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Moderating Effects: The Myth of Mean Centering 

 

Abstract: 

Mean centering of variables is often advocated for estimating moderated regressions to 

reduce the multicollinearity that results from introducing the product term of two variables 

(x1x2) as an independent variable in the regression equation.  We establish that, contrary to 

conventional wisdom, mean centering does not reduce multicollinearity at all, even if the 

bivariate correlation between x1 and x1x2 is decreased.  Using Monte Carlo simulation, we 

also address the current admonition to systematically include all the product-term 

components in the moderated regression model; we conclude that such an automatic full-

model specification is ill advised due to the structural multicollinearity it introduces.  Finally, 

we propose a varying parameter model (VPM) to test more effectively moderating effects and 

show under what conditions VPM outperforms OLS estimations.
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Moderating Effects: The Myth of Mean Centering 
 

The development of theories in many of the social sciences and in marketing in 

particular requires the use of contingencies, such that one variable influences (moderates) the 

manner in which another variable exerts its impact on a criterion (dependent) variable of 

interest.  For example, Bowman and Narayandas (2004) find that B2B customers’ satisfaction 

with a vendor leads to stronger loyalty the smaller the customer is.  To test such hypothesized 

moderating effects, a product term between the focal factor and the moderator variable is 

created in regression models (Saunders 1956).  The issues involved when introducing a term 

that is the product of two variables have been discussed since the early 1980s (Sharma, 

Durand and Gur-Arie 1981).  A consensus has developed that recommends mean-centering 

variables in order to reduce multicollinearity (Aiken and West 1991; Cohen and Cohen 1983; 

Jaccard, Turrisi and Wan 1990; Jaccard, Wan and Turrisi 1990; Smith and Sasaki 1979).  

This consensus follows Cronbach (1987)’s observation that the correlations between the 

original mean-centered variables and their product term are much smaller than the 

correlations among the raw variables and their product term.  This method appears to be 

pervasive in social science research in general (Kromrey and Foster-Johnson 1998) and in 

Marketing studies in particular: 72% of the articles from 1991 to 2005 in the Journal of 

Consumer Research, the Journal of Marketing, the Journal of Marketing Research, 

Marketing Science, and Management Science that diagnose multicollinearity problems use 

mean-centering as a solution. 

In this paper we show that mean-centering as a remedy of multicollinearity is a myth: 

as suggested in the econometrics literature, mean centering does not make any difference in 

terms of multicollinearity (Besley 1984).  That is because Cronbach’s conclusion that the 

transformed variables are “almost certain not to be multicollinear (p. 414)” ignores the 

multicollinearity that remains in the full set of explanatory variables.  We then analyze how 
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researchers can minimize the consequences of multicollinearity.  First, we investigate the 

behavior of the parameters impacted by the inherent collinearity of the data and the factors 

that drive these consequences.1  McClelland and Judd (1993) provide some evidence that, 

surprisingly, the power to detect interactions increases with the collinearity among the 

predictor variables.  However, their analysis is only performed when such interactions do 

exist and both the product term and its components are specified in the regression equation.  

Our Monte Carlo simulations show the extent of the consequences of multicollinearity under 

both conditions where moderating effects exist and where they do not. 

We also address the question of model specification with regard to the inclusion of all 

the components of the product term.  This admonition (e.g., Irwin and McClelland 2001) 

follows from the interpretation of interaction terms in experimental analysis (Cohen 1978) 

and from the requirement of the nested structure of hierarchical tests (McClelland and Judd 

1993).  We show there are serious negative consequences (in terms of the reduced 

significance of the model parameters other than the product term) of specifying a full model, 

i.e., with the product term (even if insignificant) and all its components, without a theory-

based reason to do so. 

Finally, we propose that the variable parameter approach to moderator effects 

provides an easier basis for interpreting the moderated regression coefficients.  With this 

varying-parameter approach, the estimation makes use of the full information available in a 

moderator effect that exhibits a stochastic component, as opposed to one that imposes a 

purely systematic and strict restriction on the moderator equation.  We show under what 

conditions this varying parameter approach outperforms typical Ordinary Least Squares 

estimation in that particular context of moderated regressions. 

                                                 
1 Although we recognize that other problems may cause difficulty in detecting moderating effects, such as non-
linearity of moderating effects (Jaccard, Wan and Turrisi 1990), measurement errors (Jaccard and Wan 1996) or 
limited residual variance of the interaction term due to constraints on the range of the moderator variable 
(McClelland and Judd 1993), we focus on the issue of multicollinearity that dominates the literature. 



4 

In summary, this paper explains why mean centering is a myth that does not help in 

better identifying moderator effects.  We first show that mean centering does not change the 

ill-conditioned data that need to be analyzed for estimating moderating effects.  We then 

describe a Monte Carlo simulation design that helps understand the multicollinearity issues 

involved in moderated regression.  In particular, we investigate the antecedents and 

consequences of multicollinearity, and bring in the notion of stochasticity of the moderator 

effect.  We then present our analysis answering six fundamental questions with important 

practical implications: 

1. What are the chances of inferring the existence of moderating effects when 
none are present? 
 

2. Does the product term introduce multicollinearity that affects the estimates of 
the effect of its components? 
 

3. Do the answers to these questions vary with the correlation between the focal 
and the moderator variable? 
 

4. What is the impact of specifying the moderator variable as a separate constant 
effect, in addition to being a moderator variable? 
 

5. Are the answers to questions 2 through 4 the same when there are moderating 
effects in the data? 
 

6. What is the impact of recognizing the existence of a stochastic element in the 
moderating effect? 

 
In the conclusion, we summarize the implications of our results for conducting 

empirical tests of moderating effects. 

 

THE MYTH OF THE EFFECT OF MEAN CENTERING ON 

MULTICOLLINEARITY 

The structural relationship between the dependent variable y and the independent 

variables is typically expressed as a regression model with measures of the variables that 
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present the typical properties of being ratio or interval scale.2  The typical regression model 

with two variables is shown in equation 1: 

0 1 1 2 2 3 1 2y x x x xβ β β β= + + +  (1) 

One problem identified with estimating this model concerns the fact that typically the product 

term x1x2 is highly correlated with the individual variables x1 and x2.  Hence, Cronbach (1987) 

advised the use of mean-centered variables, based on the fact that the correlation between the 

product term of the deviations from the mean-transformed variables with these deviations 

from the means themselves is decreased by a large magnitude.  The covariance of x1 and x2 

can be written as: 

 2
1 1 2 1 2 1 1 1 2 2 2 1V[ , ] V[ ]E[ ] E[( ) ( )] E[ ]V[ ]x x x x x x x x x x x x= + − − +  (2) 

It becomes clear that when the mean-centered variables 1 1 1
dx x x= −  and 2 2 2

dx x x= −  are 

used, the expression above is reduced to: 

2
1 1 2 1 1 2 2V[ , ] E[( ) ( )]d d dx x x x x x x= − − . (3) 

 
Because the variances of the raw and the mean-centered variables are equal 

( 2 2
1 1 1 1 1 1 1V[ ]=E[( ) ] E[( ) ] V[ ]d dx x x x x x x− = − − = ), the correlations can easily be compared by 

comparing the covariances above.  The variances being positive by definition, the larger the 

(typically positive) expected va lues of the raw variables are (especially the larger the scaling 

constant of an interval scale variable ), the larger will be the correlation.  This is reflected in 

Cronbach’s (1987) remark that the product term is unlikely to be predicted by a linear 

combination of its components. 

