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Abstract

For Bayesian games of strategic complementarities we provide a constructive proof
of the existence of a greatest and a least Bayes-Nash equilibrium, each one in strate-
gies monotone in type, if the payoff to a player displays increasing differences in own
action and the profile of types and if the posteriors are increasing in type with re-
spect to first-order stochastic dominance (e.g., if types are affiliated). The result holds
for multidimensional action and type spaces and also for continuous and discrete type
distributions. It uses an intermediate result on monotone comparative statics under un-
certainty, which implies that the extremal equilibria increase when there is a first-order
stochastic dominant shift in beliefs. We provide an application to strategic information
revelation in games of voluntary disclosure.
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1 Introduction

This paper uses lattice-theoretic methods to establish, in supermodular games of incom-

plete information with complementarity between actions and types and with posteriors that

are increasing in type with respect to first-order stochastic dominance, (i) the existence of

extremal equilibria that are monotone in type and (ii) monotone comparative statics of the

extremal equilibria with respect to posterior beliefs.

Existence and characterization results of pure-strategy equilibria in Bayesian games

have proved difficult to obtain. Such results include the following. Milgrom and Weber

(1985) (see also Aumann et al. (1982) and Radner and Rosenthal (1982)) find stringent

sufficient conditions for existence, such as conditionally independent and atomless distri-

butions for types and finite action spaces; they use atomless distributions for purification.

Vives (1990, Section 6) establishes existence with general action and type spaces when

payoffs are supermodular in actions; he uses a lattice fixed-point theorem. Athey (2001)

shows existence of equilibria in monotone strategies when there are (a) either supermodular

or log-supermodular cardinal utilities, (b) complementarity between actions and types, (c)

one-dimensional action sets, and (d) one-dimensional atomless type spaces. Her methods

combine monotone comparative statics (to get the monotonicity of best responses), a topo-

logical fixed-point theorem, and purification of equilibria in Bayesian games with atomless

type spaces.1 McAdams (2002) presents an extension to multidimensional discrete action

and atomless type spaces, putting complementarity assumptions directly on interim payoffs.

Our setting is more restrictive than Athey (2001), who also obtains results for log-

supermodular payoffs (which do not imply strategic complementarities in games of incom-

plete information). However, by using lattice rather than topological fixed-point methods,

we obtain pure-strategy equilibria by putting assumptions on primitives and without the

purification via atomless type spaces; moreover, our results hold for multidimensional action

and type spaces, whether discrete or continuous. Our proof, which is simple and construc-

1Note, however, that atomless type spaces are generally not sufficient for purification with continuous

action sets. See Khan and Sun (1996).
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tive, finds the greatest and least of all pure-strategy equilibria and shows that these are in

monotone strategies (even if nonmonotone equilibria also exist).

The leading version of our main result can be stated as follows. Consider any Bayesian

game in which: (a) each type space is a product of measurable subsets of R; (b) each action

set is a product of compact subsets of R; (c) each player’s payoff has increasing differences

in own action, in own action and the profile of types, and in own action and the action

profile of other players; and (d) posteriors are increasing in type with respect to first-order

stochastic dominance. Then there exist a greatest and a least pure-strategy Bayes-Nash

equilibrium, each of which is in strategies that are monotone in type.

The reader may be accustomed to seeing “affiliated types” assumptions (e.g., “monotone

likelihood ratio”, “log-supermodular density”) in the related literature . However, because

we restrict attention to payoffs with increasing differences in action and type, we need only

the weaker condition that higher types have higher posteriors when these are ordered by

first-order stochastic dominance. We state in Appendix B the general comparative statics

results linking increasing differences and first-order stochastic dominance that are needed

for our analysis.

Identifying the greatest and least equilibria, rather than merely showing existence of

one equilibrium in monotone strategies, allows us to perform comparative statics on these

equilibria. In particular, we are able to show that they are increasing in the posteriors.

That is, if we perturb the game such that, for each player and each type, the player’s

posterior beliefs about the other players shift up by first-order stochastic dominance, then

the greatest and least equilibrium strategies increase for each player and each type. As an

application, we generalize a result in Okuno-Fujiwara et al. (1990) on strategic revelation

of information and voluntary disclosure.

The plan of the paper is as follows. In Section 2, we set up the Bayesian game and state

basic maintained assumptions. Section 3 shows how (under certain assumptions) Cournot

tatônnement, starting at the greatest strategy profile and using the greatest best-reply

mappings, converges to the greatest Bayes-Nash equilibrium, which is in strategies that are
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monotone in type. Section 4 shows existence and monotonicity of the greatest best-reply

mapping. Section 5 builds on intermediate results about comparative statics under uncer-

tainty and shows that the greatest best-reply to monotone strategies is monotone. A strict

version of this result is obtained in Section 6. The pieces are then in place to state the

main result in Section 7, where we also give an application to Bertrand oligopoly. Section 8

provides an example demonstrating that our approach cannot work for log-supermodular

payoffs. Section 9 shows that the extremal equilibria are increasing in the posteriors. We

given an application to games of voluntary disclosure in Section 10 and concluding re-

marks close the paper in Section 11. Appendix A provides, for completeness, some basic

lattice-theoretic definitions, Appendix B presents our results on comparative statics un-

der uncertainty, and Appendix C compares affiliation and our weaker increasing posteriors

condition.

2 The Bayesian game

We use the following formulation of a Bayesian game:

1. The set of players is N = {1, . . . , n}, indexed by i.

2. The state space is T = T0×T1×· · ·×Tn, where T0 is residual uncertainty not observed

by any player and, for i ∈ N , Ti is the type space of player i.

3. The common prior on T is µ, with marginal distribution µi on Ti.

4. The action set of player i is Ai. The set of action profiles is A =
∏

i∈N Ai.

5. The payoff function of player i is u : A × T → R.

Let T−i =
∏

j �=i Ti and A−i =
∏

j �=i Aj .

We impose the following restrictions, whose roles are topological and order-related.2

2See Appendix A for lattice-theoretic definitions.
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1. For i = 0, 1, . . . , n, Ti is a non-empty measurable subset of a Euclidean space (inher-

iting its Borel field and partial order).

2. For i ∈ N , Ai is a non-empty compact sublattice of a Euclidean space (inheriting its

topology and lattice structure).

3. For i ∈ N , player i’s payoff function ui has the following properties: (a) for all a ∈ A,

u(a, ·) : T → R is measurable; (b) for a.e. t ∈ T , u(·, t) : A → R is continuous; (c)

there is an integrable g : T → R such that |u(σ(t), t)| ≤ g(t) a.e. for all measurable

σ : T → A.

We use the symbol ≥ for all partial orders. Expressions such as “greater than” and

“increasing” mean “weakly greater than” and “weakly increasing”.

A strategy for player i is a measurable function σi : Ti → Ai. Let Σi denote the set

of equivalence classes of strategies, with equivalence defined by being equal a.e. Let Σ =
∏n

i=1 Σi denote the set of strategy profiles, and let Σ−i =
∏

j �=i Σj denote the profiles of

strategies for players other than i. For notational simplicity, a strategy profile is viewed

as a map from T to A, even though it does not depend on T0. For each player, the set of

strategies is also a lattice for the ordering “σi ≥ σ′
i if and only if σi(ti) ≥ σ′

i(ti) for a.e.

ti ∈ Ti”. We say that a strategy σi ∈ Σi is monotone if, for a.e. ti, t
′
i ∈ Ti such that ti ≥ t′i,

we have σi(ti) ≥ σi(t′i).

