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1. INTRODUCTION  

Design capabilities have become crucial for companies as they seek to gain a competitive advantage 

(Brown 2008, Xia et al. 2015). Hence the designer’s role has evolved from focusing solely on the 

aesthetic to addressing more consequential concerns, such as establishing product concepts and even 

defining product strategies (Ulrich 2011a, Verganti 2010). “Star” designers have become celebrities in 

their own right (Godart et al. 2015, Miller 2013) for whom firms increasingly compete: Apple hired the 

Australian designer Marc Newson in 2014 ahead of its “AppleWatch” launch; eBay hired John Maeda, 

former president of the Rhode Island School of Design; and Adidas attracted three prominent Nike 

footwear designers Denis Dekovic,	Marc Dolce and Mark Miner as part of its plan to open a “Brooklyn 

Creative Studio” in New York City. 

The role of stars has been studied in various contexts (Azoulay et al. 2010, Ernst et al. 2000, Groysberg 

and Lee 2009, Hess and Rothaermel 2011, Oettl 2012, Zucker et al. 1998). The contributions of stars to 

their respective fields are vastly disproportionate (Ernst et al. 2000) and so, in a business context, stars are 

of considerable value to their employers (Godart et al. 2015, Groysberg and Lee 2009, Zucker et al. 1998). 

However, we still have a limited understanding of whether and how stars affect collaboration outcomes 

and, in particular, little knowledge about their impact on the subsequent careers of their collaborators. 

Does collaborating with a star designer affect the focal designer’s emergence as a star later in her career? 

More importantly, how do star collaborations (i.e., those in which a focal designer works with, at least, 

one star designer) differ from non-star collaborations? These are the questions that this paper addresses. 

The benefits of interpersonal collaboration in creative settings have been well documented in terms of 

both the collaboration outcomes (Uzzi and Spiro 2005, Wuchty et al. 2007) and the collaborators’ career 

advancement (Fleming, Mingo, et al. 2007; Azoulay et al. 2010; Tortoriello et al. 2015). However, 

previous research has not distinguished between different types of collaborators—in particular, between 

star and non-star collaborators. Yet distinguishing collaborators based on their quality is crucial for two 

reasons. First, given the prominence of and disproportionate contributions to their fields made by stars, 
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the question arises of whether collaborating with a star yields benefits for the focal collaborator that are 

likewise disproportionate. Second, and perhaps even more importantly, distinguishing collaborator types 

in terms of their quality is an intriguing yet unexplored opportunity to deepen our understanding of how 

interpersonal collaborations benefit or hinder collaborators. 

One could argue that collaboration with a star is disproportionately beneficial to the focal collaborator 

because stars have, by definition, accumulated a disproportionately large amount of tacit design 

knowledge over their careers—not only about the designs themselves but also about the design process 

(Liedtka 2014). Indeed, stars have usually mastered knowledge, especially tacit knowledge, which most 

non-stars lack. When collaborating with a star, the focal designer is exposed to the star’s tacit (design) 

knowledge, which would otherwise be difficult to access and assimilate (Reagans and McEvily 2003, 

Sosa 2011, 2014, Tortoriello et al. 2012, 2015). It follows that there is more potential for knowledge 

transfer through a star collaboration than through a non-star collaboration. 

With regard to the differences between star and non-star collaborations, we focus on two of the most 

widely studied aspects of interpersonal collaboration and knowledge transfer (Gargiulo et al. 2009, 

Reagans and McEvily 2003, Reagans et al. 2015, Tortoriello et al. 2015)	: network cohesion, or the extent 

to which two collaborators share the same third-party collaborators; and expertise similarity, or the extent 

to which two collaborators share similar past work-related experiences. On the one hand, both of these 

factors facilitate knowledge transfer because a cohesive network around a dyadic relationship builds the 

trust and cooperative behavior that “enforces” an effective knowledge transfer relationship while shared 

expertise establishes a common knowledge base and hence absorptive capacity (Cohen and Levinthal 

1990, Reagans and McEvily 2003, Obstfeld 2005, Hargadon and Bechy 2006, Sosa 2011). On the other 

hand, excessive network cohesion and expertise similarity are often detrimental to creativity in that the 

former can cause social pressure that steers the group around the collaborative dyad to converge to “group 

think” and the latter implies a lack of the creative tension that would stem from collaborators who had 

different perspectives (Fleming, Mingo, et al. 2007, Janis 1972, Perry-Smith and Shalley 2003, Sosa 
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2011). We argue that network cohesion and expertise similarity will probably benefit a star collaboration 

because the sizable knowledge differential between the focal designer and the star collaborator heightens 

the importance of effective knowledge transfer. In contrast, in a non-star collaboration both factors are not 

beneficial because instead their detrimental effects on creativity predominate. 

By answering the questions of whether and how a focal designer benefits more from a star than a non-star 

collaboration, we contribute to two streams of literature. First, distinguishing collaborators by their 

quality reveals an important contingency in interpersonal collaborations that helps to reconcile the extant 

literature’s contrasting findings of effects associated with the roles of social and knowledge network 

structures. Second, by examining how collaboration with a star lead to the emergence of new stars, this 

paper contributes to the star performance literature and thereby yields insights into the genesis of 

outstanding creative performance. 

We find support for our theoretical arguments in the empirical setting of industrial design. Our data on 

this industry come from the design patent database of the US Patent and Trademark Office (USPTO 

2015)—in contrast with previous studies, most of which have focused on utility patents. Under US patent 

law, utility patents and design patents are two distinct legal entities: the former protects how an item 

works whereas the latter protects how an item looks. We processed design patent data for the period 

1975–2010 to examine the careers of individual designers. From a pool of 144,288 designers who had 

been granted at least one design patent we identified 9,971 star designers based on their (design) 

inventions and influence.  

2. DEVELOPMENT OF HYPOTHESES 

In order to develop our arguments concerning how different kinds of collaborators affect the focal 

designer’s emergence as a star, we start by establishing a baseline hypothesis that lays out the 

fundamental differences between collaboration with a star designer and collaboration with non-stars.  
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The notion of tacit knowledge transfer is crucial to our hypotheses development because much of design 

knowledge is tacit (Hargadon and Bechy 2006, Rindova and Petkova 2007, Verganti 2010). We remark 

that good (industrial) design is characterized by a feel for the avant-garde, a unique approach to the 

development of form and styles, an appreciation of beauty, and a talent for visualization as well as a deep 

understanding of material, color, texture, and space (Lidwell et al. 2010). Furthermore, the design process 

itself is far from linear and deterministic; it lacks a definitive formulation and solutions are highly 

uncertain (Brown 2008, Dougherty 1992, Ulrich and Eppinger 2015). As a result, linear and/or analytical 

design approaches seldom yield satisfactory results. A good designer must therefore be skilled in 

experimental approaches that investigate multiple and possibly competing potential solutions (Becham 

and Barry 2007, Loch et al. 2001). Hence it is clear that tacit knowledge figures prominently in what 

constitutes a good design and in how a good design process evolves; however, such knowledge is difficult 

to articulate and is “inseparable from action because it is constituted through such action” (Orlikowski 

2002, p. 251). 

