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Abstract

Dynamic models in which agents’ behavior depends on expectations of future prices

or other endogenous variables can have steady states that are stationary equilibria for

a wide variety of expectations rules, including rational expectations. When there are

multiple steady states, stability is a criterion for selecting among them as predictions

of long-run outcomes. The purpose of this paper is to study how sensitive stability

is to certain details of the expectations rules, in a simple OLG model with constant

government debt that is financed through seigniorage. We compare simple recursive

learning rules, learning rules with vanishing gain, and OLS learning, and also relate

these to expectational stability. One finding is that two adaptive expectation rules

that differ only in whether they use current information can have opposite stability

properties.
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1 Introduction

Dynamic macroeconomic models often have many equilibria, which are parameterized
by exogenous initial conditions or endogenous initial equilibrium values. Some of these
equilibria may have the form of steady states, cycles, or other repeating patterns. One
criterion for robustness of a steady state (or other pattern) as a long-run prediction is its
stability. Roughly, a steady state is stable if, whenever the initial conditions or equilibrium
values are close enough to the steady state, the equilibrium path both stays close to the
steady state and eventually converges to it. (We are referring here to what is often called
local or asymptotic stability. See Section 3 for the precise definition.)

It is possible to study stability in rational expectations models, but there are some
objections to this exercise. First, in dynamic models of both the physical and human
world, the usual interpretation of stability as a criterion of robustness is that the system
would converge back to a stable steady state (without ever moving too far from it) after
a small unmodeled perturbation. However, rational expectations models do not allow for
unmodeled perturbations, and hence “stability” only indicates that there is an open set of
equilibria converging to the steady state. Second, even some leading proponents of rational
expectations in macroeconomics view rational expectations as a consistency condition that
must be satisfied in the long run, when the economy settles into some kind of recognizable
pattern such as a steady state or cycle, rather than a true description of the dynamics.
For example, Lucas (1978, p. 1429) states: “[Rational expectations] do not describe the way
agents think about their environment, how they learn, process information, and so forth. It is
rather a property likely to be (approximately) possessed by the outcome of this unspecified
process of learning and adapting. One would feel more comfortable, then, with rational
expectations equilibria if these equilibria were accompanied by some form of ‘stability theory’
which illuminated the forces which move the economy towards equilibrium.” (See also
Grandmont (1988, 1998) and Sargent (1993, 1999) for more extensive arguments in this
direction, and see Guesnerie and Woodford (1992, Section 7) for an overview of different
learning criteria for selecting equilibria.) Rational and adaptive expectations can be viewed
as complementary approaches: rational expectations allows one to identify the steady states,
cycles, or other patterns that might be collectively learnable in the long-run, and then
adaptive expectations allows one to test their stability and learnability. There has thus
developed a large literature on stability in macroeconomic models of adaptive expectations
and other forms of learning.

This paper studies stability in a discrete-time model of inflation and a government debt
financed through seigniorage, as in Sargent and Wallace (1981), Marcet and Sargent (1989),
and Arifovic (1995).1 It is a simple model with a single state variable (inflation πt), yet
it is not trivial because its reduced form is πt = W (πe

t+1, π
e
t ), i.e., the realized inflation

factor depends on expectations for two periods.2 It features both a low-inflation (πL) and
a high-inflation (πH) steady state, and we analyze the stability of these steady states under
a variety of expectations rules.

The value of this exercise is threefold:

1. A comparison of papers in the stability literature is often complicated by the fact that
they differ both in the underlying macroeconomic model and in the specific type of

1It is similar to the continuous-time hyperinflation model of, e.g., Cagan (1956), Sargent and Wallace

(1987), and Bruno and Fischer (1990).

2In contrast, many general treatments of stability, such as Guesnerie and Woodford (1991, 1992), study

the reduced form xt = ϕ(xe
t+1) or xt = ϕ(xt−1, xe

t+1).
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expectations rules. In this paper, we instead study a single deterministic macroeco-
nomic model and compare in detail the stability properties for several general classes
of expectations rules. This pedagogical exercise clarifies the differences between these
rules; in particular, we shed light on the stability of OLS learning in Marcet and
Sargent (1989).

2. Our main methodological finding is that stability can depend crucially on whether the
agents use current information when forming expectations. In the model, as in a large
class of temporary equilibrium models, a Walrasian mechanism clears markets in each
period. The current-period price, which is necessarily known to agents at the time
of trading, could affect demand both through current terms of trade and because it
affects expectations about the future. Yet taking these effects into account can lead
to complications, such as multiple within-period Walrasian equilibria in models that
would have a unique within-period equilibrium when expectations are fixed. Thus, it
is common to make the simplifying assumption that agents ignore current information
for the purpose of forming expectations. However, we find that this assumption is not
innocuous.

3. The macroeconomic model of hyperinflation is also of intrinsic interest and we provide
an extensive characterization of the stability of the steady states. Our results are not
conclusive; it is a fact of life that the indeterminacy of equilibria is replaced by an
indeterminacy in the specification of the expectations rules and hence such theoretical
research cannot alone yield specific conclusions. However, it allows one to link the
different equilibria to the different expectations rules. The gist of our results is that
πL tends to be stable and πH unstable, as in previous literature, when not too much
weight is placed on current information, whereas otherwise the stability properties
may be reversed.

Although the results presented here are for more general expectations rules, our findings
can be understood by considering the following examples. Suppose that, in period t, agents
form expectations πe

t+1 of the inflation factor in the next period as a weighted average of the
previous inflation expectations πe

t and of an observed inflation factor—either πt−1 (lagged
information) or πt (current information). That is, either πe

t+1 = απt−1 + (1 − α)πe
t or

πe
t+1 = απt + (1 − α)πe

t . The coefficient α is constant over time, and hence we call these
“constant-gain” expectations rules. The two rules differ only in the timing of the observed
inflation used to update expectations, but they lead to different stability properties of the
steady states, as follows:

Constant-gain expectations rules

Information πL πH

Lagged Stable (∼) Unstable
Current Unstable (∼) Stable

(All results hold for sufficiently low government debt; results marked by ∼ hold only for
some overlapping values of the other parameters.)

We consider also the “diminishing-gain” case, in which the weight α on new information
decreases to zero over time. Not surprisingly, stability does not depend on the lag of the
information and is the same as in the constant-gain case with lagged information:
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Diminishing-gain expectations rules

Information πL πH

Lagged Stable Unstable
Current Stable Unstable

By applying and extending results in Evans and Honkapohja (1999), we also show that
stability in this case is characterized by expectational stability. Expectational stability has
been used most extensively to characterize stability in stochastic models with diminishing
gain. For the case of current information, we are able to directly apply the main propositions
in Evans and Honkapohja (1999). With lagged information, the resulting second-order
system cannot be transformed to their framework, and hence we provide a new proof.

An expectations rule that has received much attention in the literature is OLS learning.
Consider first the OLS estimate of π̄ for the linear model πs = π̄ + εs. This estimate is just
the unweighted average of past inflation factors, which is an example of a diminishing-gain
expectations rule; thus, the timing of information does not affect stability. In Marcet and
Sargent (1989), agents instead calculate πe

t+1 as the OLS estimate of π̄ for the linear model
ps = π̄ps−1 + εs, using price data up through period t − 1 (lagged information). We show
that, with this rule, the timing of information does affect the stability of πH but not the
stability of πL:

OLS estimates for ps = π̄ps−1 + εs

Information πL πH

Lagged Stable Unstable
Current Stable Stable

These results can be understood as follows. The homoskedasticity assumption implicit
in OLS means that, in the linear regression ps = π̄ps−1 + εs, the εs have the same variance.
Dividing this equation by ps−1, we obtain (a) πs = π̄+εs/ps−1. This resembles the equation
(b) πs = π̄ + εs, whose OLS estimates correspond to diminishing-gain expectations rules.
However, the errors εs/ps−1 in (a) are no longer homoskedastic; instead, around the high-
inflation steady state πH in which prices are rising, the variance of recent errors is lower
than the variance of older errors. This is why the OLS regression puts more weight on recent
inflation factors in a neighborhood of πH and the stability of πH is qualitatively the same
as for constant-gain expectations rules. In contrast, around the steady state πL—which is
close to unity and in which prices are nearly constant—the errors have approximately the
same variance and stability is the same as for diminishing-gain expectations rules.

This shows how the results of, for example, Marcet and Sargent (1989) depend on seem-
ingly minor details of the expectations rules. They conclude that, contrary to rational
expectations dynamics, πH is unstable with OLS learning. If they had instead assumed
that agents formed expectations in period t using information up through period t, then
they would have found that πH was stable. If then they had changed to the OLS estimates
of the linear model πs = π̄ + εs, whose implicit assumptions on errors are perhaps more
plausible, they would have again found that πH was unstable.

This paper does not advocate any one of these expectations rules over others or claim
that one set of results is more accurate than others. Our point is to compare a variety of
expectations rules in the context of a single simple macroeconomics model in order to better
understand their properties. The exercise provides concrete examples of how seemingly
innocuous changes in the expectations rules, which might be brushed aside as unimportant,
actually do affect the stability results. Hence, it is hard to draw strong conclusions about
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equilibrium selection via a purely theoretical study of adaptive expectations. However,
such exercises may prove useful when coupled with empirical or experimental tests, such as
Marimon and Sunder (1993, 1994).

2 Model

The underlying economic model is one of inflation with financing of a government debt
by seigniorage. Time is discrete, with periods t ∈ {0, 1, . . . }. The expression “for all t”
means “for all t ∈ {0, 1, . . . }”, and expressions such as “πt → π̂” mean “limt→∞ πt = π̂”.

For all t, pt ∈ R++ is the period-t price level, πt+1 := pt+1/pt is the period-(t + 1)
inflation factor, and mt is the period-t money supply. There is an initial money supply of
m−1, which is augmented in each period t by ptδ in order to finance a constant real deficit
δ > 0. Hence, for all t, mt = mt−1 + ptδ. A price path {pt}∞t=0 thus deterministically
determines both an associated inflation path {πt+1}∞t=0 and a money supply path {mt}∞t=0.

The period-(t+1) inflation factor expected in period t is denoted πe
t+1; it is a function—

called the “expectations rule”—of the history up through and including period t. Although
we study rational expectations in Section 4, elsewhere the expectations rules are adaptive
in the sense that they are history dependent and are not necessarily correct in equilibrium.
They also have the flavor of predicting inflation from past inflation because the inflation
factor expected in any period is in the convex hull of previous realized and expected inflation
factors.

The period-t demand for real money balances depends on expected inflation and is
denoted S(πe

t+1), where S : R++ → R+; the nominal demand is ptS(πe
t+1). We impose the

following assumption on S.