Based on that observation, many recent studies positing moderator effects have 

analyzed their data by performing a regression on the mean-centered variables: 

0 1 1 2 2 3 1 2
d d d dy x x x xγ γ γ γ= + + + . (4) 

                                                 
2 The issues discussed in this paper also apply to cases where the moderator variable is discrete as they are 
simply a special case of what we present here. 
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This transformation was recommended by Cronbach based uniquely on the fact that the 

higher correlations between x1 and x1x2, and/or between x2 and x1x2, are thought to lead to 

multicollinearity problems, and the model using mean-centered variables “is less vulnerable 

to computational errors” (Cronbach 1987, p. 416).  He does, however, recognize that the 

residual sum of squares term is exactly the same for the two models (that is, with raw or with 

mean-centered variables), and that the coefficients of the product terms are identical, as well 

as their standard errors.  It would appear a priori logical that if the correlations between the 

components and the product term of the mean-centered variables are reduced, then the 

multicollinearity problem found in performing a regression using raw variables would be 

solved when using mean-centered variables.   

However, this is not the case.  The product term (interaction) coefficients are 

identical, and only those coefficients naturally affected by the transformation are different.  

However, this is not the result of a reduc tion in multicollinearity as can be seen by using the 

two-variable example above.  Developing Equation (4), the coefficients of the transformed 

variables can be easily transposed to the coefficients ß in Equation (1): 

0 1 3 2 1 2 3 1 2 3 1 2( ) ( )y x x x x x xα γ γ γ γ γ= + − + − +  (5) 

In the Equation above, it is clear that the coefficients of x1 and x2 in Equations (1) and (4) are 

not the same. 

Multicollinearity is a particular problem when the parameter estimates are sensitive to 

small changes in the data.  For a typical linear regression of the form β= +y X u , the best 

linear estimator is β̂ = Ay where A = [X’X]-1 X’.  The key element of stability is the ability 

to perform the matrix inversion.  From a computational point of view (also taken by 

Cronbach), the problem occurs when estimating parameters if the determinant of the X’X 

matrix is close to zero for the derivation of the inverse of X’X.  It turns out that the 

explanation of multicollinearity reduction (as suggested by Cronbach) does not follow here 
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because the determinants of the matrix of cross products of the independent variables in the 

two equations are equal.  Because other diagnostic indices of collinearity can be affected by 

the data transformation as demonstrated by Belsley (1984), such diagnostics (e.g. the 

variance inflation factor) are meaningless and can be misleading after mean centering.  We 

computed two covariance matrices—for raw-variables and for mean-centered variables—on 

57600 data sets in which the correlation between x1 and x2 was manipulated on 5 levels (0, 

0.2, 0.4, 0.6, and 0.8; see Monte Carlo simulations below), and compared their respective 

determinants in Equation (6) and (7): 

 

1 2 12

1 1 1 1 2 1 12

2 2 1 2 2 2 12

12 12 1 12 2 12 12

T Tx Tx Tx
Tx
Tx
Tx

′ ′ ′
′ =

′ ′ ′
′ ′ ′

x x x x x x
X X

x x x x x x
x x x x x x

 (6) 

 

12 1 2

2
1 1 1 1 2 1 2 12 1 2 1 1 1 2 1 1 2

2
2 1 1 2 2 2 2 12 2 1 2 2 1 2 2 12

2 2
12 1 2 12 1 2 1 1 1 2 1 1 2 12 2 1 2 2 1 2 2 12 12 12

0 0 ( )

0 2 2

0 2 2

( ) 2 2 2 2

d d

T T x x x

Tx Txx x Txx Tx x

Txx Tx x Tx x T x x

T x x x x Txx Txx x Txx T x x

−

′ ′ ′ ′− − − + −
′ =

′ ′ ′ ′− − − + −

′ ′ ′ ′ ′− − + − − + −

x x x x x x x x
X X

x x x x x x x x

x x x x x x x x x x 2 2 2 2
2 1 1 1 2 2 1 1 2 2 2 12 1 1 2 12 1 22 2 4 3x x x x Tx x x T x x′ ′ ′ ′+ + − − + −x x x x x x x x

  (7) 

The determinants of these theoretically derived covariances are identical in all data 

sets.  Consequently, it is inappropriate to conclude that mean centering reduces the 

multicollinearity problem.  In fact, the statistical analyses are completely identical in all 

aspects.  The reason to choose mean-centered variables versus raw variables in moderator 

regression cannot be found in the statistical properties of two statistically equivalent models.  

Mean-centering transformations change the nature of the source for multicollinearity from 

bivariate collinearity to multivariate collinearity without changing its magnitude.  This was 

recognized by Belsley (1984), who advises against mean centering as a way to handle 

multicollinearity because it “obscures any linear dependence that involves the constant term” 
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(Judge et al. 1985, p. 903), that is, the inter-variable correlations are reapportioned.3  

Although the constant term is not typically of interest to researchers, it cannot be removed for 

the estimation and, therefore, it impacts the estimates of all other coefficients.  And as the 

determinant applies equally to the standard errors of all the coefficients being estimated, it 

does not solve the estimation problems of any particular coefficient.  Actually, it would be 

surprising if mean centering solved the multicollinearity problem when the R2s, F-values, the 

statistics for the expected value and the significance of the interaction parameter are exactly 

identical (Kromrey and Foster-Johnson 1998; Dunlap and Kemery 1987).4 

In the next section, we describe a Monte Carlo simulation to analyze the role of 

multicollinearity in making statistical inference in moderated regression models.   

 

STATISTICAL INFERENCE ABOUT MODERATOR EFFECTS: 

A MONTE CARLO SIMULATION 

Now that we have established that mean centering has no impact whatsoever on the 

statistical inference of models with moderator effects, it is important to analyze the nature of 

the problems associated with estimating such models.5  

Before elaborating on some of the details of the simulation design, it is useful to 

identify a key feature of a moderator effect which has been ignored in the prior literature: the 

stochastic nature of the moderating equation.  In a moderator regression, or Moderated 

Multiple Regression (MMR), the coefficient representing the effect of a focal variable x1 is 

                                                 
3 This is clearly shown with the ‘Principal Component Regression’ procedure proposed by Morris, Sherman, and 
Mansfield (1986).  However, we agree with Cronbach’s (1987) evaluation that this procedure is ill-advised as no 
legitimate test for interactions is possible after removing the information contained in the component associated 
with the small third eigenvalue. 
4 Even though the coefficients 1γ̂  and 2γ̂  of the mean centered variables x1

d and x2
d may show reduced 

standard errors, they are perfectly equivalent to the estimates obtained from the raw variables: the calculated 
corresponding parameters (i.e., interpretable when x1 and x2 are valued at zero) and their standard errors are 
identical (Cohen 1978). 
5 We use raw variables in the following analysis to facilitate the interpretation of the coefficients.  The results 
are similarly valid for mean-centered variable models. 
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not constant but varies according to the level of a moderator variable x2.  Let us express this 

response equation for a single observation i: 