Star designers possess an incomparable mastery of their respective fields. They have developed an 

extensive realm of information that far exceeds the average designer’s knowledge. Stars are accorded 

higher recognition not only because of their extraordinary skills but also because of the quality (and 

uniqueness) of their attained knowledge (Galunic et al. 2012). Because design knowledge is largely tacit, 

it cannot be codified and is difficult to articulate. Hence this knowledge is not easily transferred (Zander 

and Kogut 1995) and can truly be acquired only through experience (Nelson & Winter, 1982; von Hippel, 

1994). Scholars have therefore argued that collaboration, up-close observation, and emulation are the 

main mechanisms by which tacit knowledge is transferred (Nonaka 1994, Orlikowski 2002). It follows 

that, for a relatively inexperienced designer, collaboration with a star is a viable way—and perhaps the 

only effective way—to tap into the star’s superior design knowledge.  

Given the considerable difference in the knowledge of a star versus a (non-star) focal designer, 

interpersonal collaboration becomes the conduit through which knowledge can flow from star to focal 
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designer. The latter gains access to the former’s knowledge stock through their close collaboration on a 

project. That interaction provides opportunities for an intense exchange of knowledge, ideas, and 

techniques shaping the focal designer’s way of thinking. In comparison, the knowledge differential 

between the focal designer and a non-star collaborator is much less pronounced; some knowledge may be 

exchanged, but the collaborators spend less time transferring knowledge than experimenting and jointly 

exploring the solution space. So to the extent that knowledge flows bear on the focal designer’s own 

emergence as a star, collaboration with a star should have a far greater effect than collaboration with a 

non-star.0F

1 We formalize these considerations in a first hypothesis. 

Hypothesis 1 (H1). A designer is more likely to become a star after collaborating with a star 

designer than after collaborating with a non-star designer. 

Although there is a well-established literature on the benefits of interpersonal collaboration in various 

settings, including creative ones, that literature has not explicitly distinguished collaborators based on 

their quality; instead, collaboration is typically viewed as a homogeneous construct. To the best of our 

knowledge, the work that comes closest to acknowledging the influence of collaborator quality on 

collaboration outcomes is Waldinger (2010). However, he studies how the quality of a university 

department affects PhD student prospects and therefore also considers factors beyond interpersonal 

collaboration (e.g., the training program and teaching requirements). Furthermore, that work focuses on 

the negative effects of interrupting a collaboration rather than the positive effects of initiating 

collaboration. 

																																																													
1 Another mechanism that could explain the differences between star and non-star collaborations is status transfer 
from the star designer to her collaborators (Simcoe and Waguespack 2011), which may (or may not) be uncorrelated 
with knowledge transfer. Other designers could view the focal designer as more capable simply because of that 
person’s association with a star. In this case, a star’s association lends public credibility to the focal designer 
because a star’s endorsement carries more weight in the community than would the endorsements of non-star 
individuals (Stewart 2005). It is probable that the status transfer mechanism is largely independent of the mechanism 
for transferring tacit knowledge, so we do not discuss the former from a theoretical viewpoint. However, we control 
for it in our hypotheses testing. 
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It is intuitive to suppose that better collaborators will result in better collaboration outcomes. Less 

intuitive, however, is identifying how a quality difference in collaborators moderates the effects of factors 

that may ease or hinder knowledge transfer in inter-personal collaborations. Explanations of successful 

knowledge transfer and thus of outstanding creative performance, as postulated by Hypothesis 1, often 

emphasize the importance of two important contextual factors: (social) network cohesion and expertise 

similarity or overlap (Reagans and McEvily 2003, Sosa 2011, Tortoriello and Krackhardt 2010, 

Tortoriello et al. 2015). These factors are distinct, yet complementary, in that they emphasize 

(respectively) the social and knowledge aspects of dyadic interactions in collaboration networks (Reagans 

et al. 2015). 

Network cohesion 

If social network cohesion is high, then a large proportion of the focal designer’s collaborators also 

collaborate with each other. In such cases, the focal designer augments her collaborator connections via 

common third parties. However, if social cohesion is low then the focal designer and her collaborators 

have been working mostly with different people that are not connected among themselves; in this case, 

the network will have many “structural holes” (Burt 1992) around the focal designer. 

Network cohesion has been studied extensively in the literature, and two divergent effects have been 

postulated. On the one hand, cohesion induces trust in a social group (Coleman 1988); it thus increases 

the frequency of information exchange (Erickson 1998) and encourages cooperative behavior among 

collaborators (Coleman 1990, Obstfeld 2005, Hargadon and Bechky 2006, Helfat and Raubitschek 2000, 

Reagans and McEvily 2003, Uzzi 1997). Network cohesion ultimately increases the amount of knowledge 

transferred between collaborators (Amabile et al. 2005, Milliken et al. 2003), and encourages risk sharing 

(Granovetter 1985, Sosa 2011, 2014). A cohesive network has the further advantage of conveying a clear 

normative order within which the individual can experience a sense of direction—in contrast to a diverse 

or disconnected network, which exposes the individual to conflicting preferences and allegiances 

(Coleman 1988). Hence a cohesive network’s members begin to resemble one another in terms of their 
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thoughts, actions, and/or knowledge (Carpenter 2002), and these commonalities facilitate the transfer of 

tacit knowledge (Hansen 1999, Reagans and McEvily 2003, Uzzi and Spiro 2005). 

That being said, a highly cohesive social network could have a negative effect on the focal designer’s 

creativity. A cohesive network implies a denser group of collaborators and a higher percentage of 

redundant contacts, which results in fewer opportunities for the focal designer to broker ideas (Burt 2004, 

Hargadon and Sutton 1997). As the underlying differences between collaborators diminish, the social 

group becomes enamored of the status quo and the majority rule (Menon and Phillips 2011); “group 

thinking” sets in (Janis 1972). The social pressure for group conformance “traps” the focal designer and 

so limits her ability to think and act differently (Gargiulo and Benassi 2000). In contrast, a less cohesive 

network leads to opportunities for divergent thinking and stimulates different approaches to problem 

solving; the result can be ideas that are more creative (Fleming, Mingo, et al. 2007; Perry-Smith & 

Shalley 2003; Burt 2004, Sosa 2011). In a sparse social network, the focal designer is connected to 

collaborators who are not interconnected and hence is more likely to think independently, since there is 

no coherent group imposing its views. 

The quality of the collaborator affects the balance between these countervailing effects of network 

cohesion. A star collaboration under high network cohesion improves the focal designer’s odds of 

attaining star status herself—owing to the considerable difference between the star’s and the focal 

designer’s knowledge. It is therefore extremely important to have an effective conduit for the transfer of 

tacit knowledge (Boland and Tenkasi 1995). The star’s social group may serve as that conduit because its 

members can be expected to adopt the star’s norms, tastes, and behaviors. Thus the star collaboration 

proceeds in an environment that provides a consistent set of standards for the focal designer to assimilate 

(Galunic et al. 2012, Gargiulo et al. 2009). In addition, high levels of network cohesion increase the 

chances that an star acts more cooperatively to avoid spreading a negative reputation among his/her 

collaborators (Coleman 1990, Helfat and Raubitschek 2000, Reagans and McEvily 2003). The possibility 

remains that a cohesive network will induce its characteristic negative effect: reduced freedom to think in 
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divergent ways. However, the efficiency of knowledge flows stemming from large differences (between 

star and focal designer) in design knowledge trumps the limits associated with a cohesive network 

structure. 

That balance is reversed for a non-star collaboration. On average, non-stars are similar to the focal 

designer with regard to experience, behavior, and mastery of design knowledge. Hence the design 

knowledge differential in such collaborations is minor, which limits the focal designer’s opportunity to 

acquire the tacit design knowledge necessary for developing extreme levels of creativity. Note also that, 

in light of the design process’s highly uncertain nature, a cohesive set of designers with only an average 

understanding of their domain’s knowledge base may lack the benefits of a (star) leader which they can 

learn from in an effective way. In the absence of a knowledge difference between the focal designer and 

her non-star collaborators, the positive effects of a cohesive network diminish even as its negative effects 

continue unabated. In short: within non-star collaborations, the negative effects of network cohesion 

dominate its positive effects. 

