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An Optimization Framework for Adaptive

Questionnaire Design

Abstract

We propose a general approach for adaptively designing questionnaires for conjoint

analysis customized at the individual level. At each step the next question pre-

sented to an individual is designed on the fly and computationally fast based on

the responses the individual has given to all previous choice questions. Our frame-

work also encompasses recent polyhedral adaptive conjoint methods as a special

case. Within our framework we develop a novel conjoint analysis method that is

in the spirit of recently proposed conjoint estimation methods. We test the pro-

posed method on widely used simulation data and compare the effectiveness of the

designed questionnaires with a standard orthogonal design, a random design, and

a polyhedral adaptive conjoint questionnaire under varying conditions. The results

show that the proposed method leads to individual-specific questionnaires and es-

timations of individual utilities that are significantly more accurate than what is

estimated with the other methods and questionnaires when there is high response

error. We finally show that further significant improvements are achieved when we

use a hybrid individual-specific and aggregate customization method that we also

develop within our general framework for conjoint analysis.

Keywords: Choice Models, Marketing Research, Data Mining, Regression And Other

Statistical Techniques, Marketing Tools.
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1 Introduction

A central problem in marketing, for example in the area of conjoint analysis, is the

design of questionnaires that can effectively capture the preferences of individuals. The

goal is to elicit the preferences of individuals as accurately as possible while asking as

few questions as possible, either in order to avoid subjects’ fatigue or simply because it is

not practical to have answers to many questions. Intuitively this can be better achieved

if the questions asked are well-designed adaptively, so that every new question is built

based on the answers provided by an individual to previous questions. This would also

lead to choice questionnaires that are customized for each individual, since the answers

provided to the questions differ from individual to individual. Furthermore each question

needs to be designed computationally efficiently since the questions are constructed on

the fly, while individuals respond. This can be very useful, for example, for online market

research, an emerging trend.

In this paper we present a novel general approach for conjoint analysis focusing on

the design of individually adapted conjoint questionnaires. It is based on the iterative

optimization of cost functions motivated by statistical learning theory and Support Vec-

tor Machines (SVM) (Vapnik 1998), much like recently proposed conjoint estimation

methods (Cui and Curry 2004; Evgeniou et al 2004) developed only for the estimation

of preference models from existing data and not for the design of questionnaires. The

iterative optimization approach we present can also be seen as a generalization of recently

developed adaptive polyhedral conjoint analysis methods (Toubia et al 2003; Toubia et al
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2004). Within our general framework we develop a novel conjoint analysis method that

is computationally very efficient and can be used to design questionnaires in real time

customized adaptively for each individual. We believe that the proposed framework is

general enough so that it can also be used by researchers to develop other methods and

new theory in the area of conjoint analysis and possibly other marketing problems.

There has been a lot of work on designing questionnaires that can efficiently elicit

the preferences of individuals (Arora and Huber 2001; Huber and Zwerina 1996; Sandor

and Wedel 2001; Toubia et al 2003; Toubia et al 2004). Typically in conjoint studies

the same questions, for example questions coming from an orthogonal design (Huber and

Zwerina 1996), are given to all individuals. There has also been work on customizing

the questionnaires at the individual level using responses from other individuals, often

called aggregate customization (Arora and Huber 2001; Huber and Zwerina 1996; Sandor

and Wedel 2001). Finally, recently Toubia et al (2003; 2004) proposed an approach

to customizing questionnaires at the individual level using only the responses the same

individual gave to previous questions. Their approach is based on polyhedral optimization

methods and has shown very promising results.

In this paper we present a general framework for developing individually-customized

questionnaires based on optimization theory like the conjoint estimation methods of (Cui

and Curry 2004; Evgeniou et al 2004; Srinivasan and Shocker 1973; Srinivasan 1998)

and the conjoint analysis methods of (Toubia et al 2003; Toubia et al 2004). Within

this general framework we develop a novel conjoint analysis method, and particularly
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a novel method for designing conjoint questionnaires which we experimentally compare

with existing questionnaires such as an orthogonal design, a random questionnaire, and

the design developed using the method of Toubia et al (2004). The specific method we

show is for choice-based type conjoint analysis, but similar methods can be developed for

example for metric based conjoint analysis or other questionnaire design problems.

Although the focus of this paper is on the design of questionnaires for a single indi-

vidual, we also discuss how to follow a hybrid approach between aggregate customization

and individual-specific customization within our general framework. We show experi-

mentally that such an approach leads to further significant improvements which indicate

that future work on such hybrid individual specific and aggregate customization conjoint

analysis methods is very promising. We leave this for future work.

The paper is organized as follows. In section 2 we first present our general framework

and then develop a novel conjoint analysis method within this framework which we test

experimentally in section 3. In section 4 we discuss how to extend the proposed conjoint

analysis method, always within our general framework, to develop hybrid individual spe-

cific and aggregate customization conjoint methods which we believe, as our experiments

indicate, that are very promising. Finally we conclude in section 5.

2 A General Framework for Conjoint Analysis

We consider conjoint analysis, in a simple view, having two key building blocks:

1. A method for designing a questionnaire to be given to the individuals, and
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2. An estimation method for estimating the utility functions of the individuals based

on the responses to the questionnaire.

