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Abstract

The curse of the Revelation Principle is that it leads us to focus on unrealistic mechanisms
in which agents report all private information to the principal, who then makes all deci-
sions centrally. This is not true when communication costs are introduced. Then partial
communication of information, sequential back-and-forth conversations, and decentral-
ization of decisions become part of optimal mechanisms. This paper looks at the interplay
between the incentive constraints and the communication constraints. When can they be
separated, so that e.g. one can separately study the incentive compatibility of a social
choice rule and the minimum-cost communication protocol that realizes the social choice
rule? (JEL: D82, C72)

1. Introduction

The Revelation Principle in mechanism design is both a blessing and a curse. It is a bless-
ing because it so greatly simplifies the design of optimal mechanisms and allows one to
abstract from the details of the mechanism and focus on the social choice rule to be im-
plemented. It is a curse because direct mechanisms provide such an unrealistic picture of
decision-making in organizations. Only in the simplest of cases, such as private-values
auctions of a single good, does it ring true that the privately-informed agents reveal all
their information to a central authority, which then determines all decisions according to
a pre-specified contract.

The obvious explanation of why organizations are run by intricate and indirect flows
of partial information is that it would be too complex for everyone to communicate all
information to one person and for this one person to process and use this information.
The integration of mechanism design and complexity considerations using formal models
of complexity has been labeled algorithmic mechanism design in the field of theoretical
computer science, where this area of research has recently received considerable attention.

There are two aspects to this complexity: communication complexity and compu-
tational complexity. Both capture certain limits on human brainpower. In the case of
communication, the main bottlenecks are not the networks, mail systems, or other infras-
tructures that transmit information from one human to another, but rather the processing
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ability of the humans, particularly on the receiving end.

This note looks at communication complexity in mechanism design. One motive for
studying communication (rather than computation) complexity is convenience. Commu-
nication is modeled by a message game—just like our mechanisms—and so we do not
have add new machinery to the description of a mechanism; we only add a measure of
communication complexity. In contrast, to model computation, we need to bring in mod-
els of information processing that are not currently part of mechanism design and that tend
to be unfamiliar to economists. The two parts do not fit neatly together.

The main theme of this note is to consider when communication complexity and in-
centive constraints interact in an interesting (and complicated) way. We show that, for ex
post Nash implementation, there is a nice separation between the checking of incentive
compatibility constraints of a social choice function and the design of a communication-
efficient protocol to compute the social choice function. This separation does not exist
for the other notions of incentive compatibility that we consider. One implication of the
separation is that (when it holds) incentives constraints do not increase the communica-
tion complexity of computing a social choice function. However, this implication is not as
strong as it sounds. For example, in a model with quasilinear preferences, if the principal
does not care about the transfers, then the cost of computing a decision rule for the non-
transfer part of an outcome is increased when there are incentive constraints—due to the
need to compute also transfers that make the social choice function incentive compatible
(Fadel and Segal (2006)).

Besides the point outlined in that paragraph, this note is also intended to be a brief
introduction to the modeling of communication complexity in mechanism design. The
focus is on formal models of such complexity, and we do not attempt to review the papers
that have already studied mechanism design with communication constraints. There are
quite a few, though still a small part of the mechanism design literature. Seminal papers
include Green and Laffont (1986, 1987), Melumad, Mookherjee, and Reichelstein (1992,
1997), and Laffont and Martimort (1998). See Poitevin (2000) and Mookherjee (2006) for
surveys. Nor will we attempt to survey the literature on communication complexity that
does not take into account incentives (which includes both work in computer science and
early work on message space size in economics). A recent contribution in this area that is
also a good introduction and guide to the literature is Nisan and Segal (2006).

2. Elements of a model

Let’s fix notation for some standard components of static mechanism design. (“Static”
refers to the fact that agents receive private information once and decisions are made at
just one point in time, as opposed to a flow of information and decisions. The mechanisms
may still involve dynamic message games.) Exogenous parts of the model including the
following.

e SetN = {1,...,n} of agents.
* Vie N:set©; of “types”. (Let®@ =0 x -+ x 0,.)
* Set X of outcomes.

* Preferences x i; x' for each i that depend on the state 6 € O.
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FIGURE 1. Two binary trees for communicating 6 € {1,...,0}.

 (If Bayesian) utilities u;: X x © — R.
* (If Bayesian) probability measure p on O.