Given that social network cohesion can affect star emergence in opposite ways depending on the 

collaborator’s quality, we posit the following two-part hypothesis. 

Hypothesis 2 (H2). The focal designer’s emergence as a star is affected in opposite ways by her social 

network cohesion with star versus non-star collaborators: 

H2a. Increasing network cohesion with star collaborators has a positive effect on the focal 

designer's likelihood of becoming a star. 

H2b. Increasing network cohesion with non-star collaborators has a negative effect on the focal 

designer's likelihood of becoming a star. 

Expertise similarity 

As designers accumulate expertise in various aspects of their field (e.g., techniques, industries, types of 

products), they may encounter opportunities to collaborate with colleagues of similar or different areas of 
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design expertise. We therefore define expertise similarity as the extent to which the focal designer’s 

expertise is in areas similar to her collaborator’s areas of expertise. 

As was the case for network cohesion, expertise similarity has two opposing effects on the focal 

designer’s chances of becoming a creative star. On the one hand, similarity with regard to expertise 

reflects common professional experiences; thus the designers have been working in the same “idea space” 

(Azoulay et al. 2010). The consequences of this similarity include sharing a knowledge base, which 

increases the frequency of communication (Reagans et al. 2005). In addition, findings from the literature 

on absorptive capacity indicate that one can more easily acquire new knowledge that is more closely 

related to the knowledge one already has (Cohen and Levinthal 1990, Shaker A. Zahra and George 2002); 

collaborators find it relatively more difficult to transmit and acquire new ideas across distinct areas of 

expertise (Reagans and McEvily 2003). A common basis of similar experiences thus simplifies and 

furthers the exchange of ideas between individuals in the same field. It follows that increased expertise 

similarity facilitates the transfer of knowledge (Reagans and McEvily 2003)—a dynamic that is 

accentuated when the exchanged knowledge is tacit and/or complex (Hansen 1999, Zander and Kogut 

1995). 

On the other hand, there are potential downsides to high levels of expertise similarity. Similar experiences 

and backgrounds in areas that are common to both the focal designer and her collaborators can inhibit the 

combining of hitherto unconnected knowledge domains. Excessive common knowledge is thus likely to 

result in knowledge redundancy, which in turn could limit the generation of creative ideas (Rodan and 

Galunic 2004, Sosa 2011). 

Just as with network cohesion, the relevance of these arguments depends on distinguishing collaborators 

based on their quality. A star collaboration should benefit from expertise similarity. The star has already 

developed extensive (tacit) knowledge of the field. Even if a collaborating focal designer has worked in 

the same domain as the star, the two designers need not (and almost certainly do not) possess the same 

level of subject mastery. Star designers have considerably more in-depth (tacit) knowledge than do non-
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stars. A focal (non-star) designer with at least a basic understanding of design domain knowledge shared 

with her star collaborator can be expected to ask insightful questions, to comprehend the advice given by 

the star, and to assimilate that advice for future use. Thus working with a star designer who shares similar 

areas of expertise considerably increases the focal designer’s exposure to otherwise inaccessible tacit 

design knowledge. Fewer new combinations of ideas may arise in such collaborations, but that downside 

of expertise similarity is more than compensated for by its benefit of facilitating knowledge transfer—

especially the transfer of tacit knowledge. 

For a non-star collaboration, the balance again reverses. If there is high expertise similarity between the 

focal designer and her non-star collaborators, then the focal designer is relatively less exposed to a 

diversity of perspectives and breadth of knowledge (Fleming, Mingo, et al. 2007, Milliken et al. 2003)—

the raw material for the creation of novel ideas. Recall that there is not much difference in knowledge 

between the focal designer and non-star collaborators; therefore, despite expertise similarity continuing to 

facilitate the exchange of knowledge, there is little that the focal designer can learn in such collaborations. 

Yet if even a non-star collaborator possesses expertise in different knowledge domains (so that expertise 

similarity is low), then the mere existence of that diverse perspective can inspire creativity (Hargadon and 

Sutton 1997, Rodan and Galunic 2004, Sosa 2011) and, perhaps, lead to breakthrough ideas (Singh and 

Fleming 2010). So in these collaborations, a high level of expertise similarity will hinder the cross-

pollination of ideas without facilitating design knowledge transfer. 

After considering these various effects of expertise similarity, we are led to propose the following two-

part hypothesis. 

Hypothesis 3 (H3). The focal designer’s emergence as a star is affected in opposite ways by her expertise 

similarity with star versus non-star collaborators: 

H3a. Increasing expertise similarity with star collaborators has a positive effect on the focal 

designer's likelihood of becoming a star. 
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H3b. Increasing expertise similarity with non-star collaborators has a negative effect on the focal 

designer's likelihood of becoming a star. 

 

3. DATA, METHODS, AND ANALYSES 

To test our hypotheses, we need a longitudinal data set with a large number of repeated observations at 

the individual level. The data should enable us to identify each designer uniquely, to track each designer’s 

work over time, to identify those who collaborated on that work, and—crucially—to evaluate output 

objectively. Design patent data fulfill these requirements. Such data contain detailed information on 

patent designers’ names and locations as well as on each patent’s application date, content classification, 

assignee organization (i.e., the entity to which the patent is granted), and citations to other patents. The 

rich information embedded in design patent data is one of the few publicly available sources of 

documentation on creative output (Chan et al. 2015). We obtained our design patent data by “crawling” 

the website of the US Patent and Trademark Office. 

3.1. Design patents 

In the United States, a design patent can be granted for a “new, original, and ornamental design for an 

article of manufacture” (USPTO 2015). In general terms, a design patent protects the form (appearance) 

of an item whereas a utility patent protects an item’s functionality. Because design patents focus on 

innovation in form, not function, the scope of such patents is limited to the “overall ornamental visual 

impression” (USPTO 2015). 

Although our study is the first to use design patent data on a large scale in an organizational context, we 

can draw on and extend methods developed in the context of utility patents. Many methodological 

concepts carry over because, under the US patenting system, design and utility patents share many 

common characteristics. First, the data’s longitudinal nature provides rich historical information at both 

the personal and network levels. We can track such information through first and subsequent patent 

applications, which document how a designer’s collaborative patterns evolve over time. Hence we can 
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construct a comprehensive collaborative history for all individual designers in our database.2 Second, 

there is a tradition of using patent data to analyze creativity because such data enable one to quantify 

creative output (Shalley & Zhou, 2008) and so ease the long-standing difficulty of measuring innovation. 

Creativity is normally understood to involve both novelty and usefulness, and the reliability and 

objectivity of the patent approval process ensures a minimum level of novelty. Third, using patent 

citations as a proxy for the influence of an invention—and hence of its inventors—is a practice widely 

employed by researchers to capture, to some degree, the usefulness of patents (Jaffe, Trajtenberg & 

Romer, 2002): the more citations a patent receives, the more it is viewed as an inspiration for subsequent 

creative endeavors (Audia & Goncalo, 2007). The citations that a patent receives have thus been accepted 

in the literature as reliable and systematic indicators of an invention’s economic, social, and technological 

success (Jaffe et al. 2002, Singh and Fleming 2010). This approach is especially vital for analyzing 

creative performance in the context of design, since what constitutes a “good design” is more elusive than 

identifying the characteristics of a great scientific discovery. 