We first discuss (2), the general framework for the estimation methods, and then

we shift to the general framework for the questionnaire design methods which is our

main focus. We finally develop a novel conjoint analysis method within the proposed

framework, which we test experimentally in the next section.

2.1 Notation

We make the standard assumption (Ben-Akiva and Lerman 1985; Srinivasan and Shocker

1973) that the utility functions are linear functions. We note that an important advantage

of our approach is that it can be easily and computationally efficiently generalized to

the case of highly non-linear utility functions, for example estimating all interactions

among product attributes, using the kernel transformations as done in the Support Vector

Machines (SVM) literature (Cortes and Vapnik 1995; Vapnik 1998) and in (Cui and Curry

2004; Evgeniou et al 2004). For simplicity we do not discuss this here.

We denote products with x and the true utility of an individual with w̄. Therefore

the utility that the individual assigns to a product x is U(x) = w̄ · x. For simplicity we

consider first the case that we design questions where the individual has to choose among

two products. So question i is to choose the preferred product among {xi1,xi2}. We

discuss how to generalize this later. The goal is to design questions (pairs of products)

for an individual adaptively so that the i + 1 question is designed using the information
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we have about the choices the individual has made to the first i questions. To simplify

notation we assume that for each i the first product xi1 is the preferred one - we can

rename the products otherwise.

2.2 A General Framework for Conjoint Estimation

2.2.1 Support Vector Machine (SVM) Type Conjoint Estimation

In (Cui and Curry 2004; Evgeniou et al 2004) a conjoint estimation method is proposed

in the spirit of SVM (Cortes and Vapnik 1995; Vapnik 1998) a statistical method that is

widely and successfully used in the machine learning and data mining areas. We briefly

review it here since what we will present below is a generalization of that method.

Given the answers to n choice questions {(x11,x12), (x21,x22), . . . , (xn1,xn2)}, where

we assume the first product xi1 is always chosen, Cui and Curry (2004) and Evgeniou et

al (2004) estimate the utility function w as the minimizer of the following cost function:

min w

∑
i=1..n

θ(1 − w · (xi1 − xi2)) · (1 − w · (xi1 − xi2)) + λ‖w‖2, (1)

where θ(x) = 1 if x > 0 and 0 otherwise. It turns out that this is a quadratic optimization

problem which has a unique solution and can be solved efficiently (Cortes and Vapnik

1995; Vapnik 1998). In (Cui and Curry 2004; Evgeniou et al 2004) the estimation method

is written in a different, but equivalent way, namely as:
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min w,ξi

∑
i=1..n

ξi + λ‖w‖2

subject to:

w · xi1 ≥ w · xi2 + 1 − ξi

for ∀i ∈ {1, . . . , n}, and

ξi ≥ 0. (2)

It is easy to see that problems (1) and (2) are equivalent. We use formulation (1) to show

our generalization more clearly below.

We note that the cost function (1) that we optimize consists of two parts. The first

part measures the error made by the estimated utility function w on the existing data

(xi1,xi2). It is easy to see that if:

w · xi1 ≥ w · xi2 + 1

then there is no “penalty” for question i, and otherwise the penalty is

1 − (w · xi1 − w · xi2).
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Constant 1 plays a scaling role for w. The second part, ‖w‖2, controls the complexity

of the solution w and incorporating it is necessary in order to avoid two key problems:

sensitivity to noise, and the curse of dimensionality (Vapnik 1998). The parameter λ of

the cost function is a user-defined parameter (below we set it by default to 1
n
) that can be

also chosen using, for example, cross-validation or a validation set (Evgeniou et al 2004;

Vapnik 1998). It defines a trade off between the first part of the cost function, measuring

the error made on the n questions, and the second part, measuring the complexity of

the solution. Incorporating the complexity control ‖w2‖ with a trade off defined by a

non-zero and non-infinity parameter λ is crucial: it leads to models that do not suffer

from the curse of dimensionality and that are robust to noise, as discussed and also shown

experimentally by (Cui and Curry 2004; Evgeniou et al 2004; Vapnik 1998) and many

others. Consistent with past work, our experiments below also show that the advantage

of the proposed conjoint analysis method relative, for example, to the method of Toubia

et al (2004) is greater when there is high response error - we discuss this below. A lot

of theoretical work on this type of methods is done in the area of machine learning and

SVM. We refer the reader for example to www.kernelmachines.org for more information.

2.2.2 A General Conjoint Estimation Method

One can generalize the estimation method (1) by simply using a different penalty function

for the errors made on the past questions and different complexity costs. The general

problem (1) can be written as:
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minw V (w, {(xi1,xi2)}) + λΦ(w), (3)

where V (w, {(xi1,xi2)}) is some function which measures the error that the utility func-

tion w makes on the n responses (choice among products xi1 and xi2), and Φ is a com-

plexity cost function, such as the square norm used above for SVM.