0 1 1i i i iy x uβ β= + +  (8) 

The only distinction of this Equation from a standard regression model is the subscript i 

associated with coefficient ß1i.  Indeed, we now introduce a second equation (the moderating 

equation) expressing the moderating role of x2 on the effect of x1:6 

1 0 1 2i i ixβ α α ε= + +  (9) 

Substituting the expression in Equation (9) into Equation (8) leads to: 

 
0 0 1 2 1( )i i i i iy x x uβ α α ε= + + + +  (10) 

 
By developing, the equation becomes 
 

0 0 1 1 1 2 1i i i i i i iy x x x u xβ α α ε= + + + +  (11) 

If there were no random term in equation (9), Equation (11) would reduce to Equation (1), 

except for the term specifying the effect of x2 on y, which is usually added to Equation (8) 

and which leads to issues analyzed later in this study. 

The coefficient a1 in Equation (9) is directly interpretable in terms of a moderating 

effect of x2, as it indicates by how much the effect of x1 (i.e., ß1) changes when x2 changes by 

one unit.  It should be noted, however that mean centering affects the interpretation of the 

coefficients of the components x1 and x2.  In the raw-variable model, the correct interpretation 

is the value of the coefficient when the moderator variable takes the value zero.  In the mean-

centered model, the correct interpretation is the value of the coefficient of the focal variable 

when that transformed variable is set to zero, i.e., at the mean value of x2.  Because of the 

varying nature of the effect of x1 on y, we use the term “constant effect” for a0, as it 

                                                 
6 Although we introduce a single moderator equation affecting a coefficient of the response equation, the 
approach can easily incorporate multiple moderating factors on multiple coefficients as well as non-linear 
moderating effects (e.g. Gatignon 1993, 1984). 
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represents the constant portion of the effect of that variable; it also denotes the constant 

value of the effect of x1 on y when the moderator variable is not significant. 

 

The conceptual role of the random term in the moderator equation 

How useful is the random element in Equation (9)?  So far, we have discussed the 

interpretation of the coefficients in the moderator equation.  However, the conceptual role of 

this random element can also be critical.  It fundamentally expresses the stochastic nature of 

the moderating effect.  This is appropriate when the theoretical basis for the moderating 

effect of x2 is not exclusive of all other possible variables.  The disturbance term ei recognizes 

that this equation is not fully deterministic.  So, what is the difference between a model with 

and one without an error term in the moderating effect?  Conceptually, the model without the 

stochastic element is a strictly deterministic model of the moderating effect.  In contrast, the 

fully specified model with a random term allows more flexibility in the constraint on the 

specification of the marginal coefficient of x1.  It is also more compatible with theory, in that 

theories do not typically argue that a particular variable is the only moderating factor (and, 

therefore, that the moderating effect is completely deterministic).  This would correspond to a 

pure restriction on the parameter representing the effect of x1 on y.  In fact, this position 

would differ from classical statistical inference theory where the existence of random 

departures from a deterministic model is required as a source of unexplained variance.  Also, 

as pointed out by Gatignon and Hanssens (1987), the stochastic element provides information 

that may discriminate between the moderating role of x2 on x1 and that of x1 on x2.  This can 

be seen from the fact that Equation (11) would become, in the case of x1 moderating the 

effect of x2: 7 

0 1 1 2 2 1 1 2 2i i i i i i i iy x x x x u xβ β δ δ ε= + + + + +  (12) 

                                                 
7 The argument developed by Gatignon and Hanssens (1987) is even more powerful in the context of a non-
linear response function associated with a linear functional form for the varying parameter function. 
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However, the specification of a random term only has an implication if that 

information is used for the estimation of the model parameters, since it only appears in the 

error term structure.  The error term in Equation (11) now shows heteroscedasticity with 

2 2 2
1 1V[ ]i i i u iu x x εε σ σ+ = + .  This implies that a generalized least squares estimator (EGLS) will 

be asymptotically more efficient than OLS.  Nevertheless, the OLS estimator (that ignores the 

stochastic element) remains unbiased. 

In summary, the random element of a moderator function is essential to fully describe 

the moderating process being studied and should be an intrinsic part of the model that allows 

statistical inference about its impact.  This stochastic element leads to heteroscedasticity 

which should be taken into account for efficient estimation.  But more importantly, as we will 

show, it can be a significant help in the context of multicollinearity. 

 

The specific Monte Carlo simulation design 

In order to investigate whether the introduction of a moderating term in the estimation 

model influences the likelihood of finding a significant constant and moderating effect, data 

was generated with and without moderating effects.  By estimating a model with a 

moderating term on these data sets, we can compare the likelihood of finding a significant 

interaction when in fact there is none (i.e., the moderating effect is set to 0) with the 

likelihood of finding a significant interaction when there is one (i.e., the moderating effect is 

set to values greater than 0).  In addition to varying the strength of the moderating effect, we 

also manipulated orthogonally the noise in the regression corresponding to the error term in 

Equation (8), the noise in the moderating equation corresponding to the error term in 

Equation (9), the sample size, and the correlation between the two independent variables x1 

and x2.  For each generated data set, a model with a moderating term (Equation (1)) was 
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estimated with Ordinary Least Squares, and a varying parameter model using Equations (8) 

and (9) was estimated with Estimated Generalized Least Squares. 

Data was generated with SAS 9.1 for Windows.  In order to simulate data sets with 

two independent variables and two error components simulating noise in the regression (ui in 

equation 8) and noise in the moderating term (ei in equation 9), four random variables were 

generated with the CALL VNORMAL module (the seed was generated separately for each 

data set generation using the RANNOR function).  The first two random variables x1 and x2 

were generated with a mean of 10 and standard deviation of 1. The latter two random 

variables representing noise in the regression were generated with a mean of 0 and standard 

deviation 1.  The correlation of the two error-variables with all other variables was set to 0.  

The correlation between the two independent variables x1 and x2 was manipulated at five 

levels: 0, 0.2, 0.4, 0.6, and 0.8.  In order to assure that the resulting sample correlation 

between the independent variables x1 and x2 would never be negative, data generation was 

repeated until the resulting sample correlation was non-negative (this was necessary only for 

the case when the correlation between x1 and x2 was set to 0, and hence the resulting sample 

correlation between x1 and x2 would take on small positive and negative values).  The size of 

the impact of x1 and x2 without moderation (a1 = 0 in Equation (9)) was fixed at 1 (a0 and ß2), 

the intercept was fixed at 4 (ß0 in Equation (8)). 

