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Abstract

Engineering change orders (ECOs) are important drivers of development costs and
lead time.  This article analyzes the process of administering engineering change
orders in the case of the climate control system development within a large vehicle
development project.  This administrative process encompasses the emergence of a
change (e.g., a problem or a market-driven feature change), its management approval
and final implementation.  Despite strong time pressure, this process can take several
weeks, several months, and, in extreme cases, even over a year.  Such a long lead time
is especially remarkable as the actual processing time for the change typically does not
exceed two weeks.  Based on our case study, we develop an analytical framework
that explains how such an extreme ratio between theoretical processing time and
actual lead time is possible.  The framework identifies congestion, stemming from
scarce capacity coupled with processing variability, as a major lead time contributor.
We outline five improvement strategies which an organization can use in order to
reduce ECO lead time, namely flexible capacity, balanced workloads, merged tasks,
pooling, and reduced set-ups and batching.



Accelerating the Process of Engineering Change Orders

Introduction

Engineering change orders (ECOs) – changes to parts, drawings or software that have
already been released – are important drivers of development costs and lead time. Given
this importance of ECOs, most large organizations use a formal support process
administering these changes.  This ECO process is present at the back end of almost all
complex new product development (NPD) projects.  It has been identified as one of the
root causes of high ECO costs [5], which in many projects can account for one third to
one half of engineering capacity [21] and 20-50% of tool costs [17].

In an in-depth field study of the climate control system (CCS) development in a new
vehicle (reported in [22]), we have identified congestion, stemming from scarce
engineering capacity, as one of the main drivers of long ECO lead times.  Specifically, we
have observed numerous cases where the overall lead time exceeded the pure problem-
solving time by a factor 10 and more.  This observation is consistent with Blackburn [4]
who reports that the value-added time for ECOs in airframe manufacturing is as low as
8.5%.  Thus, for each day of actual processing time, there are two weeks of non-value-
added time.  Most of this non-value-added time is waiting time.  But how is it possible
that a process that has a net task time (value-added time) of less than a week, takes a full
month?  What happens in the residual time? And finally, how can we improve the ratio
between value-added time and non-value-added time?

The present article provides a detailed analysis of the ECO support process of complex
NPD projects. The analysis is based on the theory of queueing and congestion applied to
the ECO process.  Queueing theory has found successful applications in manufacturing
[15] and services [11].  We use queueing models to describe the detailed flows of
documents and information in the ECO process.  This approach allows us to explain the
disproportionately long waiting times and to identify five improvement strategies, namely
flexible capacity, balanced workloads, merged tasks, pooling, and reduced set-ups and
batching, and apply them to the example of the ECO process.

Background

The effects of congestion on throughput times are well-known in manufacturing and
service contexts (e.g. [11,15]), but have rarely been identified in the context of NPD in
general and not at all in the ECO process.  Among the few exceptions are Wheelwright
and Clark [27], who observe that there are a number of manufacturing-like activities and
even true manufacturing activities (such as prototype-building) within product
development.  This suggests that some process analysis approaches from manufacturing
may be applied.

Blackburn [4,5] points concretely to the problem of long lead times in NPD processes.
He observes that batching and delayed information transfer contribute to this problem.
Adler et al. [1,2] go one step further and quantitatively demonstrate congestion effects
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based on projects competing for engineering capacity.  The authors use simulation
analysis to understand the reasons for long lead times and recommend four improvement
strategies: cross-training technicians to offload engineers (who were process
bottlenecks), limiting the total number of projects under way at any point in time (that is,
limit the backlog), avoiding expedited projects (projects that get high priority at the
expense of others), and tracking project throughput times.

In Terwiesch and Loch 1998 [22], we present an in-depth case study of the CCS
development in a vehicle.  In this case study, we find that the time it took the
organization to move an ECO from its creation to its successful implementation was
surprisingly long. Despite the tremendous time pressure in development projects in
general and in the ECO process in particular, process lead times were in the order of
several weeks, several months, and, in extreme cases, even over a year. Looking at the
causes for these long lead times in more detail, we were surprised by the low proportion
of value-added time in the ECO support process.  An ECO spent most of its lifetime
“sitting on someone’s desk”, waiting for further processing.  This observation is
consistent with Blackburn [4] who reports similarly low proportion of value-added times
for ECOs in airframe manufacturing.

The long lead times and the disproportionate amount of non-value-added time motivated
us to take a more detailed look at the dynamics of the ECO process. In particular, we
were interested in answering the following research questions:

• What causes the low ratio of value-added to total ECO lead time?  What happens in
the residual time?

• How can one improve the ratio between value-added time and non-value-added time?
 
 The remainder of this article is organized according to the established logic of process
analysis and redesign [12,18].  We first describe the existing ECO support process in the
form of a process map.  We then calculate capacity utilization profiles encountered at
each step in the process, which allows the identification of process bottlenecks.  Based on
the utilization profiles, we outline our theoretical framework for understanding how high
utilization coupled with process variability causes congestion, that is, competition for
scarce resources and long non-value-added times.  This leads to improvement strategies
presented at the end of the article.
 

 Mapping the Process
 
 The first step in understanding why it takes so long from the detection of a problem to
the implementation of the ECO consists of mapping the process (Figure 1).  A process
map reveals the structure of the process, but additional data on processing times and
capacities must be collected to understand throughput time performance.
 