We then determine endogenously the following.

¢ A social choice function f: ® - X.

* A mechanism, which is an extensive game form I" with terminal histories assigned to
outcomes in X. Actions in the mechanism are called messages.

» A plan of action for player i specifies the message that player i sends at each informa-
tion set. Let S; be the set of plans of action, with typical element s;.

* A strategy o; for player i specifies each message as a function of the player’s type,
ie., 0;: ©; = S;. Let X; be the set of strategies.

* For a profile s of plans of action, let A(s) be the outcome at the terminal node reached
when players use s.

* A pair (I', 0), where I" is a mechanism and o is a strategy profile, is called a protocol.
A protocol (I, o) “computes” a s.c.f. f, defined by f(6) = A(c1(61),...,0,(8,)).

3. One-way communication complexity: bits

This note will not get into the finer details of measuring communication complexity. We
will merely outline the most common measure when communication is discrete: bits.

For this purpose, suppose that a there is a single player, so that © is that player’s type
space. Suppose that a player reports the value of ® = {1,...,8}. Communication is
represented by a binary tree with 8 leaves, as in Figure 1.

There are different trees that can be used to communicate 6. Each tree can be repre-
sented by a binary tree with leaves ©, and so the set of possible communication protocols
is the set I (®) of such binary trees. For T € 97 (0©), let 6(6, T') be the depth of leaf 6 in T
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If we measure complexity by maximum path length (“worst-case”, or maxgee 6(0, T)),
then complexity is minimized by a balanced binary tree (left side of Figure 1). If instead we
measure complexity by the expected path length, Y4co p(6)6(6, T). then for non-uniform
distribution on the set of types, we may want to use an imbalanced tree (such as the one
on the right side of Figure 1), such that the most likely types require shorter messages.

4. The advantage of interactive communication

In a direct mechanism, all players simultaneously report their entire types to a central
authority. There is none of the back-and-forth dialogue that exists in organizations.

It is easy to illustrate the advantage of dialogue when we want to reduce communi-
cation complexity. For example, suppose that there are two players, 1 and 2. The players
must choose which of two paths to go down to find a hidden treasure, Left or Right. Player
2 has two clues, a blue card and a red card, each of which has as the name of a path.
Player 1 knows which of the two cards has the name of the path with the treasure. Thus,
©, = {Blue,Red} and ©, = {Left, Right}>. If the two players simultaneously announce
their messages, then to reveal enough information to determine the correct path each must
reveal its type, which amounts to one bit of information from player 1 and two bits from
player 2. One bit can be economized by having player 1 first announce his information—
which of player 2’s clues contains the name of the path—and then player 2 announces
only the name of the path written on that clue.

5. Incentives and complexity

The main purpose of this note is to consider the interaction between communication com-
plexity and incentive compatibility.
What would it mean for there to be no interaction? This would be true if

1. an economist can examine a social choice function and determine whether it is incen-
tive compatible (in some sense) without considering the details of a communication
protocol, and then

2. acomputer scientist can design a minimum-complexity communication protocol (with
some restrictions) that realizes the social choice function, without worrying about in-
centive constraints.

The separation we are looking for is a converse of the Revelation Principle, as illus-
trated in Figure 2 and now explained. Fix a s.c.f. f.

» Let (T, o) be a protocol that computes f.
* Let (T'?, 6P) be the direct mechanism with truthful revelation that computes f.

Given some notion of incentive compatibility, the Revelation Principle says that (I, 6°)
is IC if (T, o) is IC. Suppose that a converse holds: If (I'?,¢P) is IC then (T, o) is IC
compatible. Then we get the separation alluded to above. The economist checks the IC
constraints of f by looking at a direct mechanism with truthful revelation. The computer
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Revelation Principle

(T, o) satisfies (TP, 6P) satisfies
IC constraints? IC constraints?

A converse?

FIGURE 2. “Separation” is a converse of the Revelation Principle.

scientists then designs the communication-efficient protocol. According to the converse,
whichever protocol the computer scientists comes up with will satisfy the IC constraints.

A further consequence of the separation is that incentive constraints do not increase
the communication complexity of computing a given s.c.f. f. The IC constraints merely
limit the set of feasible social choice functions.

6. Counter example: Dominant strategy implementation

We start with a counterexample, which helps illustrate the above.