Assumption 2.1

(1) There exists πa ∈ (1,∞) such that S(π) = 0 if and only if π ≥ πa.

(2) S is continuous everywhere and is continuously differentiable on (0, πa).

(3) S′(π) < 0 for π ∈ (0, πa) and S′(πa) := limπ↑πa S′(π) < 0.

(4) limπ↓0 S(π) > δ.

Example 2.1 The affine case is S(π) = a − bπ for π ∈ (0, πa], where a > b > 0 and
πa = a/b > 1. This is the form assumed in Marcet and Sargent (1989). Assumption
2.1 is more general but is not consistent with the exponential real-balances demand curve
S(π) = ce−aπ introduced by Cagan (1956), for which the demand for real money balances
is always strictly positive.

Remark 2.1 For instance, S might be derived from an overlapping generations model in
which (a) the only form of savings is to hold money and (b) it is impossible to borrow
against earnings in old age.3 Then πe

t+1 is the expected price of period-(t + 1) consumption
relative to period-t consumption; πa is the relative price at which each generation prefers to
consume its endowment; and S is equal to the younger generation’s Walrasian net supply
of period-t consumption, until the no-borrowing constraint is binding. This is illustrated in
Figure 2.1. The assumption πa > 1 holds, for example, if the utility function is monotone

3See Sargent (1987) and Azariadis (1993) for textbook treatments of the rational expectations equilibria

of this model and for references to earlier work. See Lettau and Van Zandt (2000) for an outline of the

model in the notation of this paper.
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by younger

generation

Figure 2.1. An illustration of Assumption 1. In an OLG model with two-period

households, the inflation factor represents the terms of trade between consumption

tomorrow and today and the demand for real money balances by youth is equal to

their net supply of consumption, if positive. The wavy line (solid and dashed) might

be the unconstrained net supply by youth as a function of relative prices, and the solid

line is the actual supply curve S given that households cannot borrow.

and symmetric and the endowment in youth is greater than the endowment in old age.
That S is strictly decreasing up to πa holds if consumption in youth and old age are gross
substitutes.

Given the period-(t− 1) history, the period-t market clearing condition for pt is that the
supply of and demand for money be equal:

ptS(πe
t+1) = mt−1 + ptδ .(2.1)

The period-(t − 1) history determines mt−1 and affects πe
t+1. The expectations πe

t+1 may
also depend on pt. Assuming otherwise represents an ad hoc restriction: inherent in this
temporary equilibrium model, in which a Walrasian mechanism clears markets each period
given the prior history, is that agents know pt when trading in period t. One of the main
themes of this paper is that excluding current information affects the stability of steady
states.

Because a price path determines also the money supply path, the inflation path, and
the expected inflation path, we can define an equilibrium in terms of the price path only.
Then, for example, the equilibrium inflation path means the inflation path associated with
an equilibrium price path.

Definition 2.1 An equilibrium is a price path {pt}∞t=0 that, together with its associated
money supply path {mt}∞t=0, satisfy equation (2.1) for all t. An equilibrium is stationary if
there is a π̂ ∈ R++ such that πt = πe

t = π̂ for all t ≥ 1; π̂ is then called the steady-state
inflation factor.

We can characterize the equilibria in terms of expected and realized inflation factors.
For each t ≥ 1, combining the equilibrium conditions

pt−1S(πe
t ) = mt−1 and ptS(πe

t+1) = mt−1 + ptδ

yields πt = W (πe
t+1, π

e
t ), where

W (πe
t+1, π

e
t ) :=

S(πe
t )

S(πe
t+1) − δ

.
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With a few more steps, which are given in Lettau and Van Zandt (2000, Section 2), we can
thus show the following.

Proposition 2.1 A price path {pt}∞t=0 ∈ R∞
++ is an equilibrium if and only if p0(S(πe

1) −
δ) = m−1 and, for t ≥ 1, πt = W (πe

t+1, π
e
t ).

A necessary condition for π̂ to be a steady state is that π̂ = W (π̂, π̂). We consider
only classes of expectations rules for which this is also a sufficient condition. Using this
condition, we now identify two steady states—one low (πL) and one high (πH)—which will
be the focus of our stability analysis.

These two steady states depend on δ (though we usually denote them simply by πL and
πH) and are identified as follows. Rewrite the steady-state condition as π̂(S(π̂)−δ)) = S(π̂).
If we allowed δ = 0, this condition would require either that π̂ = 1 or S(π̂) = 0. The
S(π̂) = 0 case would correspond to an autarkic equilibrium in which money had no value.
The inflation factor would not be well-defined, but think of it as being πa because if π is
close to πa, then S(π) is close to 0 and the economy is approximately in autarky. We use
the implicit function theorem to find steady states πL and πH that are close to 1 and πa,
respectively, for δ close to 0.

Proposition 2.2 There exist δ̂ > 0 as well as continuously differentiable functions πL(·)
and πH(·) defined on [0, δ̂) such that:

(1) πL(δ) and πH(δ) are steady-state inflation factors for δ ∈ (0, δ̂);

(2) πL(0) = 1 and πH(0) = πa;

(3) dπL/dδ > 0 and dπH/dδ < 0 for δ ∈ [0, δ̂).

Proof: We may rewrite π = W (π, π) as

f(π, δ) := S(π) − S(π)/π − δ = 0 .

Then f(1, 0) = 0 and f(πa, 0) = 0. Furthermore,

∂f

∂π
= S′(π) − S′(π)/π + S(π)/π2 ,

∂f

∂π
(1, 0) = S(1) > 0 ,

∂f

∂π
(πa, 0) = S′(πa)(1 − 1/πa) < 0 .

Hence, by the implicit function theorem, there is a neighborhood U of 0 and there are con-
tinuously differentiable functions πL and πH defined on U that satisfy the three properties
in the proposition, where the signs of the derivatives depend also on ∂f/∂δ = −1. ¤

The functions πL and πH for the affine example S(π) = 1−π/2 are shown in Figure 2.2.4

Marcet and Sargent (1989) say that the comparative statics of πL are “classical” because
an increase in the budget deficit increases the steady-state inflation factor (dπL/dδ > 0),
whereas the comparative statics of πH are “perverse” because the opposite is true (dπH/dδ <

0). In the OLG model described in Remark 2.1, πL Pareto dominates πH .

4Their functional forms for S(π) = a − bπ are given in Lettau and Van Zandt (2000, Section 3).
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Figure 2.2. The steady states πL and πH for S(π) = 1 − π/2.

Remark 2.2 Throughout this paper, we will denote the first derivatives of W by W1 :=
∂W/∂πe

t+1 and W2 := ∂W/∂πe
t ; these are

W1(πe
t+1, π

e
t ) = − S(πe

t )S
′(πe

t+1)
(S(πe

t+1) − δ)2
> 0 ,

W2(πe
t+1, π

e
t ) =

S′(πe
t )

S(πe
t+1) − δ

< 0 .

For a steady state π̂, we can use W (π̂, π̂) = π̂ to obtain

W1(π̂, π̂) = −π̂2S′(π̂)/S(π̂) ,

W2(π̂, π̂) = π̂S′(π̂)/S(π̂) = −W1/π̂ .
(2.2)

Because S′(πa) < 0 and S(πa) = 0,

lim
δ↓0

W1(πH , πH) = − lim
δ↓0

W2(πH , πH) = ∞ .

On the other hand,

−∞ < lim
δ↓0

W2(πL, πL) < 0 < lim
δ↓0

W1(πL, πL) < ∞ .

3 Stability

In subsequent sections, we study the stability of the steady states πL and πH for various
expectations rules. In each case, we are able to obtain a reduced-form model in which there
is an endogenous variable θt (which typically is πt or πe

t ) and a law of motion (difference
equation) {gt}∞t=k characterizing the equilibrium paths such that {θ1, . . . , θk} are exogenous
parameters (initial conditions) and, for t ≥ k, θt+1 = gt(θt, θt−1, . . . , θt−k−1). We then use
fairly standard definitions of stability and instability, which we restate here because of the
variety of minor variations in the literature.

Definition 3.1 A steady state θ̂ is stable if:
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(a) for any neighborhood U1 of θ̂ there is a neighborhood U2 ⊂ U1 such that, if each of
the initial conditions is in U2, then the equilibrium path never leaves U1; and

(b) there is a neighborhood U of θ̂ such that, if each of the initial conditions is in U , then
the equilibrium path converges θ̂.

We refer to the two conditions as “stability(a)” and “stability(b)”, respectively. The follow-
ing table shows equivalent terms as commonly used in economics and mathematics:

Equivalent terminology
Ours Economics Mathematics

stability(a) stability
stability(b) local stability

stability local stability asymptotic stability

Definition 3.2 A steady state θ̂ is unstable if there is a neighborhood U1 of θ̂ such that
every neighborhood U2 ⊂ U1 contains an open set of initial conditions for which the equi-
librium path leaves U1.

The “open set” qualification is not standard in such a definition; however, as long as the
difference equation is continuous, the existence of any such initial conditions implies the
existence of an open set of such initial conditions. Otherwise, this is a standard definition
in mathematics. In economics, this is often called “local instability”.5

When the law of motion is autonomous (time-invariant), an informal interpretation of
stability may be that, whenever the system is initially at the steady state and then is
subjected to small unmodeled perturbations, it does not diverge too far from the steady
state and ultimately converges back to it. If instead the steady state is unstable, then such
perturbations, no matter how small, may cause the system to diverge (at least temporarily)
from the steady state.

In most cases the reduced form we obtain is autonomous, and we are able to use standard
characterizations of stability and instability. Suppose that gt = g for all t and that g is a
first-order difference equation; if it is of higher order, then we first rewrite it as a higher-
dimensional first-order equation in the usual way. A sufficient condition for stability is that
the magnitude of each eigenvalue of the Jacobian of g is less than 1. A sufficient condition
for instability is that the magnitude of one of these eigenvalues is greater than 1.

Remark 3.1 The conditions we derive for stability or instability of steady states are in
terms of δ, S, and the expectations rule. These conditions are the easiest to state and
interpret when δ = 0, and can then be extended (by continuity) to δ in a neighborhood of
0. Thus, each of the results in this section holds only for δ in some neighborhood of 0.6 For
conciseness, we use the notation “for δ ≈ 0, . . .” or “if δ ≈ 0 then . . .” to mean “there is
δ̄ > 0 such that if δ ∈ (0, δ̄) then . . .”. If the ellipsis “. . .” includes an expression such as
“f(δ) ≈ k” then, for any ε > 0, δ̄ can be chosen so that |f(δ) − k| < ε if δ ∈ (0, δ̄).