 Structural Map
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 The process structure was drawn based on the descriptions of the individuals involved.  A
problem in a component, or in interactions between components, of the CCS is usually
detected while testing prototypes.  Prototypes may be virtual (existing in a CAD model),
clay models, or physical models of varying completeness.  When the problem is clearly
identified and reproduced, and when a candidate solution strategy has been identified, an
official ECO is created.  At this point, the ECO approval process, depicted in Figure 1,
begins (it is a subset of the activities considered in [21]).  A detailed design is proposed
by CCS engineers to resolve the problem.  This solution must be simulated for
effectiveness by the computer simulation group and then approved by the project
manager (who also seeks input from the functional engineering departments), and by
accounting, who examine the cost implications of the change.  If approval is not granted,
an alternative design must be developed.
 

 Figure 1 here
 

 Once implementation is authorized, the purchasing department asks the supplier to
include the change in the next batch of prototype parts.  When new parts with the ECO
implemented arrive for prototype construction, an evaluation of the new design solution
can be made.  In some cases, the changed part proves ineffective (for example, when the
design of the CCS system has changed during the time the ECO was resolved), in which
case a new ECO must be generated.
 
 Figure 1 contains two possible iteration loops.  The first iteration occurs if approval is not
granted, for example, when the change increases manufacturing cost unacceptably.  The
second loop occurs if, against expectation, the redesigned parts still contain problems.
Both loops are incorporated in the frequency of ECOs arriving, i.e. some proportion of
the arriving ECOs are re-issued ECOs.
 
 Figure 1 shows only half of the actual group size for each engineering resource, as only
about half of the available engineering capacity was consumed by the development
project that we focused on.  The other half of capacity was spent on other ongoing
projects.  In our host organization, most engineers (excluding the small project
management organization) remained in their functional units and thus worked
simultaneously on multiple projects.  Several of them reported in interviews that this not
only caused problems concerning their management of priorities, but also required them
to frequently switch their attention from one project to another, causing a significant
time-loss from “diving into the project again”.
 
 The mere structure of the process already reveals that resolving an ECO consists of a
long sequence of steps involving numerous people.  In the terminology of Business
Process Reengineering [13], the process contains several “bureaucratic” activities (such
as accounting approval) and handoffs between groups.  However, an elimination of
accounting approval was not under discussion in the host organization, as they felt the
cost control of changes to be of high importance.
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 Data Collection
 
 Each ECO must be processed by several resources, comprising the engineers, project
manager, accounting analyst, and purchaser.  Each resource must perform tasks, which
require a processing time.  Each task takes between a few minutes (e.g., decision by
project management) and a few hours (e.g., design proposal).  Processing times are not
tracked exactly in the organization.  Therefore, we obtained estimates of the averages in
our interviews with the engineers and the project manager.  These estimated averages are
shown in Figure 1 under the boxes corresponding to the engineering groups, and they are
explained below.
 
 An ECO takes an average of two hours to develop a solution proposal.  Simulation
requires a set-up of 30 minutes to perform data preparation of the files each time a new
type of problem is tackled.  Simulation itself takes 1.6 hours.  The simulation group
processes ECOs in batches of two (they pick out of their in-basket two problems, similar
in structure), in order to economize on the set-ups (marked as s = 0.5 hours in Figure 1).
Subsequently, an ECO needs, on average, 45 minutes to be checked for its cost impact,
45 minutes for new parts to be ordered, and ten minutes of the project manager’s
attention for approval.  The project manager (who is extremely busy) discusses ECOs
only once a week, during the weekly project team meeting, when approval or rejection
decisions are made on the spot (each problem-solving engineer attends only to present
his/her status, so the additional burden on them is small).
 
 Two engineers devote their time to the first step; one person performs each of the other
steps.  All employees work five times eight hours (40 hours) a week.  CCS and
simulation engineers devote their entire time to this ECO process.  The accounting and
purchasing specialists have other responsibilities, but give priority to this process, so their
effective utilizations and throughput times can be calculated without regard to other
work.  The project manager has many responsibilities and decides on ECOs once a week,
during the weekly project meeting.  Consistent with our observations of the process in
the host company, the project manager in the example indeed decides on all ECOs on the
spot during the meeting; no ECO must remain another week unaddressed.
 
 A critical new concept not discussed in the process map Figure 1 is that the process must
handle a stream of ECOs over time: 20 ECOs arrive, on average, per week at random
points in time (including the “re-issued” ECOs mentioned in Figure 1).  The arrival rate
is, again, not tracked systematically.  We inferred the average rate from the database of
ECOs processed over the course of several months, and we cross-checked the estimate
with the engineers.
 
 

 Process Utilization Profiles and Bottlenecks
 
 After having drawn a process map and collected basic data, the next step in process
analysis consists of understanding the capacity and utilization profiles of the resources
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involved.  We now ask the question: do the resources have enough capacity to satisfy the
work demanded from them by the incoming ECO stream?  In other words, is total
capacity consumption for each engineer and analyst less than or equal to the capacity
available?
 
 For each resource, we can calculate the utilization as the ratio of total capacity consumed
and capacity available.  For example, at CCS engineering the utilization is:

 CCS Utilization = 50% = 2 hours/task x 0.5 tasks/hour / (2 people).
 
 The simulation engineer encounters a complication, namely set-ups: every time he/she
prepares the simulation software for a different type of problem, files must be loaded,
parameters adjusted, etc. (for an overview of the set-ups encountered see [21]).  The
engineer, therefore, tries to regroup the ECOs in batches of 2 similar problems, in order
to economize on the set-ups.  Batching is a very old and frequently encountered principle
in processes of all kinds (the earliest reference is Harris 1913 [13]).  Batching has,
however, a downside stemming from the time a task has to wait in order for its “cohorts”
in the same batch to be processed.  Thus, an individual ECO is not implemented directly
on occurrence, but rather batched with other changes, thus lengthening the ECO lead
time.
 