3.2. Identifying the emergence of star designers 

We define the popularity index of a designer at any moment in time by counting the citations received, 

excluding self-citations, by that designer’s patents in the preceding three-year rolling window (Ahuja 

2000). An inventor whose popularity index is in the top 2% of all inventors is considered, at the time of 

measurement, to be a star designer. Operationalizing “star” in this way accords with related literature as 

regards to both the cutoff point and the preceding time window. Ahuja and Lampert (2001) use the top 1% 

(of the distribution of patent citations) as their threshold when defining a breakthrough invention, and 

Singh and Fleming (Singh and Fleming 2010) use a 5% cutoff—for both the upper and lower tails of the 

distribution—when identifying (respectively) breakthrough and poor inventions. As for the time window, 

scholars who study archival data have used windows ranging from three years (Fleming, Mingo & Chen, 

																																																													
2 We adopt and extend the inventor-matching algorithm of Fleming, Mingo, and Chen (2007) to disambiguate the 
names of the designers in the design patent database. That algorithm has been employed in various related studies 
and has been extensively refined over the years (Singh & Fleming, 2010; Trajtenberg, Shiff & Melamed, 2006). 
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2007) to five years (McFayden and Cannella 2004) when assessing an inventor’s performance. Time 

windows are used in such research because a patent’s citations vary over time as a function of its 

relevance, economic value, and product category. The number of citations typically decreases with the 

passage of time (Trajtenberg 1990), so the most reasonable approach is to count only those citations 

received within the recent past. We tested our hypotheses by setting the cutoffs at 1%, 2%, and 5% with 

three year rolling window, and by testing 2% cutoff using rolling time windows of three, five, and seven 

years (as well as no rolling window at all). These alternatives did not yield qualitatively different results.2F

3 

We define the emergence of a star designer—or the transition from designer to star—as an event in the 

designer’s career. This event corresponds to the day when the designer’s popularity index first attains the 

2% threshold. Although we processed all the design patents granted in the US during the 1975-2010 

period, our observation window ranges from year 1985 to year 2004 because we needed to allow for some 

time before and after such observation window for designers to accumulate enough citations to establish a 

relatively stable popularity index. In our observation window, there were 144,288 designers who had been 

granted at least one design patent. Of these we identified 9,971 star designers (about 7% of the sample).3F

4 

This proportion is in line with previous research, which has pegged the prevalence of extreme performers 

at values ranging from 0.75% to 10% (Ernst et al. 2000, Groysberg et al. 2011, Zucker et al. 1998). In line 

with prior research examining stars (Grigoriou and Rothaermel 2014, Groysberg et al. 2011) , we assume 

that a star designer will remain a star during the study’s observation window. 

3.3. Collaborating with a star designer 

In this section we carry out two steps before formally testing our hypotheses in Section 3.4. First, we 

discuss a coarsened exact matching (CEM) sample procedure, which allows us to mitigate any selection 

bias concerns when we later examine the effects of collaboration with a star designer. Second, we 

																																																													
3	It is reassuring to know that our method correctly identified well known star designers such as Jony Ive, Robert 
Brunner, Steve Jobs, Frank Nuovo, Phillippe Starck, and Yves Behar (to name just a few) as star designers. 
4 This proportion is not at odds with our definition of a star (i.e., an inventor in the top 2% of designers based on 
their popularity index on a given date): the 7% figure is the average percentage of stars over all our observations, 
whereas the 2% figure is the “instantaneous” percentage for any given time. 
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complete a difference-in-differences analysis to provide empirical evidence of the focal designer’s 

benefits from collaborating with a star. 

3.3.1. Constructing the matched samples 

Our baseline hypothesis (H1) argues that a focal designer’s chances of emerging as a star are substantially 

more affected by collaborating with a star designer than with a non-star designer. Perhaps the foremost 

challenge in testing such a hypothesis is that the inherent capabilities (quality) of the focal designer could 

drive not only the focal designer’s chance of working with a star but also the likelihood of that designer 

emerging as star herself. We address this endogeneity concern by employing a CEM procedure to identify 

a sample in which selection issues are significantly mitigated (Aggarwal and Hsu 2014, Azoulay et al. 

2010, Iacus et al. 2011, 2012, Oettl 2012, Singh and Agrawal 2010). The CEM procedure helps to balance 

the (pre-treatment) focal and control subsamples, which it does by constructing matched pairs that are 

strongly similar in the period prior to the focal designer’s first star collaboration (the treatment event). 

Because collaborating with a star is the treatment event in our sample, the two members of each matched 

designer pair are similar in terms of certain observable pre-treatment variables; they differ only in that one 

designer in each pair undergoes the treatment—that is, collaborates with a star. 

Constructing the CEM sample requires us to identify key variables that could correlate with engaging in a 

star collaboration and also with the focal designer herself becoming a star. Hence it is necessary to 

investigate the quality factors of focal designers. We argue that a star’s choice of collaborator is likely 

influenced by the focal designer’s own patenting success, the tendency of that designer to collaborate, and 

the amount of attention garnered in the patent community by the focal designer’s previous patents. We 

follow Bode et al. (2015) and perform a logit regression to test whether such quality factors of a designer 

could indeed be associated with the probability of entering into collaboration with a star designer. Table 1 

shows the results, where the dependent variable is “entering into collaboration with a star designer”. The 

reported coefficient estimates indicate that the following six characteristics are indeed significant 

determinants of a focal designer’s collaborating with a star designer: (i) year of the focal designer’s first 
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patent application; (ii) designer’s career age; (iii) number of the focal designer’s non-star collaborators; 

(iv) number of patents granted to the focal designer; (v) number of inventors that cite the focal designer’s 

patent(s); and (vi) major patent class(es) to which the designer’s patents have been assigned, which is a 

categorical variable that captures 33 major design classes (USPTO 2015). Column 1 in Table 1 excludes 

and Column 2 includes the major class dummies, most of which exhibit significant coefficients. Hence we 

use all the six variables as pre-treatment observables to build our CEM sample. 

 
Table 1. Logit Regressions on the Antecedents of Collaborating with a Star Designer 

 
Variable [1] [2] 

Year of first patent application -0.014**  -0.01 
  (0.007) (0.007) 

Career age 0.112*** 0.115*** 
  (0.006) (0.006) 

Number of non-guru collaborators -0.130*** -0.145*** 
  (0.015) (0.016) 

Number of patents 0.053*** 0.049*** 
  (0.004) (0.004) 

Number of citers 0.001*** 0.001*** 
  (0.000) (0.000) 

Major patent class dummies no yes 
      

Wald CHI sq 1366 1572 
Log likelihood -5285 -5169 
Notes. Observations = 147081. * p<0.10, ** p<0.05, *** p<0.01  

 

Building the CEM sample, we examine our entire sample of designers to identify pairs of designers who 

were similar, based on the six key pre-treatment observables, at the time of the treatment event (star 

collaboration). We ensure that each pair’s members begin patenting in the same year (Year of first patent 

application) and that their Career age is the same at the treatment event; that is, we use one “bucket” for 

each those two variables to ensure that each pair’s members satisfied both criteria. Furthermore, we 

ensure that matched pair members have designed products in the same USPTO patent classes (Major 

patent class), exhibit a similar pattern of collaboration (Number of non-star collaborators), have 
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displayed comparable levels of design productivity (Number of patents), and are the object of similar 

attention from other designers (Number of citers). We match the two groups—that is, those who do or do 

not undergo the treatment event—using four discrete buckets for each of these last four variables. 