Different utility estimation methods can be defined simply by choosing appropriate

V and Φ functions. For example we saw above how the SVM type estimation methods

are special cases of (3). We consider here two other special cases of (3):

• Choosing the square loss function:

V (w, {(xi1,xi2)}) =
n∑

i=1

(1 − w · (xi1 − xi2))
2

and having, like in SVM, Φ(w) = ‖w‖2 leads to least square estimation with

complexity control, which is known as Regularization Networks (RN) (Tikhonov

and Arsenin, 1977; Vapnik, 1998; Evgeniou et al., 2000):

minw

∑
i=1...n

(1 −w · (xi1 − xi2))
2 + λ‖w‖2 (4)

Below we will use this estimation method because first, as we note below, it leads to

very fast adaptive questionnaire designs, and second the cost functional is convex

10



and twice differentiable which is required for the questionnaire design approach we

develop below. We will be noting this method with RN in what follows.

• It turns out (we show the derivation in the Appendix) that the estimation method

of Toubia et al (2004) can be written, in the special case that there is no response

error, as:

minw −
n′∑

i=1

ln(w · (xi1 − xi2)) + λ

p∑
i=1

(wi − 1

λ
ln

(
1

wi

)
), (5)

where p is the dimensionality of w (e.g. the number of attributes of the products)

and wi is the ith coordinate of w. The summation is taken not over all questions n,

but over a subset of them n′ (note the slight abuse of notation here) which are the

“toughest ones” (see (Toubia et al 2004)). We show in the appendix how to also

write the estimation method of Toubia et al (2004) in the case of response error. We

also discuss in the appendix why it may be that the estimation method of Toubia

et al (2004) is sensitive to response error, as we experimentally observe.

2.3 A General Framework for Conjoint Questionnaire Design

In this section we propose a novel general approach for conjoint questionnaire design,

applicable in conjunction to the general conjoint estimation method outlined above. This

approach is based on the analysis of the effect of a new question on the utility function

estimated. Here we consider estimation methods that solve the problem (3):
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min w Rn(w) = V (w, {(xi1,xi2)}) + λΦ(w), (6)

where the error term can be decomposed as a sum of errors:

V (w, {(xi1,xi2)}) =

n∑
i=1

v (w · (xi1 − xi2)) ,

for some function v : R → R.

From now on, we write zi = (xi1 − xi2) to describe the difference vector between the

two proposed products for question i. Notice that the cost function Rn only depends on

the zi’s. Furthermore, when products xi are real-valued, we need to only determine zn+1

to generate the next question, and x(n+1)1 and x(n+1)2 can be chosen arbitrarily, so long

as their difference is zn+1. Below we develop the theory for real-valued products, and we

discuss how to then design products that have binary attributes (or levels), as typically

used in practice, in section 2.5 and in the Appendix.

2.3.1 Intuition

Let us assume that n questions have been asked thus far, and we have calculated the cost

function Rn based on the respondent’s answers and have an estimated utility vector wn,

the minimizer of Rn. In creating the next question, we consider two strategies:

1. We first require, as in (Toubia et al. 2004), utility balance. That is, we create a
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question about two (or more) products xn+1,1 and xn+1,2 that have equal utility

based on our current estimated utility function. This means that we require that

wn · xn+1,1 = wn · xn+1,2, or more simply, wn · zn+1 = 0. Therefore, based on

our current estimate, the respondent is equally likely to choose either of the two

products, and in this sense the question will be most informative.

2. Notice that, in determining zn+1, we are now only restricted to a hyperplane per-

pendicular to wn, {z | wn · z = 0}, according to the first strategy. We need also to

consider the direction of z. The second strategy is to choose a direction for zn+1

where the current loss function Rn(w) is as flat as possible. The direction along

which Rn(w) is as flat as possible is, intuitively, a direction along which the esti-

mated utility function is not well localized. Therefore a new question along this

direction can considerably change the estimated utility function, and in this sense

the question will be most informative. We see below that this is a generalization of

a similar strategy used by Toubia et al (2003; 2004) from which we got inspired.

We now discuss how to formalize this intuition.

2.3.2 A General Approach for Designing Questions Adaptively

Let us now formulate the two strategies, by first assuming that the loss function v and

the complexity function Φ are strictly convex and twice differentiable. Then the function

Rn(w) is itself strictly convex and twice differentiable, and the estimated utility vector,
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i.e., the minimum of Rn(w), is the only point wn that satisfies:

∇Rn (wn) = 0

Around that minimum, the “flatness” (or convexity) of Rn in various directions is given

by its second derivative matrix (Hessian):

[∇2Rn

]
i,j

:=
∂2Rn

∂wi∂wj
.

More precisely, the convexity along a direction z is given by z�∇2Rnz.

In order to find the direction of smallest convexity (strategy 2) orthogonal to wn

(strategy 1), we therefore must solve the following problem:

minz z�∇2Rn (wn) z (7)

Subject to

z�wn = 0,

z�z = 1,

where we added the scaling z�z = 1. By projecting the Hessian matrix onto the hyper-
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plane orthogonal to wn by the equation:

Bn :=

(
Ip − wnw

�
n

w�
n wn

)
∇2Rn (wn) , (8)

where p is the dimensionality of w (the number of attributes of the products) and Ip

is the p × p identity matrix, this problem reduces to finding the eigenvector ẑn of Bn

(and scaling it) with the second smallest eigenvalue (wn being itself the direction of the

eigenvector with the smallest eigenvalue).