The size of the moderating effect (a1 in Equation (9)) was manipulated at six levels: 0, 

0.2, 0.4, 0.6, 0.8, and 1.0.  The first level 0 implies that there is no moderating effect in the 

generated data.  For levels greater than 0 implying a moderating effect, noise within the 

moderating equation (INTERNOISE) was manipulated at six levels by multiplying the 

random error variable (ei in Equation (9)) with the following constants: 0, 0.4, 0.8, 1.2, 1.6, 

2.0.  This provided moderating equation variances of 0, 0.16, 0.64, 1.44, 2.56, and 4.0 which 

correspond to explained variance of the moderating effect ranging from 0.99% to 86.2%. 
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Noise in the regression (REGNOISE) was manipulated at 8 levels by multiplying the 

random error variable (ui in Equation (8)) with the following constants: 0.1, 0.7, 1.3, 1.9, 2.5, 

3.1, 3.7, and 4.3.  This provided error variances of 0.01, 0.49, 1.69, 3.61, 6.25, 9.61, 13.69, 

and 18.49 corresponding to explained variances in the base case of no moderating effect from 

9.76% to 99.5%.  Data sets were generated with four differing samples sizes: 50, 175, 300, 

and 425.  At each level of the manipulated factors 10 data sets were generated.  Thus, the 

total number of data sets generated for the 5760 experimental conditions is 57600.  For each 

data set two models with a moderating term were estimated:  A model corresponding to 

Equation (1) was estimated with OLS, and a varying parameter model corresponding to 

Equations (8) and (9) was estimated with EGLS (details of the estimation method is described 

in the Appendix).  We now report the results according to the six questions mentioned in the 

introduction. 

 

SIMULATION RESULTS: ANSWERS TO KEY QUESTIONS 

We begin with analyzing the results of the simulated data using only the data 

generated without moderating effects (N=9600). 

 

What are the chances of inferring the existence of moderating effects when none are 
present? 

We focus first on the moderating effect parameter.  Given that there is no such effect 

in the data, the proportion of significant parameters by chance alone would be 5% at the .05 

confidence level (Lehmann 2001).  Multicollinearity, when it exists in a dataset, normally 

affects all parameter estimates.  However, Ganzach (1997, p. 236) claims that “the coefficient 

of the product term in the regression may be significant even when there is no true 

interaction.  The reason for this is that when the correlation between X and Z increases, so 

does the correlation between XZ and X.”  This would, however, be inconsistent with 
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McClelland and Judd’s (1993) proposition that “given that a change in origin can always be 

found to ensure a zero covariance between the product and its components and given that 

such a change of origin does not alter the moderator statistical test, the covariance, if any 

between the components and their product is in principle irrelevant for detecting moderator 

effects (p. 378).”  So in our case, where no moderating effect exists and correlations between 

the independent variables x1 and x2 range from 0 to 0.8, we should expect 5% of the 

coefficients to be significant at the .05 level.  Figure 1a plots the percentage of estimated 

moderator effect parameters that are significant at the .05 confidence level.  With OLS 

estimation, the proportion of significant coefficients using a two-tailed test is 5.1%.  This 

percentage is not statistically different from what would be expected by chance (5%).8  The 

parameter estimates are unbiased and normally distributed around the zero point (Figure 1.b).  

Consequently, the model is consistent with the data generating function and the 

multicollinearity in the data does not affect the likelihood of finding a significant moderator 

effect when none is in the data. 

So, there is no evidence that the product term picks up part of the variance that would 

be explained by the focal or the constant effect of the moderator variable, which can be the 

case when two variables are correlated.  The inherent correlation between the product term 

and its components restricts the relationships in the data in a way that the correlation between 

the product term and its components has little effect on the moderator effect estimate when 

there is none in the data.  Thus, researchers can be reassured that they are unlikely to report 

moderator effects when there are none. 

 

                                                 
8 The critical value at a = .05 is 5.44%.   
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Does the product term introduce multicollinearity that affects the constant effects? 

Is it also the case that the effects of the components of the product term, i.e., the 

constant effects, are unaffected by multicollinearity introduced by the specification of the 

product term?  Figure 2 provides information with regard to this question.  Each bar 

represents the percentage of the estimated parameters that is significant for a given level of 

correlation between the focal and the moderator variables.  Concentrating on the left side of 

the graph, the first group of bars from the left represents the intercept ß0 in Equation (1) at 

each of the five levels of correlation (increasing from left to right starting at 0 until 0.8).  The 

second group next to the right of this first group corresponds to ß1, i.e., the coefficient of x1.  

Then comes the group corresponding to ß2, the coefficient of x2 and finally the fourth group 

from the left is for the moderator effect ß3 discussed in the question above, shown by 

subgroup of correlation level rather than aggregated as in Figure 1.  The data generating 

function used for this analysis (represented in these four groups of bars) specified both 

variables x1 and x2 as having constant effects but no moderator effect, while the estimated 

model specification contains both of these variable s as well as their product term.  We 

address separately the question of the impact of the correlation between the focal and the 

moderator variable.  It is noticeable that the significance level of the moderator effect does 

not vary depending on the correlation between these two variables.  However, to answer the 

question raised above, we concentrate on the second and third group of bars corresponding to 

the estimates of ß1 and ß2. 

Even though the base level is difficult to assess because significance depends on the 

true size of the effect (set to one for both variables) and on the regression noise (error term 

variance of the regression), several points can be made.  Significance is greater than just by 

chance at the .05 level, with approximately a 30% chance of being significant.  However, this 

is less than would be generally expected.  The same comment can be made about the 
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intercept coefficients, where only 20% of them are significant (while the value was set at 4).  

The low significance of these effects hints to the existence of a multicollinearity problem that 

would affect all the coefficients except the moderator effect. 

However, this conclusion cannot be made without considering further analyses.  In 

particular, if multicollinearity is the cause of the problem, is it because of the inherent 

correlation of the product term and its components?  This question can be answered by 

considering the parameter estimates from a constant-only-effect model that does not specify 

the product term (no moderator effect).  The summary statistics of these parameter estimates 

are provided in Figure 3, where each group of bars from left to right corresponds to the 

parameters ß0, ß1 and ß2 (the bars within each group corresponds to each level of the 

correlation between x1 and x2).  The Figure shows that most of the coefficients are significant 

(more than 90% of them are significant for both ß1 and ß2 in all but the highest correlation 

level of 0.8, in which case still more than 80% are significant).  Comparing these significance 

levels with those of the fully specified model, the level is reduced dramatically from 90% to 

30% simply by specifying a product term, even when, in fact, there is none and its estimates 

are insignificant. 

Another analysis helps evaluate the poor ability to detect significant constant effects 

from a model estimated with a moderator effect: how sensitive are the results to changes in 

the noise level of the regression?  Figure 4 provides summary statistics that answer that 

question.  Again, each group of bars from left to right represents the percentage of significant 

coefficients, but this time, each bar reflects a different level of noise in the regression.  

Within each group the leftmost bar corresponds to the lowest level of noise in the regression 

(with the two independent variables explaining 99.5% of the variance of the dependent 

variable), the second 80%, and the following ones explaining 54.2%, 35.65%, 24.24%, 

17.23%, 12.75% and 9.76%, as presented in the data generation section of the paper.  As 
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expected, with an almost perfect regression, the parameters are all significant.  However, this 

percentage drops rapidly to the 20% level of significance only for a rather good level of fit 

compared to what one can expect in practice (slightly above 50% explained variance). 