5An unstable steady state can also satisfy stability(b), but not stability(a). Chatterji and Chattopadhyay

(1998) provide an example of an economic model in which a steady state is both unstable and globally stable

(for all initial conditions, the equilibrium path converges to the steady state).

6This is not a mere technical simplification; for example, Bullard (1994) shows that dynamics in the

least squares learning model of Marcet and Sargent (1989), which we consider in Section 7, becomes quite

complicated for larger values of δ.
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4 Rational Expectations

A price path {pt}∞t=0 is said to be a rational expectations equilibrium (REE) if and only
if it is an equilibrium for the history-independent expectations rule πe

t+1 = πt+1. The
equilibrium condition πt = W (πe

t+1, π
e
t ) can then be written

S(πt+1) = S(πt)/πt + δ .(4.1)

On a suitable domain for πt, we can rewrite (4.1) as πt+1 = Π(πt), where

Π(π) := S−1(S(π)/π + δ).(4.2)

An inflation path {πt+1}∞t=0 is then a REE inflation path if and only if S(π1) > δ and
πt+1 = Π(πt) for t ≥ 1. This claim is stated and proved precisely in Lettau and Van Zandt
(2000, Section 4), where the domain of Π is also defined.

Our reduced form under RE is thus the difference equation πt+1 = Π(πt). Although
autonomous, it does not make sense under RE to interpret stability as robustness to small
perturbations, as after such a shock there is no rule that determines what the expectations
should be. Instead, if we parameterize the set of equilibria by the first period’s inflation
factor (which is an endogenous variable rather than an exogenous historically-determined
initial condition), then stability means that, for each neighborhood of the steady state,
there is an open set of equilibria for which the path of inflation factors does not leave this
neighborhood and converges to the steady state.

Proposition 4.1 For all δ ∈ (0, δ̂), πH(δ) is stable and πL(δ) is unstable with respect to
RE dynamics.

Proof: We show that Π′(πL) > 1 and 0 < Π′(πH) < 1 when δ = 0, and hence (by
continuity) when δ ≈ 0. Differentiate (4.1) to find Π′(·):

S′(πt+1)dπt+1 =
(

S′(πt)
πt

− S(πt)
π2

t

)
dπt

Π′(πt) =
1
πt

− S(πt)
S′(πt)

1
π2

t

.

Then Π′(1) = 1 − S(1)/S′(1) > 1 and Π′(πa) = 1/πa < 1. ¤

Figure 4.1 shows Π for S(π) = 1 − π/2 and δ = 0.04. Because πL(δ) and πH(δ) are the
unique steady states in this affine example, there are no equilibrium paths with πt < πL(δ)
and any equilibrium path with πt > πL(δ) converges monotonically to πH(δ). Hence, most
REE inflation paths converge to πH .

5 Constant-gain adaptive expectations

5.1 Overview

In this section, we consider constant-gain expectations rules, in which inflation expecta-
tions πe

t+1 are recursively updated each period t by combining (e.g., averaging) the previous
expected inflation factor πe

t and an observed inflation factor πi
t using a time-invariant rule.

We say that information is lagged if πi
t = πt−1 and that it is current if πi

t = πt.

9
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Figure 4.1. The dynamic equation of the RE equilibria for S(π) = 1 − π/2 and

δ = 0.04.

A principle example is the averaging rule

πe
t+1 = απi

t + (1 − α)πe
t ,

where α ∈ (0, 1]. More generally, we consider rules of the form πe
t+1 = ψ(πi

t, π
e
t ), where

ψ : R2
++ → R++ is assumed to be continuously differentiable, to put positive weight on

new information, and to leave expectations unmodified if the observed inflation equals the
previously expected inflation. Denoting the first derivatives of ψ by ψπi := ∂ψ/∂πi and
ψπe := ∂ψ/∂πe, this assumption may be stated as follows.

Assumption 5.1

(1) For all π ∈ R++, ψ(π, π) = π;

(2) ψ is continuously differentiable;

(3) there is a K ∈ (0, 1) such that 1 − K < ψπi(π, π) ≤ 1 for all π ∈ R++.

An implication of part (1) is that ψπi(π, π) + ψπe(π, π) = 1; hence, part (3) implies that
0 ≤ ψπe(π, π) < K.

Remark 5.1 When πi
t = πt−1, πe

1 and πe
2 are not defined by ψ and are treated as initial

conditions or parameters. When πi
t = πt, the initial condition is πe

1. In each case, we are
able to derive a reduced-form first- or second-order difference equation that involves only
{πe

t }∞t=1 and that characterizes the possible paths of {πe
t }∞t=1. We study these reduced-form

equations because, for π̂ ∈ R++, (π̂, π̂) is a stable steady state for the system with state
variables πt and πe

t if and only if π̂ is a stable steady state of the reduced-form system with
state variable πe

t .
7

7This is because πt → π̂ if and only if πe
t → π̂, which in turn holds because (i) the properties of ψ imply

that if πt → π̂ then πe
t → π̂, and (ii) the properties of W imply that if πe

t → π̂ then {πt}∞t=1 is convergent.
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5.2 Lagged information

We begin with the case of lagged information: πe
t+1 = ψ(πt−1, π

e
t ). Given initial condi-

tions πe
1 and πe

2 such that S(πe
1) > δ and S(πe

2) > δ, {πe
t }∞t=1 and {πt}∞t=1 are equilibrium

expected and realized inflation paths if and only if

πt−1 = W (πe
t , π

e
t−1) and πe

t+1 = ψ(πt−1, π
e
t )

for t ≥ 2. Combining these two equations, {πe
t }∞t=1 is an equilibrium expected inflation path

if and only if S(πe
1) > δ, S(πe

2) > δ, and

πe
t+1 = ψ(W (πe

t , π
e
t−1), π

e
t )(5.1)

for t ≥ 2.

Proposition 5.1 Assume πe
t+1 = ψ(πt−1, π

e
t ) for t ≥ 2, where ψ satisfies Assumption 5.1

and πe
1 and πe

2 are initial conditions. Then πH is unstable for δ ≈ 0. Furthermore, πL is
stable for δ ≈ 0 if

− S(1)
S′(1)

> ψπi(1, 1) ,(5.2)

whereas πL is unstable for δ ≈ 0 if this inequality is reversed.

Proof: See Appendix A. See also Lettau and Van Zandt (2000, Section 8) for the simplest
case, in which πe

t+1 = πt−1. ¤

Thus, πL is unstable when the supply function is sufficiently steep. A steeper S implies
that agents decrease their savings more—and hence current inflation is higher—if they
expect inflation to be high.

For some parameter values, the stability properties in Proposition 5.1 and Example 2 are
the opposite of those under rational expectations dynamics. However, such a comparison
has been made before; we are more interested in the comparison with adaptive expectations
that use current information.

5.3 Current information

When the expectations rule uses lagged information, there is a single Walrasian equilib-
rium within each period. This has nothing to do with the assumption that S is downward
sloping. Recall that πe

t+1 represents the expected terms of trade between period-t and
period-(t + 1) consumption. When these terms are fixed, so is the real demand S(πe

t+1) for
money by households. The real supply by the government is always fixed at δ, and the nom-
inal supply mt−1 going into the period is also fixed. The market-clearing price pt is simply
that which makes the nominal value of the net real demand for money, pt(S(πe

t+1) − δ),
equal to the nominal supply, mt−1.

If households instead use current-period information to update their inflation expecta-
tions, then a higher price for current consumption raises inflation expectations and hence
makes current consumption seem less dear compared to tomorrow’s consumption. Hence,
demand for current consumption rises and real demand for money falls when pt rises. The
effect this has on the nominal demand for money is ambiguous, since the nominal value of
a fixed quantity of real demand rises. There can be multiple prices at which the nominal
demand and nominal supply of money are equal.

11



Specifically, suppose instead that πe
t+1 = ψ(πt, π

e
t ). Then the equilibrium condition

πt = W (πe
t+1, π

e
t ) can be written as

f(πt, π
e
t ) := W (ψ(πt, π

e
t ), π

e
t ) − πt = 0 .

Let ϕ(πe
t ) be the set of equilibrium inflation factors, given πe

t . Given the initial condition πe
1,

{πe
t }∞t=1 and {πt}∞t=1 are equilibrium expected and realized inflation paths if and only if πt ∈

ϕ(πe
t ) and πe

t+1 = ψ(πt, π
e
t ) for t ≥ 1. Combining these two conditions, we obtain a reduced-

form condition πe
t+1 ∈ ψ(ϕ(πe

t ), π
e
t ) for the evolution of πe

t , but it is not a conventional
difference equation because πe

t 7³ ψ(ϕ(πe
t ), π

e
t ) is a correspondence rather than a function.

If we define an equilibrium selection F , where F (πe
t ) ∈ ϕ(πe

t ), then we obtain a standard
difference equation πe

t+1 = ψ(F (πe
t ), π

e
t ) and thus can define (in)stability in the usual way.

If the equilibrium selection picks out the equilibrium point farthest from πe
t , then stability

means that there is a neighborhood of the steady state such that, for every initial condition
in this neighborhood and every equilibrium path with this initial condition, the inflation
factor converges to the steady state. This is rarely satisfied when when multiplicity is truly
a problem. For example, if there are multiple equilibria at the steady state, then a path
starting in the “steady state” can immediately jump away from it. Stability is more likely
to be obtained if the equilibrium selection, in a neighborhood of each steady state, instead
picks out an equilibrium that is closest to the steady state. Stability then means roughly
that there is a neighborhood of the steady state such that, for every initial condition in this
neighborhood, there is some equilibrium path with this initial condition that converges to
the steady state.

As in Grandmont (1998)—who also allows agents to condition on current information—
we adopt the latter approach by defining an equilibrium selection F that is obtained, in a
neighborhood of each steady state, by applying the implicit function theorem to f(πt, π

e
t ) =

0. The instability results that so derived are robust in the sense that, if π is an unstable
steady state for such a selection then it is also unstable—or perhaps not even a steady
state—for other selections. On the other hand, one could take issue with a stability, given
reasons to assume a different selection. This caveat is discussed further in Section 5.4.

Here are the results:8

Proposition 5.2 Assume πe
t+1 = ψ(πt, π

e
t ) for t ≥ 1, where ψ satisfies Assumption 5.1 and

πe
1 is an initial condition. Then πH is stable for δ ≈ 0. Furthermore, if

− S(1)
S′(1)

<
2ψπi(1, 1)

2 − ψπi(1, 1)
(5.3)

then πL is unstable for δ ≈ 0. If inequality (5.3) is reversed, then πL is stable for δ ≈ 0.