 With batches, the resulting utilization of the simulation engineer becomes:

 Simulation Utilization = 92.5% = (1.6 hrs/task + 0.25 hrs of set-up/task) x 0.5
tasks/hour

 
 Note that the engineer must batch in order to manage the workload:  with batches of 1,
the utilization would be (1.6 hrs/task + 0.5 hrs of set-up/task) x 0.5 tasks/hour = 105%.
That is, he/she would not be able to accomplish all work without overtime.
 
 In general, we can describe the utilization for a resource as follows.  We call R the overall
throughput rate of the workgroup (the volume of the ECO stream to be handled, 20 per
week, corresponding to 0.5 per hour).  As we discussed above, R is externally given,
determined by the number of ongoing projects.  We call p the average processing time for
a task performed by the resource in question (for example, 2 hours at CCS engineering).
The simulation engineer organizes his/her work in batches of b tasks to be done together,
and every time the engineer switches from one batch to another, he/she must spend s time
units in set-ups.
 
 With these problem data, the utilization of the engineer becomes u = R (p + s/b).  It is
measured in %, and it consists of the fraction of time the engineer is busy with processing
(R p) and set-ups (R s/b).  In other words, R represents the number of “jobs” or problems
that arrive, on average, per time unit, and p is the “workload” (in time units) that each job
carries with it, on average.  The product of the two represents the fraction of time the
engineer is busy with processing this type of job.
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 The reader can see immediately in this expression that the average amount of time spent
on set-ups decreases when the batch size b increases, which is, of course, the precise
reason why people batch.  That is, less total time is spent on set-ups if they are spread
over more units in a batch.
 
 The utilization profiles are summarized in Table 1.  It implies that in total (on average in
the long run), all engineers and analysts have enough capacity to accomplish their
workload: all utilizations are below 100%.  Simulation is closest to a full load with a
utilization of 92.5%.  The processing resource with the highest load in a process is
referred to as a bottleneck.  A bottleneck limits the throughput volume of the process,
and close attention should be paid to it.
 

 Station  CCS  Simulation
 (batch = 2)

 Cost
analysis

 Project
Manager

 Purchasing

 Utilization,
 in %

 50%  92.5  37.5  8*  37.5

 
 * The project manager decides on ECOs once per week.  He spends 92% of his time on coordination

activities.  Note that this is similar to batching one week worth of ECOs, but it is not motivated by
reducing set-ups.

 Table 1: Utilization Profiles in the ECO Process
 
 Upon discussing the utilization profiles, the project manager intuitively agreed that
simulation was the bottleneck.  He did pay close attention to it, but more in the sense of
“fire-fighting,” when long delays occurred, than in the sense of systematic process
improvement.
 
 

 An Explanatory Framework of Congestion
 
 We have now determined that the process is capable of accomplishing its workload, that
is, the observed long lead times do not stem from sheer overload.  However, even with
loops in the process, the total reported times to perform the activities do not exceed one
day.  In order to understand the long lead times, we must take a more detailed look at the
dynamic behavior of the process.
 
 When regarding an individual task in the ECO process, such as a design proposal by CCS
engineering, we find that the total throughput time of this task comprises three
components1:
• Processing time: the actual time it takes to process the task, e.g., the time it takes the

engineer to analyze the data.
                                                            
 1 We ignore “travel time” from one engineer to the next, as we found it in our study to happen relatively
quickly, compared to the overall lead times reported above.  Most of the information was submitted
electronically or via fast courier services.  In organizations with a lower level of electronic integration, the
time an ECO spends “travelling” might be significant.  Transfer times can easily be included in our framework
by just describing the transfer as an activity in itself.
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• Waiting in the batch: the time the task has to wait in order for its “cohorts” in the
same batch to be processed.  For example, the first ECO in the simulation engineer’s
batch waits for the second to arrive before the batch starts, and after the first ECO in
the batch is simulated, it also waits for the second to be processed before both proceed
to the next process step.  In other words, batching economizes on set-ups, but it
lengthens the de facto processing time.

• Waiting time: the time the task remains pending, e.g., the time the problem data
remain on the engineer’s desk before he/she takes action.

A familiar example of waiting time from our day-to-day life is the checkout in a
supermarket where customers queue up for their turn.  Other familiar examples include
the check-in at an airport, telephone call centers, or restaurants.  In such situations, the
time it takes to get service is substantially driven by the time before the actual service
starts. As waiting time is beneficial for neither the customer nor for the service provider,
we also refer to it as non-value-added time.

In many manufacturing facilities, non-value-added times (mainly waiting time) account
for 70 - 90% of throughput times (see, e.g., [14]).  In product development
organizations, the situation is similar: projects often take much longer than the work
content alone suggests [1, 2].  In the ECO process in our host organization, a one-day
waiting time resulted for an operation of less than one hour.

Waiting is intimately connected to variability in processing and work arrival patterns.  To
understand its effect, consider first a smoothly running assembly line where variability is
absent.  Jobs (such as metal parts to be assembled) arrive like “soldiers marching” in time
with the line.  Every operation is highly structured or automated, and thus processing
times at each step are the same for all work parts.  In this situation, the line can be loaded
until the bottleneck (the slowest station) reaches a utilization of 100%, without any
difference for the lead time (throughput time) of the line.  It is simply the sum of the
processing times at all stations (of course, if the line is loaded beyond the bottleneck’s
limit, work will start piling up).