Thus stated, this strategy is very general and can be applied to any estimation pro-

cedure of the form (3) as long as (3) is convex and twice differentiable.

2.4 A Novel Method for Conjoint Questionnaire Design

The strategy outlined above can lead to a family of conjoint questionnaire design methods

depending on the choice of the estimation method (3), as long as we choose V and Φ so

that (3) is convex and twice differentiable. In particular:

• The questionnaire design method of Toubia et al (2003; 2004) can be seen in light of

the general framework outlined here. As pointed out by Toubia et al (2003; 2004),

the direction of smallest curvature of the cost function they use (equivalent to (5)),

is the longest axis of the polyhedron that is defined by the constraints which the

answers to the previous questions impose on the feasible space of solutions. This

can be estimated through the computation of the eigenvectors of a matrix similar

15



(Toubia et al 2003; 2004) to the Hessian (8) defined above. We refer the reader to

Toubia et al (2004) for the technical details of that method.

• For Regularization networks (RN), defined above as:

RRN (w) =

n∑
i=1

(w · (xi1 − xi2) − 1)2 + λw�w.

it can be shown (see appendix) that the estimate wn after n questions is

wn =
(
X�

n Xn + λIp

)−1
X�

n 1n, (9)

and the next question is designed along the direction of the second smallest eigen-

vector of: (
Ip − wnw

�
n

w�
n wn

) (
X�

n Xn + λIp

)
, (10)

where Xn is the matrix with n rows Xn(i) = (xi1 − xi2), the “data matrix” after n

questions.

We implemented this 2-steps-at-each-question method and show the experimental

results below. It turns out that this is a very fast method computationally: notice

that the solutions are in closed form and their estimation requires only an inversion

of a matrix of size equal to the number of questions asked. This can be done in real

time very fast even for a (practically) large number of questions.

To summarize, our conjoint analysis method consists of the following two steps at
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each iteration n:

1. Step 1: The utility function wn after n questions are answered is:

wn =
(
X�

n Xn + λIp

)−1
X�

n 1n,

2. Step 2: The next question (difference vector zn+1) is the second smallest eigen-

vector of: (
Ip − wnw

�
n

w�
n wn

) (
X�

n Xn + λIp

)

scaled to have square norm 1.

We also fix λ = 1
n

(see section 2.5 for a discussion on this issue).

• As a caveat, however, the question design strategy developed here can not be applied

to the SVM cost function (1) which is not twice differentiable. However, we can

still use, for example, the SVM estimation method for the questions designed using

the proposed RN method.

Before turning to the experiments we briefly discuss now some practical implementa-

tion issues.

2.5 Practical Issues

There are a number of practical implementation issues to consider:
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• Designing the first question: At the very beginning the only available informa-

tion is typically limited. For example we may only know that the utility function

is positive (or we know the least desirable level for each attribute). This, as also

observed by Toubia et al (2004), makes the design of the first question random, as

the Hessian (10) has many zero eigenvalues. Hence for the first question we design

a random question for each individual ignoring the method proposed. This also

leads to having the first question such that, across the individuals, all attributes of

the products are considered.

• Designing questions with more than 2 products: When more than two prod-

ucts per question are needed we consider not only the second eigenvector of the

Hessian (8) (or (10) for our method) but also the third, fourth, etc. In the ap-

pendix we show, for example, how to do this in the case of four products per

question, when we discuss how to transform real-valued questions into binary ones.

• Choosing parameter λ in (3): As discussed above (see also (Vapnik 1998)), the

“trade off” parameter λ in (3) can be chosen in practice using a small validation set

or using cross-validation. However, as we have no data about the individual before

the first question, it is not possible to choose parameter λ this way. It should

generally be chosen according to how much response error there is (Vapnik 1998).

Clearly we cannot have this information before asking any questions. Therefore we

make the following choice: we set λ to being 1
n

where n is the number of questions.

Parameter λ needs to decrease as the number of data increases (Vapnik 1998).
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We note that one can also choose λ using data from another group of individuals

with “similar” response error, when this is available (this would play the role of a

validation set).

• Designing questions with products with binary features: The approach

outlined above assumes that we can choose real-valued questions – the mathematical

analysis is done in the continuous space. In practice, however, we may need to

design questions with products whose attributes take only a few values (levels).

This would require to generate questions with discrete values. For this purpose,

we first generate real-valued products with the proposed method, and then we

transform these products into discrete (e.g. binary) following exactly the approach

of Toubia et al (2004). We describe this in the appendix and refer the reader to

Toubia et al (2004) for more details. We chose to replicate the approach of Toubia

et al (2004) for this issue in order to avoid any differences in the experimental

comparison below that have to do solely with the transformation of the real-valued

products into binary ones. We believe that further improvements can be achieved

in this step, but this is beyond the scope of this work.