Our technical assumptions assure that Ui(σ) =
∫
T ui(σ(t), t) dµ is well-defined on Σ and

is continuous in the topology of convergence in measure. A Bayes-Nash equilibrium is a

Nash equilibrium of the game (N, (Σi), (Ui)). Let βi : Σ−i → Σi denote player i’s best-reply

correspondence:

βi(σ−i) = arg max
σi∈Σi

Ui(σi, σ−i).(1)

Then a Bayes-Nash equilibrium is a strategy profile σ∗ such that σ∗
i ∈ βi(σ∗

−i) for i ∈ N .

Remark 1 We also make use of the “ex post” representation of a Bayesian game and of βi.

In the ex ante definition of equation (1), the player chooses a strategy before observing his
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type in order to maximize unconditional expected utility. In the ex post characterization,

a player observes his type and then chooses an action in order to maximize conditional

expected utility. Let ∆(T−i) be the set of probability measures on T−i. Player i’s posteriors

are given by a measurable function pi : Ti → ∆(T−i), where pi(ti) denotes i’s posteriors on

T−i conditional on ti. The posteriors are consistent with and uniquely determined (up to

equivalence) by the prior.3 For each ti ∈ Ti, P−i ∈ ∆(T−i), and σ−i ∈ Σ−i, let ϕi(ti, P−i, σ−i)

be the set of actions for i that maximize i’s expected utility when his type is ti, his posterior

is P−i, and the other players’ strategies are σ−i. That is,

ϕi(t, P−i, σ−i) = arg max
ai∈Ai

∫
T−i

ui(ai, σ−i(t−i), ti, t−i) dP−i(t−i).(2)

Then σi ∈ βi(σ−i) if and only if, for a.e. ti ∈ Ti, σi(ti) ∈ ϕi(ti, pi(ti), σ−i). That is, σi is an

ex ante best response to σ−i if and only if, for a.e. ti, σi(ti) is an optimal action given i’s

type ti, given i’s posteriors p(ti) on T−i, and given σ−i.

Our formulation of a Bayesian is general and encompasses common and private values

as well as perfect or imperfect signals. In cases of “pure” private values we have ui(a, t) =

vi(a, ti) (types may be correlated). For example, types are private cost parameters of the

firms. A “common values” model might have ui(a, t) = vi(a, t1 + · · · + tn), as when there

is a common demand shock in an oligopoly and each firm observes one component. As an

example of imperfect signals, suppose firms observe imperfectly their cost parameters. Then

t0 could represent the n-vector of firms’ cost parameters and ti the private cost estimate of

firm i. Not only may the cost parameters be correlated but so may the error terms in the

private signals.4

3 Cournot tatônnement and the greatest equilibrium

If βi(σ−i) has a unique-a.e. greatest element, denote it by β̄i(σ−i). If β̄i(σ−i) is well-

defined for all σ−i ∈ Σ−i, then we call β̄i : Σ−i → Σi player i’s greatest best-reply (GBR)

3For the existence of such posteriors, see Dellacherie and Meyer (1978, III.70 and 71).

4See Vives (1999, Section 8.1.2) for parameterized examples of the cases discussed.
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mapping.

The main idea is that (under certain assumptions) Cournot tatônnement, starting at the

greatest strategy profile and using the GBR mappings, converges to the greatest Bayes-Nash

equilibrium, which is in strategies that are monotone. We first state this result in terms

of assumptions on the GBR mapping (in Lemma 1) and then derive the assumptions from

more primitive ones (in Sections 4 and 5). An analogous result, which we do not bother

stating, holds for the least best-reply mapping and the least Bayes-Nash equilibrium.

Lemma 1 Assume the following for each player i.

1. The GBR mapping β̄i is well-defined.

2. The GBR mapping is increasing: for σ′
−i, σ−i ∈ Σ−i such that σ′

−i ≥ σ−i, β̄i(σ′
−i) ≥

β̄i(σ−i).

3. If the strategies σ−i are monotone, then the strategy β̄(σ−i) is monotone.

Then there is a greatest equilibrium and it is in monotone strategies.

Proof. Define β̄ : Σ → Σ by β̄(σ) = (β̄1(σ−1), . . . , β̄n(σ−n)). Since each β̄i is increasing,

so is β̄. By the third assumption, if σ is a profile of monotone strategies then so is β̄(σ).

For each player i, let āi ∈ Ai be the greatest element of Ai (which exists since Ai is

a complete lattice). Let σ0
i ∈ Σi be the strategy that is equal a.e. to āi, and let σ0 =

(σ0
1, . . . , σ

0
n). Define recursively σk = β̄(σk−1) for k = 1, 2, . . .. Since σ0 is the profile of

greatest strategies, we have σ1 ≤ σ0. Since β̄ is increasing and σ2 = β̄(σ1) and σ1 = β̄(σ0),

we have σ2 ≤ σ1. By induction, the sequence {σk} is decreasing. Thus, for each player

i and for a.e. ti ∈ Ti, {σk
i (ti)} is a decreasing sequence. Since every decreasing sequence

in Ai converges to its infimum, it follows that σk
i converges pointwise a.e., and hence in

measure, to the infimum σ∞
i of the sequence {σk

i }. The limit must be an equilibrium (as in

Vives (1990, Theorem 5.1)) because the utility functions Ui are continuous in the topology

of convergence in measure.
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Furthermore, each term in the sequence {σk} is in monotone strategies because σ0 is a

profile of monotone strategies and so is β̄(σk) if σk is such a profile. The limit of a sequence

of monotone strategies is also monotone.

The limit σ∞ must be the greatest equilibrium, as we now show. Any other equilibrium

σ will be smaller than the greatest strategy profile σ0, that is, σ0 ≥ σ. Since β̄ is increasing,

we have β̄(σ0) ≥ β̄(σ). On the one hand, σ is a profile of best responses to σ since σ is

an equilibrium; on the other, β̄(σ) is the greatest best response to σ. Therefore, β̄(σ) ≥ σ.

Combining σ1 = β̄(σ0), β̄(σ0) ≥ β̄(σ), and β̄(σ) ≥ σ yields σ1 ≥ σ. Continuing by

induction, σk ≥ σ for all k and hence σ∞ ≥ σ. �

4 Existence and monotonicity of the GBR mapping

The assumptions needed for the existence and monotonicity of the GBR mapping follow

from the standard theory of supermodular games.

Proposition 1 Assume for player i that, for a.e. t ∈ T , ui(·, t) is supermodular in ai and

has increasing differences in (ai, a−i). Then, for all σ−i ∈ Σ−i, βi(σ−i) contains a greatest

element; that is, β̄i(σ−i) is well-defined. Furthermore, β̄i is increasing.

Proof. The proof mimics that of Theorem 6.1 in Vives (1990). The main ideas there are

(a) supermodularity and increasing differences are preserved by integration; (b) hence Ui is

supermodular in σi and has increasing differences in (σi, σ−i); (c) hence βi is an increasing

correspondence; (d) β̄i(σ−i) is well-defined as the pointwise supremum of β(σ−i);5 and (e)

β̄i is increasing because βi is increasing. �

5In the usual supermodular optimization theory, the existence of a greatest solution follows (as in Topkis

(1978, Corollary 4.1)) by assuming the choice set to be compact in a topology finer than the interval topology

and in which Ui is upper semicontinuous. With infinite type spaces, these two restrictions on the topology on

Σi are inconsistent. In Vives (1990, Theorem 6.1), as in this paper, Ai is Euclidean. Then Σi is a complete

lattice and the supremum of a sublattice is in the closure of the sublattice (Schaefer (1974, Proposition

II.8.3)). These two properties also establish the existence of a supremum in βi(σ−i).
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5 The greatest best reply to monotone strategies is monotone

We now show that the GBR to monotone strategies is monotone if, in addition to

the assumptions of Proposition 1, ui has increasing differences in (ai, t) and a “monotone

posteriors” condition is satisfied. We shall apply the monotone comparative statics results

from Appendix B.