In order to identify those effects of a star collaboration that are in excess of the effects of a non-star 

collaboration, we ensure that each focal designer has engaged in at least one (non-star) collaboration prior 

to the treatment event.4F

5 As in the extant literature, we match each focal designer with exactly one control 

designer so that we need not assign weights to potentially multiple control designers (Azoulay et al. 2010, 

Singh and Agrawal 2010). Table 2 displays the outcome of our CEM procedure, which splits 14,250 

designers into treatment and control groups of equal size. As expected, our matching variables are now 

almost identically distributed between the focal designers who end up collaborating with star designers 

and the control group: their respective covariates are well balanced, and their mean values are not 

statistically different (at the 5% level). This outcome illustrates the advantage of CEM over the widely 

used “propensity score matching” approach, which does not guarantee a balance between the two 

matched groups (Iacus et al. 2012). 

Table 2. Summary Statistics for Matched Samples 

 Focal designers Control designers 

 Mean S.D. Mean S.D. 

Year of first patent application 1997.42 5.14 1997.42 5.14 
Career age 1.25 2.91 1.25 2.84 
Number of non-star collaborators 3.23 2.91 3.17 3.17 
Number of patents 3.49 1.76 3.52 1.87 
Number of citers 14.51 46.72 14.06 56.79 

Notes. Designers = 14250. Major patent class is a categorical variable and it is the same for a matched pair of focal  
and control designer by construction (not shown in the table). 

A first examination of the CEM sample (see Table 3), which consists of strongly similar matched pairs of 

designers, yields preliminary evidence that—in line with H1—a higher percentage of the focal group’s 

designers emerge as stars. More specifically: 16% of the focal designers who collaborated with stars 

																																																													
5	The results are similar when instead we use a more general sample that includes “lone” designers whose first 
collaborator was a star. Both samples are used in Section 3.4.1, where we formally test our baseline hypothesis H1.	
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emerged later on as stars in their own right, whereas the corresponding figure for the CEM sample’s 

control designers is only 9%. In Section 3.4.1 we shall conduct a more rigorous estimation using event 

history analysis, which confirms that the treatment effect is a highly significant one. 

Table 3. Ratio of Star’s Emergence among Treatment vs. Control Designers 

 

# of designers # of designer’s emergence Ratio 

Focal designers 7125 1107 0.16 

Control designers 7125 662 0.09 
Overall 14250 1769   

 

Before testing our baseline hypothesis formally, we examine the CEM sample more closely to assess 

whether collaborating with a star translates into increased design productivity of the focal designer. 

Testing for such a benefit proceeds via a difference-in-differences (DID) analysis based on our CEM 

sample. 

3.3.2. Effects of star collaboration: A difference-in-differences analysis 

We start by examining the benefits of a star collaboration that are likely to be due to effective transfer of 

design knowledge; for this purpose we use the number of patents applied for by the designer in each year 

as a proxy for her productivity and ability to create novel designs. In particular, we examine the 

difference in the number of patents applied for by the focal and the control designers both before and after 

the treatment event. This procedure requires additional criteria to be applied to our CEM sample. First, we 

must observe all of the focal and control designers for the same extended time period; following Singh 

and Agrawal (2010), we use a 12-year observation window. Second, deriving meaningful comparisons 

between pre- and post-treatment performance requires that our focal designers engage in their first star 

collaboration some time between the 3rd and the 10th years (inclusive) following the year of their first 

patent application. Thus both the pre- and post-treatment periods for all designers of interest are at least 

two years long. Our DID sample consists of 722 individuals, 361 each in the treatment and control groups. 
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As shown by the graph plotted in Figure 1, the productivity difference between these two groups is 

statistically indistinguishable before the treatment event. However, there is a positive and significant 

boost (at the 95% confidence interval) in productivity among the focal designers after collaborating with 

stars. Furthermore, this difference in productivity persists long after treatment occurred. 

Figure 1. Difference in the Number of Patents between Focal and Control Groups (All Patents) 

 

One might reasonably object that the number of patents for which our focal designers apply includes 

patents filed in collaboration with the star designers, who tend to be highly productive; as a result, we 

may have overestimated the focal group’s true productivity. To address that concern, we perform an 

additional analysis in which productivity is measured while excluding those patents filed in conjunction 

with a star designer—that is, we count only single-author patents and patents authored with non-star 

collaborators. Figure 2 reveals that, even after excluding patents filed with a star collaborator, there is a 

significant and consistent (albeit somewhat smaller) increase in the productivity of focal designers. 

Finally, an even more stringent test (results not reported here) that excludes all but single-authored patents 

likewise finds that productivity increases after a star collaboration. This analysis empirically supports the 

notion that collaborating with a star designer influences significantly the capability of the focal designer 

to produce more novel ideas. Next, we need to rigorously test if such benefits translate into higher 

chances of the focal designer becoming a star designer herself. 
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Figure 2. Difference in the Number of Patents between Focal and Control Groups (Patents without 

Star Collaborators) 

	

3.4. Hypotheses testing with event history analysis 

In this section we test H1 directly by way of an event history analysis, which allows us to model precisely 

the relative likelihood of an event (here, star emergence) over a specific time span while accounting for 

the difference between censored and uncensored cases (Blossfeld & Rohwer, 1995). The data that we use 

are right-censored because information about the event of interest may arrive in the future—as when a 

designer has not become a star by the end of our observation window but might become one at a later date. 

As is customary in event history analysis, we employ maximum likelihood techniques to estimate Cox 

proportional hazard models on survival-time data (Cox 1972). The “hazard” here is the likelihood of a 

designer becoming a star during the time window of observation (1985-2004). In our study, observations 

include designers who have been awarded a design patent and so are “at risk” of becoming a star. For 

estimation purposes, we use the stcox command in Stata 14.0. 

3.4.1. Testing Hypothesis 1 against the CEM sample 

As a first formal analysis, we test the baseline hypothesis using three samples (with equal numbers of 

focal and control designers) based on our CEM analysis. These samples reflect more to less stringent 
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criteria regarding collaboration patterns before the first star collaboration (i.e., prior to the treatment 

event): (1) the focal designer has had at least one non-star collaborator before the treatment event (this is 

the CEM sample, which contains 14,250 designers, that we have used so far); (2) the focal designer has 

had no collaboration at all, so the treatment event is the first collaboration (this sample contains 4,486 

designers); and (3) a sample comprising both of the previous two (this sample therefore contains 18,736 

designers). Formally, we create an indicator variable: for the focal designers (who collaborate with a star 

designer) the indicator takes the value 1 and for the control designers (who do not collaborate with a star 

designer) it takes the value 0. We control also for other possible sources of heterogeneity in the creative 

abilities of all the sample’s designers—that is, sources for which the CEM approach does not explicitly 

control—by constructing the six additional variables described next. 

Assignee’s past patents. The assignee is usually the organization with which the designer is associated 

and also the organization owning the patent. According to Audia and Goncalo (2007), the total number of 

patents held by an organization is a good proxy for the scale of its innovation activities. Trajtenberg (1990) 

shows that a simple patent count is strongly correlated with the patenting firm’s innovativeness. The most 

innovative organizations are likely to present excellent career opportunities and hence can afford to be 

selective in their hiring; they tend to attract and retain the field’s best applicants. Thus an organization’s 

innovativeness, as measured by its patent stock, is associated with the quality of its staff. We use patent 

records to identify each designer’s assignee organization and also to calculate that organization’s 

cumulative number of patents until time 𝑡. 