• Adding extra constraints: Finally, often it may be the case that we have in-

formation about the utility vectors that we can use to constrain the solution. One

can do so using virtual examples, as discussed by Evgeniou et al (2004). We note

that there are also other approaches and a large literature on how to incorporate

constraints to RN and SVM type methods (see for example (Scholkopf et al, 1996)).
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3 Experiments

We run Monte Carlo simulations (Carmone and Jain, 1978; Andrews et al 2002; Toubia

et al 2004) to compare the performance of the proposed method with:

• a random questionnaire design;

• a standard orthogonal questionnaire design – we used the orthogonal design also

used by (Toubia et al 2004);

• a questionnaire designed adaptively for each individual using the polyhedral method

of Toubia et al (2004),

under varying conditions of response error (noise) and population heterogeneity. We

used the experimental setup of Toubia et al (2003; 2004), which in turn was based on the

simulation studies of Arora and Huber (2001). For completeness we briefly describe that

setup here.

We designed questionnaires where each question consists of 4 products to choose from.

Each product has 4 attributes, and each attribute has 4 levels. Therefore each product is

a 16 dimensional binary vector with four 1’s (a 1 for each attribute at its “active” level)

and twelve 0’s. We generated designs with 16 questions per individual for all methods

so that the orthogonal design is well-defined. For each experiment we simulated 500

individuals.

The partworths for each individual were generated randomly from a Gaussian with

mean (−β,−1
3
β, 1

3
β, β) for each of the four 4-level attributes. Parameter β is the magni-
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tude that controls the noise (response error). We used a logistic error model (Ben-Akiva

1985). We followed (Toubia et al 2004) and we used β = 2 for high magnitude (low

noise) and β = 0.5 for low magnitude (high noise). We modeled heterogeneity among the

500 individuals by varying the variance σ2 of the Gaussian from which the partworths

were generated. The covariance matrix of the Gaussian was a diagonal matrix with all

diagonal elements being σ2. We modeled high heterogeneity using σ2 = 2β, and low

heterogeneity using σ2 = 0.5β, like in (Toubia et al 2004). As discussed in (Arora and

Huber, 2001) and (Toubia et al, 2004) these parameters are chosen so that the range of

average partworths and heterogeneity found in practice is covered.

Notice that for each of the four attributes the mean partworths are the smallest

for the first level and the largest for the fourth level - in increasing order. Because

the method of Toubia et al (2004) uses the information about the lowest level for each

attribute (positivity on w required for the optimization problem (5)), we incorporated

this information also for the proposed method as also done in (Evgeniou et al 2004). So

for each individual we added constraints that capture the knowledge of the actual lowest

level for each attribute for the true utility function of the individual. All methods used

initially only these positivity constraints to do a first estimate of the utility vectors.

We compare the methods using the Root Mean Square Error (RMSE) of the estimated

partworths. Both estimated and true partworths were always normalized for comparabil-

ity. In particular we followed (Toubia et al 2004): each attribute is made such that the

sum of the levels is 0, and the utility vector is then normalized such as the sum of the
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absolute values for each attribute is 1.

We also tested whether the advantage/disadvantage of the proposed conjoint analysis

approach is due to the questionnaire design or the estimation part – or both. We note,

however, that it is not clear how one can separate the two issues, as one would expect

that the better the estimation method, the better also the questionnaire design within

the general framework we developed. We performed the following tests: we used the final

questionnaire to estimate the utility vectors w using an estimation method independent

of how the questionnaire was designed. As discussed above, we can also use the SVM-

type estimation method of (Cui and Curry 2004; Evgeniou et al 2004) for the final

questionnaire. We therefore tested the following:

• Questionnaires used:

1. A random questionnaire;

2. An orthogonal questionnaire;

3. The questionnaire designed adaptively using the method of Toubia et al (2004)

(noted with POLY);

4. The questionnaire designed adaptively using our method (noted with RN)

• Estimation methods used:

1. The estimation method of Toubia et al (2004);

2. The RN estimation method;
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Mag Het Design POLY estimation RN estimation SVM estimation
H L Random 0.71 0.54 0.59

Orthogonal 0.74 0.78 0.69
POLY 0.47 0.43 0.46
RN 0.47 0.43 0.46

L L Random 1.39 0.86 0.96
Orthogonal 0.83 0.89 0.83

POLY 0.97 0.85 0.96
RN 0.88 0.81 0.84

H H Random 0.67 0.53 0.54
Orthogonal 0.78 0.76 0.66

POLY 0.41 0.41 0.40
RN 0.41 0.39 0.39

L H Random 1.19 0.77 0.88
Orthogonal 0.76 0.84 0.77

POLY 0.83 0.74 0.81
RN 0.78 0.72 0.74

Table 1: Comparison of different questionnaires and estimation methods. Bold indicates
best or not significantly different than best at p < 0.05 for each (magnitude × hetero-
geneity) experiment.

3. The conjoint estimation method of Cui and Curry (2004) and Evgeniou et al

(2004) (noted with SVM).

3.1 Experimental Results

We summarize all the results in Table 3.1. Each row is a different questionnaire design,

and each column is a different estimation method. From the table we make the following

key observations:

1. In all cases the RN estimation method coupled with the RN-based questionnaire

design was always the best or not significantly different from the best among all
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combinations (estimation × design).