We endow ∆(T−i) with the partial order of first-order stochastic dominance and assume

that i’s posterior function pi : Ti → ∆(T−i) is increasing. That is, higher types of i believe

that the other players are more likely to be of higher types as well. This is implied by—but

is weaker than—the more familiar assumption that µ is affiliated (see Appendix C).

Once we fix a profile of strategies for players other than i, we can write i’s payoff as a

function of only his own action and the profile of types. If the other players’ strategies are

increasing, then increasing differences of ui in (ai, a−i) and in (ai, t) translate into increasing

differences of the induced payoff function in (ai, t). According to Lemma 4, if we hold ti

fixed and let only player i’s beliefs about t−i vary, then a first-order stochastic dominance

shift in i’s beliefs leads to a higher optimal action by player i. Thus, when player i’s type

is higher, he chooses a higher action both because of the shift in beliefs (since we assume

pi is increasing) and because the induced payoff has increasing differences in (ai, ti).

Proposition 2 Let i ∈ N . Assume that:

1. ui is supermodular in ai, has increasing differences in (ai, a−i), and has increasing

differences in (ai, t); and

2. pi : Ti → ∆(T−i) is increasing with respect to the partial order on ∆(T−i) of first-order

stochastic dominance (e.g., µ is affiliated).

Then, for all monotone σ−i ∈ Σ−i, β̄i(σ−i) is monotone.

Proof. Fix σ−i ∈ Σ−i. Recall the ex post characterization of βi in Remark 1, according to

which βi(σi) is the set of measurable selections of the correspondence ti �→ ϕi(ti, p(ti), σ−i),
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where ϕi is defined in equation (2). We show that, if σ−i is monotone, then the objective

function that defines ϕi is supermodular in ai and has increasing differences in (ai, ti) and

(ai, P−i). Therefore, max ϕi(ti, P−i, σ−i) exists and is increasing in ti and in P−i. Since

β̄i(σ−i) is equal a.e. to ti �→ max ϕi(ti, pi(ti), σ−i) and since pi is increasing, it follows that

β̄i(σ−i) is increasing a.e.

If we let vi(ai, t) = ui(ai, σ−i(t−i), ti, t−i) and let Vi(ai, ti, P−i) =
∫
T−i

vi(ai, t)dP−i(t−i),

then ϕi(ti, P−i, σ−i) = arg maxai∈Ai Vi(ai, ti,P−i). The induced payoff function vi(ai, t) has

increasing differences in (ai, t) because ui has increasing differences in (ai, (a−i, t)) and

σ−i is increasing. It follows from Lemma 4 that Vi has increasing differences in (ai, ti)

and in (ai, P−i). As usual, since supermodularity is preserved by integration, Vi is also

supermodular in ai. �

6 Strictly monotone best replies

We can strengthen the conclusion of Proposition 2 to “for all monotone σ−i ∈ Σ−i,

β̄i(σ−i) is strictly monotone” by adding some smoothness assumptions. We continue to rely

on the lattice methods to obtain a weak inequality and then use differentiability to rule out

equality—the inequality must then be strict.

For example, consider a choice problem maxx∈X u(x, y), where X is an interval of R

and y is a parameter that belongs to a partially ordered set Y . Suppose xH , xL are interior

solutions given yH , yL ∈ Y , where yH > yL, and we have determined that xH ≥ xL (e.g.,

using monotone comparative statics). Suppose also that u is differentiable in x and that

∂u/∂x is strictly increasing in y. The solutions xH , xL must satisfy the first-order condition

and so ∂u(xH , yH)/∂x = 0 and ∂u(xL, yL)/∂x = 0. Since ∂u/∂x is strictly increasing in y,

we have ∂u(xL, yH)/∂x > 0. Therefore, xH �= xL and instead xH > xL.

This kind of argument can be applied to a single dimension of a multidimensional choice

set, thereby allowing for a mix of continuous and discrete choice variables. This is our

approach. We refer to the smoothness conditions needed as the “smooth case”.

Assumption 1 (Smooth case for player i) The following statements hold for player i:



Monotone equilibr ia with strategic complementar ities                                 10

1. Ai = Ai1×Ai2, where Ai1 is a non-empty compact interval of R and Ai2 is a non-empty

compact sublattice of Euclidean space;

2. ui is continuously differentiable in ai1;

3. for all ti, P−i, and σ−i, the elements of ϕi(ti, P−i, σ−i) are such that ai1 is in the

interior of Ai1.

In the smooth case for player i, a strategy σi is said to be strictly monotone if, for

almost every tHi , tLi ∈ Ti such that tHi > tLi , we have σi(tHi ) ≥ σi(tLi ) and σi1(tHi ) > σi1(tLi ).

(Observe that the strict inequality is only for the dimension we have identified to satisfy

the smoothness assumptions. If there are multiple such dimensions, we can apply the

assumptions to each of them and thereby obtain a strict inequality for each of them.)

We are now ready for our “strict” version of Proposition 2.

Corollary 1 Given (a) the assumptions of Proposition 2, (b) the smooth case for player i,

and (c) that ∂ui/∂ai1 is strictly increasing in ti, it then follows, for all monotone σ−i ∈ Σ−i,

that β̄i(σ−i) is strictly monotone.

Proof. (For the sake of clarity, we omit the “a.e.” qualifications in this proof.)

Let σ−i ∈ Σ−i be monotone and let σi = β̄i(σ−i). Let tHi , tLi ∈ Ti be such that tHi > tLi .

We know from Proposition 2 that σi(tHi ) ≥ σi(tLi ), so we only need show that σi1(tHi ) �=
σi1(tLi ).

Continuing from the proof of Proposition 2, σi(tHi ) and σi(tLi ) are solutions to (respec-

tively) maxai∈Ai Vi(ai, t
H
i , pi(tHi )) and maxai∈Ai Vi(ai, t

L
i , pi(tLi )). Since ui is continuously

differentiable in ai1, so is Vi. By assumption in the smooth case, σi1(tHi ) and σi1(tLi ) are

interior. Therefore, we have the first-order conditions

∂Vi(σi(tHi ), tHi , pi(tHi ))/∂ai1 = 0(3)

∂Vi(σi(tLi ), tLi , pi(tLi ))/∂ai1 = 0.(4)
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The next step involves substituting σi2(tHi ), tHi , and pi(tHi ) in the left side of equation (4)

and showing that this causes the expression to increase, so that

∂Vi

(
(σi1(tLi ), σi2(tHi )), tHi , pi(tHi )

)
/∂ai1 > 0.(5)

On the one hand, we know that σi2(tHi ) ≥ σi3(tLi ) (a conclusion of Proposition 2), tHi > tLi

(by assumption), and pi(tHi ) ≥ pi(tLi ) (from the assumption that pi is increasing). Since

∂ui/∂ai1 is strictly increasing in ti, so is ∂Vi/∂ai1. Furthermore, we established in the proof

of Proposition 2 that Vi is supermodular in ai and has increasing differences in (ai, P−i);

therefore, ∂Vi/∂ai1 is weakly increasing in ai2 and in P−i. This establishes equation (5).

