing in sH and in b, and hence is increasing in b because sH is increasing in
b. Continuing by induction, sh is increasing in b for h = 1, . . . , H.

The general case is almost as easy. Denote 〈s1, . . . , sH〉 by s. We can write equa-
tions (4.3) and (4.4) as sh = fh(s; b, W ) for h = 1, . . . , H. Let f ≡ 〈f1, . . . , fH〉. Each fh

(and hence f) is increasing in s, in b, and in W . Let s0 be the spans given b and W , that
is, s0 = f(s0; b, W ). Let b′ ≥ b and W ′ ≥ W , with at least one strict inequality. Define
{s1, s2, . . .} by st = f(st−1; b′, W ′). Since f is increasing in b and W , s1 > s0. Since f is
increasing in s, st > st−1 for t ≥ 2. The monotone sequence is bounded above by the unique
solution to equations (4.3) and (4.4) when the bdh+1 terms are suppressed (this solution is
recursively defined starting with s1). Therefore, it converges to a solution s′ = f(s′; b′, W ′)
and s′ > s0. �
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