2. The RN-based questionnaire is never worse than the POLY questionnaire for all

estimation methods. It is even better than the POLY questionnaire when there is

high response error (low magnitude).

3. Both the RN and the SVM estimations lead to significantly better performance than

the estimation method of Toubia et al (2004), except for the orthogonal design. As

noted by Evgeniou et al (2004), the SVM-type estimation method (like the RN-

type one used here) performs relatively poorly when an orthogonal design is used.

Moreover, the advantage of the RN and SVM estimations is larger when there is

high response error (low magnitude).

4. Overall the improvement of the “complete” (questionnaire design plus estimation)

proposed RN-based conjoint analysis method relative to POLY is much larger when

the response error is higher (low magnitude).

5. Using an SVM estimation method with the RN questionnaire design does not im-

prove performance further. RN also outperforms SVM in most of the other cases.

Performance similarity between RN and SVM estimation methods has been also

observed recently by Rifkin et al (2003) in a different context. This indicates – but

not conclusively, as other loss functions used by other researchers in the future may

lead to different results – that the important part of the proposed approach may

be the complexity control Φ and the trade off λ in (3) and not the particular loss
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function V used. To the best of our knowledge this is still an open question, and it

is beyond the scope of this work to study this issue.

Overall, one of the key finding of the experiments is that the proposed approach

handles noise better than POLY. We believe that this is because, as we mentioned in the

previous section and discuss in the appendix, the POLY method does not handle response

mistakes well. In particular, once a wrong answer is given to some question, from that

point on the method of Toubia et al (2004) will always try to find an estimate that is in

agreement with the wrong answer given (in the vocabulary of Toubia et al (2004), the

method will be searching for a solution in the wrong half-space, that is, the actual utility

vector will be “left” on the other side of the hyperplane defined by the question answered

wrong). However, with the proposed approach such mistakes are less influential, as also

observed by (Evgeniou et al 2004).

4 Hybrid Aggregate and Individual-Specific Ques-

tionnaire Customization

Having formulated the problem of designing adaptive individual questionnaires within

the general framework in section 2, one can clearly develop more methods by choosing

different functional forms for (3). We now discuss how to also consider developing ques-

tionnaires adaptively for each individual but simultaneously for a number of individuals.

One can therefore follow a hybrid approach between aggregate customization (Arora and
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Huber 2001; Huber and Zwerina 1996; Sandor and Wedel 2001) and the individual specific

customization methods we studied here.

We now show that this can be done through solving an optimization problem of the

form (3) for handling heterogeneity, hence within our general framework. In particular,

our RN based method (method (4) and equations (9) and (10)) can be extended to handle

heterogeneity as proposed by Evgeniou and Pontil (2004).

Let T be the number of individuals and let wt
n be the utility function of individual

t after n questions. For each question we do (as for the single-individual RN method

developed in section 2.4):

• Estimate the T utility functions through the minimization of:

minwt
n

∑
i=1...n

∑
t=1...T

(1−wt
n·(xt

i1−xt
i2))

2+λ(γ
1
T

∑
t=1...T

‖wt
n‖2+(1−γ)

1
T 2

∑
i,j=1...T

‖wi
n−wj

n‖2)

(11)

where (xt
i1,x

t
i2) is the ith question for individual t. Notice that this is again in the

form of (3) and it is also convex and twice differentiable. This approach to handling

heterogeneity is first developed in (Evgeniou and Pontil 2004) where various proper-

ties and extensions are studied. Parameter γ is between 0 and 1 and controls “how

much we want the utilities of the individuals to be similar to each other”. Notice, for

example, that setting γ = 1, hence removing the term
∑

i,j=1...T ‖wi
n −wj

n‖2, takes

us to our individual specific RN method as the wt
n’s are decoupled in (11), while
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decreasing γ “forces” the individual wt
n’s to be close to each other. Parameter γ

can be chosen using, for example, only a sub-population of the individuals – playing

the role of a validation set. In the experiment below we only use 20 individuals (out

of the 500) to select parameter γ. We note that this approach has been tested by

Evgeniou and Pontil (2004) where it was also shown experimentally using the same

simulation setup as well as real data that it often outperforms other heterogeneity

methods such as Hierarchical Bayes (Allenby et al 1998; Allenby and Rossi 1999;

DeSarbo et al 1997; Lenk et al 1996; Arora et al 1998).

It is easy to see that solving (11), like for the individual specific RN-method (9),

requires the inversion of a single matrix of size equal to Tn × Tn. This can be

very fast for a small number of questions n and for a small number of people T .

Clearly a practical limitation of this approach is that when T is large (typically in

practice) we cannot solve (11) in real-time – which defeats our purpose of having

a computationally efficient adaptive questionnaire design method. We therefore

may have, for example, to either “group” the individuals into small groups and

solve (11) for each group, or just solve (11) for all T individuals only at the end of

the questionnaires – or both, which is what we did in the experiment below. We

believe that exploring variations and studying how to speed up the proposed hybrid

questionnaire and estimation approach when we use (11) is an important direction

for future work.