The above-described perfectly regularized assembly line is an exception, as far as
operating environments go.  The situation faced in the ECO process (and in product
development processes and many manufacturing processes in general) is much more
difficult.  First, ECOs do not arrive like “marching soldiers”.  Product development is a
complex process that is much harder to predict than an assembly line, thus work arrives in
far more random patterns.  Let us call the time between two subsequent ECO arrivals the
interarrival time2.  Interarrival times vary considerably from one time to the next:
sometimes, several ECOs appear within an hour, whereas occasionally it takes a day for
the next one to be created.

                                                            
2 From the perspective of the ECO process, ECOs do externally “arrive,” as their creation is prompted by

unforeseeable problems.
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Second, not all ECOs require the same processing time.  Some are difficult and take
several hours in their detailed solution design, while others require minor modifications
that can be made within a few minutes.  This is the case even within classes of
comparable complexity, which is what we consider in our process analysis.  In addition,
sometimes an ECO must wait because the engineer must work urgently on a different
project, which for the purpose of throughput time performance is the same as if
processing took longer.3

Variability has an extremely detrimental effect on the processing engineer.  Although the
engineer has enough capacity to manage the work in the long run, random fluctuations
may cause him/her to “fall behind” temporarily, when a few ECOs happen to arrive in
quick succession, or when an ECO proves difficult, and takes much longer than the
normal.  During this time, a backlog of unprocessed ECOs accumulates for this engineer.
The fact that the engineer has enough capacity in the long run implies that he/she will be
able, eventually, to “work off” this backlog.  Such a backlog corresponds, of course, to
waiting.  But how long will this waiting be?

The time to work off the backlog strongly depends on the “slack capacity,” or, in other
words, 100% minus the capacity utilization, of the engineer.  The higher the utilization,
the longer it will take him/her to work off the backlog (in addition to handling the extra
work arriving in the meantime).  It turns out that when the utilization is high (slack is
low), surprisingly large backlogs may occur, and they may stay for an unexpectedly long
time before being worked off.  This explains the long waiting times we observed in the
ECO process.

“Slack capacity” in this context does not mean that the engineer is sitting around idle.  As
in all professional environments, there is always work, in the form of problem-solving or
the creating of new ideas or designs.  Slack means that there is some “background” work
in the sense that it can be put aside at times of high pressure.  Such slack provides the
engineer with the flexibility to respond to variability-related backlogs.  We now need to
make this intuitive explanation precise.

We need to introduce measures for variability in addition to those of throughput rate R,
processing time p, batch size b and set-up time s as defined above.  A natural and widely-
known candidate for this is the standard deviation.  We can measure the standard
deviation of the interarrival time and of the processing time at each resource (engineer or
analyst).  This measure is, however, not perfect because it is an absolute measure: if the
CCS engineer’s and the accounting analyst’s tasks both have a standard deviation of 1
hour, are they equally variable?  The answer is no, since the CCS engineer’s standard
deviation is only a fraction of the average task time, while the analyst’s standard deviation

                                                            
3  For simplicity of exposition, we have incorporated capacity needs of other projects by “cutting the group

size in half” in Figure 1.  This is correct only as a long run average, but a simplification for every day
dynamics: the engineers in Figure 1 share work across projects.  Sometimes they are held up by other
projects, and sometimes they get help from the other half of the group, which overall increases variability of
processing.
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is larger than the mean task time.  Therefore, a better measure of variability is the ratio of
the standard deviation over the mean.  It is referred to as the coefficient of variation
(CV), and we call it CVa for the ECO arrivals and CVp for the processing times.

ECOs arrive irregularly, and vary in their complexity, so the CVs of both arrivals and
processing are relatively high.  The CVs are not measured and tracked in our host
organization, which is not unusual.  Even in organizations executing routine processes,
variability is often not measured.  We, therefore, had to estimate the CVs.  A reasonable
and widely used estimate is a value of 1 (the standard deviation equals the mean4).

Our intuitive explanation above suggests that waiting times will increase both with the
variability (since the chance of “temporary falling behind” increases) and the utilization
(since the slack to work off the backlog decreases).  The Pollaczek-Khintchine formula
makes the above explained intuition precise5:

Wait = +
−

+
1
2 1

2 2( ) ( ).CV CV
u

u
s bpa p (1)

Note that u is the utilization as we explained it above, and (s + bp) is the time needed to
process one batch.  The formula behaves as we expected from the above explanation.
When utilization goes from 90% to 95%, the ratio u/(1-u) goes from 9 to 19, which
corresponds to a very steep increase at high utilizations.  The waiting time becomes more
and more dominant as utilization increases.  In addition, wait increases quadratically with
the two coefficients of variation.

The highest utilization encountered in our process is 92.5% at simulation.  Due to the
very steep increase at high utilizations, waiting in Formula (1) is much higher at the
bottleneck station than at less loaded engineers.  This explains some of the long waiting
time observed in the process.

The average total throughput time is the sum of the average waiting and processing times
of the batch, including set-up and the average time an individual task waits for its batch
cohorts to be done.  We can summarize the throughput time in the following formula
(where u is now replaced by R (p + s/b)).6  The CV for the batch (marked by the upper
bar) may differ from the CV of individual processing times7 because some averaging
occurs over a batch.  For example, it is unlikely that the first and the second problem in a
batch of 2 both have a very long or a very short processing time.  Thus, the processing

                                                            
4 A CV of 1 technically corresponds to exponentially distributed processing and interarrival times. This is a
standard distribution used for high-variability situations, and it has repeatedly proven a good approximation
[1,15,18].  In many well-controlled manufacturing environments, the CV is much lower than 1.
5 The Pollaczek-Khintchine formula can be looked up in many books on manufacturing or queueing, e.g.,
Hopp and Spearman [15].  It holds as an approximation with good accuracy when utilization is high, which is
exactly when waiting times matter.
6 This formula is based on work by Karmarkar et al. [16].  An intuitive derivation can be found in Hopp and
Spearman [15], p. 290 f.  Again, this is an approximation that is accurate for high utilization levels.
7 This holds if the processing times are not strongly correlated.
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time of the full batch tends more toward the average, exhibiting lower variability than the
individual problem to be solved.