Proof: See Appendix A. See also Lettau and Van Zandt (2000, Section 8) for the simplest
case, in which πe

t+1 = πt. ¤

These results indicate that stability under adaptive expectations is more like stability
under rational expectations if agents are allowed to use current information in their expec-
tations rule. The high steady state πH is stable under rational expectations as well as when
πe

t+1 = ψ(πt, π
e
t ), but it is unstable when πe

t+1 = ψ(πt−1, π
e
t ). The results for the low steady

8We first studied the basic ideas of this section via an example that is now in Lettau and Van Zandt

(2000). This example was also studied independently and contemporaneously by Virasoro (1994).
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state are similar but not as clear-cut. Under rational expectations it is unstable. If πL is
stable when information is current, it is also stable when information is lagged; however, if

ψπi(1, 1) < − S(1)
S′(1)

<
2ψπi(1, 1)

2 − ψπi(1, 1)

then, for δ ≈ 0, πL is unstable when information is current but is stable when information
is lagged.

5.4 Further discussion equilibrium selection with current information

Including current information in the expectations rule introduces the technical compli-
cation of multiple within-period Walrasian equilibria. Does this not in itself justify the
common practice of only including lagged information in the expectations rules?

That an assumption simplifies a model does not mean that it makes the model more
consistent or a better description of world. The model we are studying is a reduced form of
a temporary equilibrium model in which agents must know the current price at the time of
market clearing, as this is how they choose nominal money balances given their real money
demands. Hence, it makes sense that they also use this information to form expectations.

Perhaps one does not like Walrasian mechanisms, and would instead like to model within-
period trade using a Shapley-Shubik (market-order) bidding mechanism, therefore taking
price information out of the current period information set. If so, then this should be stated
and modeled explicitly.

The mechanism by which current information affects stability is in any case intuitive. A
price rise not only increases demand for money because the currency is devalued and hence
households have to hold more money in order to store wealth, but it also reduces demand
for money because it raises people’s inflation expectations and makes them want to store
less wealth.

That lagged information guarantees a unique temporary equilibrium mapping is a con-
sequence of the fact that there is a single consumption good each period. Otherwise, there
might still be multiple within-period Walrasian equilibria, and lagged versus current in-
formation would not buy additional simplicity. This is why the literature on temporary
equilibrium with multiple goods typically assumes that agents use current information (e.g.
see Grandmont (1998)).

Proposition 5.2 concludes that πH is stable. However, Lettau and Van Zandt (2000, Sec-
tion 6) show that implicit equilibrium selection on which this result is based is tatônnement
unstable and that, when S is affine, there may be another equilibrium selection that is
tatônnement stable and for which πH is not a steady state.9 If one requires tatônnement
stability as a refinement, then πH is eliminated, just as in the lagged information case. How-
ever, the reasons are completely different. The tatônnement stability argument says that
πH is not even a steady state because of a refinement on the static within-period Walrasian
equilibria. If this is the justification for ruling out πH rather than dynamic stability, then
this argument should be made explicitly. Note that there is no indication that tatônnement
stability with current information generally leads to the same refinement as dynamic stabil-
ity with lagged information. This is not even true in the current model, as stability of πL

cannot be restored under current information by invoking this refinement.

9We are greatly indebted to Albert Marcet for bringing this fact to our attention. The views expressed

here are those of the authors.
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6 Expectational stability and slow updating

In this section, we reexamine recursive time-independent expectations rules when these
put little weight on the last observation, and we consider time-dependent rules for which
the weight on the last observation diminishes to zero.

6.1 Updating with constant but low weight on new information

Recall the expectations rules πe
t+1 = ψ(πi

t, π
e
t ) studied in Section 5. Intuitively, if little

weight is placed on the last observation (ψπi is small), then stability should not depend on
whether lagged or current information is used. For the low-inflation steady state πL, this
is easy to see from Propositions 5.1 and 5.2: when ψπi ≈ 0, the inequality in equation (5.2)
holds and the inequality in equation (5.3) is reverse; hence πL is stable whether information
is lagged or current. However, it is not obvious that the high-inflation steady state is unstable
whether information is lagged or current. Proposition 5.2 states that πH is stable for δ ≈ 0
when information is current; the meaning of this result is that, for fixed ψ, there is a δ̄ > 0
such that πH is stable for δ < δ̄. An inspection of the proof of Proposition 5.2 reveals it is
also true that, for fixed δ > 0, there is an ᾱ such that πH is unstable if ψπi(πH , πH) < ᾱ.

We can also reach these conclusions by using the criterion of expectational stability,
introduced by Evans (1985) and used extensively to characterize asymptotic stability in
stochastic systems with decreasing-gain learning rules (see Evans and Honkapohja (2000)
for an overview). In our model, a steady state is expectationally (un)stable if it is an
(un)stable zero of the following differential equation:

dπe

dτ
= W (πe

τ , πe
τ ) − πe

τ .(6.1)

That is, π̂ is expectationally stable if

W1(π̂, π̂) + W2(π̂, π̂) < 1 ,

and it is expectationally unstable if this inequality is reversed.

Proposition 6.1 For δ ≈ 0, πL is expectationally stable and πH is expectationally unstable.

Proof: According to Remark 2.2,

W1(π̂, π̂) + W2(π̂, π̂) = −(π̂ − 1)S′(π̂)/S(π̂) =: Ω(π̂)

at a steady state π̂. Since limδ↓0 S(πL) = S(1) > 0, we have limδ↓0 Ω(πL) = 0 and hence πL

is expectationally stable for δ ≈ 0. However, since limδ↓0 S(πH) = 0, we have limδ↓0 Ω(π̂) =
∞ and hence πH is expectationally unstable for δ ≈ 0. ¤

One can think of the differential equation (6.1) as a fictitious continuous-time limit of
our discrete-time model when the adjustment to the expected inflation factor is proportional
to the length of the time period and to the gap between the expected and realized inflation
factors. In this case,

πe
t+∆t = πe

t + ∆t
(
W (πe

t , π
e
t−∆t) − πe

t

)
,

πe
t+∆t − πe

t

∆t
= W (πe

t , π
e
t−∆t) − πe

t .
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(We are not deriving a true continuous-time limit of our model because we assume that the
length of the time period does not affect δ or S.) Since the length of the time period only
affects the speed of adjustment, this continuous-time equation should be an approximation
to our discrete-time model when the rate of adjustment ψπi is small. Thus, that πL is stable
(resp., πH is unstable) when ψπi ≈ 0 should follow from the fact that πL is expectationally
stable (resp., πH is expectationally unstable).

This is confirmed by deriving such a link for a more general class of models. Here we
abuse notation slightly and let W stand for an arbitrary function. Otherwise, the dynamic
system is as studied in Section 5, with state variables πt and πe

t .

Proposition 6.2 Let A ⊂ R be open, let W : A × A → R be continuously differentiable,
and let ψ : A × A → A satisfy Assumption 5.1 (restated for the domain A). Consider the
dynamic system with state variables πt and πe

t defined by (i) πt = W (πe
t+1, π

e
t ) for t ≥ 1

and (ii) πe
t+1 = ψ(πi

t, π
e
t ). (In the case of lagged information, πi

t = πt−1, equation (ii)
holds for t ≥ 2, and πe

1 and πe
2 are initial conditions; in the case of current information,

πi
t = πt, equation (ii) holds for t ≥ 1, and πe

1 is an initial condition.) Assume that π̂ ∈ A

and π̂ = W (π̂, π̂). If π̂ is expectationally (un)stable then there is ᾱ such that π̂ is (un)stable
if ψπi(π̂, π̂) < ᾱ.

Proof: See Appendix B. ¤

6.2 Diminishing gains

It is also intuitive that if π̂ is (un)stable for ψπi close to zero, then it should be (un)stable
when the adjustment of expectations is time dependent and converges to zero, as in the
expectations rule

πe
t+1 = αtπ

i
t + (1 − αt)πe

t ,

where πi
t is equal either to πt−1 or πt and where αt → 0. The only caveat is that the

sequence {αt} should not converge too quickly, so that the system does not get stuck at a
non-steady state.

This is the gist of Propositions 6.3 and 6.4 below. These results are similar to the use of
expectational stability to characterize stability in stochastic systems with diminishing up-
dating of expectations. However, that literature cannot be directly adapted to deterministic
models. Evans and Honkapohja (1999) contains results for deterministic models that we
adapt to our model when, in the proof of Proposition 6.3, πi

t = πt. When instead πi
t = πt−1,

our model does not fit their framework. Therefore, we provide an independent proof of
Proposition 6.4. We begin by specifying the parts of the model and the assumptions that
are common to the two propositions.

Assumption 6.1 Let A ⊂ R be open and let W : A×A → R be continuously differentiable.
Consider the dynamic system with state variables πt and πe

t defined by (i) πt = W (πe
t+1, π

e
t )

for t ≥ 1 and (ii) πe
t+1 = αtπ

i
t + (1− αt)πe

t . (In the case of lagged information, πi
t = πt−1,

equation (ii) holds for t ≥ 2, and πe
1 and πe

2 are initial conditions; in the case of current
information, πi

t = πt, equation (ii) holds for t ≥ 1, and πe
1 is an initial condition.) Assume

that 0 < αt < 1 for all t, αt → 0, and
∑∞

t=1 αt = ∞. Define a steady state to be π̂ ∈ A such
that π̂ = W (π̂, π̂).
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Proposition 6.3 Consider Assumption 6.1 with current information, and let π̂ be a steady
state. Assume αtW1(π̂, π̂) 6= 1 for all t. Then π̂ is stable if it is expectationally stable.
Assume also W2(π̂, π̂) 6= −(1 − αt)/αt for all t. Then π̂ is unstable if it is expectationally
unstable.

Proof: See Appendix B. ¤

Proposition 6.4 Consider Assumption 6.1 with lagged information, and let π̂ be a steady
state. If {αt} is weakly decreasing, then π̂ is stable if it is expectationally stable. If
W2(π̂, π̂) < 0, then π̂ is unstable if it is expectationally unstable.

Proof: See Appendix B. ¤

7 OLS learning revisited

Marcet and Sargent (1989) study the dynamics of this model for the case of affine S,
using an expectations rule in which πe

t+1 is the OLS estimate of π̄ for the model

ps = π̄ps−1 + εs ,(7.1)

using price data only up through period t−1. In our notation, we can write this expectations
rule, which we call “OLSpt−1”, as

πe
t+1 =

∑t−1
s=−1 psps−1∑t−1
s=−1 p2

s−1

=
∑t−1

s=−1 p2
s−1πs∑t−1

s=−1 p2
s−1

(OLSpt−1)

for t ≥ 0, where p−2 and p−1 are initial conditions. The authors show that πL is stable and
πH is unstable.