• We then take the Hessian of (11) w.r.t. each wt
n to design the next question for
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individual t. It is easy to see that the Hessian of (11) is actually the same as the

Hessian in (10) using only the data matrix Xn from the tth individual (there is no

non-linear interaction between the wt
n’s, hence after taking the second derivative

the wt
n’s do not interact with each other). Hence, the next question for individual

t is again designed using the eigenvectors of (10) but with replacing the estimate

wt
n with the solution of (11) insead of the solution of (4).

An extreme scenario in using the proposed hybrid approach is that one requires that

all individuals respond simultaneously to their questions (say questions 1-16), where each

individual responds to his individual-specific question at each step. After each question we

estimate all utilities and design all next questions for all individuals simultaneously using

the hybrid approach above. The other extreme, since it may not be practical to require

that all individuals respond to their questions the same time, is that we do the estimation

at an aggregate level using (11) only at the end of the questionnaires designed using our

individual specific method. For simplicity we tested here the latter approach by simply

estimating all utility vectors simultaneously once all individuals finish responding their

individual specific questionnaires. As the estimation of (11) for all 500 individuals was

not possible computationally (we used a Matlab implementation that was running out of

memory), we solved (11) using only 20 people at a time. As shown by Evgeniou and Pontil

(2004), accuracy can further increase if we can combine more people in methods like (11).

Moreover, we used 20 of the 500 people to choose parameter γ in (11). Parameter λ was,

as before, set to 1
n
, which is 1

16
in this case. We show the RMSE errors in Table 4. We

28



Mag Het POLY RN Hetero Estimation
H L 0.47 0.43 0.36
L L 0.97 0.81 0.52
H H 0.41 0.39 0.35
L H 0.83 0.72 0.52

Table 2: The effects of combining individual specific and aggregate customization: the
performance for the RN-based questionnaire coupled with the heterogeneity estimation
method (11) is shown in the third column. The first column is the POLY conjoint analysis
method, and the second is the proposed individual specific RN based conjoint analysis
method. Bold indicates best or not significantly different than best at p < 0.05.

notice that there is a very large improvement of the performance, particularly in the high

noise (low magnitude) case.

Clearly one can develop variations of this setup by having, for example, individuals

answering individually-specific questionnaires independently, but at each question itera-

tion (where each individual has answered nind questions, with nind possibly being 0 for

some people) we do the estimations simultaneously using (11). The possibilities are end-

less, and depend on the limitations in practice to coordinate the questionnaires among

many individuals as well as the computational efficiency of solving (11). We leave this

direction for future work which we believe is very promising, as the experiments above

indicate.

5 Conclusions

We presented a general framework for designing questionnaires adaptively at the individ-

ual level. After an individual answers one question the next question is computed very
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quickly – on the fly – based on the individual’s responses until that point.

A number of conjoint analysis methods can be developed within the proposed frame-

work. For example the methods of Toubia et al (2003; 2004) can be seen within this

framework as special cases. We presented here a method that is in the spirit of the con-

joint estimation methods of Cui and Curry (2004) and Evgeniou et al (2004). We com-

pared the proposed method experimentally with random and orthogonal design based

conjoint analysis and the method of Toubia et al (2004) using a standard simulation

setup. The results show that the proposed method significantly outperforms the other

methods both in terms of the quality of the questionnaire designed, and the estimation

of the utility functions, particularly when there is high response error. Furthermore,

combining the methods proposed here with the approach for handling heterogeneity of

Evgeniou and Pontil (2004) further improves performance, which indicates that future

work on the hybrid approach we presented here is very promising.

We finally note that we believe that the proposed framework can be used to further

develop theories and methods for conjoint analysis. We note that the proposed framework

does not aim by any means to replace existing methods for conjoint analysis, but instead

to contribute to the field new tools and methods that can complement existing ones.
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A Analysis of the Estimation Method of Toubia et

al (2004)

It turns out that the estimation method of Toubia et al (2003; 2004) can be seen within

the general framework developed here. Let us first consider the case where the space of

feasible solutions (version space) is not empty, that is, there exists utility vectors w that

fulfill all constraints w · zi ≥ 0 for i = 1, . . . , n, where we use the notation:

zi = xi1 − xi2.

The utility estimation method proposed by Toubia et al (2003) consists in finding the

analytic center of the polyhedron delimited by the constraints on the simplex

{
w ≥ 0 :

p∑
i=1

wi = 100

}
,

that is, to solve the following problem:

min w −∑n′
i=1 ln (w · zi) −

∑p
i=1 ln (wi) (12)

Subject to

w · 1p = 100,
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for the n′ questions that define the version space. Observe that the barrier function

ln (w · zi) is −∞ if w · zi ≤ 0, which forces the solution of (12) to be positive and satisfy

all constraints w · zi > 0 for i = 1, . . . , n.