Comparing equations (3) and (5), we conclude that σi1(tHi ) �= σi1(tLi ). �

7 Summary of the main result

Putting together Lemma 1 and Propositions 1 and 2 yields our main result. We call

games that satisfy the assumptions of Theorem 1 “monotone supermodular”.

Theorem 1 Assume, for each player i, that

1. ui is supermodular in ai, has increasing differences in (ai, a−i), and has increasing

differences in (ai, t); and

2. pi : Ti → ∆(T−i) is increasing with respect to the partial order on ∆(T−i) of first-order

stochastic dominance (e.g., µ is affiliated).

Then there exist a greatest and a least Bayes-Nash equilibrium, and each one is in monotone

strategies.

Proof. According to Proposition 1, β̄i is well-defined and increasing; according to Propo-

sition 2, β̄i(σ−i) is monotone if σ−i ∈ Σ−i is monotone. Hence, the three assumptions

of Lemma 1 are satisfied and so there exists a greatest equilibrium and it is in monotone

strategies. (The same arguments apply to the least equilibrium.) �
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Corollary 2 Given (a) the assumptions of Theorem 1, (b) the smooth case for player i, and

(c) that ∂ui/∂ai1 is strictly increasing in ti, it follows that the greatest and least Bayes-Nash

equilibria are such that player i’s strategies are strictly monotone.

Proof. From Theorem 1, the greatest equilibrium is in monotone strategies. Player i is

playing his greatest best response to a profile of monotone strategies of the other players,

which according to Corollary 1 is strictly increasing in type. �

Athey (2001) obtains a result for log-supermodular payoffs, whereas we do not. However,

for the case of supermodular payoffs, our result is stronger than that of Athey (2001)

because:

• it covers multidimensional action and type spaces, whereas her results cover only

one-dimensional type spaces;6

• it covers discrete type spaces, whereas her results cover only continuous type spaces

(intervals of R);

• we show that the greatest and least equilibria are in monotone strategies, whereas she

shows only existence of an equilibrium in monotone strategies.

Example 1 Consider a Bertrand multimarket oligopoly example, in which n firms com-

pete in H interrelated product markets, h = 1, . . . , H. The firms’ products are differen-

tiated within each market. The profit function of firm i is given by ui =
∑H

h=1(pih −
cih)Dih(pi, p−i, θh), where pih is i’s price for its good in market h, cih is the random con-

stant marginal production cost of this good, and θh is a random demand shock for market

h. The type of firm i is ti = (ci, si), where ci is the cost vector for firm i and si is a

multidimensional signal about the vector θ. In our notation, the vector θ is part of T0. The

payoff ui is supermodular in the prices and has increasing differences in pi and (ci, θ) if, for

6McAdams (2002) generalizes Athey’s results to multidimensional action and type spaces, but for su-

permodular utilities the complementarity assumptions are stated directly on interim payoffs rather than on

primitives.
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example, Dih is linear and increasing in θh and if all the goods are gross substitutes (both

across markets and across brands). If, for example, θ and (ci, si)i∈N are affiliated then the

increasing posteriors condition is satisfied. Then extremal equilibria will be monotone, and

so prices at extremal equilibria will increase in cost and demand signals.

Example 2 Consider the following Bertrand oligopoly with differentiated products in which

firms compete in both price pi and advertising intensity zi. The profit to firm i is given by

ui = (pi−ci)Di(pi, p−i, zi)−Fi(zi, ei), where ci is the per-unit cost, Di yields the demand for

the product of the firm, Fi yields the cost of advertising, and ei measures the cost-efficiency

of advertising. The type of firm i is ti = (ci, ei) and its action is ai = (pi, zi).

We assume that Di is decreasing in pi, increasing in p−i, and increasing in zi; F (zi, ei)

is increasing in zi and decreasing in ei. Then ui is supermodular in ai if, for pH
i and pL

i such

that pH
i > pL

i , Di(pL
i , p−i, zi) − Di(pH

i , p−i, zi) is decreasing in zi; this means, for example,

that advertising increases demand by raising the valuations of existing consumers rather

than informing new consumers of the existence of the good. Observe that ui has increasing

differences in (ai, a−i) as long as, for pH
i > pL

i and zH
i > zL

i , Di(pL
i , p−i, zi)−Di(pH

i , p−i, zi)

is decreasing in p−i and Di(pi, p−i, z
H
i ) − Di(pi, p−i, z

L
i ) is increasing in p−i. All these

conditions are satisfied (weakly) when Di is linear in all its terms. Also, ui has increasing

differences in ai and ti if F has decreasing differences in (zi, ei)—for instance, if higher ei

decreases the marginal cost of advertising. Posteriors are increasing in type if the joint

distribution of types is affiliated. Supposing also that there are natural upper bounds for

pi and zi (e.g., that there are a choke-off price for demand and a point beyond which

advertising has no further effect) and assuming continuity of Di and Fi (but we still allow

any variable to be discrete), we can apply Theorem 1. It then follows that there exist

extremal equilibria and these are monotone in types; in other words, higher production cost

or higher advertising efficiency induce higher prices and more advertising by firm i.
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8 A counterexample for log-supermodular payoffs

Athey (2001) also obtains results for log-supermodular payoffs. We provide an exam-

ple that shows that our approach cannot work for log-supermodular payoffs. The prob-

lem, of course, is that log-supermodularity is not preserved by integration, and a Bayesian

game with log-supermodular payoffs may not have strategic complementarities. Therefore,

without purification via an atomless type space, the game may not have a pure strategy

equilibrium.

First, consider the following counterexample on monotone comparative statics under

uncertainty. Here a payoff function is log-supermodular in the action and state, but a first-

order stochastic dominance shift in the distribution of the state leads to a decrease in the

optimal action. Let the set of states be S = {1, 2, 3} and let the set of actions be X = {1, 2}.
The payoff function u : X × S → R is defined in the top of the following table.

s

1 2 3

u(1, s) 2 8 2

u(2, s) 1/2 4 4

log2 u(2, s) − log2 u(1, s) −2 −1 1

πL(s) 1/2 0 1/2

πH(s) 0 1/2 1/2

We see that log u has increasing differences and hence u is log-supermodular. Consider

the probability measures πL and πH defined at the bottom of the table. πH first-order

stochastically dominates πL, and yet the optimal action given πL is x = 2 whereas the

optimal action given πH is x = 1.

We can adapt this example to a game of incomplete information. Let the decision

problem just outlined be that of player 1, such that the action x is player 1’s own action

a1 and the state s is player 2’s action a2. Player 1’s utility depends only on the actions,
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with the form shown in the table, and player 1 has no private information (his type space

is degenerate). Player 2’s type space is T2 = {tL, tH}, with µ2(tL) = µ2(tH) = 1/2. Let

σL
2 and σH

2 be the strategies by player 2 defined by σL
2 (tL) = 1, σL

2 (tH) = 3, σH
2 (tL) = 2,

and σH
2 (tH) = 3. Then strategy σL

2 induces the distribution πL over the actions, and the

strategy σH
2 induces the distribution πH over the actions. Hence, player 1’s best response

to σL
2 is a1 = 2, whereas his best response to σH

2 is a1 = 1. Since σH
2 > σL

2 , the game does

not have strategic complementarities. To construct from this the non-existence of a pure

strategy equilibrium, we need only suppose that player 2 has a dominant action a2 = 3

when observing tH and that, when observing tL, player 2’s best response to a1 = 1 is 1 and

her best response to a1 = 2 is 2 (consistent with u2 being supermodular).