( )Throughput time = +
+

− +
+ + +

1

2 1
2 2CV CV

R p s b

R p s b
s bp s bpa p

( / )

( / )
( ) . (2)

This formula characterizes the typical throughput time behavior at the individual
resource, which is graphically represented in Figure 2.  On the left-hand side, we see that
as utilization approaches full load, or 100%, the throughput time dramatically increases
because the engineers no longer have the slack to deal with unexpected events
(expression u/(1-u) in the formula).  Work spends more and more time in the in-baskets.

The right-hand side of Figure 2 demonstrates how batching mitigates the congestion
problem by spreading the set-up over more tasks and thus reducing utilization:  u = R (p
+ s/b).  This comes, however, at a cost:  when the batch size becomes large, the marginal
congestion benefit decreases, but the waiting time for the batch cohorts continues to
grow linearly with the batch size.  Thus, there exists a point with a “best” batch size.

Figure 2 here

If one succeeds in reducing variability or set-up times, two positive effects result:  first,
the whole throughput time curve shifts downward, and the optimal batch size shrinks
(shifts to the left) as well.  When the set-up time s is very small, batching no longer has a
benefit. This can be seen in the formula: if s=0, the utilization becomes independent of
batch size, since no set-up work is saved by batching.

This analysis applies to a single engineer or workgroup.  The strong non-linearity of the
congestion effect increases the importance of the bottlenecks:  if one workgroup alone is
highly utilized, its throughput time will dominate that of the whole process.  In a process
consisting of several operations, such as our ECO process, additional interactions
exacerbate congestion even further.  For example, purchasing can only start its work if all
previous activities have been completed, which further contributes to long waiting times:
only after cost analysis is done and the project manager has agreed to the proposed
solution can parts be ordered.

Station CCS Simulation
(b =2)

Cost
analysis

Project
Manager

Purchasing

TPT (average throughput
time), in hours, by
formula (2)

2* 25 1 20** 1

TPT, in hours,
simulated***

3 25 1 20 8

Total TPT, in hours 56
* This TPT is calculated with an “average” processing time p = 1 hour in the utilization, since the two

engineers can work on two ECOs in parallel.  Processing itself still takes 2 hours.
** The project manager decides on ECOs once per week, so on average, an ECO is pending half a week.
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*** Discrete-event simulation with the software package SLAM; analysis runs over 40 000 jobs.

Table 2: Average Throughput Times in the ECO Process

With the help of the above formula, we can now find the average throughput time (TPT)
at each step, which is summarized in the first row of Table 2.8  In addition, we show the
TPT as found by discrete-event simulation with a commercial software package in row 2.
The average throughput times at the stations of the process add up to a total of 56 hours.
It is the sum of all individual TPTs, except for the time for the cost analysis, which runs in
parallel to, and is dominated by, the TPT for the project manager’s decision.

The results as calculated by Formula (2) and as simulated (rows 1 and 2 of the table)
largely agree, with one exception that is worth discussing: the formula predicts a fast
turnaround at purchasing, while the simulation shows an average delay of a whole day.
This is because we assumed in the formula, for lack of better information, a CV of 1 for
the incoming job flow at purchasing.  It turns out, however, that as the project manager
releases a large number of ECOs (about 20) once a week, they arrive at purchasing in
large “packs,” and purchasing must “work off” this backlog over the next two days.  This
leads to an average delay of one day.  In the context of the formula, such “lumpiness” of
an ECO arrival stream corresponds to high variance, and thus an SCV much higher than
1.

The important implication of Table 2 is that an ECO takes on average almost one and a
half weeks (and in some cases much longer) to go through one iteration of the ECO
process, although it has on average only 5 hours’ work invested in it.  With 25 hours on
average, the bottleneck station (simulation) contributes almost half of the throughput
time.  The project manager also slows down the process because he authorizes ECOs
only once a week, adding, on average, 20 hours to the TPT.

Table 2 summarizes the average TPT of an ECO.  However, the average is not sufficient
to describe the performance of this process: throughput times are themselves variable, so
they must be described in the form of a distribution.  The tail of this distribution
determines the service level the process can offer.  Figure 3 demonstrates that the project
manager needs to allow as much as 2.5 weeks beforehand, in order to be 90% confident
that an ECO will indeed be resolved.  For example, if the project manager wants to
estimate whether a newly-arisen ECO will be affected by another change in another
component, he needs to be aware of the fact that the ECO may remain open for three
weeks, not only 1.5 as the average TPT suggests.

Figure 3 here

                                                            
8  The stations are analyzed as if they were isolated from one another.  This is exact when the CVs are equal to

1, and it provides a reasonable approximation for more general cases.  In addition, the SCV of a batch of
two can be shown to be 0.5 (the distribution of processing two exponentially distributed tasks in series
becomes an Erlang-2 distribution).
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We used the throughput time average and distribution from Table 2 and Figure 3 to
calibrate our model analysis with the project manager.  This is necessary (and usually
done) when the input data for a model is not well tracked and must be estimated.  The
project manager has a good feeling for the resulting throughput time distribution, so
arrival rate and processing time parameters were slightly adjusted until the model
matched the throughput time performance observed by the project manager. 9

The project manager, thus, recognized the throughput time performance.  However, he
was shocked to see the ratio of processing time to total throughput time (and thus the
value added portion) implied by this analysis.  Being an electrical engineer by training, he
readily saw the conceptual similarity between the long throughput times in his
organization and the response time performance in computer networks, which is also
driven by congestion stemming from scarce capacity combined with variability.