Taken together, these results clearly show that when a product term is introduced for 

testing for moderator effects, multicollinearity is introduced that impacts all coefficients that 

are estimated with large variances.  The inherent collinearity introduced by the product term 

has a huge impact on the ability to make any inference about the constant effects.  

Consequently, it would be prudent to recommend performing the estimation of a model with 

potential moderating effects in two steps.  The first step is to estimate the full model.  Then, if 

the moderator effect is insignificant (which is likely to be the case if there is no such effect, 

as shown in the first part of our analysis), a second step consists of re-estimating a model 

without the product term to estimate the constant effects of the two variables.  These two 

steps correspond to the hierarchical test procedure; however, if the coefficient of the product 

term is significant, coefficients of a model without product term should not be interpreted as 

they are biased due to model misspecification. 

 

Do the answers to these questions vary with the correlation between the focal and the 
moderator variable? 

Contrary to prior convictions that a high correlation between x1 and x2 leads to 

multicollinearity which “may have an adverse effect on the estimated coefficients” (Morris, 

Sherman and Mansfield 1986), McClelland and Judd (1993) make the case that the product 

term correlation with its components has little impact on the ability to detect moderating 

effects.  They demonstrate that, surprisingly, the correlation between the focal variable and 

the moderator variable improves the chances of detecting a moderator effect, due to the 

properties of the distribution of the product term.  They consider, however, only cases when 

there is a moderator effect in the data.  We will treat this case as well, but for the moment, we 
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consider the situation when no such effect exists.  We analyze the impact of the correlation 

between the focal variable and the presumed moderator variable on the significance of the 

estimated moderator effect parameter.  We also analyze the impact that this correlation has on 

the estimation of the constant effects. 

Figure 2 (the leftmost four groups of bars), as described above, presents the 

percentage of significant coefficients for each level of correlation manipulated from 0 to the 

left of each group of bars to 0.8 at the right of each group of bars.  These graphs show no 

effect of the correlation on the detection of significant moderator effects that are consistent 

with the random hypothesis of 5%, regardless of the level of correlation.  Again, this result 

demonstrates the reliability and validity of the tests performed for such moderating effects. 

The impact of the correlation on the other parameters, i.e., the constant effects, is 

however, somewhat positive.  As Figure 2 shows, the percentage of significant constant 

effects increases somewhat with the correlation.  Even at a very high correlation level of 0.8, 

it is not the correlation between the focal and moderator variable that creates multicollinearity 

and the (consequently) lower level of significance.  The effect is small and consistent with the 

positive impact of the correlation noted by McClelland and Judd (1993) on the moderator 

effect when such an effect exists.  When no such effect exists in the data, the positive benefits 

of the distribution of the product term do not appear on the moderator effect but on the 

constant effect tha t is impacted by the covariance of the product term with its individual 

variable (including the intercept term). 

Interestingly, this phenomenon is not reproduced with the constant-only-effect model, 

for which the results are given on Figure 3 for each leve l of correlation.  Here, the increase in 

the correlation reduces the significance level of the constant effects indicating increased 

multicollinearity.  But this effect is relatively small and only marginally significant for the 

largest discrepancy between the lowest and the highest correlation levels. 
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In summary, the correlation between the focal and the presumed moderator variable 

does not impact statistical inference of either the moderating effect or of the constant effects.  

It is the inherent correlation between the product term and its components that lowers the 

significance of the constant effect estimates (but not the moderating effect).  The problems 

are therefore inherent to the model specification, but not due to the lack of independence 

between the focal and the moderator variables.  Thus, it is clear that mean centering cannot 

help at all to remedy this problem, as demonstrated earlier, since it neither affects the 

multicollinearity in the data nor the multicollinearity inherent to the model specification.  

Unfortunately, no method exists to remove this multicollinearity inherent to the model 

specification without losing information and/or without affecting the interpretability of the 

parameters such as ‘Principle Component Regression’ (Morris, Sherman and Mansfield 

1986) where components with lowest eigen values are removed. 

 

What is the impact of specifying the moderator variable as a constant effect in addition 
to the moderation effect? 

We continue to focus on the impact of multicollinearity in testing moderator effects 

when there are no such effects in the data.  The last question we address in this context 

concerns the role of specifying a constant effect of the presumed moderator variable in 

addition to the moderating effect being tested.  This has been recommended based on 

interpretation of interaction term arguments (Cohen 1978; Irwin and McClelland 2001) and 

on the necessary condition of nested models required for hierarchical testing procedures 

(McClelland and Judd 1993).  However, equations (8) and (9) are clear indications that the 

coefficients are all interpretable in the absence of constant effect of the moderator variable, 

and the residuals sum of squares of nested models (with and without a product term) can be 

compared without any problem (as well as other fir statistics based on the residuals sum of 

squares).  So it is not so much in these terms that one finds justification for model 
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specification but more appropriately in the misspecification-bias argument.  If there is a 

constant effect for x2 and no such variable is specified in the estimated model, this will 

invariably introduce a misspecification bias, even in the case where x1 and x2 are 

uncorrelated.  This is because the missing variable will be correlated with the product term of 

the moderator effect.  It is, therefore, critical to evaluate the impact of specifying a model 

with x2 on the ability to detect significant effects (constant and moderator effects). 

In Figure 2, the two groups of bars on the right side display significance levels for 

estimated regressions on data generated without a constant effect of x2.  The middle group of 

bars displays significance levels of an estimated regression without a constant effect of x2, the 

rightmost group of bars displays significance levels of an estimated regression with a 

constant effect of x2.9  Focusing first on the moderator effect parameter ß3, there is no 

difference across the two estimations, with and without x2.  If x2 is not specified as having a 

constant effect, the constant effect of x1 (and the intercept as well) is highly likely to be 

significant (although less so as the correlation between x1.and x2 increases, indicative of the 

increased collinearity of the data).  However, when x2 is specified as having a constant effect 

as well as a moderator effect, the percentage level of significant constant effects of x1 is 

reduced considerable from the 60%-90% range (depending on the correlation) to the 30% 

level found in prior cases where x2 was a significant factor. 

Therefore, introducing an irrelevant factor in the regression can create significant 

inference problems regarding the other factors that are relevant.  As argued above, there is no 

reason due to interpretation or due to testing procedures to include an irrelevant factor.  

Because of the impact this irrelevant factor has on the estimated relevant parameters, model 

specification with or without x2 as a constant effect can only be justified based on theoretical 

considerations.  So, contrary to common recommendations (Irwin and McClelland 2001; 

                                                 
9 We do not consider the case where x2 is in the data generating function but is not in the estimated model, as 
this is the typical problem of misspecification bias that has been analyzed in the econometrics literature. 
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Irwin 2001), it is not wise to automatically specify constant effects in addition to moderator 

effects if theory only justifies a moderating effect.  The absence of significance of a constant 

effect of x2 cannot be used as a pre-test to decide whether or not to include x2 because, as 

shown earlier, any lack of significance could be due to multicollinearity.  Consequently, only 

theory (measurement and substantive) can drive the decision to include a variable as a 

constant effect or not.  However, it should be recognized that this reasoning is not 

independent of the scale of the focal variable, as if it is interval scaled instead of ratio scaled, 

the product term implies that the effect of x2 is only defined up to a constant; this requires that 

a constant effect for x2 is introduced in the estimated equation. 