Mobility. The number of organizations with which an individual has been associated is strongly correlated 

with that individual’s experience (Fujiwara-Greve and Greve 2000, Mincer and Jovanovic 1981). So in 

our study, much as in Fleming, King, and Juda (2007), the Mobility variable counts the number of unique 

assignees associated with the focal designer—as evidenced by the designer’s patents awarded until time 𝑡. 

Class diversity. Audia and Goncalo (2007) report that, in the hard disk drive industry, more highly skilled 

patenting inventors are more likely to venture into different innovation areas as they accumulate 
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experience. It is therefore plausible that the diversity of classes within which a designer has secured 

patents can serve as a proxy for her capability to think and act in a divergent way (an important capability 

in design). Hence our Class diversity variable is a count of the number of unique subclasses in which the 

focal designer has been awarded a patent up to time 𝑡. 

Location diversity. There is abundant evidence that experiences living abroad, or even the mere exposure 

to different cultures, increases individual creativity (Leung, Maddux, Galinsky & Chiu, 2008). That 

enhancement may result from adapting to different cultures, gaining access to novel ideas, or 

experiencing “conceptual expansion” (Maddux & Galinsky, 2009). All these factors diversify an 

individual’s outlook and so make the focal designer a more capable and valuable collaborator. For each 

designer, we count the number of different states (in the United States) or number of different countries 

(outside the United States) in which the designer has worked until time 𝑡. 

Patent stock year. Because the number of patents applied for (and granted) has increased over the years 

(Trajtenberg 1990), it is important to control for any such trends in the number of patents granted in each 

of the major patent class. Hence, we count, for each year, the total number of patents granted (to all 

designers) in each major patent class. Then, for each designer we include the count that corresponds to the 

major class of her patents (at time 𝑡).  

Cohort. This is a set of dummy variables used to control for when a designer begins to file patents. For 

each designer, it indicates whether the designer first patented in one of the five-year intervals during the 

1985–2004 period. We remark that our results are robust to the exclusion of these cohort dummies. 

We use the three CEM samples described previously to estimate a Cox proportional hazard model on the 

likelihood of star emergence. Table 4 presents the descriptive statistics for and correlations between our 

variables. As can be seen in Table 5, the dummy variables in all models (columns [1]–[6]) are positive 

and strongly significant (p < .01), supporting H1. Models [1] and [2], which use the sample in which the 

focal designer collaborates at least once with a non-star before the treatment event, show that the indicator 
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has a positive and highly significant coefficient in a model without general controls (0.283, p < .01) and 

also in a model with some general controls (0.219, p < .01). It follows from model 2 that our focal 

designers are 24% (e0.219 − 1 = 0.24) more likely to emerge as a star than our control designers. Models [3] 

and [4] report like evidence for the case when the focal designer was a lone designer before her first 

collaboration with a star designer, which confirms the notion that a star collaboration is more beneficial to 

star emergence than not collaborating at all. Our hypothesis H1 is also supported when we use the most 

general CEM sample which includes all the focal designers; see Models [5] and [6]. 

 
Table 4. Descriptive Statistics and Correlation of Variables 

  Variable Mean S.D. 1 2 3 4 5 
1	 Focal designer dummy 0.56 0.50 

 
        

2	 Assignee's past patents(Ln) 5.53 4.18 0.00 
 

      
3	 Class diversity 2.65 2.57 0.12 0.00 

 
    

4	 Mobility 1.30 0.81 0.08 0.00 0.46 
 

  
5	 Location diversity 1.03 0.18 0.06 0.00 0.17 0.15 

 6	 Patent stock year (Ln) 6.72 0.68 0.03 0.03 0.13 0.07 0.03 
 
 
Table 5. Effect of Star Collaboration on Focal Designer’s Emergence as Star (Proportional Hazard 

Models) 

Variable [1] [2] [3] [4] [5] [6] 

Focal designer dummy 0.283*** 0.219*** 0.670*** 0.621*** 0.378*** 0.274*** 
  (0.025) (0.025) (0.047) (0.048) (0.022) (0.028) 

Assignee's past patents   0.003   0.013   0.003 
    (0.006)   (0.01)   (0.005) 

Class diversity   0.306***   0.343***   0.276*** 
    (0.028)   (0.043)   (0.012) 

Mobility   0.231***   0.307***   0.058*  
    (0.034)   (0.076)   (0.032) 

Location diversity   0.751***   0.664***   0.408*** 
    (0.121)   (0.157)   (0.115) 

Patent stock year   0.652***   0.539***   0.528*** 
    (0.058)   (0.08)   (0.049) 

Cohort no yes no yes no yes 
No of designers 14250 14250 4486 4486 18736 18736 
Log likelihood -15689 -15210 -4931 -4795 -22048 -21444 

Notes. * p<0.10, ** p<0.05, *** p<0.01; Column (1) and (2) use the CEM sample that the focal designer has had a non-star collaboration 
before the treatment event; Column (2) and (3) use the CEM sample that the focal designer has had no collaboration before the treatment 
event; Column (5) and (6) use previous two sample combined.	
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3.4.2. Testing the effects of network cohesion and expertise similarity 

We have provided evidence that star collaborations differ from non-star collaborations in that the former 

increase a focal designer’s likelihood of becoming a star. In this section we test Hypotheses H2 and H3 

and show how collaborating with a star differs from collaborating with a non-star as evidenced by the 

effects of network cohesion and expertise similarity. Because we posit moderating effects of star versus 

non-star collaborations on a third variable (i.e., network cohesion or expertise similarity), we must use a 

sample that differs from the one used to test H1; in particular, we must focus on designers who have a 

non-star and a star collaborator in their network. This criterion selects 27,278 designer–patent 

observations in our study’s 1985–2004 window. 

Independent variables 

A modest amount of notation helps us define the independent variables. Because the relative order of 

events will matter for our proposed event history analysis, we index each patent application date via 

𝑡 ∈ 1,𝑇 ; here 𝑡 is an integer and 𝑇 is the last instance of a patent application in our data. In what 

follows, we use 𝑯!" and 𝑳!" to denote (respectively) the sets of stars and non-stars with which focal 

designer 𝑖 has worked until time 𝑡. Let 𝑭!" be the set of past collaborators of the focal designer 𝑖 up to 

time 𝑡; analogously, let 𝑮!" be the set of past collaborators of star 𝑗 at time 𝑡. 

Direct ties to collaborators. In order to re-test our baseline hypothesis (H1), we measure the focal 

designer’s direct ties to stars and to non-stars. Thus Direct ties to stars is a count of the number of a focal 

designer 𝑖’s unique star collaborators until time 𝑡 (i.e., 𝑯!" ). The more direct ties between a designer and 

stars, the more experience and benefits that the focal designer has accumulated by working with those 

stars. Analogously, Direct ties to non-stars counts the number of a focal designer 𝑖’s unique non-star 

collaborators until time 𝑡 (i.e., 𝑳!" ); this variable is a proxy for the focal designer’s past experience 

working with non-stars. 
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Network cohesion. Testing H2 requires that we measure the (social) network cohesion of the focal 

designer 𝑖 at time 𝑡 with respect to her star (𝑯!") and non-star (𝑳!") collaborators. In order to measure 

network cohesion, we start with the focal designer’s local network density, which is widely accepted as a 

reliable indicator of social network cohesion (Fleming, Mingo, et al. 2007, Gargiulo et al. 2009, Obstfeld 

2005, Podolny and Baron 1997). A focal actor’s ego network density is defined as the ratio of existing 

ties in the focal actor’s network out of all possible ties, or equivalently, it is the number of closed triads 

divided by the number of possible triads with the focal actor. Importantly, local density thus captures the 

average fraction of common third parties within the focal actor’s network. For our study, network 

cohesion must be defined with respect to two types of collaborators: stars and non-stars. Following the 

definition of the focal actor’s network density, we therefore assess the focal designer 𝑖’s network 

cohesion with respect to her star collaborators by calculating the (average) proportion of her past 

collaborators who also collaborated with star designers (𝑗 ∈ 𝑯!"). Formally, we have 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑠𝑡𝑎𝑟𝑠!! =
(|𝑮!" ∩ 𝑭!"| |𝑭!"|)!∈𝑯!"

|𝑯!"|
 

which expresses the average fraction—in the focal designer’s network—of common third parties with a 

star designer. At the extremes, this continuous measure is equal to 0 if there are no third parties in 

common with any star designer in the focal designer’s network and is equal to 1 if all the focal designer’s 

past collaborators are also past collaborators of her star collaborators. We measure Network cohesion with 

non-stars similarly as the average fraction—in the focal designer’s network—of common third parties 

with non-star designers.	