This example shows (a) that the assumption of atomless type spaces cannot be removed

in Athey (2001) for the case of log-supermodular utility, and (b) that the assumption of

supermodularity cannot be changed in this paper to log-supermodularity.

The more general message is that, whereas ordinal single-crossing properties are suffi-

cient for existence of pure-strategy equilibria in games of complete information, we need

the cardinal supermodularity and increasing differences properties in games of incomplete

information because only these are preserved by integration. Hence, when relaxing these

assumptions we are likely to have to resort to purification via atomless type spaces in order

to obtain pure-strategy equilibria, even if we are not interested in the monotonicity of the

equilibrium strategies.

9 The greatest equilibrium is increasing in the posteriors

Consider two monotone supermodular games that are identical except in the posteri-

ors. Suppose the difference between the games is a shift in the information structure such

that the posteriors increase from pi to p′i, meaning that, for a.e. ti ∈ Ti, p′i(ti) � pi(ti).

Combining the logic of Proposition 2 and methods for comparative statics of supermodular

games, we show that the greatest equilibrium increases. Specifically, we show first that the

GBR mappings shift up and hence that the greatest equilibrium constructed using Cournot
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tatônnement is higher.

To state the result, we fix all the parameters of the game except posteriors (players,

actions, types, payoffs) as presented in Section 2. Assume that, for i ∈ N , ui satisfies

assumption 1 in Theorem 1. We denote posteriors (pi)i∈N by p, we let P be the set of

increasing posteriors, and we let Γ(p) be the monotone supermodular game with posteriors

p.

Proposition 3 Consider two games Γ(p) and Γ(p′) such that, for i ∈ N , p′i � pi. Then

the greatest equilibrium of Γ(p′) is greater than the greatest equilibrium of Γ(p).

Proof. Let β̄i and β̄′
i be player i’s GBR mapping for the posteriors pi and p′i, respectively.

Fix an increasing strategy profile σ−i ∈ Σ−i of the other players. Recall from the proof of

Proposition 2 that maxϕi(ti, P−i, σ−i) exists and is increasing in P−i. Since β̄i(σ−i) is equal

a.e. to ti �→ max ϕi(ti, pi(ti), σ−i) and β̄′
i(σ−i) is equal a.e. to ti �→ max ϕi(ti, p′i(ti), σ−i),

and since p′i(ti) � pi(ti), we have β̄′
i(σ−i) � β̄i(σ−i).

Therefore, when we construct the greatest equilibria for the two information structures

using Cournot tatônnement (as in the proof of Lemma 1), at each stage we have σ′k � σk

and then—from β̄′(σ′k) � β̄′(σk) (because β̄′ is increasing) and β̄′(σk) � β̄(σk) (as shown

above)—we obtain σ′(k+1) � σk+1. Thus, in the limit, σ′∞ � σ∞. �

Corollary 3 develops a strict version of Proposition 3, providing sufficient conditions

for the equilibrium strategy of a particular player j to be strictly higher following a strict

f.o.s.d. shift in j’s beliefs about another player i (and a weak f.o.s.d. shift for all other beliefs

of player j and of other players). One possibility is that j’s action shifts up due directly to a

strict complementarity between aj1 and ti. The other possibility is that player i’s strategy

is strictly monotone (because of strict complementarity between ai1 and ti) and there is a

strict complementarity between aj1 and ai1.

Corollary 3 Let i, j ∈ {1, . . . , N} with i �= j. Given the assumptions of Proposition 3 and

the smooth case for player j, assume also that either
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1. ∂uj/∂aj1 is strictly increasing in ti or

2. ∂uj/∂aj1 is strictly increasing in ai1 and the smooth case holds also for player i, with

∂ui/∂ai1 strictly increasing in ti.

Then the greatest equilibria σ′ and σ of Γ(p′) and Γ(p), respectively, are such that, for

a.e. tj ∈ Tj, if the marginal distribution of p′j(tj) on Ti strictly first-order stochastically

dominates that of pj(tj), then σ′
j1(tj) > σj1(tj).

Proof. (For clarity, we omit the “a.e.” qualifications in this proof.)

Proposition 3 tells us that σ′
j1(tj) ≥ σj1(tj). We need to show that σ′

j1(tj) �= σj1(tj).

The method of proof is the same as in Corollary 1.

Following first the proof of Proposition 2, we have that σ′
j(tj) and σj(tj) are solutions

to (respectively) maxaj∈Aj V ′
j (aj , tj , p

′
j(tj)) and maxaj∈Aj Vj(aj , tj , pj(tj)), where

V ′
j (aj , tj , P−j) =

∫
T−j

uj(aj , σ
′
−j(t−j), tj , t−j) dP−j(t−j)

Vj(aj , tj , P−j) =
∫

T−j

uj(aj , σ−j(t−j), tj , t−j) dP−j(t−j).

As in Corollary 1, we have the first-order conditions

∂V ′
j (σ′

j(tj), tj , p
′
j(tj))/∂aj1 = 0

∂Vj(σj(tj), tj , pj(tj))/∂aj1 = 0,

and we need to show that

∂V ′((σj1(tj), σ′
j2(tj)), tj , p

′
j(tj))/∂aj1 > ∂Vj((σj1(tj), σj2(tj)), tj , pj(tj))/∂aj1,(6)

implying that σ′
j1(tj) �= σj1(tj).

Inequality (6) involves three substitutions when comparing the right-hand side with the

left-hand side, which we can make one at a time. First, we substitute σ′
j2(tj) ≥ σj2(tj), which

raises the value weakly because ∂uj/∂aj1 is increasing in aj2 (uj is supermodular in aj).

Then we substitute σ′
−j ≥ σ−j , which raises the value weakly because ∂uj/∂aj1 is increasing

in a−j (uj has increasing differences in (aj , a−j)). Finally we substitute p′j(tj) > pj(tj),
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which causes a strict rise in the value because ∂u/∂aj1 is increasing in t−j , strictly so under

assumption 1 of the corollary, and because ∂u/∂aj1 is increasing in a−j and σ′
−j is increasing

in t−j , strictly so for ai1 and σ′
i1 under assumption 2 of the corollary (that σ′

i1 is strictly

increasing was shown in Corollary 2). �

10 Games of voluntary disclosure

A leading application of the comparative statics result in Proposition 3 is to two-stage

games in which information is revealed in the first stage. It is then important to know how

the equilibria of the second stage—in particular, the players’ second-stage payoffs—depend

on the information structure that results from the first stage in order to understand the

players’ incentives to influence this information structure.

Consider the parameterized family {Γ(p) | p ∈ P} of monotone supermodular Bayesian

games, as defined in Section 9. Each game has a greatest equilibrium, which we denote by

σ̄(p). Let Wi(p, ti) be player i’s expected utility in the equilibrium σ̄(p) of the game Γ(p),

conditional on i’s type being ti.

Assume that the Bayesian games have positive externalities, meaning that ui is increas-

ing in a−i for all i ∈ N . According to Proposition 3, σ̄(p) is increasing in p−i. It follows

that Wi(p, ti) is increasing in p−i. That is, higher beliefs by player j �= i lead to higher

equilibrium actions, which lead to higher expected utility for player i. This is summarized

in Proposition 4.