Forming the Lagrangian for the convex problem (12), we see that there is a number ν

(the Lagrange multiplier) such that the solution of (12) solves the following unconstrained

problem:

min w −
n′∑

i=1

ln (w · zi) −
p∑

i=1

ln (wi) + νw · 1p. (13)

This shows that the estimation method of Toubia et al (2003), in the case when the space

of feasible solutions (consistent with the responses to the questions) is nonempty, can

indeed be written in the general form of (3) with the error function:

V (w, {(xi1,xi2)}) = −
n′∑

i=1

ln (w · (xi1 − xi2)) ,

and the complexity cost:

λΦ (w) = −
p∑

i=1

ln (wi) + νw · 1p =

p∑
i=1

{νwi − ln (wi)} .

In case that the space of w’s consistent with all the responses is empty, clearly (13)

has no solution. In that case, (Toubia et al 2004) propose the following approach. First
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compute:

δ� = max
w

min
i

{w · zi} ,

and then replace (13) by the following problem:

min w −∑n′
i=1 ln (w · zi + δ�) − ∑p

i=1 ln (wi) (14)

Subject to

w · 1p = 100,

This can also be reformulated in the general form (3). Indeed, consider the following

problem, for a fixed constant C:

min w,δ −∑n′
i=1 ln (w · zi + δ) − ∑p

i=1 ln (wi) + Cδθ (δ) (15)

Subject to

w · 1p = 100,

Then it is easy to see that when C becomes large (i.e., tends to +∞), the δ solution of

(15) converges to δ�, and the w solution of (15) converges to the solution of (14). Notice

that when C → ∞ effectively we do not find the right trade off between fitting the data

and controlling the complexity Φ(w) of the estimated utility function – as discussed in
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(Vapnik 1998) this trade off is very important. We believe that this may be a reason

why in the experiments the method of Toubia et al (2004) is performing relatively poorly

when there is response error, as also observed by Evgeniou et al (2004).

We conclude by noticing that if we consider δ as an additional dimension to the

unknown vector w, we observe that after taking the Lagrangian reformulation of (15)

one can find a Lagrange multiplier ν such that the solution of (15) minimizes the general

estimation method (3) with the error function:

V ((w, δ) , {(xi1,xi2)}) = −
n′∑

i=1

ln (w · (xi1 − xi2) + δ) ,

and the complexity cost:

λΦ (w) =

p∑
i=1

{νwi − ln (wi)} + Cδθ (δ) .

B RN Based Questionnaire Design Method

Regularization networks (RN) are defined as:

RRN (w) =

n∑
i=1

(w · (xi1 − xi2) − 1)2 + λw�w.

Simple linear algebra shows that RRN and its derivatives can be written in matrix
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form as follows:

RRN (w) = w� (
X�X + λIp

)
w − w�X�1n − 1�

n Xw + 1�
n 1n,

∇RRN (w) = 2
(
X�X + λIp

)
w − 2X�In,

∇2RRN (w) = 2
(
X�X + λIp

)
,

(16)

where X is the matrix with rows Xi = (xi1 − xi2) (the data matrix).

This shows that this loss function leads to the following estimate of the utility function

after n questions:

wn =
(
X�

n Xn + λIp

)−1
X�

n 1n,

and that the directions selected to form the next question is the second smallest eigen-

vector of the matrix:

(
Ip − wnw

�
n

w�
n wn

) (
X�

n Xn + λIp

)
= X�

n Xn + λIp −
(
X�

n Xn + λIp

)−1
X�

n 1n1
�
n Xn

1�
n Xn (X�

n Xn + λIp)
−2 X�

n 1n

.

where Xn is the matrix after n questions (with n rows), wn is the estimate after n

questions.

C Designing Binary Products

To transform the real-valued products we design using the proposed method into binary

ones, we followed exactly the approach of (Toubia et al 2004) which we briefly review
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here. In particular, to create 4 binary products for a question as done in the experiments,

we start from the 2 designed difference vectors, v1 and v2 – which are the second and

third smallest eigenvectors of the Hessian matrix (8) scaled so that they have square

norm 1 – and our estimate w, and we find a quadrilateral with center w and four corners

w + α1v1, w − β1v1, w + α2v2, w − β2v2. The α’s and β ′s are chosen as the maximum

positive real numbers for which the corners are consistent with the data points, i.e.

α1 = max{α : zi · (w + α1v1) ≥ 0, ∀i}, where the zi’s are the data points obtained from

each of the previous answers. We exclude data points which are misclassified by our

estimate, that is, where w · zi < 0.

Having obtained {c1, . . . , c4}, we then find a binary vector for each ci. To this purpose

we use, as (Toubia et al 2004) a knapsack problem formulation. We pick a random budget

constraint M , and we look for a binary vector bi which will correspond to our ci. The

goal is to maximize bi · ci subject to the constraint that w · bi ≤ M . This will ensure

that each bi is as close to ci, while requiring that each bi has w-utility close to M –

hence they all have the same utility according to our estimate w. Using this procedure,

we obtain a binary bi for every i. We check to see if our bi’s are distinct. If they are,

we return these vectors as our four products for the next question. If not, we choose a

different M and try again. If we have tried more than k different values of M (where in

our simulations k was chosen to be 10, as in Toubia et al (2004)) we stop and we simply

use the nondistinct set of bi’s as our question set – the method in that case is converging

as there are no more binary products left to create “informative” questions.
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