In this section, we generalize the characterization of stability for this expectations rule to
the more general supply function S used in this paper, and we also consider three variations
of OLS expectations rules. The first is the OLS estimate for the same model in equation
(7.1), but including data from period t. This forecasting rule, which we refer to as “OLSpt

”,
can be written as

πe
t+1 =

∑t
s=0 psps−1∑t
s=0 p2

s−1

=
∑t

s=0 p2
s−1πs∑t

s=0 p2
s−1

(OLSpt
)

for t ≥ 0, where p−1 is an initial condition.

An agent might instead use the OLS estimate of π̄ for the model

πs = π̄ + εs ,(7.2)

using price data up through period t − 1 in one case and period t in the other. We refer
to these rules as “OLSπt−1” and “OLSπt

”, respectively. Of course, these OLS estimates are
just the means of the inflation factors in the data sets,

πe
t+1 =

1
t + 1

t−1∑
s=−1

πs ,(OLSπt−1)

πe
t+1 =

1
t + 1

t∑
s=0

πs ,(OLSπt
)

where π−1 and/or π0 are initial conditions.
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Proposition 7.1 Each of the following stability properties holds for δ ≈ 0:

Rule πL πH

OLSpt−1 stable unstable
OLSpt

stable stable
OLSπt−1 stable unstable
OLSπt

stable unstable

(Instability of πH for OLSπt−1 also assumes W1(πH , πH) 6= t for all t.)

Proof: See Appendix C. ¤

In the rest of this section, we provide some intuition for these results; the details are in
Appendix C.

Each of these rules can be written in the form πe
t+1 = αtπt + (1 − αt)πe

t or πe
t+1 =

αtπt−1 + (1 − αt)πe
t , as follows:

πe
t+1 =

p2
t−2∑t−1

s=−1 p2
s−1

πt−1 +
∑t−2

s=−1 p2
s−1∑t−1

s=−1 p2
s−1

πe
t ,(OLSpt−1)

πe
t+1 =

p2
t−1∑t

s=0 p2
s−1

πt +
∑t−1

s=0 p2
s−1∑t

s=0 p2
s−1

πe
t ,(OLSpt

)

πe
t+1 =

1
t + 1

πt−1 +
t

t + 1
πe

t ,(OLSπt−1)

πe
t+1 =

1
t + 1

πt +
t

t + 1
πe

t .(OLSπt
)

Consider first OLSπt−1 and OLSπt
, for which the αt are history-independent, sum to

∞, and converge to 0 (this case was studied in Section 6). According to Propositions 6.3
and 6.4, a steady state π̂ is asymptotically (un)stable if it is expectationally (un)stable.
According to Proposition 6.1, πL is expectationally stable and πH is not.

Now consider OLSpt−1 and OLSpt
. Since the αt are history dependent, we cannot directly

apply the results of the preceding sections. Still, there is an interesting relationship between
those results and the stability properties of OLSpt−1 and OLSpt

. Observe that equation
(7.1), when divided through by ps−1, yields

πs = π̄ + ε/ps−1 .(7.3)

Given the OLS assumption that the disturbances {εs}∞s=2 are i.i.d., the difference between
models (7.3) and (7.2) is that the former views the variance of the disturbances to the
inflation rates as inversely proportional to the square of the previous period’s price level.
For this reason, if prices are rising, then OLSpt−1 and OLSpt

put more weight on recent than
on older observations of the inflation factor. If the inflation factor is above and bounded
away from 1, then αt is bounded away from 0. In particular, if πt → π̂ ≥ 1 then αt →
1 − π̂−2 =: απ̂.10

Consider a steady state π ∈ {
πL, πH

}
. As long as π̂ > 1, so that απ̂ > 0, intuitively the

stability of the steady state should be the same as for the constant-gain expectations rule

πe
t+1 = απ̂πt−1 + (1 − απ̂)πe

t (for OLSpt−1)

πe
t+1 = απ̂πt + (1 − απ̂)πe

t (for OLSpt
) .

10A proof of this formula for the limit is in Marcet and Sargent (1989); see also Lettau and Van Zandt

(2000, Section 7).
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Since πL < πH , it follows that απL < απH ; hence, the implicit assumption about the
disturbances implies that OLSpt−1 and OLSpt

place greater weight on recent information
around the steady state πH than around the steady state πL. For δ ≈ 0, πH = πa and
απH ≈ 1 − (πa)−2 > 0. Propositions 5.1 and 5.2 therefore suggest that πH is unstable for
OLSpt−1 and stable for OLSpt

, as confirmed in our proof. In contrast, as δ ↓ 0, both πL ↓ 1
and απL ↓ 0. When information is lagged, Propositions 5.1 and 6.1 both suggest that πL

is stable (also confirmed in our proof). However, these results do not immediately indicate
whether πL is stable when information is current (OLSpt

): according to Proposition 5.2, for
fixed α, πL is stable if δ is close enough to 0; according to Proposition 6.1, for fixed δ, πL

is stable if α is close enough to 0. Our proof shows that the effect of low α dominates and
hence πL is stable.

8 Continuous-time models

The distinction between using current and one-period-old information cannot arise in
a continuous-time model. This raises the question of whether the lagged- and current-
information versions of our constant-gain model converge to the same continuous-time limit,
and what this limiting model would look like. Rather than provide a proper answer to
this question by deriving the limiting model, we compare our discrete-time model with
a “continuous-time analog” that has already been studied in the literature by Evans and
Yarrow (1981), Sargent and Wallace (1987), and Bruno and Fischer (1990). This model
introduces a constant real debt financed by seigniorage to the continuous-time inflation
model of Cagan (1956).

The model, which is summarized in Blanchard and Fischer (1989, Section 4.7), has been
studied most commonly with exponential demand for real money balances, as in S(πe) =
a e−cπe

, where πe is the expected instantaneous inflation rate. In this case, there is a low
and a high-inflation steady state, one and only one of which is stable. The low (resp. high)
one is stable when the rate of expectations adjustment is low (resp. high). However, the
exponential S does not satisfy the assumptions in the current paper, as it never reaches
zero. Our analysis of the high-inflation steady state relies very much on the fact that there
is a finite autarkic inflation factor.

In Lettau and Van Zandt (2000, Section 10), we explicitly characterize the existence and
stability of low and high steady states in the continuous-time model under Assumption 2.1
on S (restated appropriately for the interpretation that π is an instantaneous inflation rate).
The following proposition paraphrases the results of that section:

Proposition 8.1 In a continuous-time analog of our model, there are low and high steady
states πL and πH near 1 and πa, respectively, for δ ≈ 0. πL is unstable (resp., stable) if the
weight put on recent information is large (resp., small) relative to −S(πL)/S′(πL). πH is
stable.

The comparison of our discrete-time model and the continuous-time analog is inconclu-
sive for the low steady state, because the properties stated in Proposition 8.1 that determine
(in)stability of πL hold qualitatively in the discrete-time model whether agents use current
or lagged information. However, stability of πH unambiguously matches our constant-gain
model with current information.
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9 What do we mean by current information?

Whether we view agents as using “current” information depends on what variables we
consider the agents to be updating and predicting. For example, in the expectations rules we
have studied, agents use the current price to predict the next-period price. They calculate
πe

t from past and/or current information, then predict pt+1 to be πe
t+1pt.

Suppose instead that agents use a rule πe
t+1 = a+bπt, where a and b are parameters that

are calculated from past and/or current data. The agent uses current information about
inflation to generate inflation expectations, even if only old data is used to update a and
b. One may expect that stability will have the qualitative properties we derived for current
information. This conclusion is not trivial because the expectations rule is overspecified with
respect to steady state inflation factors, meaning that multiple values of the parameters can
be consistent with a steady state (e.g., a = π̂ and b = 0 or a = 0 and b = 1).

The sensitivity of expectational stability to the over specification is considered in Evans
(1985, 1989). It is studied by Duffy (1994) for this macroeconomic model but without
government deficits. With respect to the parameters a and b, all rational expectations
equilibrium paths are steady states. Duffy finds that all are expectationally stable except
the no-inflation steady state, which is the only one that does not converge to autarky.
Duffy shows that the steady state values of b are greater than zero (except for the one
corresponding to no inflation); this is consistent with our finding that putting weight on
current inflation information makes the high-inflation steady state stable.

10 Conclusion

Both active researchers in and observers of the literature on stability under adaptive ex-
pectations in macroeconomic models are aware that changes in expectations rules affect the
stability of steady states. Such nonrobustness is a fact of life when rationality and fulfilled
expectations, whose specification is typically derived from deductive principles, are replaced
by realistic models of boundedly rational behavior, the choice of which is essentially an em-
pirical question. The indeterminacy that arises in models of rational expectations (or, e.g.,
of equilibria in games) is replaced by indeterminacy about the proper specification of expec-
tations (or, e.g., of reputation or learning in games). Yet the development of such models
helps us to understand how various kinds of human behavior lead to different outcomes.

Thus, the main results of this paper (outlined in the Introduction) are not intended to
uncover a smoking gun of nonrobust models. Rather, the exercise provides concrete examples
of nonrobustness in order to help us understand what factors affect stability. In particular,
we show that the assumption that agents use lagged rather than current information should
not be made casually and should not be justified solely by the simplification that such an
assumption allows.

We also found this exercise useful for understanding the existing literature because we
were able to experiment with a variety of expectations rules—similar to ones that have been
used in this literature—in the context of a single simple macroeconomic model. We hope
that some readers also benefit in this way.
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A Proofs for constant-gain recursive expectations

Proof of Proposition 5.1: As explained prior to the statement of Proposition 5.1, it
suffices to study the stability of steady states of the following difference equation:

πe
t+1 = ψ(W (πe

t , π
e
t−1), π

e
t ) =: g(πe

t , π
e
t−1) .(A.1)

Let gπe
t

and gπe
t−1

be the partial derivates of g. When gπe
t

and gπe
t−1

are evaluated at a
steady state π̂, the characteristic equation for the difference equation linearized around π̂ is

x2 − gπe
t
x − gπe

t−1
= 0 .(A.2)

Note that π̂ is stable if both roots of this equation lie in the unit circle and is unstable if
either root lies outside the unit circle.

Evaluated at any (πe
t , π

e
t−1), the derivatives of g are

gπe
t

= ψπiW1 + ψπe > 0 ,

gπe
t−1

= ψπiW2 < 0 ,

where ψπi and ψπe are evaluated at (W (πe
t , π

e
t−1), π

e
t ).

Consider first the steady state πH , at which all derivatives are now evaluated. Note
that a root of the characteristic equation (A.2) lies outside the unit circle if gπe

t
> 2; since

ψπe ≥ 0, a sufficient condition is that ψπiW1 > 2. By Assumption 5.1, ψπi is bounded away
from zero; by Remark 2.2, limδ↓0 W1(πH , πH) = ∞. Hence, for δ ≈ 0, ψπiW1 > 2 and so
πH is unstable.