This example shows how congestion can lead to TPTs that are many times the raw
processing time.  Thus, the example contributes to explaining the throughput times
observed in the CCS case.  In addition, Figure 3 explains the “self-fulfilling prophecy
syndrome”: the engineers know very well, of course, that the lead time for an individual
ECO follows a distribution (not only for the process as a whole, as shown in Figure 3,
but also at each engineer) and cannot be predicted beforehand.  They know this from
experience, although they typically do not know the precise shape of the distribution.
Moreover, no one wants to be caught not living up to his/her promises.  So what does an
engineer answer when asked when an ECO can be resolved?  He/she will give the 90th or
95th percentile of the distribution.  However, if every step in the process indicates the 90th

percentile for the expected TPT, the resulting estimate for the process as a whole will be
ridiculously conservative and make any planning very hard for the project manager.  The
project manager in our host organization complained bitterly about this planning paradox,
which occurs not only in the ECO process but which seems to be a typical problem in
project management [12].

Discussion:  Opportunities for Improvement

The interesting question for managers, of course, is what concrete improvement
possibilities exist.  Congestion problems can be easily avoided by just adding extra
capacity, although, for obvious financial and political reasons, this approach is out of the
question.  Similarly, variability can be controlled (for example, by rigorous quality
management) in many manufacturing environments, but it is inherent in the ECO process,
as each ECO problem is unpredictable.  The objective of the improvement methods
presented below (summarized in Figure 4) is to improve ECO lead times without adding
extra capacity and without dreaming of a regularized process.

                                                            
9 The reader may recall that in the real process in our host organization, some ECOs had to go through several

problem-solving loops, which delayed them even further.  This was incorporated by iteratively adjusting the
ECO arrival rate, together with the project manager, until the throughput time distribution was
approximately correct.
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Opportunities for Improvement: Flexible Capacity

The first improvement strategy addresses the basic source of queueing problems, the
mismatch between when capacity is needed and when capacity is provided, by increasing
the flexibility of the server.  Remember that in the discussion above, as well as in the
presented formula, the utilization (the relationship between capacity available and
capacity required) must be less than 100% on average, as otherwise one would fall behind
in the long run.  Thus, if it were possible to provide the server with capacity at the
moment it is required, queueing could be completely avoided.  Now consider the
simulation engineer, who faces the highest utilization of all with 92.5%, working up to
two hours’ overtime per week (for example, during lunch or at night), whenever an ECO
backlog piles up on his/her desk.  On the other hand, he/she may go home earlier if the
workload is light.  Thus, in the long run, the engineer does not work more than 40 hours
a week, but the work is provided just at the time when it is needed.

With this flexibility, the effective utilization factor in our example goes down to 88%
(keeping the batch size constant at 2).  Formula (2) and discrete-event simulation both
show that this reduces the average throughput time for simulation from 25 hours to 14
hours, a reduction of 44% at this station.

Figure 4 here

Opportunities for Improvement: Merging Tasks

The first improvement strategy is targeted at an individual server, whereas the second
strategy of merging tasks looks at multiple servers collectively.  Consider the three tasks
of financial analysis, approval by the module project manager, and that of ordering parts.
The ECO in the current situation must queue at each of the three servers, risking waiting
times at each of them.  In our example, we introduce a manager whose time is devoted to
performing cost analyses and ordering parts, and who also has the authority to approve
ECOs on the spot.  This manager can approve ECOs flexibly during the week (not only in
the weekly meeting).

In our example, this corresponds to one server facing an average processing time per
ECO of (0.75 + 0.17 + 0.75) = 1.67 hours, or a utilization of 83%.  As a result, the total
average throughput time of this part of the process is reduced from 28 to 10 hours, a
reduction of 64%.  In the company we studied, we indeed found a number of “ECO
managers” who combined the work that was previously done by separate organizational
entities.  We also observed that some module project managers approved ECOs on the
spot while walking around the engineering cubicles (rather than only once a week).

Opportunities for Improvement: Balancing the Workload
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The third strategy of balancing workload is based on the observation that process lead
times are frequently dominated by one single activity, referred to as the “bottleneck”
activity, the one with the highest utilization, and which determines the speed of the whole
system.  In our CCS development case, the bottleneck is easily identified as the
aerodynamics simulation engineer with a utilization of 88%.  Because of the high
expertise required for the simulation activity, the corresponding group is permanently
short of engineers. This makes the group almost incapable of responding quickly to the
requested ECO evaluations.  To make matters worse, the group spends a significant
amount of its time reworking CAD models created by other CCS engineers, in order to
bring the models to an accuracy level required for the simulation software.  Thus, about
one third of this group’s precious time is wasted on work that could equally be performed
by CCS engineers.

If this preparation work is shifted in our example from the simulation engineer to the
CCS engineers (who do not need to batch – they can perform the set-up for every ECO),
capacity utilizations become better balanced, at 62.5% for CCS engineering and 80% for
simulation engineering.  As a result, average CCS TPT goes up from 3 to 4 hours, but
simulation time shrinks from 25 to 8 hours.  Thus, the total average TPT for both stations
is reduced from 28 to 12 hours, or by 57%.  This example demonstrates how non-linear
the impact of utilization on TPT is:  the gain from reducing the utilization of simulation
from 92 to 80% far outweighs the loss from increasing CCS’s utilization from 50% to
63%.