 

Are the answers to questions 2 through 4 the same when there are moderating effects? 

So far, we have considered a number of questions of practical relevance to the 

researcher with regard to data that did not contain moderating effects.  We started with this 

analysis, which has not been investigated in the prior literature on the subject.  We now 

consider the same questions when such moderator effects do exist in the data.  While such 

Monte-Carlo simulation analysis has been performed on such data, we revisit the conclusions 

in light of our earlier demonstration that multicollinearity is a real issue that cannot be 

resolved by mean centering or any other transformation due to the nature of the product term.   

Consider the question of the difficulty of finding moderating effects, which has 

motivated a large subset of the literature on the estimation of moderating effects.  Figure 1a 

provides a graph of how the percentage of significant moderator effect parameters evolves as 

the true moderator effect increases.  Here again, the absolute numbers are difficult to interpret 

because the significance depends on the size of the effect and on the noise in the regression.  

At minimum, the graph shows that the percentage increases as one would expect with the size 

of the true moderator effect. 
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Figure 5 graphs not only the percentage of significant moderator effects but also those 

of the other parameters.  The graphs for the moderator effects are reproduced on this Figure 

(although they are the same as in Figure 1a) to allow comparison with the percentages 

obtained for the other parameters.  While the size of the true moderator effect is smaller than 

those of the constant effects (except for the highest value of 1 where they are equal), the 

likelihood of finding a significant constant effect is much lower than the likelihood of 

concluding that there is a significant moderating effect.  In fact, these likelihoods are 

extremely low, around the 10% level for any level of moderator effect when one exists (true 

moderator effect>0), which is not fa r from the 5% that would be obtained just by chance.  

Therefore, our earlier conclusion that multicollinearity has little impact on the moderator 

effect but has severe impact on constant effects can be generalized to cases where moderator 

effects exist: the impact of multicollinearity on the ability to detect a moderator effect is less 

severe than its impact on the ability to detect constant effects. 

These graphs also confirm the extreme sensitivity of the estimated parameters to the 

inclusion of an irrelevant constant effect variable.  When a moderator effect exists without a 

constant effect for that variable, the moderator effect is not difficult to detect.  The 

percentages are close to 100%, as can be seen from the middle group of bars in Figure 5.  

However, the multicollinearity problems remain if the estimated equation contains such a 

constant effect (right-side group of graphs in Figure 5).  The constant effect of x1 is also 

better detected (60% level) if the irrelevant x2 variable is omitted.  This indicates that the 

model specification is critical but not in the traditional sense of an omitted variable that 

creates a bias.  Instead, the issue in the context of estimating moderator effects is that 

including irrelevant variables for constant effects at the same time as moderator factors is an 

important source of multicollinearity problems. 
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It is interesting to contrast the graphs in Figure 6 with those of Figure 2.  In both 

Figures, the graphs show the percentage of significant coefficients as a function of the 

correlation between x1 and x2.  But in one case (Figure 2), there is no moderator effect in the 

data and in the other (Figure 6), such effects exist (the plots are aggregated across other 

conditions).  The bars that correspond to the moderator effects are around the 5% level in 

Figure 2 (as discussed earlier) while somewhere around the 30% line in Figure 6, except 

when x2 is not involved (the middle group of bars), where it reaches the 90% level.  Even in 

the case of extremely high correlation between x1 and x2 (i.e., 0.8), the percentage of 

significant moderator effects is above 80%.  The other effects would appear generally similar, 

leading to the same conclusions as presented earlier.  Introducing a constant effect at the 

same time as a moderator effect reduces significantly the likelihood of finding any significant 

constant effects. 

One aspect of the graphs in Figure 6 is unexpected.  As noted by McClelland and 

Judd (1993), “increasing correlation between X and Z [here x1 and x2], with all else equal, 

improves the chances of detecting moderator effects,” (p. 380).  This is indeed reflected in the 

results graphed in Figure 6 for the model with a constant effect of x2 being estimated, whether 

the data contain such a constant effect (group of bars on the left side) or not (group of bars on 

the right side).  The effect, however, is not very large, as it requires high correlations for no 

more than an average 5% difference.  Nevertheless, it does correspond to the statistical 

explanations provided by McCle lland and Judd (1993).  What is intriguing is that this effect 

is reversed if x2 is not specified as a constant effect to be estimated (middle group of bars in 

Figure 6).  Furthermore, this reversal applies to all the coefficients (consistent with what 

happens in Figure 2 where there is no moderating effect in the data).  The pattern exhibited in 

the middle bars of Figure 6 is typical of the increased multicollinearity induced by the 

correlation between x1 and x2, which is reflected in a smaller percentage of significant 
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coefficients as the correlation increases.  The overall multicollinearity problems are even 

more dominant when x2 appears both as a moderator effect and as a constant effect, as 

evidenced by a significantly lower percentage of significant coefficients.  Therefore, it 

appears that the general multicollinearity problem interacts with the particular specific form 

of correlation implicit between the product term and its components.  This does not affect the 

moderator (McClelland and Judd 1993) but does impact the constant effects. 

In summary, the conclusions obtained from simpler data involving no moderator 

effect can be extended to data including moderating effects.  It is the inherent correlation 

between the product term and its components that lowers the significance of constant effects, 

even though it does not affect the significance of moderator effects.  The correlation between 

the focal variable and the moderator variable increases somewhat the significance of the 

moderator effect when this variable is also specified as having a constant effect (McClelland 

and Judd 1993).  However, this result does not hold independently of the model specification, 

as it decreases slightly the likelihood of finding significant moderator effects when x2 is only 

specified as a moderating factor. 

 

What is the impact of recognizing the existence of a stochastic element in the 
moderating effect? 

Given the major problems of multicollinearity demonstrated above (introduced by 

both the product term and by the specification of moderator variables as constant effects), it is 

critical to investigate solutions to this problem.  Multicollinearity is a problem of statistical 

power in the sense that it does not introduce biases but makes it difficult to establish 

significant relationships.  The mean centering approach proposed earlier was shown to be 

incapable of resolving the problems at hand.  Therefore, it is necessary to investigate new 

avenues for solving this statistical efficiency problem.  We do so below. 
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Additional information is the general solution to multicollinearity (Leamer 1978).  We 

propose a method that takes into account the full information about the specification of a 

moderator effect, i.e., not only the deterministic relationship that explains the varying nature 

of a moderator effect but also its stochastic component as depicted in the model specified by 

equations (8) and (9).  An asymptotically efficient estimation of such a model is the 

Generalized Least Squares estimator.  The Appendix provides the details of such an 

estimation method.  The improved efficiency is due to the information contained in the 

residuals and the particular form of heteroscedasticity implied by the moderator effect 

equation.  However, in the case of no moderator effect, the variance of the error term should 

be independent of the focal variable and the only gain in efficiency to be expected would be 

due to the stochastic nature of the constant effect of x1. 

