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1. Introduction

This paper studies supermodular games of incomplete information in which (a) actions
are strategic complements, (b) there is complementarity between actions and types, and
(c) interim beliefs are increasing in type with respect to first-order stochastic dominance.
We use lattice-theoretic methods to establish (i) existence of a greatest and a least pure-
strategy Bayes–Nash equilibrium, each in strategies that are monotone in type, and (ii)
that a first-order stochastic dominant shift in the interim beliefs causes these extremal
equilibria to increase. These results hold for a general class of supermodular games,
in which action and type spaces may be multidimensional and discrete or continuous,
which we call “monotone supermodular”.

Existence and characterization results of pure-strategy equilibria in Bayesian games
include the following. Milgrom and Weber (1985) (see also Aumann et al. 1982; Radner
and Rosenthal 1982) find stringent sufficient conditions for existence, such as condition-
ally independent and atomless distributions for types and finite action spaces; they use
atomless distributions for purification. Vives (1990, Section 6) establishes existence
with general action and type spaces when payoffs are supermodular in actions; he uses
a lattice fixed-point theorem.

Athey (2001) shows existence of equilibria in monotone strategies when there are
(a) either supermodular or log-supermodular cardinal utilities, (b) complementarity be-
tween actions and types, (c) one-dimensional action sets, and (d) one-dimensional atom-
less type spaces. McAdams (2003) presents an extension to multidimensional discrete
action and atomless type spaces. Their proofs work for games in which players have
monotone best responses to monotone strategies. The primary examples of such games
are those with affiliated types and either supermodular or log-supermodular payoffs.
By assuming atomless type spaces and finite action sets, they can represent monotone
strategies by the cutoff values at which types switch from each action to the next high-
est action and then use a topological fixed-point theorem in this set of strategies. An
extension to infinite action spaces is obtained as the limit of equilibria for finite approx-
imations. The assumption of atomless types cannot be relaxed: the method of proof
relies on it and there is an implicit purification without which pure-strategy equilibria
may not exist when payoffs are log-supermodular.

Whereas supermodularity is preserved by taking expectations given incomplete in-
formation, log supermodularity and other ordinal single-crossing conditions are not.
In our paper, by restricting attention to supermodular payoffs, we can exploit the full
strength of strategic complementarities and thereby use a completely different and sim-
pler proof to obtain stronger and otherwise more general results. Like Athey and
McAdams, we need that players have monotone best responses to monotone strategies.
Then Cournot tatônnement starting at the greatest or least strategy profile—as used in
Vives (1990) to construct the greatest and smallest equilibria in Bayesian games with
strategic complementarities—starts in monotone strategies and remains such, so that the
limit equilibrium must also be in monotone strategies.

This method of proof has several advantages.

Simplicity. The simplicity makes it clearer why such monotone equilibria exist and
facilitates further extensions.
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Generalizations. A single proof works for multidimensional (even infinite dimen-
sional) actions and types and for both discrete and continuous actions and types. Fur-
thermore, we weaken the assumption that types are affiliated to the intuitive assumption
that interim beliefs are increasing in type with respect to first-order stochastic domi-
nance.1 We do not need to assume that beliefs are derived from a prior; and our no-
tion of Bayes–Nash equilibrium is interim, with everywhere best responses rather than
almost-everywhere best responses.

Construction. The proof is constructive and can be used as an iterative numerical
method for computing the equilibria.

Bounds. Although neither method rules out the existence of nonmonotone equi-
libria, the two extremal monotone equilibria that we identify bound all equilibria and,
as demonstrated in Milgrom and Roberts (1990), also bound the set of rationalizable
strategy profiles and the set of strategy profiles that can be reached by a wide range of
adaptive learning.

Comparative statics. We show that the extremal equilibria are increasing in the in-
terim beliefs. That is, if we perturb the game such that, for each player and each type,
there is a first-order stochastic dominant shift in the player’s interim beliefs about the
other players, then the greatest and least equilibrium strategies increase for each player
and each type.2

The “monotone supermodular” class of games for which our results hold is broad.
Besides the supermodular games mentioned in Vives (1990) and Milgrom and Roberts
(1990), the following are all examples of games covered by our analysis and in which
monotonicity of equilibria may be of interest: (a) many industrial organization games,
such as firms with perhaps multiple differentiated products (for suitable restrictions on
demand) who choose prices and advertising levels and have incomplete information
about market conditions and each other’s cost (as in Example 3 in Section 3); (b) var-
ious macroeconomic models in which investment and production decisions have com-
plementarities (as in Cooper and John 1988; Murphy, Schleifer, and Vishny 1989); (c)
most “global games”, including multidimensional extensions of the games in Morris and
Shin (2002) and Frankel, Morris, and Pauzner (2003); (d) many adoption games played
by consumers when choosing among products with network externalities (see Exam-
ple 1 in Section 3, which features local network effects and incomplete information
about the network); (e) partnership games and multiagent principal–agent models when
the investments or effort levels are complements; and (f) many team-theory models as
in Radner (1962) (such a model can be viewed as a game of incomplete information in
which the optimal team solution is a Bayes–Nash equilibrium of the game).

One application of our comparative statics results is to the solution of multistage
games through backward induction, where the beliefs in one stage are determined en-
dogenously in an earlier stage. We can use the comparative statics to characterize the
players’ incentives in the earlier stage to influence beliefs. For example, suppose that
the second-stage of a two-stage game satisfies the assumptions of this paper and that
the actions have positive externalities, meaning that each player’s payoff is increasing
in the actions of the other players. An upward shift in second-stage beliefs shifts the

1. We state in Appendix B some general comparative statics for first-order stochastic dominance.
2. The method of proof is related to, but not an application of, the comparative statics results of Milgrom
and Roberts (1990).
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equilibrium actions up and therefore benefits each player. Hence, each agent would like
to shift the beliefs of other players upward. This conclusion might help us find sepa-
rating monotone equilibria in generalized signaling games (e.g., with multidimensional
actions and types and in which multiple players may choose actions in each stage).
The application we develop is instead to strategic revelation of information in volun-
tary disclosure games, as a generalization of a result in Okuno-Fujiwara, Postlewaite,
and Suzumura (1990) (which in turn generalized papers such as Grossman (1981) and
Matthews and Postlewaite (1985)).

The plan of the paper is as follows. In Section 2 we set up the Bayesian game
and state basic maintained assumptions. Section 3 summarizes the main results and
outlines three applications. Section 4 shows how (under certain assumptions) Cournot
tatônnement, starting at the greatest strategy profile and using the greatest best reply
mappings, converges to the greatest Bayes–Nash equilibrium, which is in strategies that
are monotone in type. Section 5 shows existence and monotonicity of the greatest best
reply mapping. Section 6 builds on intermediate results about comparative statics under
uncertainty and shows that the greatest best reply to monotone strategies is monotone.
A strict version of this result is obtained in Section 7. The pieces are then in place to
state the main existence result in Section 8. Section 9 provides an example illustrating
that our approach cannot work for log-supermodular payoffs. Section 10 shows that the
extremal equilibria are increasing in the interim beliefs; we give an application to games
of voluntary disclosure in Section 11. We leave additional (more technical) discussion
of related literature to Section 12, and then conclude in Section 13. Appendix A pro-
vides, for completeness, some basic lattice-theoretic definitions; Appendix B presents
our results on comparative statics under uncertainty; and Appendix C compares affilia-
tion and our weaker increasing beliefs condition.

2. The Bayesian game

We defer until Section 2.5 certain technical restrictions required for infinite actions sets
or type spaces.

2.1. Interim formulation

We use an interim formulation of a Bayesian game and Bayes–Nash equilibrium, based
on interim beliefs and interim best replies, rather than on a common prior and ex ante
best replies. The interim formulation is stronger and, for the most part, more general.
However, we eschew a common prior not for the sake of generality but rather because
it would play no role in our analysis. When we state conditions on a common prior that
would be sufficient for our assumptions, we denote the common prior by µ.

2.2. Components of a game

1. The set of players is N = {1, . . . , n}, indexed by i.
2. The type space of player i ∈ N is a measurable space (Ti, Fi). There is also a state
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space (T0, F0) capturing residual uncertainty not observed by any player.3

(Let T := T0 × T1 × · · · × Tn; let T−i := ∏k �=i Tk; let F be the overall product
sigma-algebra; and let F−i be the product sigma-algebra

⊗
k �=i Fk.)

3. Player i’s interim beliefs are given by a function pi : Ti → M−i, where M−i is the
set of probability measures on (T−i, F−i).
(Because a probability measure is itself a function, we will denote the probabil-
ity measure pi(ti) by pi(· | ti); however, pi(· | ti) is not necessarily a conditional
probability, since it is not necessarily derived from a prior on T .)

4. The action set of player i is Ai. The set of action profiles is A = ∏i∈N Ai.
(Let A−i = ∏ j �=i A j.)

5. The payoff function of player i is ui : A × T → R.

Type spaces and action sets are nonempty.
Our formulation of a Bayesian game is general and encompasses common and pri-

vate values as well as perfect or imperfect signals. We have pure private values if ui

does not depend on t−i (but types may be correlated). For example, types are private
cost parameters of the firms. In a common-values model, each ui might depend on t
through a common aggregate statistic such as t1 + · · · + tn, as when there is a common
demand shock in an oligopoly and each firm observes one component. As an example
of imperfect signals, suppose firms imperfectly observe their cost parameters. Then t0
could represent the n-vector of firms’ cost parameters and ti the private cost estimate of
firm i. Not only the cost parameters may be correlated, so may the error terms in the
private signals.4

2.3. Bayes–Nash equilibrium

A strategy for player i is a measurable function σi : Ti → Ai. Let Σi denote the set
of strategies for player i. Let Σ = ∏n

i=1 Σi denote the set of strategy profiles and let
Σ−i = ∏ j �=i Σ j denote the profiles of strategies for players other than i. For notational
simplicity, a strategy profile is viewed as a map from T to A, even though it does not
depend on t0.