Proposition 4 Let i ∈ {1, . . . , N} and assume that ui is increasing in a−i. For p ∈ P
and for ti ∈ Ti, let Wi(p, ti) be player i’s expected utility in the greatest equilibrium of Γ(p),

conditional on being of type ti. Then Wi(p, ti) is increasing in p−i.

Thus, if a unique equilibrium exists or if the equilibrium selection in the second stage

is of the greatest or least equilibrium, then the players’ incentives in the first stage are to

induce the other players to increase their beliefs.

Corollary 4 states a strict version of this result. It follows immediately from Corollary 3.
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Corollary 4 Let i, j ∈ {1, . . . , N} with i �= j be such that (a) the assumptions of Corollary 3

are satisfied and (b) ui is strictly increasing in aj. Then Wi(p, ti) is strictly increasing in

the marginal of pj on Ti. That is, if p′−i ≥ p−i and the marginal of p′j(tj) on Ti strictly

first-order stochastically dominates that of pj(tj) for tj in a pi(ti)-nonnull set of tj ∈ Tj,

then Wi((pi, p
′
−i), ti) > Wi((pi, p−i), ti).

Consider the setting in Okuno-Fujiwara et al. (1990). In the first stage, there is only

information revelation. Talk is cheap: it does not affect payoffs except through the play in

the second stage. However, a player’s message is a statement that her type belongs to a set

of types, and she cannot lie because messages are verifiable. Stated another way, for each

message there is a set of types who can send that message. Let Mi be the set of messages

of player i; treat each mi ∈ Mi also as the set of i’s types that can send message mi. (We

endow Mi with a σ-field for measurability restrictions.) Let M =
∏

i∈N Mi.

A first-stage strategy for player i is a measurable map ri : Ti → Mi such that, for a.e.

ti ∈ Ti, we have ti ∈ ri(ti). A second-stage strategy is a measurable map qi : Ti × M → Ai

and a second-stage belief function is a measurable map πi : Ti ×M → ∆(T−i) such that, for

ti ∈ Ti and m ∈ M , πi(ti, m) puts probability 1 on
∏

j �=i mj .

Observe that, given qi and πi, each realization m ∈ M of the messages induces a posterior

mapping πi(·, m) : Ti → ∆(T−i) and a strategy qi(·, m) : Ti → Ai in the second-stage game.

Then (ri, qi, πi)i∈N is a perfect Bayesian equilibrium (PBE) if the following statements hold.

1. (Belief consistency) πi is a posterior mapping given the information (ti, (rj(tj))j �=i).

2. (Equilibrium in second stage) For all m ∈ M , (qi(·, m))i∈N is a Bayes-Nash equilib-

rium of the game Γ((πi(·; m))i∈N ).

3. (Equilibrium in first stage) For a.e. ti ∈ Ti, ri(ti) solves

max
mi ∈ Mi :
ti ∈ mi

∫
T−i

ui

(
qi(ti, mi, r−i(t−i)), q−i(t−i, mi, r−i(t−i)), ti, t−i

)
dpi(t−i | ti).

Proposition 5 states that there is a fully revealing equilibrium under the following con-

ditions.
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• There are strategic complementarities and positive externalities, and there are com-

plementarities between actions and types (assumption 1 in Proposition 5),

• For each message, there is a lowest type who can send the message (assumption 2),

and for each type, there is message for which it is the lowest type (assumption 3).

• As a technicality, the following must be measurable: the “skeptical” second-stage

beliefs, which conclude from each profile of messages that senders are of the lowest

possible types (assumption 4); and a mapping that assigns to each type ti a message

such that ti is the lowest type who can send the message (assumption 5).

Proposition 5 Assume that, for each i ∈ N , the following hold:

1. ui satisfies the assumptions of Theorem 1 and is increasing in a−i;

2. for each mi ∈ Mi, minmi exists;

3. for each ti ∈ Ti, there exists mi ∈ Mi such that min mi = ti;

4. there is a measurable map π∗
i : Ti × M → ∆(T−i) such that, for ti ∈ Ti and m ∈ M ,

π∗
i (ti, m) puts probability 1 on (minmj)j �=i;

5. there is a measurable map r∗i : Ti → Mi such that ti = min r∗i (ti) for all ti ∈ Ti.

Let q∗i : Ti×M → Ai be such that q∗i (·, m) is the largest Bayes-Nash equilibrium in the game

Γ
(
(π∗

j (·, m))j∈N

)
for each m ∈ M . Then (r∗i , q

∗
i , π

∗
i )i∈N is a perfect Bayesian equilibrium.

Proof. The messages (r∗i )i∈N are fully revealing. Since the second-stage beliefs (π∗
i )i∈N

deduce (correctly, when on the equilibrium path) that a message mj is sent by min mj , they

satisfy belief consistency. Here q∗ is defined so that q∗(m) is an equilibrium in the second

stage, given m. For each message m, the second-stage game is effectively one of complete

information and satisfies the assumptions of Theorem 1 (in particular, the increasing poste-

riors condition is satisfied trivially because posteriors are type-independent). We can apply

Proposition 4 to conclude that each player would like the other players to believe he is as

high a type as possible. Given the skeptical beliefs, this is achieved for type ti by reporting
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a message mi such that ti = min mi. Now (r∗i , q
∗
i , π

∗
i )i∈N constitute a perfect Bayesian

equilibrium. �

Okuno-Fujiwara et al. (1990) not only show existence of a fully revealing sequential

equilibrium, they also provide conditions under which all sequential equilibria are fully

revealing. We can do the same, with greater generality. They have unidimensional action

spaces, strict concavity of payoffs (in own action), independent types, and unique interior

equilibria in the second stage. All but one of their results concerns two-player games.7

Our greater generality requires two equilibrium refinements that are automatically sat-

isfied in Okuno-Fujiwara et al. (1990). First, to apply Proposition 4 and Corollary 4, the

second-stage beliefs should be monotone in type on and off the equilibrium path. The

independent-types assumption in Okuno-Fujiwara et al. (1990) guarantees that beliefs are

type-independent (hence trivially monotone) on and off the equilibrium path in any se-

quential equilibrium. In our model, if types are one-dimensional and affiliated, then for any

PBE the second-stage beliefs are increasing in type for any equilibrium messages: condi-

tioning on an equilibrium message is like conditioning on a sublattice of types, given that

type spaces are one-dimensional. We have not investigated whether sequential equilibrium

implies that this property holds for non-equilibrium messages; instead, we simply add this

as an equilibrium refinement.

Second, whereas Okuno-Fujiwara et al. (1990) assume a unique equilibrium in any

second-stage subgame, we instead require that the equilibrium selection in the second stage

be of the greatest (or least) equilibrium.

Proposition 6 Assume that the prior distribution µ is affiliated and that, for each i ∈ N :

1. Ti is one-dimensional and finite;

2. pi(ti) has full support for all ti ∈ Ti;

7The only case not covered by our results but covered in Okuno-Fujiwara et al. (1990) is an n-player

strategic substitutes game with quadratic payoffs.
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3. ui satisfies the assumptions of Theorem 1 and is increasing in a−i;

4. the smooth case holds for player i;

5. there is a player j �= i such that the assumptions of Corollary 3 hold and ui is strictly

increasing in aj1;

6. for each mi ∈ Mi, minmi exists; and

7. for each ti ∈ Ti, there exists mi ∈ Mi such that min mi = ti.