The datasets generated and discussed above were re-analyzed with the varying 

parameter model estimated with the Hildreth and Houck (1968) method (described in the 

Appendix).  This method provides parameter estimates that are asymptotically efficient while 

OLS estimates are not.  Our criterion for measuring efficiency is the Generalized Mean 

Squared Errors defined as ˆ ˆ ˆ ˆMSE( ) ( )( ) V[ ]β β β β β β′= − − +  (Judge et al. 1985).  Even 

though the OLS parameter estimates are unbiased, they are unreliable due to multicollinearity 

and this is reflected by the first component of the MSE measure.  We compare the gains in 

efficiency by taking the difference in the trace of the Generalized Mean Squared Errors 

obtained from OLS and those obtained from VPM estimations.  This difference provides an 

overall measure of the improvements across all the model parameters.  Figure 7a plots the 

gains in efficiency obtained from VPM estimation relative to OLS as a function of the size of 

the noise in the moderator equation.  Indeed, the nature of the heteroscedasticity specified by 

Equation (12), 2 2 2
1 1V[ ]i i i u iu x x εε σ σ+ = +  explains why the benefits of the approach are not 

unconditional.  Efficiency gains depend on the ability to estimate the components of the 
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variance, i.e., s 2
u and s 2

e.  This ability is a function of the relative size of the three 

components, s 2
u , s 2

e. , and the variance exhibited by x1i.  If the first component s 2
u is large 

compared to the second part of the sum there is little gain in efficiency left since the variance 

is basically homoscedastic.  Also, if x1i exhibits only a small variance relative to the noise of 

the response equation or of the moderator equation, the auxiliary regression corresponding to 

the estimation of Equation (33) in the Appendix cannot provide sufficient information.  

Because the variance of x1i was fixed to one in our Monte-Carlo simulation, we only need to 

consider how the efficiency varies as a function of the noise in the moderator equation, i.e., 

Figure 7a.  As expected, the gain in efficiency increases with the noise in the moderator 

equation.  The extent of the gains in efficiency can also be observed as the sample size 

decreases (Figure 7b).  Therefore, varying parameter estimation appears particularly useful 

when the sample size is small and the moderating effect is noisy.  These are rather typical 

contexts in which empirical tests are performed.  Two additional observations must be made, 

however: (1) the gain in efficiency is not identical across the estimated parameters and (2) a 

gain in efficiency does not necessarily imply a greater proportion of statistically significant 

parameter estimates. 

Considering separately the gains in efficiency of the intercept and the gains on the 

other parameters, the pattern remains the same as in Figures 9a and 9b; however, the 

magnitude is much larger for the intercept term (50 times larger for the intercept than for the 

other coefficients).  Given that in most cases the intercept is not of strong theoretical interest, 

the benefits of using a more efficient estimation method seem to be limited.  However, this 

conclusion is based on average effects, and in any particular case analysis may benefit from 

this more efficient estimation. 

The second point concerns the statistical significance of the individual parameters.  

The impact of using a more efficient estimation method on the statistical significance does 
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not appear very strong (Figures 10a and 10b show small differences with the results shown in 

Figures 7 and 8).  This is due to the fact that, in spite of smaller variances of the parameter 

estimates, the varying parameter model estimates are closer to the true parameter which are 

typically smaller than the ones obtained from OLS.10  Taking the ratio of the smaller 

parameter estimate with its smaller standard error does not necessarily lead to stronger t 

statistics.  This is why the differences are small in Figure 1a between the results of the 

varying parameter model with those obtained from OLS estimation.  However, our Monte-

Carlo study shows that varying parameter model estimates tend to reduce the effect of 

multicollinearity in providing estimates that are more reliable (closer to their true value) and 

with a smaller standard deviation.   

 

CONCLUSION 

Theories in the social sciences including marketing are increasingly involving 

sophisticated explanatory mechanisms that generate contingent predictions.  In many cases, 

data are available in the quantity and quality that is necessary to test such predictions.  Yet, 

the sophistication of econometric methods commonly employed to treat these data has not 

always been well matched to the task.  What has been missing is an appropriate means of 

estimating moderating effects.  Specifically, particular attention must be given to the 

multicollinearity resulting from introducing a product term in a regression. 

There has been a premature and unwarranted consensus that mean centering, followed 

by OLS estimation of models with product terms, is the solution.  We have documented that 

this is a myth.  Mean centering has no effect at all on multicollinearity.  Furthermore, 

multicollinearity problems in moderated regressions arise not due to ill-conditioning of the 

data (especially the lack of independence between the focal and the moderator variables), but 

                                                 
10 Based on the information detailed in Table 1, the median reliability of the coefficients is improved by 10.8%, 
8.5%, 9.8%, and 7.7% for the intercept, the constant effects x1 and x2, and the moderator effect, respectively.  
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due to multicollinearity inherent to a model specification with a product term.  Contrary to 

common persuasion, this model- inherent multicollinearity has very little effect on moderating 

or interaction estimates.  However, it has very strong effects on the ability to detect constant 

effects.  Therefore, no simple rule (i.e., always include constant and product terms for all 

variables) can be used for model specification.  Only theory can justify the specification of 

both moderator effects and constant effects, especially when including a variable as a 

constant effect and as a moderator variable.  Exploratory searches for moderator effects are 

especially dangerous, as they are likely to dampen the significance of all parameter estimates, 

due to the collinearity structure of data built from product terms.   

We propose that Varying Parameter Models (VPM) can contribute to solve the model-

inherent multicollinearity problem.  In contrast to OLS, VPM makes use of the information 

about the error term structure, as implied by a conceptually appealing theory of moderating 

variables.  Incorporating this information leads to more efficient estimation, which is badly 

needed for handling structurally introduced multicollinearity.  Varying Parameter Models 

have the promise of detecting genuine moderating and constant effects, especially in data sets 

of modest size.  As such, VPM is well matched to the increasingly sophisticated theorizing 

that underlies contemporary social science models. 
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Table 1: Generalized Mean Squared Errors of OLS and VPM Coefficients as a 
Function of the Noise in the Moderator Equation 

 
Bias (median) 

Noise in Moderator 
Equation  ß0 ß1 ß2 ß3 

OLS 423.81 4.413 4.362 0.0437 0.4 
VPM 405.98 4.285 4.153 0.0427 
OLS 1347.79 14.058 13.904 0.1388 0.8 
VPM 1247.73 13.238 13.043 0.1308 
OLS 2904.03 31.268 29.830 0.3124 1.2 
VPM 2704.78 28.710 27.331 0.2850 
OLS 5089.42 52.356 52.737 0.5327 1.6 
VPM 4777.03 49.489 49.156 0.4973 
OLS 7989.31 83.938 82.159 0.8433 2 
VPM 7333.18 78.473 74.628 0.7680 

      
      

Variance (median) 

  ß0 ß1 ß2 ß3 
OLS 848.20 8.571 8.551 0.0842 0.4 
VPM 792.50 8.219 8.082 0.0817 
OLS 2627.22 26.390 26.464 0.2604 0.8 
VPM 2435.47 25.197 24.805 0.2492 
OLS 5677.77 56.968 56.948 0.5617 1.2 
VPM 5225.17 54.246 53.267 0.5398 
OLS 9867.41 99.257 99.316 0.9767 1.6 
VPM 9066.89 94.245 92.476 0.9337 
OLS 15221.97 153.327 153.781 1.5051 2 
VPM 13827.96 144.385 141.826 1.4344 