A Bayes–Nash equilibrium is a strategy profile σ such that each player and each
type chooses a best response to the strategy profile of the other players. For future use,
we disentangle how player i’s payoff depends on her type and beliefs.

Given that player i’s type is ti, her interim beliefs are P−i, and the strategy profile of
the other players is σ−i, her expected payoff from choosing action ai is

Vi(ai, ti, P−i; σ−i) =
∫

T−i

ui(ai, σ−i(t−i), ti, t−i) dP−i(t−i). (1)

Let ϕi(ti, P−i; σ−i) be the set of actions for i that maximize this payoff:

ϕi(ti, P−i; σ−i) = arg max
ai∈Ai

Vi(ai, ti, P−i; σ−i). (2)

Then σ ∈ Σ is a Bayes–Nash equilibrium if and only if, for i ∈ N and ti ∈ Ti, σi(ti) ∈
ϕi(ti, pi(ti); σ−i).

3. Allowing for such a state space does not add generality but it is convenient for certain applications.
4. See Vives (1999, Section 8.1.2) for parameterized examples of the cases discussed.
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Let Βi : Σ−i → Σi denote player i’s best-reply correspondence in terms of strategies:

Βi(σ−i) = {σi ∈ Σi | σi(ti) ∈ ϕi(ti, pi(ti); σ−i) ∀ti ∈ Ti}. (3)

Then a Bayes–Nash equilibrium is a strategy profile σ such that σi ∈ Βi(σ−i) for i ∈ N.

2.4. Order structure

Moving away from this canonical presentation of Bayesian games, we add some order
structure to actions and types. We use the symbol ≥ for all partial orders. Expres-
sions such as “greater than” and “increasing” mean “weakly greater than” and “weakly
increasing”. See Appendix A for lattice-theoretic definitions.

1. For each player i, Ai is a complete lattice.
2. For each k = 0, 1, . . . , n, Tk is endowed with a partial order.

For each player, the set of strategies is also a lattice for the ordering “σi ≥ σ′
i if and

only if σi(ti) ≥ σ′
i(ti) for all ti ∈ Ti”. We say that a strategy σi ∈ Σi is monotone if, for

all ti, t ′i such that ti ≥ t ′i , we have σi(ti) ≥ σi(t ′i ).

2.5. Continuity and measurability assumptions

We impose the following continuity and measurability restrictions, which are needed in
case T or A is not finite. A simple case that satisfies these restrictions is where (a) Ti

is a measurable subset of Euclidean space; (b) Ai is a compact sublattice of Euclidean
space (e.g., the product of compact subsets of R, in which case supermodularity in ai

is equivalent to increasing differences in any two components of i’s action); (c) ui is
continuous in a, measurable in t, and bounded; and (d) interim beliefs for each player
are derived from a prior.5 However, Ti could be, for example, a universal type space as
constructed in Mertens and Zamir (1985) (for the restriction to supermodular utilities)
and Ai could be, for example, an order interval in an l p space, for 1 ≤ p < ∞, with its
norm topology.

Assumption 1.
1. For i ∈ N and F−i ∈ F−i, the function ti 
→ pi(F−i | ti) is measurable.
2. For i ∈ N, Ai is a compact metric space. Furthermore: (a) any increasing or decreas-

ing sequence in Ai converges to its supremum or infimum; (b) any order interval in
Ai is closed; and (c) the lattice operations sup and inf are continuous.

3. For i ∈ N, player i’s payoff function ui has the following properties: (a) for all a ∈
A, ui(a, ·) : T → R is measurable; (b) for all t ∈ T , ui(·, t) : A → R is continuous;
and (c) ui is bounded.

3. Summary of the main results and some examples

Our main results are Theorem 1 and Proposition 3, which we now summarize. There
are also strict versions of these results, stated in Corollaries 2 and 3.

5. For the existence of such interim beliefs given a prior, see Dellacherie and Meyer (1978, III.70 and 71).
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Main Results. Assume, for each player i, that

1. the utility function ui is supermodular in ai, has increasing differences in (ai, a−i),
and has increasing differences in (ai, t); and

2. the beliefs mapping pi : Ti → M−i is increasing with respect to the partial order on
M−i of first-order stochastic dominance (e.g., µ is affiliated).

Then there exist a greatest and a least Bayes–Nash equilibrium, and each one is in
monotone strategies.

Furthermore, if we perturb the beliefs in the game such that each player’s interim
beliefs, for each type, shift up with respect to first-order stochastic dominance, then the
greatest and least Bayes–Nash equilibria increase.

We now provide some examples that illustrate the applicability of our results as
well as some differences with preceding ones. In particular, our first example has in-
herently discrete type spaces and hence is not covered by the work of Athey (2001) and
McAdams (2003).

3.1. Example 1: An adoption game with local network effects

Sundarajan (2004) presents a model of network externalities on a graph. Players choose
between buying a good (ai = 1) or not (ai = 0). (The extension to multiple complemen-
tary goods or to general quantities of demand is straightforward.) Consumption of the
good has a network externality but only for neighbors in the graph. Players have only
local knowledge of the network.

The details of the model are loosely as follows. We first describe the complete-
information version of the game. Players are connected on an undirected graph, rep-
resented by the sets (Gi)i∈N of neighbors that the players have. Player i’s payoff is
Πi(ai, a−i, Gi, Θi), where Θi is a valuation parameter that will come into play in the
incomplete-information game. This payoff is 0 if ai = 0 and otherwise is the valuation
of the good minus its price p. The player gets a network externality from each neighbor
who also consumes the good, as follows. Her valuation of the good is wi((b j) j �=i, Θ),
where b j = a j if j ∈ Gi and b j = 0 otherwise. The function wi is increasing in b j

for each j �= i; this is enough to guarantee that Π has increasing differences in (ai, a j)
for any j �= i. (Otherwise the form of wi can be general; for example, the network
effects can vary across j and the marginal effect of one neighbor’s consuming the good
can diminish the more there are other neighbors who also consume the good.) By the
standard theory of games with strategic complementarities, there is a greatest and least
pure-strategy equilibrium in spite of the potential asymmetries in the game.

The incomplete-information version of the game captures the idea that players have
only local knowledge about the structure of the network: (a) the graph is drawn ran-
domly with a known distribution Ρ on the set of possible graphs; and (b) each player
observes only who her neighbors are. Her valuation parameter Θi is also private informa-
tion, so her type is ti = (Gi, Θi). We let Γi = 2N\{i} be the set of possible neighborhoods
for player i and let Γ ⊂ Γ1 × · · · × Γn be the set of possible graphs. The partial order on
Γi is that of set inclusion. Let Θi be the set of possible valuation parameters, which can
be any measurable subset of Euclidean space. Then player i’s type space is Γi × Θi.
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Higher Θi means higher valuation: wi is increasing in Θi for any (b j) j �=i. Then Πi

has increasing differences in (ai, Θi). Since wi is increasing in b j, Πi also has increasing
differences in (ai, Gi). The payoff Πi does not depend on Θ j or Gj for j �= i.

To apply our results, we need only check that the increasing beliefs condition is
satisfied. In particular, we need the distribution of the neighborhood sets to have the
following property: if G′

i ⊂ G′′
i then, for any {Gj ∈ Γ j | j �= i}, the probabilities

that all players j �= i have neighborhoods that include at least Gj should be weakly
higher conditional on G′′

i compared to conditional on G′
i. This is a natural assumption;

if one player has more neighbors, she would conclude that the network is probably more
connected and hence that other players are also more likely to have more neighbors. It
is satisfied, for example, for a Poisson random graph, in which the existence of an edge
between any pair of agents is independent of the existence of other edges (for example,
Ρ is the uniform distribution on Γ). If the distribution over graphs is symmetric with
respect to the players, as in Sundarajan (2004), then it is equivalent to assuming that the
player’s interim beliefs about other players’ degrees (number of neighbors) is weakly
increasing in her own degree with respect to first-order stochastic dominance.

Observe the following about the components Γi of the type spaces. First, types are
inherently correlated because each player, by learning who his neighbors are, learns
something about who the other players’ neighbors are. Furthermore, these components
are discrete and multidimensional (there is no natural linear order). Because of the dis-
creteness, this game is not covered by Athey (2001) or McAdams (2003). Furthermore,
the increasing beliefs condition is easier to check than affiliation.

From our main results, we may conclude as follows.

1. The game has a greatest and a least pure-strategy equilibrium, which are increasing
in type: if player i purchases the good when of type (Gi, Θi), then he would also
purchase the good if he had additional neighbors or a higher valuation parameter.

2. If the network becomes more dense—in the sense that, for each pair of players, the
probability that they are connected increases—then greatest and least equilibria of
the altered game are higher than those of the original game. That is, the players and
types who consume the good in the equilibrium before the shift also do so after the
shift.