Consider now the steady state πL. Let A(δ) := ψπiW1, B(δ) := ψπe , and C(δ) :=
−ψπiW2, with each derivative evaluated at πL (hence the dependence on δ). Then the
characteristic equation can be written as

x2 − (A(δ) + B(δ))x + C(δ) = 0 .(A.3)

Let A := limδ↓0 A(δ), and define B and C similarly. The roots depend continuously on the
coefficients of the quadratic equation, so if the roots of x2−(A+B)x+C are both inside the
unit circle (resp., if one root lies outside the unit circle) then the same holds for equation
(A.3) when δ ≈ 0.

Observe that A = C = −ψπi(1, 1)S′(1)/S(1), and hence the relevant equation is x2 −
(A + B)x + A. In Lettau and Van Zandt (2000, Section 5.2) we show that, because A > 0
and 0 ≤ B < 1, the roots of this quadratic equation lie inside the unit circle if A < 1 and
at least one of the roots lies outside the unit circle if A > 1. Note that A < 1 is just the
condition S(1) > −S′(1)ψπi(1, 1) stated in the proposition. ¤

Proof of Proposition 5.2: The proof begins with the discussion of equilibrium selec-
tions that precedes Proposition 5.2. Recall that the period-t equilibrium condition is

f(πt, π
e
t ) := W (ψ(πt, π

e
t ), π

e
t ) − πt = 0 .(A.4)

We let F be an equilibrium selection that, in a neighborhood of the steady states πL and πH ,
selects the equilibrium closest to the steady state (or to the previous inflation expectations).
Specifically, F is defined in a neighborhood of each of these steady states by application of
the implicit function theorem. The dynamic system thus becomes πt = F (πe

t ) and πe
t+1 =

ψ(πt, π
e
t ) for t ≥ 2. Combining these, we obtain a single equation πe

t+1 = ψ(F (πe
t ), π

e
t ) =:
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g(πe
t ) governing {πe

t }∞t=1. As explained in Remark 5.1, it suffices to characterize the stability
of πL and πH as steady states of this reduced-form system.

Let π̂ be a steady state and let fπ and fπe denote the partial derivatives of f . In what
follows, partial derivatives are evaluated at πt = πe

t = π̂, and their arguments are omitted
for clarity. We thus have

fπ = W1ψπi − 1 ,

fπe = W1ψπe + W2 .

As long as fπ 6= 0, there is a neighborhood of π̂ on which F coincides with a function
obtained by applying the implicit function theorem to f(πt, π

e
t ) = 0 at πt = πe

t = π. It
follows that F is differentiable at π̂ and that F ′(π̂) = −fπe/fπ. Hence, g is differentiable at
π̂ and

g′(π̂) = F ′(π̂)ψπi + ψπe = −W1ψπe + W2

W1ψπi − 1
ψπi + ψπe = −W2ψπi + ψπe

W1ψπi − 1
.

Into the right-hand side we substitute the expressions (for W1 and W2) found in Remark
2.2, and so obtain

g′(π̂) =
π̂S′(π̂)ψπi + S(π̂)ψπe

π̂2S′(π̂)ψπi + S(π̂)
.(A.5)

Thus, π̂ is a stable steady state of g if |g′(π̂)| < 1 and is unstable if |g′(π̂)| > 1. If fπ = 0
and fπe 6= 0, then for πe

t close to π, there are no solutions to f(π, π) = 0 as close as πe
t to

π; hence π is unstable.

Consider the steady state πL for δ ≈ 0. Then πL ≈ 1 and

g′(πL) ≈ S′(1)ψπi + S(1)ψπe

S′(1)ψπi + S(1)
=:

A + B

A + C
,

where A := S′(1)ψπi , B := S(1)ψπe , and C := S(1). By assumption, ψπe < 1 and hence
B < C. One can therefore show (see Lettau and Van Zandt (2000, Section 5.3)) that
|(A + B)/(A + C)| > 1 if and only if −A − B > A + C, that is,

−2S′(1)ψπi > S(1)(1 + ψπe) .(A.6)

Thus, inequality (A.6) is a sufficient condition for instability of πL when δ = 0 and, by
continuity of the derivatives, for δ ≈ 0. Substituting ψπe = 1 − ψπi and rearranging yields
the inequality in equation (5.3) of the proposition. Similarly, if this inequality (A.6) is
reversed, then πL is stable for δ ≈ 0 as long as fπ(1, 1) 6= 0, that is, S(1)+S′(1)ψπi(1, 1) 6= 0.
This latter condition is implied by the reversal of inequality (A.6).

Now consider the steady state πH . Then πH ≈ πa and S(πH) ≈ 0 and so g′(πH) ≈
1/πa < 1. Hence, πH is stable for δ ≈ 0. ¤

B Proofs for expectational stability

Proof of Proposition 6.2: Remark 5.1 applies, so one can study reduced form systems
involving only πe

t .

Consider first the case of πe
t+1 = ψ(πt−1, π

e
t ). As in the proof of Proposition 5.1, we have

that
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(1) πe
t is governed by the difference equation πe

t+1 = g(πe
t , π

e
t−1), where g(πe

t , π
e
t−1) =

ψ(W (πe
t , π

e
t−1), π

e
t );

(2) the partial derivatives of g are gπe
t

= ψπiW1 + ψπe and gπe
t−1

= ψπiW2; and

(3) the characteristic equation for the difference equation linearized around the steady
state π̂ is x2−gπe

t
x−gπe

t−1
= 0, which can be written (using that, for any π, ψπi(π, π)+

ψπe(π, π) = 1) as

χ(x;ψπi) := x2 − (ψπiW1 + 1 − ψπi)x − ψπiW2 = 0 .

When ψπi = 0 this characteristic equation is x2 − x = 0 and the roots are 0 and 1. The
roots depend continuously on ψπi and so, for ψπi ≈ 0, the two roots are ≈ 0 and ≈ 1. We
must check whether the root close to 1 is less than 1 (then π̂ is stable) or greater than 1
(then π̂ is unstable). To do so, we consider the root x̂(ψπi) given by the implicit function
theorem around ψπi = 0 and x = 1. Since

∂χ

∂x
(x, ψπi) = 2x − ψπiW1 − 1 + ψπi ,

∂χ

∂ψπi

(x, ψπi) = −W1x + x − W2 ,

we have

x̂′(0) = −
∂χ
∂x (1, 0)
∂χ
∂x (1, 0)

= W1 + W2 − 1 .

If π̂ is expectationally stable, then x̂′(0) < 0; hence, and for ψπi ≈ 0, x̂(ψπi) < 1 and π̂ is
stable. If, instead, π̂ is expectationally unstable, then x̂′(0) > 0; hence, and for ψπi ≈ 0,
x̂(ψπi) > 1 and π̂ is unstable.

Consider next the case πe
t+1 = ψ(πt, π

e
t ). Here we have an equilibrium selection problem

as discussed in Section 5.3, and we follow the approach outlined there. Our proof initially
parallels that of Proposition 5.1.

The period-t equilibrium condition is

f(πt, π
e
t ) = W (ψ(πt, π

e
t ), π

e
t ) − πt = 0 .

For a steady state π̂, fπ(π̂, π̂) = W1ψπi − 1; hence, for ψπi ≈ 0, fπ(π̂, π̂) 6= 0. Thus, by the
implicit function theorem, there is an equilibrium selection F (πe

t ) such that π̂ = F (π̂), F is
differentiable at π̂, and

F ′(π̂) = −fπe(π̂, π̂)
fπ(π̂, π̂)

= −W1ψπe + W2

W1ψπi − 1
.

The dynamic system governing πe
t in a neighborhood of π̂ is πe

t+1 = ψ(F (πe
t ), π

e
t ) =: g(πe

t ).
Then

g′(π̂) = ψπiF ′ + ψπe =
−ψπiW1ψπe − W2ψπi + ψπeW1ψπi − ψπe

W1ψπi − 1
,

=
−W2ψπi − ψπe

W1ψπi − 1
=

1 − ψπi + W2ψπi

1 − ψπiW1

and g′(π̂) > 0 for ψπi ≈ 0. We have also g′(π̂) < 1 (hence π̂ is stable) if

1 − ψπi + W2ψπi < 1 − ψπiW1

0 < ψπi(1 − W1 − W2) .

This holds if π̂ is expectationally stable and hence 1 − W1 − W2 > 0. Similarly, if π̂ is
expectationally unstable, then g′(π̂) > 1 and π̂ is unstable. ¤
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Proof of Proposition 6.3: Evans and Honkapohja (1999) study a (multidimensional)
system of the form

πe
t+1 = αtF (πe

t , αt) + (1 − αt)πe
t ,

where the sequence {αt} satisfies the assumptions of Proposition 6.3 and F satisfies certain
assumptions to be described shortly. Our system can be written in this form when πi

t = πt

and when F is an equilibrium selection—that is, F (πe;α) is a solution π to

f(π, πe;α) := W (απ + (1 − α)πe, πe) − π = 0

for any πe ∈ A and α ∈ [0, 1). In the rest of this proof, we explain how to apply their
results.

Observe that f is continuously differentiable, even for negative α, as long as απ + (1 −
α)πe ∈ A. Hence, since A is open, for any steady state π̂ there is a neighborhood of (π̂, π̂, 0)
in A × A × R on which f is continuously differentiable, and

fπ(π̂, π̂; 0) = −1 ,

fπe(π̂, π̂; 0) = W1(π̂, π̂) + W2(π̂, π̂) ,

fα(π̂, π̂; 0) = 0 .

By the implicit function theorem, we can choose an equilibrium selection F that is contin-
uously differentiable in a neighborhood U of (π̂, 0), with

Fπe(π̂; 0) = W1(π̂, π̂) + W2(π̂, π̂) ,

Fα(π̂; 0) = 0 .

Furthermore, we can choose F so that F (π̂, α) = π̂ for α such that (π̂, α) ∈ U .

There may be finitely many periods t such that (π̂, αt) is not in U . For such t, we note
that

fπ(π̂, π̂, αt) = αtW1(π̂, π̂) − 1 ,

fπe(π̂, π̂;αt) = (1 − αt)W1(π̂, π̂) + W2(π̂, π̂) .

By assumption, fπ(π̂, π̂, αt) 6= 0. Hence, we can invoke the implicit function theorem for each
of these periods to choose F so that (a) F (π̂, αt) = π̂, (b) F is continuously differentiable
in a neighborhood of (π̂, αt), and (c)

Fπe(π̂, αt) =
(1 − αt)W1(π̂, π̂) + W2(π̂, π̂)

1 − αtW1(π̂, π̂)
.