Consider a private-values environment and suppose that we are interested in dominant-
strategy implementation. That is, the incentive constraint that the economist imposes on
a protocol is that each player’s plan of action for each of the player’s types be a dominant
strategy for the player in the extensive-form game.

Suppose there are two players, 1 and 2. Suppose that @, = ©, = {H,T} and X =
{Xuw, Xur, Xru, Xrr ). Let f be the s.c.f. such that f(6;,6,) = Xy,4,. Suppose that player
1’s preferences are as follows:

* When 91 =H: XHT >1H XTT >1H XHH >1H XTH~
* When 6, = T: Xry >17 Xun >17 Xrr >17 Xry.

Then f is DS incentive compatible. The DS-IC constraints are

* Xyr >u Xrr and Xyy >y Xry;
* Xru > 17 Xyn and Xpp > 17 Xrp.

Consider the mechanism in Figure 3. The strategy profile “each player chooses his
type” yields the s.c.f. f, and it has 2 bits of communication—the minimum. However, for
player 1 when of type H, choosing H is not a best response to player’s 2 plan of action
“H following H and T following 7. For player 1, choosing T leads to the outcome Xrr
whereas choosing H leads to the outcome Xyy, yet Xrr > 1y Xyn-
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Player 1

Player 2 Player 2

XHH XHT XTH XTT

FIGURE 3. A counterexample for dominant-strategy implementation.

7. Ex-post implementation

For direct mechanisms in a private-values setting, ex-post Nash equilibrium is the same
as dominant-strategy equilibrium. This is not true for indirect mechanisms.

In games of complete information, dominant-strategy equilibrium takes care of a ro-
bustness consideration: it does not require the coordination that leads to common knowl-
edge of expectations or of equilibrium strategies. In games of incomplete information,
dominant-strategy equilibrium takes care of another robustness consideration: that beliefs
may not be common knowledge or, in the case of mechanism design, may not be known
to the mechanism-designer. Ex-post Nash equilibrium takes care only of this second one:
in contrast to Bayesian Nash equilibrium, it is belief-free.

Consider, in our previous example, the plan of action by player 2 to which player 1’s
strategy was not a best response. That plan of action was not chosen by any type of player
2 given the protocol, yet dominant-strategy equilibrium requires that 1’s action be a best
response to it. In contrast, in ex-post Nash, we only require that player 1’s plan of action
be a best response to those plans of action chosen by some type of player 2. This is true
in the previous example.

Let’s review what we are trying to show. Ex-post Nash equilibrium in a direct mech-
anism means that, for any type of player 2, player 1’s payoff from choosing his type is as
high as his payoff from reporting a different type. In ex-post Nash equilibrium in a general
mechanism, the condition is that, for the plan of action of any type of player 2, player 1’s
payoff from choosing the plan of action of his type is as high as choosing any other plan of
action. The latter follows from the former as long as “choosing any other plan of action”
is the same, in terms of outcomes, as “‘choosing the plan of action of some other type of
player 1. That is, as long as deviating in the indirect mechanism means acting as if one
were of a different type.

This is true (we will show) as long as all leaves in the extensive game form of the
protocol are reached for some profile of types. We call a protocol with this property par-
simonious.

DEFINITION 1. A protocol is parsimonious if every leaf is reached for some state.
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XrT

Player 2 Player 2

Xun Xur XrH XrT

FIGURE 4. A non-parsimonious protocol.

We illustrate it with a counterexample, which is a modification of our previous exam-
ple. The extensive game form is shown in Figure 4. The strategies are the following.

* Player 1. Type H: R then H. Type T: Rthen T.
* Player 2. Type H: Always H. Type T: Always T.

This protocol yields the same social choice function as in the previous example. It is not
parsimonious because the left-most leaf is not reached for any profile of types. It does not
satisfy the ex-post Nash IC constraints: for when player 1 is type H and player 2 is type
H, choosing L (leading to outcome X77) is better than following the protocol (leading to
outcome Xyp).

A non-parsimonious protocol can always be “pruned” to yield a parsimonious protocol
that yields the same social choice function. First eliminate all unreached edges (and the
final node of each such edge) in the extensive game form (this can be done in one step,
rather than iteratively). This may leave some nodes with a single edge leading from them
(each one is part of an information set at which the player has a single possible message
and hence does actually not have any choice to make); each such edge can be eliminated,
collapsing the two nodes connected by the edge. In a game with perfect recall (to which
we restrict attention), such pruning naturally preserves the information structure of the
game.