3. This game has positive externalities, meaning that each player’s payoff is increas-
ing in the actions of the other players. Therefore, the greatest equilibrium Pareto
dominates all other equilibria. Furthermore, if we have an equilibrium selection of
either the greatest or the least equilibrium, then each player’s interim payoff would
increase as a consequence of the shift in the distribution of networks described in
the previous item.

4. If the game is symmetric (requiring, for example, that the probability of any graph
does not change if the names on the nodes of the graph are permuted) then, as is
known for supermodular games, the greatest and least equilibria are symmetric.
This implies, in this game, that each player’s consumption decision depends on
the number of neighbors and not on their identities. (We can restrict attention to
such equilibria by assuming that the players observe the number of neighbors but
not their identities.) In the greatest and least equilibria, the equilibrium strategies
are increasing in the number of neighbors. That is, for each player and valuation



Van Zandt & Vives • Monotone Equilibria in Bayesian Games of Strategic Complementarities 8

parameter for that player, there is a cutoff number of neighbors above which the
player adopts the product and below which she does not.

3.2. Example 2: Global games

Global games are games of incomplete information in which there is an underlying
payoff-relevant state and each player observes a noisy signal of this state. The aim is
equilibrium selection via perturbation of a complete-information game.

Carlsson and van Damme (1993) show the following result. In 2 × 2 games, if each
player observes a noisy signal of the true payoffs and if ex ante feasible payoffs include
payoffs that make each action strictly dominant then, as noise becomes small, iterative
strict dominance selects one equilibrium. When there are two equilibria in the complete-
information game—in which case the game is supermodular—the equilibrium selected
is the Harsanyi and Selten (1988) risk-dominant one.

The extension by Frankel, Morris, and Pauzner (2003) to an arbitrary number of
players and one-dimensional actions and types considers only games that satisfy our as-
sumption that payoffs are continuous and have increasing differences in (ai, (a−i, t)). It
is a common values model, in the sense that payoffs depend only on the one-dimensional
component t0 and each ti is just a noisy signal ti = t0 + Ηi of t0; the random variables
t0 and {Ηi} are independent and have continuous densities. Types satisfy our increasing
beliefs condition because t0 has a very diffuse distribution, nearly uniform on R, and the
support of each Η is very small. (In the limit, the posterior on Ηi is independent of the
realization of ti and the distribution of t0 conditional on ti = t̂i is equal to the distribution
of t̂i − Ηi.) Therefore, the game is monotone supermodular.

A key step in the proof is to identify greatest and least strategy profiles that survive
iterative deletion of strictly dominated strategies and to show that these are monotone in
type. The other, more intricate, step is to show that, under additional assumptions and
for a certain limit of the game, the two extremal equilibria are the same—and hence that
the game is dominance solvable and has a unique equilibrium.

Since we have a game of incomplete information with supermodular payoffs, the
results of this paper immediately yield the first key step. They also allow an extension
of this step to games with multidimensional actions and types, with perhaps discreteness
of some dimensions of the type spaces (as long as the increasing beliefs condition is still
satisfied).

3.3. Example 3: Bertrand competition in prices and advertising

Consider the following Bertrand oligopoly with differentiated products in which firms
compete both in price pi and in advertising intensity zi. The profit of firm i is given by
ui = (pi−ci)Di(pi, p−i, zi)−Fi(zi, ei), where ci is the per-unit cost, Di yields the demand
for the product of the firm, Fi yields the cost of advertising, and ei measures the cost
efficiency of advertising. The type of firm i is ti = (ci, ei) and its action is ai = (pi, zi).

We assume that Di is decreasing in pi, increasing in p−i, and increasing in zi; F (zi, ei)
is increasing in zi and decreasing in ei. Then ui is supermodular in ai if, for pH

i and pL
i

such that pH
i > pL

i , Di(pL
i , p−i, zi) − Di(pH

i , p−i, zi) is decreasing in zi; this means, for
example, that advertising increases demand by raising the valuations of existing con-
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sumers rather than by informing new consumers of the existence of the good. Observe
that ui has increasing differences in (ai, a−i) as long as, for pH

i > pL
i and zH

i > zL
i ,

Di(pL
i , p−i, zi) − Di(pH

i , p−i, zi) is decreasing in p−i and Di(pi, p−i, zH
i ) − Di(pi, p−i, zL

i )
is increasing in p−i. All these conditions are satisfied, for example, when Di is linear
in all its terms. Also, ui has increasing differences in ai and ti if F has decreasing dif-
ferences in (zi, ei)—for instance, if higher ei decreases the marginal cost of advertising.
Interim beliefs are increasing in type if the joint distribution of types is affiliated.

Supposing also that there are natural upper bounds for pi and zi (e.g., that there
is a choke-off price for demand as well as a point beyond which advertising has no
further effect) and assuming continuity of Di and Fi (but we still allow any variable to
be discrete), we can apply our main results. It then follows that there exist extremal
equilibria and that these are monotone in types; in other words, higher production cost
or higher advertising efficiency induces higher prices and more advertising by firm i.

4. Cournot tatônnement and the greatest equilibrium

Our main results assume that the payoff of player i is supermodular in ai and has increas-
ing differences in (ai, a−i). It then follows immediately from Vives (1990, Theorem 6.1)
or Milgrom and Roberts (1990, Theorem 5) that the game has extremal equilibria in pure
strategies. However, we want to show that these extremal equilibria are in monotone
strategies under additional assumptions.

The main idea is that Cournot tatônnement, starting at the greatest strategy profile
and using the greatest best-reply (GBR) mappings, converges to the greatest Bayes–
Nash equilibrium, which is in strategies that are monotone. We first state this result in
terms of assumptions on the GBR mapping (in Lemma 1) and then derive the assump-
tions from more primitive ones (in Sections 5 and 6). An analogous result, which we
do not bother stating, holds for the least best-reply mapping and the least Bayes–Nash
equilibrium.

Definition 1. If Βi(σ−i) has a greatest element, denote it by Β̄i(σ−i). If Β̄i(σ−i) is well-
defined for all σ−i ∈ Σ−i, then we call Β̄i : Σ−i → Σi player i’s greatest best-reply (GBR)
mapping.

Lemma 1. Assume the following for each player i.

1. The GBR mapping Β̄i is well-defined.
2. The GBR mapping is increasing: for σ′

−i, σ−i ∈ Σ−i such that σ′
−i ≥ σ−i, Β̄i(σ′

−i) ≥
Β̄i(σ−i).

3. If the strategies σ−i are monotone, then the strategy Β̄(σ−i) is monotone.

Then there is a greatest equilibrium and it is in monotone strategies.

Proof. The proof is constructive, using Cournot tatônnement. It is quite similar to the
proof of Theorem 6.1 in Vives (1990), but with a few modifications because here we
work with interim beliefs and have more general assumptions on types and actions.
Also, we need to keep track of the monotonicity of strategies.
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Define Β̄ : Σ → Σ by Β̄(σ) = ( Β̄1(σ−1), . . . , Β̄n(σ−n)). Since each Β̄i is increasing, so
is Β̄. By the third assumption, if σ is a profile of monotone strategies then so is Β̄(σ).

For each player i, let āi ∈ Ai be the greatest element of Ai (which exists because
Ai is a complete lattice). Let σ0

i ∈ Σi be the strategy that is equal to āi for all ti and
let σ0 = (σ0

1, . . . , σ0
n ). Define recursively σk = Β̄(σk−1) for k = 1, 2, . . . . Because

σ0 is the profile of greatest strategies, we have σ1 ≤ σ0. Since Β̄ is increasing and
since σ2 = Β̄(σ1) and σ1 = Β̄(σ0), we have σ2 ≤ σ1. By induction, the sequence
{σk} is decreasing. Thus, for each player i and for all ti ∈ Ti, {σk

i (ti)} is a decreasing
sequence. Since every decreasing sequence in Ai converges to its infimum, it follows
that σk

i converges pointwise (type-by-type). Denote the pointwise limit by σ∞
i .

The pointwise limit of a sequence of measurable functions into a metric space is
measurable. Hence, σ∞

i is in Σi. The limit must be an equilibrium (by a standard
continuity argument) once we note that, for all ti ∈ Ti,

lim
k→∞

∫
T−i

ui(σ
k
i (ti), σ

k−1
−i (t−i), ti, t−i) d pi(t−i | ti)

=
∫

T−i

ui(σ
∞
i (ti), σ

∞
−i(t−i), ti, t−i) d pi(t−i | ti)

(and similarly when σk
i (ti) and σ∞

i (ti) are replaced by any ai ∈ Ai) because ui is con-
tinuous in a, σk

−i converges pointwise, and ui is bounded (hence we are integrating a
bounded function on T−i that converges pointwise).

Furthermore, each term in the sequence {σk} is in monotone strategies because (a)
σ0 is a profile of monotone strategies and (b) so is Β̄(σk) if σk is such a profile. The
pointwise limit of a decreasing sequence of monotone strategies is also monotone be-
cause, if {xk} and {yk} are decreasing sequences in a complete lattice and if xk ≤ yk for
all k, then inf({xk}) ≤ inf({yk}).