Opportunities for Improvement: Pooling

The fourth strategy, that of pooling, or sharing workloads, among engineers, is based on
reducing specialization in the development organization, requiring the capability of the
engineers to assume a broader technical responsibility.  Pooling is often efficient from a
queueing perspective for three reasons.  First, utilizations are balanced within the pooled
group.  Second, it cannot happen that one worker is starved of work while another has
tasks waiting in his/her in-basket.  Third, if one individual ECO happens to be very
complicated and time-consuming, the subsequent ones are not “stuck” behind it, but can
(at least slowly) bypass it via the other pooled servers.

Pooling, however, may also have a downside.  First, and most obviously, the engineers
may have to go through “mental set-ups” and become less productive if spread across
different tasks.  Second, pooling may increase the processing variability if different types
of jobs, although homogeneous among themselves, but very different across types, are
pooled.  If, for example, ECOs for the filter box (requiring air flow analyses) and for
electrical motors (requiring electrical design) were to be pooled, one engineer would be
responsible for total CCS ECOs and face a multitude of very different tasks.  This could
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increase the variability of the workload and thus queueing effects, even if the engineer
was perfectly cross-trained.10

Pooling may not be possible for pure research tasks, which require profound expertise in
one specific domain.  However, we found it to be typically applicable for engineering
tasks such as ECOs, which entail relatively standard operations.  Engineers can share
work on similar components, such as air and water ducts for different parts of the CCS,
or on the analogous components for different car development projects which progress in
parallel.

We are not including the pooling improvements in our numerical example, because the
trade-offs involved are complex and would force us to complicate the example to an
extent which would hinder simple exposition.  Of course, the trade-offs are accessible to
evaluation by simulation modeling.

Opportunities for Improvement: Managing Batching Problems

Before we discuss concrete actions aimed at reducing batching, we demonstrate the
potentially large effect using our numerical example.  Keeping all processing times
unchanged for comparison, we first ask whether a batch size of two at the simulation
group is a good choice.  Examining the utilization, it becomes evident that the simulation
group has no other choice but to batch, as they would become overloaded (u = 100%) if
they processed the problems as they come, incurring a set-up every time.  Furthermore, a
larger batch size offers no further improvement, i.e., the waiting within the batch more
than offsets the reduced congestion.

However, a reduction in the set-up time makes a great difference.  Suppose the data
preparation could be shortened from 30 minutes to 5 (e.g., via more compatible file
formats and more consistent preparation of the data by the problem-generating engineers.
These are two proposals under discussion at the company).

Holding the batch size constant at b =2, utilization falls to 82%, and the average TPT of
the simulation engineer is reduced from 25 hours to 10, a reduction of 60%.  Moreover,
batching is no longer necessary:  the simulation engineer can now process the problems as
they come, in spite of the set-ups.  This increases utilization to 84% (in comparison to
maintaining the batch) and also variability (as there is no longer averaging of processing
times within a batch), while decreasing the batch processing time.  In our example, the
trade-off comes out exactly even: reducing the batch to 1 is equivalent to keeping the
batch at 2, with an average TPT of 10 hours.

After having examined the importance of batching and set-ups in the example, we now
discuss possible actions to reduce the reasons that make batching necessary.

                                                            
10  The trade-off is too complicated to be meaningfully included in our simplified example, so we provide no
estimate of the potential benefit.



16

The only way of improving the trade-off from Figure 2 (between having to incur set-ups
and incurring long batch processing times) lies in addressing the sources of batching, i.e.
the set-ups, reducing batch sizes through a set-up cost reduction.  In our companion
paper [22], we mention communication technologies and “rapid” or “virtual prototypes”
as possible ways of reducing set-ups [8,19,24].

The improvement most relevant to the process example described in this paper addresses
mental set-ups.  These refer to the fact that an engineer, returning to a problem after
having worked on something else, needs some time to understand and master the problem
again.  Moreover, he/she needs to go through the physical action of re-loading all the
CAD files and data sources that are directly relevant to the problem.  Our host company
has already partially resolved this by allowing the engineer to access all electronic
drawings from his/her CAD workstation.  Most of the more senior engineers we talked to
still remember vividly the time when an engineer had to go to the drawing archives and
physically take out the drawings for a vehicle subsystem.

Despite the progress of CAD technology that we witnessed in our host organization,
substantial differences persist across companies as to how easily these systems can be
used and thus how large the set-ups for getting started are.  While some companies have
achieved easy-to-use CAD [24], many others still wrestle with complicated CAD systems
and a lack of CAD-trained engineers.  Engineers who schedule themselves special “CAD-
days”, as they are forced to reserve a CAD station in advance, are still the rule in some
industries.  A second opportunity of reducing mental set-ups lies in the division of work
between engineers.  It is advantageous to have engineers devote their time to components
requiring profound functional expertise (e.g., ASIC technology in the control unit of the
CCS system).  However, in situations more integrative in nature (e.g., packaging of a
cooling circuit), it may be better to have an engineer assigned to a vehicle project.
Aligning work assignments with the knowledge requirements of the tasks saves the
engineer substantial change-over costs between technologies or projects.