The pruned game is simpler by several measures. First, it may reduce (but never in-
crease) the worst-case communication complexity. Second, it reduces the average commu-
nication complexity for any probability measure on the profiles of types. Third, it reduces
the complexity of describing the protocol. Thus, a computer scientist designing minimum-
complexity protocols would naturally restrict her attention to parsimonious protocols.

We have been using examples with private values, but our separation result for ex-post
implementation holds without such an assumption.
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PrROPOSITION 1. Suppose a protocol is parsimonious and suppose it realizes a s.c.f. that
is ex post implementable. Then the strategy profile is an ex post Nash equilibrium of the
mechanism.

Proof. Let (I, o) be the protocol and let f be the s.c.f. realized by the protocol. Let i be
one of the players. The ex-post IC constraints for player i for the s.c.f. f are

V6;,6_,6; : JO10-) Zigg ) F(O.6-0. ey
The ex-post IC constraints for player i for an indirect protocal are

v6;,0_;, S§ : A0i(0),0-i(6-)) zégi_'g_i) ﬂ(ﬁ, c-i(0-)). 2

Let’s examine equation (2) for a particular 6, 6_;, and s/. Assuming that the indi-
rect protocol computes f, the Lh.s. of equation (2) is f(6;,0-;). Now consider the r.h.s.
Since the protocol is parsimonious, there is some state 6’ such that the terminal node
A(s}, 0_i(6_;)) is reached. That is,

Alsi, 0-(0-1) = A(0:(0)), 0-:(0_,)) 3

If two pairs (s;,s_;) and (s},s” ) of plans of action reach the same terminal node, then
(si,8",) and (s}, s_;) also reach that node. (Each pair reaches the terminal node if and only
if, at each information set on the path to that node, each individual plan of action chooses
the action that continues along that path.) Thus,

Aoi(8)), 0-(6-)) = A(0i(6)),0-:(0-1)) . “
Again, since the indirect mechanism computes f,

Moi(0)), 0-1(0-) = f(8},0-) . ®)

Now use equations (3), (4), and (5) to replace the r.h.s. of equation (2) by f(6’,6_;). Re-
member also that the Lh.s. is f(6;,6_;). Thus, this IC is equivalent to

FO0-0) Zig, 0 [(66-0.

This is just one of the IC constraints for the direct mechanism, in equation (1), which are
assumed to hold. O

8. Nash and SPE implementation

Recall that the information structure in Nash and SPE implementation is that all agents
have the same information. Therefore, without incentive problems, efficient communi-
cation is for one agent to announce the desired outcome. Incentive constraints make this
impossible. There is no separation and incentive constraints may greatly increase the com-
munication complexity of computing a social choice function. SPE is probably better than
Nash, however, because SPE takes advantage of interactive communication.
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9. Bayesian mechanism design

Nash and SPE implementation can be viewed as a special case of Bayesian mechanism
design (with perfect correlation of types), so we already have examples showing that in-
centives can increase communication complexity. Fadel and Segal (2006) contains further
examples. Fadel and Segal refer to the lack of separation as a need to “hide” informa-
tion due to the incentive constraints, which thereby raises communication complexity. We
leave unexplored in this short note the quantitative impact and whether there are subclasses
of problems for which the separation holds.

10. Transferable utility

The separation does not mean that incentives constraints do not increase communication
complexity given some objective of the principle. The principle may have economic objec-
tives with indifference classes of social choice functions. Within an indifference class, the
different social choice functions may have different communication complexities. Even
with separation, the incentive constraints may make infeasible the low-complexity social
choice functions, thereby raising the communication cost of achieving a target indifferent
class.

This is a rather abstract introduction that frames the following leading and motivating
example: when there is transferable (quasilinear) utility and the principle does not care
about the transfers.

Specifically, suppose that the outcomes space can be decomposed as X = X x R”,
where R" are profiles of transfers. Call g: ® — X an allocation. It is common in such
settings that the principle cares only about the allocation. The transfers are merely a means
to align incentives. The need to compute transfers at best has no effect on complexity
but will typically add to the communication complexity. Hence, we can ask, for a given
allocation, how much does communication complexity rise due to the need to compute
transfers in order to satisfy incentive constraints? Fadel and Segal (2006) study precisely
this question, for ex post Nash implementation.
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