The limit σ∞ must be the greatest equilibrium, as we now show. Any other equilib-
rium σ will be smaller than the greatest strategy profile σ0, that is, σ0 ≥ σ. Since Β̄ is
increasing, we have Β̄(σ0) ≥ Β̄(σ). On the one hand, σ is a profile of best responses
to σ because σ is an equilibrium; on the other, Β̄(σ) is the greatest best response to σ.
Therefore, Β̄(σ) ≥ σ. Combining σ1 = Β̄(σ0), Β̄(σ0) ≥ Β̄(σ), and Β̄(σ) ≥ σ yields
σ1 ≥ σ. Continuing by induction, σk ≥ σ for all k and hence σ∞ ≥ σ. �

5. Existence and complementarity of the greatest best reply

The assumptions needed for the existence of the greatest best reply for each type and
the monotonicity of this best reply in the strategies of the other players follow from the
standard theory of supermodular optimization, as summarized in Lemma A.1. We also
need to show that this type-by-type greatest best reply is measurable.

Proposition 1. Assume for player i that, for all t ∈ T , ui(·, t) is supermodular in ai

and has increasing differences in (ai, a−i). Then, for all σ−i ∈ Σ−i, Βi(σ−i) contains
a greatest element; that is, Β̄i(σ−i) is well-defined. Furthermore, Β̄i is an increasing
function of σ−i.



Van Zandt & Vives • Monotone Equilibria in Bayesian Games of Strategic Complementarities 11

Proof. Continuity, supermodularity, and increasing differences are preserved by inte-
gration. Therefore, for all ti ∈ Ti, Vi(·, ti, pi(ti); σ−i) is continuous and supermodular
in ai and has increasing differences in (ai, σ−i). It now follows from Lemma A.1 that
ϕi(ti, pi(ti); σ−i) is a nonempty complete lattice and that supϕi(·) belongs to ϕi(·) and
is increasing in σ−i.

The only remaining detail is that the mapping ti 
→ supϕi(ti, pi(ti); σ−i) should be
measurable so that it belongs to Σi. This is shown in Van Zandt (2004). �

6. The greatest best reply to monotone strategies is monotone

We now show that the greatest best reply to monotone strategies is monotone if, in
addition to the assumptions of Proposition 1, ui has increasing differences in (ai, t) and
a “monotone beliefs” condition is satisfied. We shall apply the results from Appendix
B on monotone comparative statics under uncertainty.

We endow M−i with the partial order of first-order stochastic dominance and assume
that i’s beliefs function pi : Ti → M−i is increasing. That is, higher types of i believe
that the other players are more likely to be of higher types as well. If there is a common
prior µ, then this assumption is implied by—but is weaker than—the more familiar
assumption that µ is affiliated (see Appendix C).

A higher type for i affects i’s action through three interactions, all of which we must
control for.

1. ui depends on ti. Hence, we assume that ui has increasing differences in (ai, ti).
2. ui depends on t−i and ti affects i’s beliefs about t−i. Hence, we assume that ui has

increasing differences in (ai, t−i) and that pi is increasing.
3. ui depends on a−i and ti affects i’s beliefs about a−i, since a−i depends on t−i through

the strategies of the other players. Hence, we assume that ui has increasing differ-
ences in (ai, a−i), we restrict attention to increasing strategies by players other than
i, and we assume that pi is increasing.

Proposition 2. Let i ∈ N. Assume that:

1. ui is supermodular in ai, has increasing differences in (ai, a−i), and has increasing
differences in (ai, t); and

2. pi : Ti → M−i is increasing with respect to the partial order on M−i of first-order
stochastic dominance (e.g., µ is affiliated).

Then, for all monotone σ−i ∈ Σ−i, Β̄i(σ−i) is monotone.

Proof. Fix σ−i ∈ Σ−i. Recall from equation (3) that

ϕi(·) = arg max
ai∈Ai

Vi(ai, ti, pi(ti); σ−i).

Recall from the proof of Proposition 1 that Vi is supermodular in ai. We now show
that, if σ−i is monotone, then Vi has increasing differences in (ai, ti) and (ai, P−i). There-
fore, by Lemma A.1, supϕi(ti, P−i; σ−i) is increasing in ti and in P−i. Since Β̄i(σ−i) is
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equal to ti 
→ supϕi(ti, pi(ti); σ−i) (see again the proof of Proposition 1) and since pi is
increasing, it follows that Β̄i(σ−i) is increasing in ti.

Recall the definition of Vi from equation (1). If we view the payoff function that
defines Vi solely as a function of ai and t (because we are keeping σ−i fixed and the
actions of the other players are determined by t−i), then this induced payoff function has
increasing differences in (ai, t) because ui has increasing differences in (ai, (a−i, t)) and
σ−i is increasing in t−i. It follows from Lemma B.2 that Vi has increasing differences in
(ai, ti) and in (ai, P−i). �

7. Strictly monotone best replies

We can strengthen the conclusion of Proposition 2 to “for all monotone σ−i ∈ Σ−i,
Β̄i(σ−i) is strictly monotone” by adding some smoothness assumptions. We continue to
rely on the lattice methods to obtain a weak inequality and then use differentiability to
rule out equality—the inequality must then be strict.

For example, consider a choice problem maxx∈X u(x, y), where X is an interval of R
and y is a parameter that belongs to a partially ordered set Y . Suppose xH , xL are interior
solutions given yH , yL ∈ Y such that yH > yL. Suppose we have determined (by using,
e.g., monotone comparative statics) that xH ≥ xL. Suppose also that u is differentiable
in x and that ∂u/∂x is strictly increasing in y. The solutions xH , xL must satisfy the first-
order condition; thus ∂u(xH , yH )/∂x = 0 and ∂u(xL, yL)/∂x = 0. Since ∂u/∂x is strictly
increasing in y, we have ∂u(xL, yH )/∂x > 0. Therefore, xH �= xL and instead xH > xL.

This kind of argument can be applied to a single dimension of a multidimensional
choice set, thereby allowing for a mix of continuous and discrete choice variables. This
is our approach. We refer to the smoothness conditions needed as the “smooth case”.

Assumption 2. (Smooth case for player i) The following statements hold for player i:

1. Ai = Ai1 × Ai2, where Ai1 is a compact interval of R and Ai2 is a complete lattice;
2. ui is continuously differentiable in ai1;
3. for all ti, P−i, and σ−i, the elements of ϕi(ti, P−i; σ−i) are such that ai1 is in the interior

of Ai1.

In the smooth case for player i, a strategy σi is said to be strictly monotone if, for
almost every tH

i , tL
i ∈ Ti such that tH

i > tL
i , we have σi(tH

i ) ≥ σi(tL
i ) and σi1(tH

i ) > σi1(tL
i ).

(Observe that the strict inequality is only for the dimension we have identified to satisfy
the smoothness assumptions; if there are multiple such dimensions, we obtain a strict
inequality for each one.)

We are now ready for our “strict” version of Proposition 2.

Corollary 1. Given (a) the assumptions of Proposition 2, (b) the smooth case for
player i, and (c) that ∂ui/∂ai1 is strictly increasing in ti, it follows for all monotone
σ−i ∈ Σ−i that Β̄i(σ−i) is strictly monotone.

Proof. Let σ−i ∈ Σ−i be monotone and let σi = Β̄i(σ−i). Let tH
i , tL

i ∈ Ti be such that
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tH
i > tL

i . We know from Proposition 2 that σi(tH
i ) ≥ σi(tL

i ), so we only need to show that
σi1(tH

i ) �= σi1(tL
i ).

Continuing from the proof of Proposition 2, σi(tH
i ) and σi(tL

i ) are solutions to (re-
spectively) maxai∈Ai Vi(ai, tH

i , pi(tH
i )) and maxai∈Ai Vi(ai, tL

i , pi(tL
i )), where we have dropped

the argument σ−i from Vi for conciseness. Since ui is continuously differentiable in ai1,
so is Vi. By assumption in the smooth case, σi1(tH

i ) and σi1(tL
i ) are interior. Therefore,

we have the first-order conditions

∂Vi(σi(t
H
i ), tH

i , pi(t
H
i ))/∂ai1 = 0, (4)

∂Vi(σi(t
L
i ), tL

i , pi(t
L
i ))/∂ai1 = 0. (5)

The next step involves substituting σi2(tH
i ), tH

i , and pi(tH
i ) in the left side of equa-

tion (5) and showing that this causes the expression to increase, so that

∂Vi
(
(σi1(tL

i ), σi2(tH
i )), tH

i , pi(t
H
i )

)
/∂ai1 > 0. (6)

On the one hand, we know that σi2(tH
i ) ≥ σi2(tL

i ) (a conclusion of Proposition 2), tH
i >

tL
i (by assumption), and pi(tH

i ) ≥ pi(tL
i ) (from the assumption that pi is increasing).

Since ∂ui/∂ai1 is strictly increasing in ti, so is ∂Vi/∂ai1. Furthermore, we established
in the proofs of Propositions 1 and 2 that Vi is supermodular in ai and has increasing
differences in (ai, P−i); therefore, ∂Vi/∂ai1 is weakly increasing in ai2 and in P−i. This
establishes equation (6).

Comparing equations (4) and (6), we conclude that σi1(tH
i ) �= σi1(tL

i ). �

8. Monotone supermodular games have monotone extremal equilibria

Putting together Lemma 1 and Propositions 1 and 2 yields the first of our main results.
We call games that satisfy the assumptions of Theorem 1 “monotone supermodular”.