Opportunities for Improvement: Incentives

The “self-fulfilling prophecy” paradox, which makes process lead time estimates over-
conservative, must be addressed by changing incentives.  Whenever people in an
organization are held responsible for meeting the promised deadlines for each individual
task, they will react by giving very conservative estimates.  Goldratt [12] proposes that
the project manager elicits estimates from the engineers which they fail to meet half of the
time, and actually enforces this “success rate”!11

However, this requires, first, that engineers are also held accountable for the average of
the estimates, since they would otherwise still be free to under-promise and then to

                                                            
11 This policy would get the median of the distribution, not the mean, which resolves the conservativeness

bias.
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procrastinate.  Second, such a measure requires a strong will by the project manager to
let go of trying to control each individual ECO, and look only at the distribution, which
goes against all natural project management instincts.  The project manager in our host
organization was not willing to make that step.

Opportunities for Improvement: Summary

The improvement approaches are summarized in Figure 4.  Each of these strategies can
dramatically reduce ECO lead times without taking the brute force measure of adding
capacity.  Above, we have discussed the improvements in isolation.  In combination, their
effect is even more powerful, although they do not add linearly, but with decreasing
returns (as congestion decreases, improvements become less drastic).

In order to see the benefit of combining the above improvements, consider the situation
where simulation capacity is flexible, set-up times have been reduced, and the accounting,
purchasing and ECO authorization activities have been merged (pooling and capacity
offloading are less urgent now and thus not included).  Figure 5 shows the resulting TPT
of the ECO process: not only is the mean reduced almost by a factor of three to 20 hours,
but also the tail of the TPT distribution has shrunk to one week.  The project manager
can now be reasonably certain that an ECO will be done within a week, thus greatly
reducing the risk of new ECOs interfering with it [10,17].

Thus, the resulting streamlined process will also be advantageous from a quality
perspective, as shorter lead times reduce the risk of rework being incurred by interacting
changes [21, 22, 23, 25].  Finally, engineers can obtain immediate feedback on the
effectiveness of their changes, which helps them to develop a better understanding of
problems and solutions (see [14, 21]).

Figure 5 here

The above-discussed improvement actions may require significant investments, for
example, when systems have to be developed, or when engineers have to be trained, or in
the case of the organization having to be changed when merging tasks.  In order to
evaluate the attractiveness of such process improvements, the value of time must be
estimated: what is it worth to the organization to gain one week in time-to-market?
Models of the value of time exist (e.g., [3,9,26]), but not in sufficiently operational form
to be used for the evaluation of improvements in the ECO process.  This is an important
area of future research.

Implications for the Host Company

The above-described findings were presented to the project manager and several key
functional department heads in development.  The group was astonished by the amount
of non-value added time in the ECO process, but accepted the results of the analysis once
they thought about it and connected it to their daily experience.
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Two implications of the study were accepted as immediately implementable: making
capacity more flexible via overtime, and continuous ECO approval rather than only once
a week in the project meeting.  Two other recommendations were considered for
implementation, after some more study and preparation.  First, a training program was
discussed to enable the CCS engineers of performing data and file preparation, thus off-
loading some tasks from the simulation group.  Second, a partial merging of tasks was
proposed, where all engineers involved in one specific ECO would be temporarily
dedicated to solving this ECO, for example, for a week.  This would be tested on
important ECOs, which would thus be solved very quickly, without anything else
intervening.

Pooling of resources was not further pursued.  For example, it was not deemed
appropriate to pool project management and accounting or purchasing tasks, as this was
not compatible with the organizational structure.  Batching was pursued in a broader
context, by attempting to convince all parties involved to communicate earlier and not
“sit” on their partial solutions longer than absolutely necessary.  This is further discussed
in detail in [22].

Summary

In this article, we have outlined a process-based view of ECO management.  We have
shown that many of the problems related to ECOs have their roots in a complicated and
congested administrative process.  Additional reasons for long process throughput times
are notably congestion and batching.  While previous studies have hinted at these causes
for waiting time in the context of manufacturing and services [6,11,15] or on a high
aggregation level with complete development projects [1,2,4,5], we show in this article
how congestion and batching influence engineering processes at a more detailed level.

Our analysis provides a theoretical explanation for the data that we collected in [22], as
well as for previous studies, especially the one by Blackburn [4, 5].  It also provides a
starting point in the search of improvement strategies, as we have shown in the cases of
flexible work times, the grouping of several tasks, workload balancing, the pooling of
resources, and the reduction of set-up times.

The objective of the processing network framework in this article is to provide a
conceptual explanation for some of the phenomena that we (and other researchers [5,
27]) have observed.  Although previous studies have shown that it is possible to apply
queueing concepts such as arrival and service rates, variability and utilization to
engineering organizations, considerable effort is required to operationalize and measure
these concepts in an ongoing project.  As the objective of the present article is more
qualitative than quantitative, we have not yet fully addressed the corresponding methods
of data collection (e.g. how to measure utilization) and implementation (e.g. managing
organizational change).  Further research will be required also along these lines.
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The model presented here simplifies the complexity of engineering projects in order to
illuminate the structure of the problem.  Future research will have to provide richer, more
detailed models that better describe the multitude of tasks flowing in the processing
network called “development organization”.  In particular, the methodology applied in
this article can be used to estimate the benefits from using CAx technologies in managing
ECOs.  Such technologies may in the future be capable of automatically detecting
problems in the current design (to some degree, this capability already exists, e.g., for fit
problems in packaging).  Automatic problem detection and ease of including changes in
virtual prototypes will bring about a fundamental reconsideration of the ECO process.

We hope that, based on the example of the ECO process, this article contributes to a
view of NPD as a process that can be managed in order to achieve fast turnaround times,
without having to compromise the creative elements of engineering problem-solving.
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Figure 1: An Illustration of the ECO Process
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Figure 2: Congestion and Batching in the ECO Process
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