Expertise similarity. Hypothesis H3 cannot be tested unless we are able to identify, for any moment in 

time, the areas of expertise of the designers in our database. For this purpose we rely on the classification 

of design patents made by the USPTO, which sorts design patents in terms of their intended use so that 

“industrial designs that have the same function are generally collected in the same Design class” (USPTO 

2015). Each major class is itself divided into subclasses that pertain to a more “specific type of industrial 
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design”. Designs in the respective subclasses require substantially different skill sets to produce, so each 

subclass can be considered a distinct area of expertise. 

Following previous work that measures knowledge overlaps between actors (Reagans and McEvily 2003, 

Sosa 2011), we measure Expertise similarity with stars as the (average) fraction of areas of expertise that 

are common to both the focal designer 𝑖 and a star collaborator 𝑗 divided by the focal designer’s areas of 

expertise. Specifically, let 𝑲𝒊𝒕 be the set of subclasses in which the focal designer 𝒊 has patented until 

time 𝑡, and let 𝑲𝒋𝒕 be the set of subclasses in which star 𝑗 (𝑗 ∈ 𝑯𝒊𝒕) has patented until time 𝒕. We define 

expertise similarity with stars from the focal designer’s perspective as: 𝐸𝑆!" =
(|𝑲𝒊𝒕∩𝑲𝒋𝒕| |𝑲𝒊𝒕|)𝒋∈𝑯𝒊𝒕

|𝑯𝒊𝒕|
. This 

variable, too, ranges from 0 to 1: here 0 indicates no expertise similarity between the focal designer and 

all her star collaborators whereas 1 indicates a perfect overlap between the parties’ areas of expertise. We 

analogously define Expertise similarity with non-stars as the average fraction of areas of expertise that are 

common to both the focal designer 𝑖 and a non-star collaborator 𝑗 divided by the number of the focal 

designer’s areas of expertise. 

Additional control variables 

In order to identify the different effects that star and non-star collaborators have on network cohesion and 

expertise similarity, we must control for characteristics not only of the focal designer but also of her star 

and non-star collaborators. Hence, in addition to the general control variables defined above, we include 

as controls the following three variables; each is defined for both star and non-star collaborators. 

Star’s direct ties. This variable captures the network size of all of the stars with which a focal designer 𝑖 

has worked up to time 𝑡 . With respect to  𝑖 , we define  𝑆𝑡𝑎𝑟′𝑠 𝑑𝑖𝑟𝑒𝑐𝑡 𝑡𝑖𝑒𝑠!" = 𝑮!"!∈𝑯!" . Since 

collaboration consumes both time and energy, it follows that stars with more collaborators might offer 

fewer benefits (on average) to the focal designer. We define Non-star’s direct ties similarly. 
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Repeated collaborations with stars. To control for the closeness and strength of collaboration, we adopt a 

strength-of-tie measure based on observations of repeated collaborations (Fleming, Mingo & Chen, 2007; 

Hansen, 1999; McFadyen & Cannella, 2004). In other words, our variable is a proxy for the focal 

designer’s tendency to collaborate repeatedly with the same star(s). Formally, we put  𝑐!"!! = 1  if 

designers 𝑖 and 𝑗 collaborate at time 𝑡!; then we define 

𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑠𝑡𝑎𝑟𝑠!" =
𝑐!"!!!∈𝑯!"

!!!
!!!!

|𝑯!"|
 

The value of this measure is 1 when the focal designer collaborates with a given star exactly once; the 

value increases when that focal designer works with the same star on subsequent projects. In the same 

way we measure Repeated collaborations with non-stars. 

Star’s attention pool. As a control for the social attention that collaborating with a star may bring to the 

focal designer’s work, we count the number of designers citing the star’s patents in their own patent 

applications. We may suppose that a star whose patents are cited by more designers has accumulated 

more attention; that is, a more highly cited star has a larger group or pool of followers. A star with a 

larger following can bestow more social attention on collaborators than can a star with a smaller 

following. We therefore define the Star’s attention pool as the number of individuals who have, up to 

time 𝑡, cited the star’s patents. Let 𝑝! be a patent in the set 𝑷𝒇 of patents granted to a focal star 𝑓. Then 

𝑐! is a citing patent if 𝑝! is in the citation list of 𝑐𝑓. We use 𝑪𝒇 to denote the set of citing patents such 

that any 𝑐! ∈ 𝑪𝒇  cites some  𝑝𝑓 ∈ 𝑷𝒇 . Let 𝑨𝒇𝒄  signify set of patent 𝑐𝑓 ’s co-authors. As usual, the 

subscript 𝑡 stands for “up to time 𝑡”. We can now formally define the attention pool of a star 𝑓 until time 

𝑡 as 𝑆𝑡𝑎𝑟′𝑠 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑝𝑜𝑜𝑙𝑓𝑡 = 𝑨𝒇𝒄𝒄𝒇∈𝑪𝒇𝒕 ; the Non-star’s attention pool is defined analogously. 

Table 6 provides summary statistics and correlations for all our defined variables. Table 7 reports the 

results of the event history analysis we used to test H2 and H3.  
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Table 6. Summary Statistics and Correlations for All Variables 

  Variable Mean  S.D. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 Direct ties to stars (ln) 0.91 0.33 

 
                              

2 Direct ties to non-stars (ln) 1.59 0.66 0.27 
 

                            
3 Network cohesion with stars 0.51 0.26 0.02 0.03 

 
                          

4 Network cohesion with non-stars 0.47 0.24 -0.06 -0.06 0.83 
 

                        
5 Expertise similarity with stars 0.73 0.29 -0.19 -0.37 0.58 0.57 

 
                      

6 Expertise similarity with non-stars 0.63 0.31 -0.26 -0.42 0.51 0.65 0.77 
 

                    
7 stars’ direct ties (ln) 2.89 0.86 0.52 0.43 0.24 0.15 -0.08 -0.11 

 
                  

8 Non-stars' direct ties (ln) 2.19 0.90 0.39 0.66 0.06 -0.03 -0.28 -0.30 0.56 
 

                
9 Attention pool of stars (ln) 4.81 1.11 0.55 0.24 0.00 -0.04 -0.17 -0.22 0.69 0.38 

 
              

10 Attention pool non-stars (ln) 2.05 1.96 0.35 0.46 -0.07 -0.17 -0.24 -0.34 0.28 0.69 0.26 
 

            
11 Repeated collaboration with stars 2.42 2.88 0.12 0.08 0.13 0.01 0.10 -0.11 0.01 0.04 0.09 0.12 

 
          