Theorem 1. Assume, for each player i, that

1. the utility function ui is supermodular in ai, has increasing differences in (ai, a−i),
and has increasing differences in (ai, t); and

2. the beliefs mapping pi : Ti → M−i is increasing with respect to the partial order
on M−i of first-order stochastic dominance (e.g., there is a common prior µ that is
affiliated).

Then there exist a greatest and a least Bayes–Nash equilibrium, and each one is in
monotone strategies.

Proof. According to Proposition 1, Β̄i is well-defined and increasing; according to
Proposition 2, Β̄i(σ−i) is monotone if σ−i ∈ Σ−i is monotone. Hence, the three as-
sumptions of Lemma 1 are satisfied, so there exists a greatest equilibrium and it is in
monotone strategies. (The same arguments apply to the least equilibrium.) �

Corollary 2. Given (a) the assumptions of Theorem 1, (b) the smooth case for player
i, and (c) that ∂ui/∂ai1 is strictly increasing in ti, it follows that the greatest and least
Bayes–Nash equilibria are such that player i’s strategies are strictly monotone.
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Proof. From Theorem 1, the greatest equilibrium is in monotone strategies. Player i
is playing his greatest best response to a profile of monotone strategies of the other
players, which according to Corollary 1 is strictly increasing in type. �

9. A counterexample for log-supermodular payoffs

Athey (2001) also obtains existence of a pure-strategy equilibrium for log-supermodular
payoffs, affiliated types, and atomless type spaces (for single-dimensional types and
actions, and extended to multidimensional types and actions by McAdams (2003)).
We provide an example—with log-supermodular types and affiliated payoffs but finite
types—that does not have a pure-strategy equilibrium. This shows (a) that our approach
cannot work for log-supermodular payoffs and (b) that their results require the assump-
tion of atomless type spaces. The problem, of course, is that log-supermodularity is not
preserved by integration, and a Bayesian game with log-supermodular payoffs may not
have strategic complementarities. Therefore, without purification via an atomless type
space, the game may not have a pure strategy equilibrium.

There are two players, 1 and 2, with action sets A1 = {1, 2} and A2 = {1, 2, 3}
and type spaces T1 = {t1} and T2 = {L, H}. Player 1 puts probability 1/2 on each of
player 2’s types. Since player 1’s type space is degenerate and player 2’s type space is
one-dimensional, the distribution of types is trivially affiliated.

Player 1’s utility depends only on the actions, with values shown in the following
table.

a2

1 2 3

u1(1, a2) 2 8 2
u2(2, a2) 1/2 4 4

log2 u(2, a2) − log2 u(1, a2) −2 −1 1

We first observe that this game does not have strategic complementarities.6 Define
strategies σL

2 and σH
2 for player 2 by σL

2 (L) = 1, σH
2 (L) = 2, and σL

2 (H) = σH
2 (H) = 3.

From player 1’s point of view, strategies σL
2 and σH

2 induce the probability distributions
PL and PH over player 2’s actions, as follows.

a2

1 2 3

PL(a2) 1/2 0 1/2
PH (a2) 0 1/2 1/2

Strategy σH
2 is higher than σL

2 , so PH first-order stochastically dominates PL; yet player
1’s best response to σL

2 is a1 = 2 whereas her best response to σH
2 is a1 = 1.

To construct from this the nonexistence of a pure strategy equilibrium, we need only

6. This example amounts to a reinterpretation of an example in Appendix B in which a decision maker with
log-supermodular utility over both action and state shifts his choice down in response to a first-order stochastic
dominant shift of beliefs about the state.
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suppose that player 2 has a dominant action a2 = 3 when observing t2 = H and that,
when observing t2 = L, player 2’s best response to a1 = 1 is 1 and his best response to
a1 = 2 is 2. (This is consistent with u2 being either supermodular or log-supermodular.)
Then player 2’s best response to a1 = 1 is σL

2 whereas 1’s best response to σL
2 is a1 = 2;

likewise 2’s best response to a1 = 2 is σH
2 whereas 1’s best response to σH

2 is a1 = 1.
The more general message is that, whereas ordinal single-crossing properties are

sufficient for existence of pure-strategy equilibria in games of complete information,
we need the cardinal supermodularity and increasing differences properties in games of
incomplete information because only these are preserved by integration. Hence, when
relaxing these assumptions, it is likely we must resort to purification via atomless type
spaces in order to obtain pure-strategy equilibria, even if we are not interested in the
monotonicity of the equilibrium strategies.

10. The greatest equilibrium is increasing in the interim beliefs

Consider two monotone supermodular games that are identical except in the interim
beliefs. Suppose the difference between the games is a shift in the information structure
such that the interim beliefs increase from pi to p′i, meaning that p′i(ti) � pi(ti) for all
ti ∈ Ti. The logic in the proof of Proposition 2 tells us that the greatest and least best
replies increase. We can then conclude that the greatest equilibrium increases.

To state the result, we fix all the parameters of the game except interim beliefs
(players, actions, types, payoffs) as presented in Section 2. Assume that, for i ∈ N, ui

satisfies assumption 1 in Theorem 1. We denote interim beliefs (pi)i∈N by p, we let P

be the set of increasing interim beliefs, and we let Γ(p) be the monotone supermodular
game with interim beliefs p.

Proposition 3. Consider two games Γ(p) and Γ(p′) such that, for i ∈ N, p′i � pi.
Then the greatest equilibrium of Γ(p′) is greater than the greatest equilibrium of Γ(p).

Proof. Let Β̄i and Β̄′i be player i’s GBR mapping for the interim beliefs pi and p′i,
respectively. Fix an increasing strategy profile σ−i ∈ Σ−i of the other players. Re-
call from the proof of Proposition 2 that maxϕi(ti, P−i; σ−i) exists and is increasing
in P−i. Since Β̄i(σ−i) is equal to ti 
→ maxϕi(ti, pi(ti); σ−i) and Β̄′i (σ−i) is equal to
ti 
→ maxϕi(ti, p′i(ti); σ−i), and since p′i(ti) � pi(ti), we have Β̄′i (σ−i) � Β̄i(σ−i).

Therefore, when we construct the greatest equilibria for the two information struc-
tures using Cournot tatônnement (as in the proof of Lemma 1), at each stage we have
σ′k � σk and then—from Β̄′(σ′k) � Β̄′(σk) (because Β̄′ is increasing) and Β̄′(σk) � Β̄(σk)
(as shown above)—we obtain σ′(k+1) � σk+1. Thus, in the limit, σ′∞ � σ∞. �

Corollary 3 develops a strict version of Proposition 3, providing sufficient condi-
tions for the equilibrium strategy of a particular player j to be strictly higher following
a strict first-order stochastic dominant shift in j’s beliefs about another player i (and a
weak first-order stochastic dominant shift for all other beliefs of player j and of other
players). One possibility is that j’s action shifts up in direct response to a strict comple-
mentarity between a j1 and ti. The other possibility is that player i’s strategy is strictly
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monotone (because of strict complementarity between ai1 and ti) and there is a strict
complementarity between a j1 and ai1.

Corollary 3. Let i, j ∈ {1, . . . , N}with i �= j. Given the assumptions of Proposition 3
and the smooth case for player j, assume also that either

1. ∂u j/∂a j1 is strictly increasing in ti or
2. ∂u j/∂a j1 is strictly increasing in ai1 and the smooth case holds also for player i,

with ∂ui/∂ai1 strictly increasing in ti.

Then the greatest equilibria σ′ and σ of Γ(p′) and Γ(p), respectively, are such that, for
all t j ∈ Tj, if the marginal distribution of p′

j(t j) on Ti strictly first-order stochastically
dominates that of p j(t j), then σ′

j1(t j) > σ j1(t j).

Proof. Proposition 3 tells us that σ′
j1(t j) ≥ σ j1(t j). We need to show that σ′

j1(t j) �=
σ j1(t j). The method of proof is the same as in Corollary 1.

Following first the proof of Proposition 2, we have that σ′
j(t j) and σ j(t j) are solu-

tions to (respectively) maxa j∈Aj V ′
j (a j, t j, p′j(t j); σ− j) and maxa j∈Aj Vj(a j, t j, p j(t j); σ− j),

where

V ′
j (a j, t j, P− j; σ− j) =

∫
T− j

u j(a j, σ
′
− j(t− j), t j, t− j) dP− j(t− j),

Vj(a j, t j, P− j; σ− j) =
∫

T− j

u j(a j, σ− j(t− j), t j, t− j) dP− j(t− j).

As in Corollary 1, we have the first-order conditions

∂V ′
j (σ

′
j(t j), t j, p′j(t j))/∂a j1 = 0,

∂Vj(σ j(t j), t j, p j(t j))/∂a j1 = 0,

and we need to show that

∂V ′((σ j1(t j), σ
′
j2(t j)), t j, p′j(t j)

)
/∂a j1

> ∂Vj
(
(σ j1(t j), σ j2(t j)), t j, p j(t j)

)
/∂a j1,

(7)

implying that σ′
j1(t j) �= σ j1(t j).