Consider a perfect Bayesian equilibrium (r∗i , q
∗
i , π

∗
i )i∈N in which (a) for m ∈ M not in

the range of r∗, π∗
i (ti, m) is increasing in ti for i ∈ N and (b) (q∗i (·, m))i∈N is the greatest

(or least) Bayes-Nash equilibrium in the game Γ
(
(π∗

j (·, m))i∈N

)
for each m ∈ M . Then, for

each player i ∈ N , r∗i is fully revealing—specifically, for each type ti, ti = min r∗i (ti).

Note that beliefs are skeptical on the equilibrium path, since for any equilibrium message

m, the player j �= i correctly deduces that player i is of type min mi.

Proof. Suppose (r∗i , q
∗
i , π

∗
i )i∈N is a PBE that satisfies conditions (a) and (b) but is not

fully revealing for player i. Let t̄i be the highest type for i that is not fully revealed in the

first round; hence t̄i is being pooled with lower types. If he deviates and sends a message

mi such that t̄i = minmi, then the other players’ posteriors about his type go up by strict

first-order stochastic dominance (the assumption on full supports of posteriors rules out

the case where e.g. types are perfectly correlated and hence messages have no effect on

beliefs). Hence, according to Corollary 4, his second-stage payoff increases strictly. (Given

the restriction on π∗
i , the second-stage game satisfies the assumptions in this paper.) This

contradicts the assumption that (r∗i , q
∗
i , π

∗
i )i∈N is a PBE.

Suppose that, for some player i and type ti, ti > min r∗i (ti). Since r∗i is fully revealing,

following message r∗i (ti) all other players believe with probability 1 that i is of type ti.

Then type min r∗i (ti) could deviate from his message by sending instead the message r∗i (ti),

causing a shift in all player’s beliefs from his being of type min r∗i (ti) with probability 1 to
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his being of type ti with probability 1. Again, according to Corollary 4, his second-stage

payoff increases strictly and so (r∗i , q
∗
i , π

∗
i )i∈N is not a PBE. �

Results analogous to Propositions 5 and 6 can be obtained by replacing the assumption

of positive externalities by negative externalities (each player’s payoff is decreasing in the

action of the other players) and replacing the “min” conditions on messages and beliefs by

“max”. Then each player would like to reduce the beliefs of other players and there is a

fully revealing equilibrium in which each type sends a message for which he is the highest

possible type that can send the message (or, under the stricter assumptions of Proposition 6,

every PBE satisfying the two refinements has this property).

11 Concluding remarks

For games of incomplete information with supermodular payoffs (not merely payoffs

with single-crossing properties), we are able to extend various results on existence of mono-

tone pure-strategy equilibria by using quite different methods. For example, we are able to

dispense with atomless type spaces, and we can easily handle multidimensional type and

action spaces. Beyond such generalizations, the other value of this work is the simplicity

with which the results can be obtained, in comparison to games whose payoffs are not su-

permodular. Furthermore, we do not merely show existence; we also show that the greatest

and least equilibria are in monotone strategies. We can thereby perform comparative statics

on these equilibria.

We remind the reader that these results can be applied more generally by choosing the

right direction of the orderings. For example, the main results can be applied to a submod-

ular duopoly game—meaning that ui is supermodular in ai, has decreasing differences in

(ai, a−i), has increasing differences in (ai, ti), and has decreasing differences in (ai, t−i)—

because changing the order of the strategy and type spaces of one player (via multiplying

by −1) transforms the submodular game into a supermodular game (Vives (1990)) with

complementarity between actions and types. Similarly, if all payoffs have decreasing rather

than increasing differences in actions and types, but the other assumptions of this paper
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hold, then we can reverse the ordering of types and apply the results of this paper. For

example, under the assumptions of Theorem 1, there are greatest and least equilibria and

these are decreasing in type (under the original ordering on types).

A Summary of lattice and comparative statics methods

For the convenience of the reader and to fix some notation and terminology that may

vary from author to author, we include a few definitions and results of lattice methods as

used for monotone comparative statics. More complete treatments can be found in Topkis

(1998) and Vives (1999, Chapter 2).

A binary relation ≥ on a nonempty set X is a partial order if ≥ is reflexive, transitive,

and antisymmetric. An upper bound on a subset A ⊂ X is z ∈ X such that z ≥ x for all

x ∈ A. A greatest element of A is an element of A that is also an upper bound on A. Lower

bounds and least elements are defined analogously. The greatest and least elements of A,

when they exist, are denoted maxA and minA, respectively. A supremum (resp., infimum)

of A is a least upper bound (resp., greatest lower bound); it is denoted supA (resp., inf A).

A lattice is a partially ordered set (X,≥) in which any two elements have a supremum

and an infimum. A lattice (X,≥) is complete if every non-empty subset has a supremum

and an infimum. A subset L of the lattice X is a sublattice of X if the supremum and

infimum of any two elements of L belong also to L.

Let (X,≥) and (T,≥) be partially ordered sets. A function f : X → T is increasing if,

for x, y in X, x ≥ y implies that f(x) ≥ f(y).

A function g : X → R on a lattice X is supermodular if, all x, y in X, g(inf(x, y)) +

g(sup(x, y)) ≥ g(x) + g(y). It is strictly supermodular if the inequality is strict for all pairs

x, y in X that cannot be compared with respect to ≥ (i.e., neither x ≥ y nor y ≥ x holds). A

function f is (strictly) submodular if −f is (strictly) supermodular; a function f is (strictly)

log-supermodular if log f is (strictly) supermodular.

Let X be a lattice and T a partially ordered set. The function g : X × T → R has

(strictly) increasing differences in (x, t) if g(x′, t) − g(x, t) is (strictly) increasing in t for
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x′ > x or, equivalently, if g(x, t′) − g(x, t) is (strictly) increasing in x for t′ > t. Decreasing

differences are defined analogously. If X is a convex subset of R
n and if g : X → R is

twice-continuously differentiable, then g has increasing differences in (xi, xj) if and only if

∂2g(x)
∂xi∂xj

≥ 0 for all x and i �= j.

Supermodularity is a stronger property than increasing differences: If T is also a lattice

and if g is (strictly) supermodular on X × T , then g has (strictly) increasing differences in

(x, t). The two concepts coincide on the product of linearly ordered sets: If X is such a

lattice, then a function g : X → R is supermodular if and only if it has increasing differences

in any pair of variables.

The main comparative-statics tool applied in this paper is the following.

Lemma 2 Let X be a compact lattice and let T be a partially ordered set. Let u : X×T → R

be a function that (a) is supermodular and continuous on the lattice X for each t ∈ T and

(b) has increasing differences in (x, t). Let ϕ(t) = arg maxx∈X u(x, t). Then:

1. ϕ(t) is a non-empty compact sublattice for all t;

2. ϕ is increasing in the sense that, for t′ > t, for x′ ∈ ϕ(t′) and x ∈ ϕ(t), we have

sup(x′, x) ∈ ϕ(t′) and inf(x′, x) ∈ ϕ(t); and

3. t �→ max ϕ(t) and t �→ minϕ(t) are well-defined increasing functions.