Evans and Honkapohja (1999) assume that (a) F is continuously differentiable in a
neighborhood of (π̂, 0) and (b) for all t, F (π̂, αt) = π̂ and F is continuous in a neighborhood
of (π̂, αt). We have shown that these conditions are satisfied.

Their Proposition 1 states that π̂ is stable(b) (see Definition 3.1) if Fπe(π̂; 0) < 1; since
Fπe(π̂; 0) = W1(π̂, π̂) + W2(π̂, π̂), this condition is equivalent to expectational stability. An
inspection of their proof indicates that they have also shown that π̂ is stable, rather than
merely stable(b).

Their Proposition 2 states that π̂ is unstable if Fπe(π̂, 0) > 1 (i.e., if π̂ is expectationally
unstable) and if Fπe(π̂, αt) 6= −(1 − αt)/αt for all t. The latter condition is

(1 − αt)W1(π̂, π̂) + W2(π̂, π̂)
1 − αtW1(π̂, π̂)

6= −1 − αt

αt
,

αt(1 − αt)W1(π̂, π̂) + αtW2(π̂, π̂) 6= −(1 − αt) + αt(1 − αt)W1(π̂, π̂) ,

W2(π̂, π̂) 6= −1 − αt

αt
,
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which we assumed for the instability result. ¤

The following lemma is used in the proof of Proposition 6.4, and is proved in Lettau and
Van Zandt (2000, Section 9).

Lemma B.1 Suppose {αt} is a sequence in (0, 1) such that limt→∞ αt = 0 and
∑∞

t=1 αt =
∞. Let K ∈ R and let ys :=

∏s
t=1(1 + αtK). Then lims→∞ ys = 0 if −1 < K < 0 and

lims→∞ ys = ∞ if K > 0.

Proof of Proposition 6.4: Consider now the case of lagged information, πe
t+1 = αtπt−1+

(1 − αt)πe
t . Then {πe

t } follows the difference equation

πe
t+1 = αtW (πe

t , π
e
t−1) + (1 − αt)πe

t .(B.1)

In two ways this is simpler than the case of current information: (a) we need not derive
an equilibrium selection and its differentiability properties, and (b) the function W (which
replaces F in the proof of Proposition 6.3) does not depend on αt. However, because W

depends on both πe
t and πe

t−1, this system does not fit the class studied by Evans and
Honkapohja (1999).

Specifically, suppose we write equation (B.1) as a two-dimensional first-order equation(
πe

t+1

πe
t

)
= Gt

(
πe

t

πe
t−1

)
:=

(
αtW (πe

t , π
e
t−1) + (1 − αt)πe

t

πe
t

)
.

Let Mt be the Jacobian of Gt evaluated at the steady state (π̂, π̂):

Mt : =
(

1 − αt + αtW1 αtW2

1 0

)
,(B.2)

where W1 and W2 are evaluated at (π̂, π̂). In the proofs of Evans and Honkapohja (1999),
it is important that the time-variant term αt can be separated in the form Mt = I + αtJ ,
where I is the identity matrix and J is a time-invariant matrix. This is not possible here,
and so we provide our own proof.

As usual, the main arguments of the proof concern the linear approximation, and then
additional arguments show that the residual does not alter the conclusions. Denote the
residual of the linearization of W around (π̂, π̂) by r. Then

πe
t+1 − π̂ = (1 − αt + αtW1)(πe

t − π̂) + αtW2(πe
t−1 − π̂) + αtr(πe

t , π
e
t−1) .(B.3)

The residual r(πe
t , π

e
t−1) satisfies the following Lipschitz condition: for all k > 0, there is

ε > 0 such that |r(πe
t , π

e
t−1)| ≤ k(|πe

t | + |πe
t−1|) if |πe

t | < ε and |πe
t−1| < ε. We will choose k

below; ε is then selected accordingly and Uε denotes the ε-ball around 0.

Stability We write the difference equation (B.1) as a two-dimensional first-order difference
equation, linearized and with a substitution of variables so that the steady state is (0, 0):

θt+1 = Mtθt + Rt ,

where Mt is the Jacobian of G evaluated at (π̂, π̂),

θt :=
(

πe
t − π̂

πe
t−1 − π̂

)
and Rt =:

(
αtr(πe

t , π
e
t−1)

0

)
.

Let M(α) be the matrix in equation (B.2), substituting α for αt, so that we can write
Mt = M(αt) and thereby emphasize that Mt depends on t only through αt. The first
property of M(α) that we need is the following, which will be proved below:
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Lemma B.2 There is ᾱ such that the eigenvectors of M(α) are linearly independent and
depend continuously on α for α ∈ [0, ᾱ].

For each t, let St be the matrix whose columns are the eigenvectors of Mt and let Λt be
the diagonal matrix whose diagonal entries are the eigenvalues of Mt. Let τ be such that
αt ≤ ᾱ for t ≥ τ . Then for t ≥ τ , it follows from Lemma B.2 that Mt can be diagonalized as
Mt = St Λt S−1

t and hence our difference equation can be written θt+1 = St Λt S−1
t θt + Rt.

Multiply this equation by S−1
t+1 to obtain

S−1
t+1θt+1 = S−1

t+1 St Λt S−1
t θt + S−1

t+1 Rt .

Define ζt := S−1
t θt and Γt := S−1

t+1 St Λt. Then ζt+1 = Γtζt + S−1
t+1 Rt. If ‖·‖ denotes a norm

on R2 and a matching linear operator norm on matrices in R2×2, then

‖ζt+1‖ = ‖Γt‖ · ‖ζt‖ + ‖S−1
t+1‖ · ‖Rt‖ .

Since {St} converges to a non-singular matrix, {θt} converges to (0, 0) if and only if {ζt}
does.

Ignoring momentarily the residual, we have ‖ζt+1‖ ≤
(∏t

s=τ‖Γt‖
)
‖ζτ‖, and convergence

follows if we can show that limt→∞
∏t

s=τ‖Γt‖ = 0. Expectational stability implies that the
eigenvalues of Mt are less then 1 in absolute value, and hence the norm of Λt is less than
1. If this were a time-invariant system, then S−1

t+1 St would be exactly equal to the identity;
hence ‖Γt‖ = ‖Λt‖ < 1 and convergence is obtained. In this time-variant system, the
terms S−1

t+1 St do not drop out. However, because {αt} converges, St is approximately equal
to St+1 and hence S−1

t+1 St is approximately equal to the identity. On the other hand, as
t → ∞, one of the eigenvalues of Mt converges to 1 and hence ‖Λt‖ and ‖Γt‖ converge to 1.
Convergence of θt thus depends on how quickly ‖Γt‖ converges to 1, which in turn depends
delicately on the interplay between the sequences {S−1

t+1 St} and {Λt}.
We verify through brute calculation that the deviations of S−1

t+1 St from the identity do
not swamp the convergence due to the eigenvalues of Mt. For this purpose, we need ‖·‖ to
be the L1 vector norm on R2 and the associated matrix norm on R2×2. That is, for ‖x‖ =

|x1|+|x2| for x ∈ R2, and ‖A‖ = max{|a11|+|a21|, |a12|+|a22|} for A =
(

a11 a12

a21 a22

)
∈ R2×2.

We shall prove the following lemma:

Lemma B.3 Suppose π̂ is expectationally stable. Then there are ρ > 0 and ᾱ > 0 such that
if αt+1 ≤ αt ≤ ᾱ then ‖Γt‖ ≤ 1 − ραt.

Redefine τ so that t ≥ τ ⇒ αt ≤ ᾱ for the ᾱ in both Lemmas B.2 and B.3. It follows from
Lemmas B.3 and B.1 that limt→∞

∏t
s=τ‖Γt‖ = 0.

We need to be sure this result is not disrupted by the residual. Let k and Uε be as
described in the Lipschitz condition for r. Then ‖Rt‖ < αtk ‖θt‖ if πe

t , π
e
t−1 ∈ Uε. Since

θt = St ζt, ‖θt‖ ≤ ‖St‖ · ‖ζt‖. Hence,

‖Rt‖ ≤ αtk ‖St‖ · ‖ζt‖
‖S−1

t+1‖ · ‖Rt‖ ≤ αtk ‖S−1
t+1‖ · ‖St‖ · ‖ζt‖ .

From Lemma B.2, both St and S−1
t converge to nonsingular matrices, so ‖St‖ and ‖S−1

t ‖
are bounded. Define K = supt k ‖S−1

t+1‖ · ‖St‖. Then

‖S−1
t+1‖ · ‖Rt‖ ≤ αtK‖ζt‖ .
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Choose k small enough that K < ρ. Suppose t ≥ τ and πe
t , π

e
t−1 ∈ Uε. Then

‖ζt+1‖ ≤ (1 − αt(ρ − K))‖ζt‖ .

Note that therefore ‖ζt+1‖ < ‖ζt‖. Iterating this inequality yields

‖ζτ+s‖ ≤
(

τ+s−1∏
t=τ

(1 − αt(ρ − K))

)
‖ζτ‖ .

Since ρ − K > 0, Lemma B.1 shows that lims→∞ ζτ+s = (0, 0), and hence lims→∞ θτ+s =
(0, 0).

To conclude, we need to account for what might happen in the first τ periods. Fix
any neighborhood U ⊂ Uε of π̂. We show that there is a neighborhood of π̂ such that for
initial conditions in this neighborhood, πe

t , π
e
t+1 ∈ U for t = 1, . . . , τ . It then follows from

the above that πe
t , π

e
t+1 ∈ U for t ≥ τ and that πe

t → π̂. (Furthermore, ‖ψτ+s‖ decreases
monotonically and so stability(a) is satisfied.) Hence, π̂ is a stable steady state.

This final step follows in the usual way from the local continuity of Gt. Specifically,
let Uτ := Uε. For t ∈ 1, . . . , τ − 1, given Ut+1, let Ut ⊂ Uε be a neighborhood of π̂ such
that G(Ut × Ut) ⊂ Ut+1 × Ut+1; such a neighborhood exists because Gt is continuous in
a neighborhood of (π̂, π̂) and Gt(π̂, π̂) = (π̂, π̂). If πe

1, π
e
2 ∈ U1 then πe

t , π
e
t+1 ∈ Ut for

t = 1, . . . , τ .

To conclude the proof for stability (and before proceeding to the proof for instability),
we provide the proof of the two lemmas.