Inequality (7) involves three substitutions when comparing the right-hand side with
the left-hand side, which we can make one at a time. First, we substitute σ′

j2(t j) ≥
σ j2(t j), which raises the value weakly because ∂u j/∂a j1 is increasing in a j2 (u j is super-
modular in a j). Then we substitute σ′

− j ≥ σ− j, which raises the value weakly because
∂u j/∂a j1 is increasing in a− j (u j has increasing differences in (a j, a− j)). Finally we
substitute p′j(t j) > p j(t j), which causes a strict rise in the value because (a) ∂uj/∂a j1 is
increasing in t− j; (b) ∂u j/∂a j1 is increasing in a− j and σ′

− j is increasing in t− j; and (c) ei-
ther ∂u j/∂a j1 is strictly increasing in t1 (assumption 1) or ∂u j/∂a j1 is strictly increasing
in ai1 and σ′

i1 is strictly increasing in ti (assumption 2 and Corollary 2). �

11. Games of voluntary disclosure

A leading application of the comparative statics result in Proposition 3 is to two-stage
games in which information is revealed in the first stage. It is then important to know
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how the equilibria of the second stage—in particular, the players’ second-stage payoffs—
depend on the information structure that results from the first stage in order to under-
stand the players’ incentives to influence this information structure.

Consider the parameterized family {Γ(p) | p ∈ P } of monotone supermodular
Bayesian games, as defined in Section 10. Each game has a greatest equilibrium, which
we denote by σ̄(p). Let Wi(p, ti) be player i’s expected utility in the equilibrium σ̄(p) of
the game Γ(p), conditional on i’s type being ti.

Assume that the Bayesian games have positive externalities, meaning that ui is in-
creasing in a−i for all i ∈ N. According to Proposition 3, σ̄(p) is increasing in p−i. It
follows that Wi(p, ti) is increasing in p−i. That is, higher beliefs by player j �= i lead
to higher equilibrium actions, which lead to higher expected utility for player i. This is
summarized in Proposition 4.

Proposition 4. Let i ∈ {1, . . . , N} and assume that ui is increasing in a−i. For p ∈ P

and for ti ∈ Ti, let Wi(p, ti) be player i’s expected utility in the greatest equilibrium of
Γ(p), conditional on being of type ti. Then Wi(p, ti) is increasing in p−i.

Thus, if a unique equilibrium exists or if the equilibrium selection in the second
stage is of the greatest or least equilibrium, then the players’ incentives in the first stage
are to induce the other players to increase their beliefs.

Corollary 4 states a strict version of this result. It follows immediately from Corol-
lary 3.

Corollary 4. Let i, j ∈ {1, . . . , N} with i �= j be such that (a) the assumptions of
Corollary 3 are satisfied and (b) ui is strictly increasing in a j. Then Wi(p, ti) is strictly
increasing in the marginal probability measure of p j on Ti. That is, if p′−i ≥ p−i and the
marginal of p′j(t j) on Ti strictly first-order stochastically dominates that of p j(t j) for t j

in a pi(ti)-nonnull set of t j ∈ Tj, then Wi((pi, p′−i), ti) > Wi((pi, p−i), ti).

Consider the setting in Okuno-Fujiwara, Postlewaite, and Suzumura (1990). In the
first stage, there is only information revelation. Talk is cheap: it does not affect payoffs
except through the play in the second stage. However, a player’s message is a statement
that her type belongs to a set of types, and she cannot lie because messages are veri-
fiable. Stated another way, for each message there is a set of types who can send that
message. Let Mi be the set of messages of player i; treat each mi ∈ Mi also as the set
of i’s types that can send message mi. (We endow Mi with a σ-field for measurability
restrictions.) Let M = ∏i∈N Mi.

A first-stage strategy for player i is a measurable map ri : Ti → Mi such that, for all
ti ∈ Ti, we have ti ∈ ri(ti). A second-stage strategy is a measurable map qi : Ti×M → Ai

and a second-stage belief function is a measurable map Πi : Ti ×M → M−i such that, for
ti ∈ Ti and m ∈ M, Πi(ti, m) puts probability 1 on ∏ j �=i m j.

Observe that, given qi and Πi, each realization m ∈ M of the messages induces a
beliefs mapping Πi(·, m) : Ti → M−i and a strategy qi(·, m) : Ti → Ai in the second-
stage game. Then (ri, qi, Πi)i∈N is a perfect Bayesian equilibrium (PBE) if the following
statements hold.
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1. (Belief consistency) Πi is a conditional beliefs mapping given the information (ti, (r j(t j)) j �=i).
2. (Equilibrium in second stage) For all m ∈ M, (qi(·, m))i∈N is a Bayes–Nash equi-

librium of the game Γ((Πi(·; m))i∈N ).
3. (Equilibrium in first stage) For all ti ∈ Ti, ri(ti) solves

max
mi ∈ Mi :

ti ∈ mi

∫
T−i

ui
(
qi(ti, mi, r−i(t−i)), q−i(t−i, mi, r−i(t−i)), ti, t−i

)
d pi(t−i | ti).

Proposition 5 states that there is a fully revealing equilibrium under the following
conditions.

• There are strategic complementarities and positive externalities, and there are com-
plementarities between actions and types (assumption 1 in Proposition 5).

• For each message, there is a lowest type who can send the message (assumption 2);
for each type, there is message for which it is the lowest type (assumption 3).

• As a technicality, the following must be measurable: the “skeptical” second-stage
beliefs, which conclude from each profile of messages that senders are of the lowest
possible types (assumption 4); and a mapping that assigns to each type ti a message
such that ti is the lowest type who can send the message (assumption 5).

Proposition 5. Assume that, for each i ∈ N, the following statements hold:

1. ui satisfies the assumptions of Theorem 1 and is increasing in a−i;
2. for each mi ∈ Mi, min mi exists;
3. for each ti ∈ Ti, there exists an mi ∈ Mi such that min mi = ti;
4. there is a measurable map Π∗i : Ti × M → M−i such that, for ti ∈ Ti and m ∈ M,
Π∗i (ti, m) puts probability 1 on (min mj) j �=i;

5. there is a measurable map r∗i : Ti → Mi such that ti = min r∗i (ti) for all ti ∈ Ti.

Let q∗i : Ti × M → Ai be such that q∗i (·, m) is the largest Bayes–Nash equilibrium in
the game Γ((Π∗j (·, m)) j∈N ) for each m ∈ M. Then (r∗i , q∗i , Π∗i )i∈N is a perfect Bayesian
equilibrium.

Proof. The messages (r∗i )i∈N are fully revealing. Since the second-stage beliefs (Π∗i )i∈N

deduce (correctly, when on the equilibrium path) that a message mj is sent by min mj,
they satisfy belief consistency. Here q∗ is defined so that q∗(m) is an equilibrium in
the second stage, given m. For each message m, the second-stage game is effectively
one of complete information and satisfies the assumptions of Theorem 1 (in particular,
the increasing beliefs condition is satisfied trivially because interim beliefs are type-
independent). We can apply Proposition 4 to conclude that each player would like the
other players to believe he is as high a type as possible. Given the skeptical beliefs,
this is achieved for type ti by reporting a message mi such that ti = min mi. Now
(r∗i , q∗i , Π∗i )i∈N constitutes a perfect Bayesian equilibrium. �

Okuno-Fujiwara, Postlewaite, and Suzumura (1990) not only show existence of a
fully revealing sequential equilibrium, they also provide conditions under which all
sequential equilibria are fully revealing. We can do the same, with greater generality.
They have unidimensional action spaces, strict concavity of payoffs (in own action),
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independent types, and unique interior equilibria in the second stage. All but one of
their results concern two-player games.7

Our greater generality requires two equilibrium refinements that are automatically
satisfied in Okuno-Fujiwara et al. First, to apply Proposition 4 and Corollary 4, the
second-stage beliefs should be monotone in type, both on and off the equilibrium path.
The independent-types assumption in Okuno-Fujiwara et al. guarantees that beliefs are
type-independent (hence trivially monotone) on and off the equilibrium path in any se-
quential equilibrium. In our model, if types are one-dimensional and affiliated, then for
any PBE the second-stage beliefs are increasing in type for any equilibrium messages:
conditioning on an equilibrium message is like conditioning on a sublattice of types,
given that type spaces are one-dimensional. We have not investigated whether the re-
finement of sequential equilibrium implies that this property holds for non-equilibrium
messages; instead, we simply add this as an equilibrium refinement.

Second, whereas Okuno-Fujiwara et al. assume a unique equilibrium in any second-
stage subgame, we instead require that the selection in the second stage be of the greatest
(or least) equilibrium.

Proposition 6. Assume that the prior distribution µ is affiliated and that, for each
i ∈ N:

1. Ti is one-dimensional and finite;
2. pi(ti) has full support for all ti ∈ Ti;
3. ui satisfies the assumptions of Theorem 1 and is increasing in a−i;
4. the smooth case holds for player i;
5. there is a player j �= i such that the assumptions of Corollary 3 hold and ui is

strictly increasing in a j1;
6. for each mi ∈ Mi, min mi exists; and
7. for each ti ∈ Ti, there exists mi ∈ Mi such that min mi = ti.

Consider a perfect Bayesian equilibrium (r∗i , q∗i , Π∗i )i∈N in which (a) for m ∈ M not in
the range of r∗, Π∗i (ti, m) is increasing in ti for i ∈ N, and (b) (q∗i (·, m))i∈N is the greatest
(or least) Bayes–Nash equilibrium in the game Γ((Π∗j (·, m))i∈N ) for each m ∈ M. Then,
for each player i ∈ N, r∗i is fully revealing—specifically, for each type ti, ti = min r∗i (ti).

Note that beliefs are skeptical on the equilibrium path because, for any equilibrium
message m, the player j �= i correctly deduces that player i is of type min mi.