B Extension of comparative statics under uncertainty

For monotonicity of best responses to monotone strategies, we extend the approach in

Athey (2000, 2001) to our more general type and action spaces. The main idea is that we

characterize when a first-order stochastic dominance shift in beliefs causes the solutions to

a decision problem under uncertainty to increase. This is a straightforward generalization

of classic results for univariate actions and states with differentiable and strictly concave

utility (as presented e.g. by Hadar and Russell (1978)) and of the more recent results by

Athey (2000, Example 2), which are also univariate but without the differentiability and

strict concavity.
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These comparative statics results are related to the one-dimensional results in Athey

(2002) for utility functions that satisfy single-crossing properties. However, because we

restrict attention to supermodular utility, we have weaker conditions on beliefs (first-order

stochastic dominant shifts rather than log-supermodular densities) and the results are sim-

pler and apply easily to discrete and multidimensional action and state spaces.

We first state and characterize a definition of first-order stochastic dominance for general

partially ordered state spaces; it is the obvious extension of first-order stochastic dominance

for probability measures on R.

Let (Ω,F) be a measurable space and let ≥ be a partial order on Ω. A set E ∈ F is

said to be increasing if ω ∈ E, ω′ ∈ Ω, and ω′ ≥ ω imply ω′ ∈ E. Let PH and PL be two

probability measures on (Ω,F). We say that PH first-order stochastically dominates PL if

and only if PH(E) ≥ PL(E) for all increasing E ⊂ F .

Lemma 3 The following statements are equivalent.

1. PH f.o.s.d. PL.

2. For all increasing functions f : Ω → R that are integrable with respect to PH and PL,

∫
Ω

f(ω) dPH ≥
∫

Ω
f(ω) dPL.

Proof. This is a simple “bootstrapping” of the result for the case where Ω = R.

(2) ⇒ (1). A set E ∈ F is increasing if and only its indicator 1E is an increasing

function. Then PH(E) =
∫

1E dPH ≥ ∫
1E dPL = PL(E).

(1) ⇒ (2). Consider the distributions πH and πL of the random variable f for the two

probability measures PH and PL, respectively. We show that πH f.o.s.d. πL. The result

then follows since, for example,
∫

f(ω) dPH is the expected value for the distribution πH .

Let α ∈ R. Then f−1([α,∞)) and f−1((α,∞)) are increasing measurable sets. (For

instance, let ω ∈ f−1([α,∞)); then f(ω) ≥ α. Let ω′ ∈ Ω be such that ω′ ≥ ω; then

f(ω′) ≥ f(ω) because f is increasing. Hence, f(ω′) ≥ α and ω′ ∈ f−1([α,∞)).) Therefore,
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πH([α,∞)) = PH(f−1([α,∞))) ≥ PL(f−1([α,∞))) = πL([α,∞)). Similarly, πH((α,∞)) ≥
πL((α,∞)). Therefore, πH f.o.s.d. πL. �

Let X be a partially ordered set and let u : X×Ω → R be measurable in ω. Let M be the

set of probability measures on (Ω,F), partially ordered by first-order stochastic dominance.

Define U : X ×M → R by U(x, P ) =
∫
Ω u(x, ω) dP (ω), when well-defined.

Lemma 4 Assume that u has increasing differences in (x, ω). Then, on the domain of U ,

U has increasing differences in (x, P ).

Proof. Let xH , xL ∈ X be such that xH ≥ xL. Define h(ω) = u(xH , ω)−u(xL, ω), which is

increasing in ω because u has increasing differences in (x, ω). Then U(xH , P )−U(xL, P ) =
∫

h(ω) dP , which is increasing in P according to Lemma 3. �

Suppose that X is a lattice. Since supermodularity is preserved by integration, U is

supermodular in x if u is supermodular in x. Therefore, we have the following corollary.

Corollary 5 Assume that u is supermodular in x and has increasing differences in (x, ω).

Then P �→ arg maxx∈X U(x, P ) is increasing in P .

C Affiliation and increasing posteriors

A sufficient—but not necessary—condition for the “increasing posteriors” condition is

affiliation, as follows. We follow the discussion of affiliation in Milgrom and Weber (1982,

Appendix). Consider a probability space (Ω,F , π) such that Ω is a lattice. If Ω = R
k and

π has a density f , then affiliation is equivalent to f being log-supermodular. The more

general definition is that π is affiliated if and only if, for every measurable increasing set

A, B ⊂ Ω and every measurable sublattice S ⊂ Ω (with positive measure), P (A ∩ B | S) ≥
P (A | S)P (B | S).

Lemma 5 The measure µ is affiliated if and only if, for all increasing sets A, B ⊂ Ω and

every sublattice S ⊂ Ω, we have P (A | B ∩ S) ≥ P (A | Bc ∩ S).
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Proof. The inequality P (A ∩ B | S) ≥ P (A | S)P (B | S) can be rewritten as

P (A ∩ B | S)
P (B | S)

≥ P (A | S)

or P (A | B ∩ S) ≥ P (A | S). Since P (A | S) = P (B | S)P (A | B ∩ S) + P (Bc | S)P (A |
Bc ∩ S)—that is, P (A | S) is a weighted average of P (A | B ∩ S) and P (A | Bc ∩ S)—it

follows that P (A | B ∩ S) ≥ P (A | S) is equivalent to P (A | B ∩ S) ≥ P (A | Bc ∩ S). �

Now suppose that Ω = Ω1×Ω2, where Ω1 and Ω2 are measurable sublattices of Euclidean

space. Consider the posterior measure p(ω1) on Ω2 conditional on the observation of ω1.

Lemma 6 If π is affiliated then, for a.e. ωH
1 , ωL

1 ∈ Ω1 such that ωH
1 > ωL

1 , it follows that

p(ωH
1 ) first-order stochastically dominates p(ωL

1 ).

Proof. Assume first that Ω is discrete. Let ωH
1 , ωL

1 ∈ Ω1 have positive measure and be

such that ωH
1 > ωL

1 . Let S = {ωL
i , ωH

i } × Ω2 and let B = {ω ∈ Ω | ω1 ≥ ωH
1 }. Clearly

S is a sublattice and B is an increasing set. Furthermore, B ∩ S = {ωH
1 } × Ω2 and

Bc ∩ S = {ωL
1 } × Ω2. Let A2 ⊂ Ω2 be an increasing set and let A = Ω1 × A2 (which is also

increasing). Since π is affiliated, P (A | B∩S) ≥ P (A | Bc∩S), or P (Ω1×A2 | {ωH
1 }×Ω2) ≥

P (Ω1 × A2 | {ωL
1 } × Ω2). This can be restated as P (A2 | ωH

1 ) ≥ P (A2 | ωL), which is the

first-order stochastic dominance conclusion we seek.

For arbitrary (nondiscrete) Ω, we first replace ωH
1 and ωL

1 in the previous argument by

sublattices of Ω1 with positive measure that are ordered (one lies entirely above the other).

Then we use a standard limiting argument. �

The converse does not hold. Even if Ω1 and Ω2 are both subsets of R and are thus one-

dimensional, P (· | ω1) and P (· | ω2) can still be increasing even if π is not affiliated. Consider

the following symmetric distribution (provided to us by Phil Reny): Ω1 = Ω2 = {1, 2, 3},
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and µ is defined as follows:

ω2

1 2 3

1 1/20 1/20 1/20

ω1 2 1/20 4/20 3/20

3 1/20 3/20 5/20

µ

(7)

Here P (ω2 | ω1) is increasing in ω1 with respect to first-order stochastic dominance. How-

ever, the monotone-likelihood ratio, a known implication of affiliation, does not hold. Specif-

ically, µ(2, 2)/µ(1, 2) > µ(2, 3)/µ(1, 3).
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