Proof of Lemmas B.2 and B.3: We used Mathematica to compute the eigenvectors and
eigenvalues of M(α) (see Lettau and Van Zandt (2000, Appendix B)). We can diagonalize
M(α) = S(α) Λ(α)S(α)−1, where Λ(α) is the diagonal matrix whose diagonal entries are
the eigenvalues of M(α) and S(α) is the matrix whose columns are the eigenvectors of M(α).
These matrices are

Λ(α) =
(

h(α) 0
0 g(α)

)
, S(α) =

(
h(α) g(α)

1 1

)
, S(α)−1 =

(− 1
f(α)

g(α)
f(α)

1
f(α) −h(α)

f(α)

)
,

where

f(α) =
√

(1 − α + αW1)2 + 4αW2 ,

g(α) =
(
(1 − α + αW1) + f(α)

)
/2 ,

h(α) =
(
(1 − α + αW1) − f(α)

)
/2 .

Note in particular that S(α) depends continuously on α, and that S(α) is non-singular
(hence S(α)−1 is well-defined) when f(α) 6= 0, which holds for α in a neighborhood of 0.
This completes the proof of Lemma B.2.

We can show (see Lettau and Van Zandt (2000, Appendix B)) that

Γt =

(
h(αt)

−h(αt)+g(αt+1)
f(αt+1)

g(αt)
−g(αt)+g(αt+1)

f(αt+1)

h(αt)
h(αt)−h(αt+1)

f(αt+1)
g(αt)

g(αt)−h(αt+1)
f(αt+1)

)
.

Examine ‖Γt‖ for small αt (say, for t ≥ τ). First, observe that

g′(α) =
(
− 1 + W1 + (1/2)f(α)−1/2

(
2(−1 + α − αW1)(1 − W1) + 4W2

))
/2 ,

g′(0) =
(
− 1 + W1 + (1/2)

( − 2(1 − W1) + 4W2

))
= W1 + W2 − 1 < 0 .
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Since g′(0) < 0 and since {αt} is decreasing, for αt small enough (t large enough), g(αt+1) ≥
g(αt) and hence the top-right term of Γt is positive.

Second, note that

lim
α→0

f(α) = 1 , lim
α→0

g(α) = 1 , lim
α→0

h(α) = 0 .

Therefore, for t large enough, (a) the top-left and bottom-left terms in Γt are close to 0, (b)
the top-right term is positive and close to zero, and (c) the bottom-right term is close to 1.
Hence, ‖Γt‖ is the sum of the terms (which are positive) in the right column:

‖Γt‖ = g(αt)
−g(αt) + g(αt+1)

f(αt+1)
+ g(αt)

g(αt) − h(αt+1)
f(αt+1)

= g(αt)
g(αt+1) − h(αt+1)

f(αt+1)
= g(αt) .

Pick ρ such that 0 < ρ < −g′(0). Then, for t large enough, ‖Γt‖ ≤ 1− ραt. This completes
the proof of Lemma B.3. ¤

Instability: Abusing but economizing on notation, we normalize the steady state to zero
by interpreting πe

t as πe
t − π̂. Then equation (B.3) becomes

πe
t+1 = (1 − αt + αtW1)πe

t + αtW2π
e
t−1 + αtr(πe

t , π
e
t−1) .

Choose k > 0 such that

W1 + W2 − 2k > 1 and W2 + k < 0

(possible since we assume W1 + W2 > 1 and W2 < 0). Let Uε then be as described in the
Lipschitz condition for r. If πe

t , π
e
t−1 ∈ Uε then

|πe
t+1| ≥ (

1 + αt(W1 − 1 − k)
)|πe

t | −
(
αt|W2| + αtk

)|πe
t−1| .

Since W2 < 0,

|πe
t+1| ≥ (

1 + αt(W1 − 1 − k)
)|πe

t | + αt(W2 − k)|πe
t−1|

Suppose |πe
t | ≥ |πe

t−1|. Since W2 − k < 0, we can replace |πe
t−1| by |πe

t |, obtaining

|πe
t+1| ≥ (

1 + αt(W1 + W2 − 1 − 2k)
)|πe

t | = (1 + αtK)|πe
t | ,(B.4)

where K := W1 + W2 − 1 − 2k > 0. Hence |πe
t+1| > |πe

t |; by induction, it follows that
inequality (B.4) holds until {πe

t } leaves Uε.

We now show that if πe
1, π

e
2 ∈ Uε and if |πe

2| > |πe
1| > 0 then the sequence {πe

t } leaves Uε.
Therefore, 0 is unstable. Suppose πe

1 and πe
2 satisfy the stated conditions. We have shown

that the sequence {|πe
t |} satisfies |πe

t+1| ≥ (1 + αt)|πe
t | until it leaves Uε. If it does not leave

Uε, we can iterate this inequality to obtain

|πe
t | ≥ |πe

2|
t−1∏
s=2

(1 + αsK) .

Then Lemma B.1 shows that limt→∞|πe
s | = ∞; hence {πe

t } must leave Uε. ¤
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C Proofs for OLS learning

Proof of Proposition 7.1: For OLSπt−1 and OLSπt
, see the paragraph (following the

proposition) in which these results are derived as corollaries to Propositions 6.3 and 6.4.

OLSpt−1 : Marcet and Sargent (1989) prove these stability results for the case of affine S

in their Proposition 3. Since the stability properties are obtained, in any case, by studying
a linear approximation of a difference equation, the extension to nonlinear S is trivial (we
omit the details). Note that the condition k ≤ 1 in Marcet and Sargent (1989, Proposition
3) holds for δ ≈ 0.

OLSpt
: We presume that the reader has read the part of Section 7 that follows Propo-

sition 7.1. In particular, recall that (i) we can write πe
t+1 = αtπt + (1 − αt)πe

t , where
αt := p2

t−1/
∑t

s=0 p2
s−1, and (ii) if πt → π̂, then αt → απ̂ := 1 − π̂−1.

We can thus write the period-t equilibrium condition πt = W (πe
t+1, π

e
t ) as

f(πt, π
e
t ;αt) := W (αtπt + (1 − αt)πe

t , π
e
t ) − πt = 0 .

In period t, αt is a fixed parameter in this equation, so we can write the set of solutions as
ϕ(πe

t ;αt). As explained in Section 5.3, there may be multiple solutions; we therefore choose
an equilibrium selection F (πe

t ;αt) (on the domain for which ϕ has non-empty values) such
that for a steady state π̂ ∈ {πL, πH} and α̂ := 1− π̂−2, there is a neighborhood of (π̂, α̂) on
which F (πe

t ;αt) is the element of ϕ(πe
t ;αt) that is closest to π̂. As long as fπ(π̂, π̂; α̂) 6= 0,

the implicit function theorem implies that F is continuously differentiable in a neighborhood
of (π̂, α̂). Observe that fπ(π̂, π̂; α̂) = α̂W1 − 1, which is not equal to 0 for δ ≈ 0 as follows:
W1(πL, πL) ≈ W1(1, 1) < ∞ and απL ≈ 1 − (1)−2 = 0, so fπ(πL, πL;απL) < 0; whereas
W1(πH , πH) ≈ ∞ and απH ≈ 1 − (πa)−2 > 0, so fπ(πH , πH ;απH ) > 0.

Mimicking the proof of Proposition 3 in Marcet and Sargent (1989), we write the evolu-
tion of {πe

t , αt}∞t=1 as

πe
t+1 = αtF (πe

t ;αt) + (1 − αt)πe
t ,

αt+1 =
(
1 + α−1

t F (πe
t ;αt)−2

)−1
.

The first equation is the OLSpt
expectations rule, with πt replaced by F (πe

t ;αt). The
second equation is obtained from

αt+1 =
p2

t∑t+1
s=0 p2

s−1

=

(
p2

t

p2
t

+
∑t

s=0 p2
s−1

p2
t

)−1

=
(
1 + α−1

t π−2
t

)−1
=

(
1 + α−1

t F (πe
t ;αt)−2

)−1
.

We check stability of this difference equation at a steady (π̂, α̂), where π̂ ∈ {
πL, πH

}
and

α̂ = 1 − π̂−2. Since π̂ is a steady state, F (π̂;αt) = π̂ for any αt and so ∂F (π̂; α̂)/∂αt = 0.
It follows that

∂πe
t+1

∂αt

∣∣∣∣
πe

t =π̂,αt=α̂

= α̂
∂F

∂αt
(π̂, α̂) + F (π̂, α̂) − π̂ = 0 .

Hence, the eigenvalues of the linearization of these difference equations around a steady
state are ∂πe

t+1/∂πe
t and ∂αt+1/∂αt.
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Since ∂F (π̂; α̂)/∂αt = 0,

∂αt+1

∂αt

∣∣∣∣
πe

t =π̂,αt=α̂

= α̂−2π̂−2
(
1 + α̂−1π̂−2

)−2

=
(
α̂π̂ + π̂−1

)−2
=

(
(1 − π̂−2)π̂ + π̂−1

)−2
= π̂−2 .

Thus, for any steady state π̂ > 1, we have |∂αt+1/αt| < 1.

Stability therefore hinges on the magnitude of ∂πe
t+1/∂πe

t . At a steady state (π̂, α̂),
∂F (π̂; α̂)/∂πe

t is equal to −fπe(π̂, π̂; α̂)/fπ(π̂, π̂; α̂). Then ∂πe
t+1/∂πe

t (evaluated at πe
t = π̂

and αt = α̂) is just g′(π̂) from the proof of Proposition 5.2 (equation (A.5)) with ψπt
= α̂

and ψπe
t

= 1 − α̂:

∂πe
t+1

∂πe
t

∣∣∣∣
πe

t =π̂,αt=α̂

=
π̂S′(π̂)α̂ + S(π̂)(1 − α̂)

π̂2S′(π̂)α̂ + S(π̂)
.(C.1)

Consider first the steady state (πL, απL). For δ ≈ 0, the numerator and denominator of
equation (C.1) are both positive, since S(πL) > 0 and απL ≈ 0. Thus,

∣∣∂πe
t+1/∂πe

t

∣∣ < 1 if
and only if

πLS′(πL)απL + S(πL)(1 − απL)
?
< (πL)2S′(πL)απL + S(πL) ,

πLS′(πL)απL

?
< (πL)2S′(πL)απL + S(πL)απL ,

−(πL − 1)πLS′(πL)
?
< S(πL) ,

(C.2)

which holds for δ ≈ 0 because πL ≈ 1 and S(1) > 0.

Now consider the steady state (πH , απH ). For δ ≈ 0, the numerator and denominator of
the RHS of equation (C.1) are both negative because S(πH) ≈ 0 and απH ≈ 1 − (πa)2 > 0.
Hence, the condition for stability is the reverse of the inequality in equation (C.2). That
is, −(πH − 1)πHS′(πH) > S(πH), which also holds because S(πH) ≈ 0 and πH ≈ πa > 1.
Therefore, πH is also stable. ¤
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