      
      

Generalized Mean Squared Error (median) 

  ß0 ß1 ß2 ß3 
OLS 1502.67 15.265 15.349 0.1518 0.4 
VPM 1434.47 14.805 14.709 0.1477 
OLS 4739.46 48.312 48.590 0.4776 0.8 
VPM 4393.04 45.784 45.092 0.4542 
OLS 10250.19 105.267 103.836 1.0362 1.2 
VPM 9375.44 98.048 95.168 0.9705 
OLS 17454.35 179.321 176.909 1.7561 1.6 
VPM 16187.78 169.078 165.470 1.6712 
OLS 27429.31 280.594 277.936 2.7651 2 
VPM 25021.34 263.154 253.855 2.6036 
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Figure 1a: Percentage of Significant Estimated Moderator Coefficients as a Function of 
the True Moderator Effect 
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Figure 1b:Distribution of Estimated Moderator Coefficients (OLS) and of t-Statistics 
when no Moderator Effect is Present in the Data Generating Function 
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Figure 2:  Percentage of Significant Coefficients (OLS) as a Function of the Correlation 
between x1 and x2 when no Moderator Effect is Present 
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Figure 3:  Percentage of Significant Coefficients for Constant-Only-Effect Model as a 
Function of the Correlation between x1 and x2 when no Moderator Effect is 

Present 
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Figure 4: Percentage of Significant Coefficients (OLS) as a Function of Regression 
Noise when no Moderator Effect is Present 
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Figure 5: Percentage of Significant Coefficients (OLS) as a Function of the True 
Moderator Effect 
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Figure 6: Percentage of Significant Coefficients (OLS) as a Function of the Correlation 
between x1 and x2 in the Presence of Moderator Effects 
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Figure 7a: Efficiency Difference between OLS and VPM Coefficients as a Function of 
Noise in Moderator Equation 

(Positive values indicate the extent of increased efficiency of VPM vs. OLS) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7b: Efficiency Difference between OLS and VPM Coefficients as a Function of 

Sample Size  
(Positive values indicate the extent of increased efficiency of VPM vs. OLS) 
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Figure 8a: Percentage of Significant Coefficients (VPM) as a Function of the True 
Moderator Effect 
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Figure 8b: Percentage of Significant Coefficients (VPM) as a Function of the  
Correlation Between x1 and x2 in the Presence of Moderator Effects 
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APPENDIX: ESTIMATION OF VARYING PARAMETER MODEL 
 

Varying parameter models have been introduced in the econometrics literature with 

the random coefficient model of Hildreth and Houck (1968).  Judge et al. (1985) show that 

varying parameter models belong to the class of heteroscedastic error models, where the 

variance of yi is a linear function of a set of variables and compares several estimation 

methods.  The case of moderator variables is identical to these models.  Consequently, the 

following estimation method is proposed.   

Generalizing the model expressed in Equations (8) and (9), the main equation is linear 

(possibly after transformation of the original variables) and for a single observation i is: 

 
1x1 1xK Kx1 1x1

'i i i iy uβ= +x  (13) 

 where, for each observation i:  

 
[ ]

2 2

E 0

E

i

i u

u

u σ

=

  = 
 

The coefficient for each variable is also indexed by the observation index i to represent that it 

varies over observations: βki.  The coefficient of each explanatory variable xk may now be 

expressed in terms of moderator variables ri. The vector ri represents the values of G 

variables for observation i. 

 
1x1 1xGGx1 1x1

ki i k kiβ α ε= +r  (14) 

The vector α k contains the coefficients reflecting the extent to which the variables rgi affect 

(i.e., moderate) the coefficient βki.  A random term ε also reflects the stochasticity of β . 

Equation (14) can be extended to include all the K coefficients composing the vector β i (and 

a fortiori, only a subset of these parameters): 
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 (15) 

This can be written more compactly as: 

 
( ) ( )KGx1Kx1 KxKG Kx1

i i iβ α ε= +R  (16) 
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This moderator equation is referred to more generally as the process function because it 

explains the way the variables in the original equation (13) predict the dependent variable.   

The error term is distributed with the following characteristics: 

 
[ ]

{ }' 2

KxK

E

E
k

i

i i diag ω

ε

ε ε σ

=

  = Ω = 

0
 

Therefore, the error terms in the process function are independent but the variances are 

different for different variable xk it tries to explain. 

 

By replacing Equation (16) into Equation (13), we obtain 

 
KGx11xK KxKG

'i i i i iy uα ε = + + 
 

x R  (17) 

  ' 'i i i i iuα ε= + +x R x  (18) 

Bringing together the components of the error term, this can be written as: 

 
1xS

'i i iy eα= +p  (19) 

where: 

S= KG 

i i i′ ′=p x R  

i i i ie uε′= +x  

Consequently, the error term is normally distributed with the following mean and variance: 

 [ ]E 0ie =  
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Then: 
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 2 2 '

Qx11xQ
E i i iε σ γ  = =  z  (22) 

where Q=K+1 

 [ ]: E 0t si s ε ε∀ ≠ =  

Therefore the covariance matrix for the full set of observations is: 

 [ ] { }E ' 'iee diagφ γ= = z  (23) 

The parameter vector α in Equation (19) can be estimated using the Generalized Least 

Square (GLS) estimator: 

$ ' 'α φ φ
Sx1 SxT TxT TxS SxT TxT Tx1

= FH IK−
−

−P P P y1
1

1  (24) 

Because φ  is diagonal, the GLS estimator is therefore a weighted least squares estimator: 

 ( )
11N N 1

1 11x1 SxS Sx11x1

ˆ ' ' 'i i i i i i
i i

α γ γ
−−

−

= =

  = Σ Σ  
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z P P z P y  (25) 

The parameter γ  is not known but if we replace it with a consistent estimator, we can obtain 

the estimated generalized least squares estimator: 

 ( ) ( )
1N N1 1

1 1
ˆ ˆ ˆ' ' 'EGLS i i i i i i

i i
α γ γ

−
− −

= =
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z P P z P y  (26) 

It remains to obtain a consistent estimator $γ for γ: 

 2E 'i iε γ  =  z  (27) 

 2 2 2ˆ ˆ' Ei i i i i iv vε γ ε ε = + ⇒ = −  z  (28) 

  ˆ ˆ'  i i i OLSε α= −y P  

  where $ ' 'α OLS = −P P P yb g 1  (29) 
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 Then, it can be shown that 

  ε̂ γ  = E MZ& &  (30) 
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  where ( ) 1

N N
' '

x

−
= −M I P P P P  (31) 

 Consequently: 

  ε̂ γ= +MZ W& &  (32) 

 The ordinary least square for γ  can then be obtained: 

 ( ) 1
ˆ ˆ

OLSγ ε
−

= Z'MMZ Z'M && & &  (33) 

 When replaced into Equation (26), the EGLS estimator of α  is: 

 ( ) ( )
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− −
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