Proof. Suppose (r∗i , q∗i , Π∗i )i∈N is a PBE that satisfies conditions (a) and (b) but is not
fully revealing for player i. Let t̄i be the highest type for i that is not fully revealed in the
first round; hence t̄i is being pooled with lower types. If she deviates and sends a mes-
sage mi such that t̄i = min mi, then the other players’ interim beliefs about her type go
up by strict first-order stochastic dominance (the assumption on full supports of interim
beliefs rules out the case where, for example, types are perfectly correlated and hence
messages have no effect on beliefs). Hence, according to Corollary 4, her second-stage
payoff increases strictly. (Given the restriction on Π∗i , the second-stage game satisfies

7. The only case not covered by our results but covered in Okuno-Fujiwara et al. is an n-player strategic
substitutes game with quadratic payoffs.
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the assumptions in this paper.) This contradicts the assumption that (r∗i , q∗i , Π∗i )i∈N is a
PBE.

Suppose that, for some player i and type ti, ti > min r∗i (ti). Because r∗i is fully
revealing, after receiving message r∗i (ti) all other players believe with probability 1
that i is of type ti. Then type min r∗i (ti) could deviate from his message by sending
instead the message r∗i (ti), causing a shift in all player’s beliefs from his being of type
min r∗i (ti) with probability 1 to his being of type ti with probability 1. Again, according
to Corollary 4, his second-stage payoff increases strictly; hence (r∗i , q∗i , Π∗i )i∈N is not a
PBE. �

Results analogous to Propositions 5 and 6 can be obtained by replacing the assump-
tion of positive externalities by negative externalities (each player’s payoff is decreasing
in the action of the other players) and replacing the “min” conditions on messages and
beliefs by “max”. Then each player would like to reduce the beliefs of other players, and
there is a fully revealing equilibrium in which each type sends a message for which he
is the highest possible type that can send the message (or, under the stricter assumptions
of Proposition 6, every PBE satisfying the two refinements has this property).

12. Extensions and other related literature

All the existence proofs discussed in this paper circumvent a tension that arises when-
ever one tries to prove existence of equilibrium (in pure or mixed strategies, monotone
or not) for games of incomplete information with infinite type spaces. The set of strate-
gies is so large that—even when restricting attention to mixed strategies over finite ac-
tion sets—a topology that is weak enough for compactness of the set of strategies (usu-
ally the weak or weak* topology), which is needed to apply a topological fixed-point
theorem, is weaker than the topology needed for continuity of preferences (usually the
norm or Mackey topology). Once Athey (2001) and McAdams (2003) establish that
they can restrict attention to monotone strategies, they finesse this tension by represent-
ing the monotone strategies in a finite-dimensional set of cutoff values. An alternative
method, employed by Fudenberg, Möbius, and Szeidl (2003), is to note that the weak
and the strong topologies collapse on the set of monotone strategies, so that the tension
between compactness and continuity disappears. A disadvantage of this approach is
that one still needs convexity of best responses and hence action sets must be convex,
whereas the methods of Athey (2001) and McAdams (2003) work for—and, in fact,
are most direct for—finite action sets. Since our methods do not rely on a topological
fixed-point theorem, this tension does not arise and we can deal simultaneously with
finite and infinite action sets.

Though we do not take up any games with discontinuous payoffs, we note that one
approach to such games (used, for example, in Lebrun 1996; Maskin and Riley 2000;
Athey 2001) is to find equilibria for games with discretized action sets and then show
that the equilibria converge to an equilibrium of the original game as the discretization
of the action spaces becomes finer and finer (the difficult part is to show that the dis-
continuities of the payoffs do not disrupt the limiting argument). Any methods, such as
ours, that yield monotone pure-strategy equilibria for finite action sets can be used as



Van Zandt & Vives • Monotone Equilibria in Bayesian Games of Strategic Complementarities 21

the first step in such arguments.
One method for obtaining uniqueness is to characterize the extremal equilibria and

show that they are the same. As discussed in Example 2 on global games, we do not
pursue such an exercise but the methods in this paper could constitute one step in such
an argument. Another method is to show that the best-reply mapping is a contraction.
This technique is employed by Mason and Valentinyi (2003) for games that in some
directions are more general than ours but with assumptions that players be sufficiently
heterogeneous, that types be sufficiently uncorrelated, and that types and actions be
one-dimensional continua.

13. Concluding remarks

For games of incomplete information with supermodular payoffs (not merely payoffs
with single-crossing properties), we are able to extend various results on existence of
monotone pure-strategy equilibria by using quite different methods. For example, we
are able to dispense with atomless type spaces, and we can easily handle multidimen-
sional type and action spaces. Beyond such generalizations, the other value of this work
is the simplicity with which the results can be obtained in comparison to games whose
payoffs are not supermodular. Furthermore, we do not merely show existence; we also
show that the greatest and least equilibria are in monotone strategies. We can thereby
perform comparative statics on these equilibria.

We remind the reader that these results can be applied more generally by choosing
the right direction of the orderings. For example, the main results can be applied to a
submodular duopoly game—meaning that ui is supermodular in ai, has decreasing dif-
ferences in (ai, a−i), has increasing differences in (ai, ti), and has decreasing differences
in (ai, t−i)—because changing the order of the strategy and type spaces of one player
(via multiplying by −1) transforms the submodular game into a supermodular game
(Vives 1990) with complementarity between actions and types. Similarly, if all payoffs
have decreasing rather than increasing differences in actions and types yet the other as-
sumptions of this paper hold, then we can reverse the ordering of types and apply the
results of this paper. For example, under the assumptions of Theorem 1, there are great-
est and least equilibria and these are decreasing in type (under the original ordering on
types).

Appendix A: Summary of lattice and comparative statics methods

For the convenience of the reader and to fix some notation and terminology that may
vary from author to author, we include a few definitions and results of lattice methods
as used for monotone comparative statics. More complete treatments can be found in
Topkis (1998) and Vives (1999, Chapter 2).

A binary relation ≥ on a nonempty set X is a partial order if ≥ is reflexive, transitive,
and antisymmetric. An upper bound on a subset A ⊂ X is z ∈ X such that z ≥ x for
all x ∈ A. A greatest element of A is an element of A that is also an upper bound
on A. Lower bounds and least elements are defined analogously. The greatest and least
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elements of A, when they exist, are denoted max A and min A, respectively. A supremum
(resp., infimum) of A is a least upper bound (resp., greatest lower bound); it is denoted
sup A (resp., inf A).

A lattice is a partially ordered set (X ,≥) in which any two elements have a supre-
mum and an infimum. A lattice (X ,≥) is complete if every nonempty subset has a
supremum and an infimum. A subset L of the lattice X is a sublattice of X if the supre-
mum and infimum of any two elements of L belong also to L.

Let (X ,≥) and (T,≥) be partially ordered sets. A function f : X → T is increasing
if, for x, y in X , x ≥ y implies that f (x) ≥ f (y).

A function g : X → R on a lattice X is supermodular if, for all x, y in X , g(inf(x, y))+
g(sup(x, y)) ≥ g(x) + g(y). It is strictly supermodular if the inequality is strict for all
pairs x, y in X that cannot be compared with respect to ≥ (i.e., neither x ≥ y nor y ≥ x
holds). A function f is (strictly) submodular if − f is (strictly) supermodular; a function
f is (strictly) log-supermodular if log f is (strictly) supermodular.

Let X be a lattice and T a partially ordered set. The function g : X × T → R has
(strictly) increasing differences in (x, t) if g(x′, t) − g(x, t) is (strictly) increasing in t
for x′ > x or, equivalently, if g(x, t ′) − g(x, t) is (strictly) increasing in x for t ′ > t.
Decreasing differences are defined analogously. If X is a convex subset of Rn and if
g : X → R is twice continuously differentiable, then g has increasing differences in
(xi, x j) if and only if ∂2g(x)/∂xi∂x j ≥ 0 for all x and i �= j.

Supermodularity is a stronger property than increasing differences: If T is also a
lattice and if g is (strictly) supermodular on X × T , then g has (strictly) increasing
differences in (x, t). The two concepts coincide on the product of linearly ordered sets:
If X is such a lattice, then a function g : X → R is supermodular if and only if it has
increasing differences in any pair of variables.

The main comparative statics tool applied in this paper is the following. This version
is a variant of that in Milgrom and Roberts (1990). A chain C ⊂ X is a totally ordered
subset of X . A function f : X → R is order upper semicontinuous if limx∈X ,x↓inf(C) ≤
f (inf(C)) and limx∈X ,x↑sup(C) ≥ f (sup(C)) for any chain C.

Lemma A.1. Let X be a complete lattice and let T be a partially ordered set. Let
u : X × T → R be a function that (a) is supermodular and order upper semicontinuous
on the lattice X for each t ∈ T and (b) has increasing differences in (x, t). Let ϕ(t) =
arg maxx∈X u(x, t). Then:

1. ϕ(t) is a nonempty complete sublattice for all t;
2. ϕ is increasing in the sense that, for t ′ > t and for x′ ∈ ϕ(t ′) and x ∈ ϕ(t), we have

sup(x′, x) ∈ ϕ(t ′) and inf(x′, x) ∈ ϕ(t);
3. t 
→ supϕ(t) and t 
→ inf ϕ(t) are increasing selections of ϕ.

Under the assumptions in Section 2.5, each ui is order upper semicontinuous. The
reason we need topological assumptions rather than “order continuity” assumptions in
this paper is for the sake of measurability of various objects.
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Appendix B: Extension of comparative statics under uncertainty

For monotonicity of best responses to monotone strategies, we extend the approach
in Athey (2000, 2001) to our more general type and action spaces. The main idea is
that we characterize when a first-order stochastic dominant shift in beliefs causes the
solutions to a decision problem under uncertainty to increase. This is a straightforward
generalization of classic results for univariate actions and states with differentiable and
strictly concave utility (as presented, for example, by Hadar and Russell (1978)) and
of the more recent results by Athey (2000, Example 2), which are also univariate but
without the differentiability and strict concavity.

These comparative statics results are related to the one-dimensional results in Athey
(2002) for utility functions that satisfy single-crossing properties. However, because we
restrict attention to supermodular utility, we have weaker conditions on beliefs (first-
order stochastic dominant shifts rather than log-supermodular densities) and the results
are simpler and apply easily to discrete and multidimensional action and state spaces.

We first state and characterize a definition of first-order stochastic dominance for
general partially ordered state spaces; it is the obvious extension of first-order stochastic
dominance for probability measures on R.

Let (Ω, F ) be a measurable space and let ≥ be a partial order on Ω. A set E ∈ F

is said to be increasing if ω ∈ E, ω′ ∈ Ω, and ω′ ≥ ω imply ω′ ∈ E. Let PH and
PL be two probability measures on (Ω, F ). We say that PH first-order stochastically
dominates (f.o.s.d.) PL if and only if PH (E) ≥ PL(E) for all increasing E ∈ F .

Lemma B.1. The following statements are equivalent.

1. PH f.o.s.d. PL.
2. For all increasing functions f : Ω → R that are integrable with respect to PH and

PL, ∫
Ω

f (ω) dPH ≥
∫

Ω
f (ω) dPL.

Proof. This is a simple “bootstrapping” of the result for the case where Ω = R.
(2) ⇒ (1). A set E ∈ F is increasing if and only if its indicator 1E is an increasing

function. Then PH (E) =
∫

1E dPH ≥ ∫
1E dPL = PL(E).

(1) ⇒ (2). Consider the distributions ΠH and ΠL of the random variable f for the two
probability measures PH and PL, respectively. We show that ΠH f.o.s.d. ΠL. The result
then follows since, for example,

∫
f (ω) dPH is the expected value for the distribution

ΠH .
Let α ∈ R. Then f −1([α,∞)) and f −1((α,∞)) are increasing measurable sets. (For

instance, let ω ∈ f −1([α,∞)); then f (ω) ≥ α. Let ω′ ∈ Ω be such that ω′ ≥ ω;
then f (ω′) ≥ f (ω) because f is increasing. Hence, f (ω′) ≥ α and ω′ ∈ f −1([α,∞)).)
Therefore, ΠH ([α,∞)) = PH ( f −1([α,∞))) ≥ PL( f −1([α,∞))) = ΠL([α,∞)). Similarly,
ΠH ((α,∞)) ≥ ΠL((α,∞)). Therefore, ΠH f.o.s.d. ΠL. �

Let X be a partially ordered set and let u : X × Ω → R be measurable in ω. Let M

be the set of probability measures on (Ω, F ), partially ordered by first-order stochastic
dominance. Define U : X ×M → R by U (x, P) =

∫
Ω u(x,ω) dP(ω), when well-defined.
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Lemma B.2. Assume that u has increasing differences in (x,ω). Then, on the domain
of U, U has increasing differences in (x, P).

Proof. Let xH , xL ∈ X be such that xH ≥ xL. Define h(ω) = u(xH ,ω) − u(xL,ω), which
is increasing in ω because u has increasing differences in (x,ω). Then U (xH , P) −
U (xL, P) =

∫
h(ω) dP, which is increasing in P according to Lemma B.1. �

Suppose that X is a lattice. Since supermodularity is preserved by integration, U is
supermodular in x if u is supermodular in x. Therefore, we have the following corollary.

Corollary B.1. Assume that u is supermodular in x and has increasing differences in
(x,ω). Then P 
→ arg maxx∈X U (x, P) is increasing in P.

Athey (2002) presents the following comparative statics result for log-supermodular
utility. Suppose u is log-supermodular and f (ω, Θ) is log-supermodular. Then

Θ 
→ arg max
x∈X

∫
u
(x,ω) f (ω, Θ) dΘ

is increasing in Θ. If we interpret f as a density, this provides conditions for an upward
shift in beliefs, as parameterized by Θ, to cause an upward shift in choices. Assuming
that f is log-supermodular is stronger than assuming that higher Θ implies a first-order
stochastic dominant shift in beliefs. Athey has a converse to her result which implies
that there are counterexamples to our Corollary B.1 when supermodular u is changed to
log-supermodular u; put another way, there are counterexamples to her result when her
assumption of supermodular density f is weakened to first-order stochastic dominant
shifts in beliefs. We now provide one such counterexample.

Let the set of states be Ω = {1, 2, 3} and let the set of actions be X = {1, 2}. The
payoff function u : X × Ω → R is defined in the top of the following table.

ω

1 2 3

u(1,ω) 2 8 2
u(2,ω) 1/2 4 4

log2 u(2,ω) − log2 u(1,ω) −2 −1 1

PL(ω) 1/2 0 1/2
PH (ω) 0 1/2 1/2

We see that log u has increasing differences and hence u is log-supermodular. Consider
the probability measures PL and PH defined at the bottom of the table. PH first-order
stochastically dominates PL, yet the optimal action given PL is x = 2 whereas the
optimal action given PH is x = 1.
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Appendix C: Affiliation and increasing interim beliefs

A sufficient—but not necessary—condition for the “increasing interim beliefs” con-
dition is affiliation. We follow the discussion of affiliation in Milgrom and Weber
(1982, Appendix). Consider a probability space (Ω, F , Π) such that Ω is a lattice. If
Ω = Rk and Π has a density f , then affiliation is equivalent to f being log-supermodular.
The more general definition is that Π is affiliated if and only if, for every measurable
increasing set A, B ⊂ Ω and every measurable sublattice S ⊂ Ω (with positive measure),
P(A ∩ B | S) ≥ P(A | S)P(B | S).

Lemma C.1. The measure µ is affiliated if and only if, for all increasing sets A, B ⊂ Ω
and every sublattice S ⊂ Ω, we have P(A | B ∩ S) ≥ P(A | Bc ∩ S).

Proof. The inequality P(A ∩ B | S) ≥ P(A | S)P(B | S) can be rewritten as

P(A ∩ B | S)
P(B | S)

≥ P(A | S)

or P(A | B ∩ S) ≥ P(A | S). Since

P(A | S) = P(B | S)P(A | B ∩ S) + P(Bc | S)P(A | Bc ∩ S),

that is, since P(A | S) is a weighted average of P(A | B ∩ S) and P(A | Bc ∩ S), it follows
that P(A | B ∩ S) ≥ P(A | S) is equivalent to P(A | B ∩ S) ≥ P(A | Bc ∩ S). �

Now suppose that Ω = Ω1 × Ω2, where Ω1 and Ω2 are measurable sublattices of
Euclidean space. Consider the probability measure p(ω1) on Ω2 conditional on the
observation of ω1.

Lemma C.2. If Π is affiliated then, for all a.e. ωH
1 ,ωL

1 ∈ Ω1 such that ωH
1 > ωL

1 , it
follows that p(ωH

1 ) first-order stochastically dominates p(ωL
1 ).

Proof. Assume first that Ω is discrete. Let ωH
1 ,ωL

1 ∈ Ω1 have positive measure and
be such that ωH

1 > ωL
1 . Let S = {ωL

i ,ωH
i } × Ω2 and let B = {ω ∈ Ω | ω1 ≥ ωH

1 }.
Clearly S is a sublattice and B is an increasing set. Furthermore, B∩ S = {ωH

1 }×Ω2 and
Bc∩S = {ωL

1}×Ω2. Let A2 ⊂ Ω2 be an increasing set and let A = Ω1×A2 (which is also
increasing). Since Π is affiliated, P(A |B∩S) ≥ P(A |Bc∩S), or P(Ω1×A2 |{ωH

1 }×Ω2) ≥
P(Ω1 × A2 | {ωL

1} × Ω2). This can be restated as P(A2 | ωH
1 ) ≥ P(A2 | ωL), which is the

first-order stochastic dominance conclusion we seek.
For arbitrary (nondiscrete) Ω, we first replace ωH

1 and ωL
1 in the previous argument

by sublattices of Ω1 with positive measure that are ordered (one lies entirely above the
other). Then we use a standard limiting argument. �

The converse does not hold. Even if Ω1 and Ω2 are both subsets of R and are
thus one-dimensional, P(· | ω1) and P(· | ω2) can still be increasing even if Π is not
affiliated. Consider the following symmetric distribution (provided to us by Phil Reny):
Ω1 = Ω2 = {1, 2, 3}, and µ is defined in the following table:
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ω2

µ(ω1,ω2) 1 2 3

1 1/20 1/20 1/20
ω1 2 1/20 4/20 3/20

3 1/20 3/20 5/20

Here P(ω2 | ω1) is increasing in ω1 with respect to first-order stochastic dominance.
However, the monotone likelihood ratio, a known implication of affiliation, does not
hold. Specifically, µ(2, 2)/µ(1, 2) > µ(2, 3)/µ(1, 3).
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