12 Repeated collaboration with non-stars 2.05 2.18 0.07 0.04 0.08 0.08 0.04 0.05 -0.04 0.02 0.02 0.10 0.71 
 

        
13 Assignee's past patents (ln) 3.95 1.95 0.21 -0.01 -0.05 -0.08 -0.04 -0.08 0.16 0.13 0.26 0.16 0.04 0.03 

 
      

14 Class diversity 3.47 2.99 0.29 0.38 -0.35 -0.45 -0.56 -0.71 0.09 0.29 0.19 0.35 0.34 0.23 0.07 
 

    
15 Mobility 1.50 1.10 0.12 0.36 -0.29 -0.33 -0.46 -0.45 0.11 0.27 0.11 0.22 0.03 -0.01 -0.23 0.47 

 
  

16 Location diversity 1.05 0.25 0.05 0.10 -0.12 -0.14 -0.17 -0.18 0.03 0.07 0.05 0.07 0.01 -0.01 0.02 0.14 0.14 
 17 Patent stock year (ln) 6.67 0.72 0.10 0.10 0.02 0.01 -0.05 -0.08 0.20 0.17 0.27 0.13 0.03 0.01 0.08 0.08 0.00 0.02 

Notes. N=27,278. Correlations greater than |0.012| are significant at p<0.05   		 		 		 		 		 		 		 		 		 		
 

 
Model 1 in Table 6 includes all the control variables. Model 2 is a partial model that incorporates the 

focal designer’s number of star and non-star collaborators. Model 3 includes the network cohesion 

variables used to test H2, and Model 4 includes the expertise similarity variables used to test H3. Model 5 

is the full model, which, in the following, is used to test all our hypotheses and then to interpret the results. 
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Table 7. Proportional Hazard Model of Designer Emergence As Star 

Variable [1] [2] [3] [4] [5] 
Direct ties to stars (H1)   0.502*** 0.594*** 0.654*** 0.673*** 
    (0.108) (0.094) (0.092) (0.089) 
Direct ties to non-stars (H1)   0.496*** 0.339*** 0.506*** 0.426*** 
    (0.049) (0.048) (0.05) (0.051) 
Network cohesion with stars (H2a)     0.394***   0.371**  
      (0.123)   (0.168) 
Network cohesion with non-stars (H2b)     -1.715***   -1.650*** 
      (0.166)   (0.205) 
Expertise similarity with stars (H3a)       0.555*** 0.469*** 
        (0.17) (0.131) 
Expertise sim. with non-stars (H3b)       -2.145*** -1.032*** 
        (0.213) (0.161) 
Controls   

 
      

Stars’ direct ties -0.288*** -0.448*** -0.359*** -0.343*** -0.333*** 
  (0.045) (0.045) (0.044) (0.046) (0.045) 
Non-stars' direct ties -0.243*** -0.423*** -0.386*** -0.405*** -0.377*** 
  (0.041) (0.043) (0.043) (0.044) (0.044) 
Attention pool of stars 0.269*** 0.262*** 0.165*** 0.175*** 0.153*** 
  (0.035) (0.04) (0.037) (0.038) (0.038) 
Attention pool non-stars 0.370*** 0.349*** 0.319*** 0.324*** 0.311*** 
  (0.017) (0.016) (0.017) (0.017) (0.017) 
Repeated collaboration with stars -0.019 -0.024 -0.036*   -0.008 -0.025 
  (0.02) (0.02) (0.019) (0.016) (0.016) 
Repeated collaboration with non-stars 0.082*** 0.091*** 0.124*** 0.090*** 0.114*** 
  (0.02) (0.02) (0.02) (0.017) (0.018) 
Assignee's past patents 0.115*** 0.130*** 0.127*** 0.114*** 0.116*** 
  (0.013) (0.013) (0.013) (0.013) (0.013) 

Class diversity 0.198*** 0.174*** 0.128*** 0.143*** 0.127*** 

 
(0.01) (0.01) (0.012) (0.01) (0.011) 

Mobility 0.072**  0.056**  0.048**  0.019 0.028 
  (0.029) (0.028) (0.024) (0.025) (0.024) 

Location diversity 0.119 0.084 0.006 0.029 0.007 
  (0.092) (0.092) (0.086) (0.089) (0.087) 

Patent stock year 0.153*** 0.164*** 0.135*** 0.160*** 0.145*** 
  (0.037) (0.036) (0.036) (0.037) (0.037) 
Cohort Yes Yes Yes Yes Yes 
Log likelihood -20786 -20701 -20579 -20538 -20509 

Notes: n=27,278. Robust standard errors are reported in parentheses. All models control for cohort dummy variables. 
* p<0.10, ** p<0.05, *** p<0.01  
 

Before testing H2 and H3, as a side aspect we retest H1 in the sample used for testing H2 and H3. Clearly, 

the coefficients for Direct ties to stars (0.673, p < .01) and also for Direct ties to non-stars (0.426, p < .01) 

are both positive and significant. These coefficients imply that any collaboration is preferable to no 

collaboration (the omitted case). We can further interpret the relative effect of collaborating with stars 
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versus non-stars via inspection of their respective hazard ratios. A one-unit increase in (the natural 

logarithm, (Ln+1), of Direct ties to stars makes the focal designer 1.96 times (e0.673 = 1.96) more likely to 

emerge as a star (as compared with a designer who has no ties). Similarly, a one-unit increase in Direct 

ties to non-stars (Ln+1) yields a corresponding factor of e0.426 = 1.53. Collaborating with stars rather than 

non-stars increases the hazard rate by a factor of 1.28 (=1.96/1.53), and the difference between these two 

collaboration effects is statistically significant (p < .017). Thus the data support our baseline hypothesis 

H1 that a star collaboration is significantly more beneficial than a non-star collaboration—even for the 

sample of designers who have collaborated at least once with both a star and a non-star. 

The results reported in Table 7 also support our network cohesion hypothesis (H2), which posits that 

increased network cohesion has a positive (resp. negative) effect on the outcomes of collaborations with 

star (resp. non-star) designers. Model 5 strongly supports both H2a and H2b. The positive and significant 

coefficient for Network cohesion with stars (0.371; p < .05) indicates that, for designers who collaborate 

with both stars and non-stars, having a more cohesive social network with a star collaborator increases, on 

average, the focal designer’s likelihood of becoming a star—in line with H2a. Indeed, an increase of one 

standard deviation in the value of Network cohesion with stars is associated with a 10% increase 

(e(0.371×0.26) − 1 = 0.10)	 in the probability that the focal designer will become a star. In contrast, the 

negative and significant coefficient for Network cohesion with non-stars (−1.650; p < .01) indicates that 

having a more cohesive social network with a non-star collaborator reduces, on average, the likelihood of 

becoming a star—in line with H2b. Thus an increase of one standard deviation in the value of Network 

cohesion with non-stars makes the focal designer’s likelihood of emerging as a star 33% less likely 

(e(−1.650×0.24) − 1 = −0.33). 

Hypothesis H3 posits that greater expertise similarity with a star (resp. non-star) collaborator increases 

(resp. decreases) the focal designer’s odds of emerging as a star. Our results strongly support H3. The 

positive and significant coefficient for Expertise similarity with stars (0.469, p < .01) indicates that 

designers who collaborate with stars increase their likelihood of becoming a star by increasing their 
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expertise similarity with star collaborators, in line with H3a. An increase of one standard deviation in 

Expertise similarity with stars increases the probability of becoming a star by 15% (e(0.469×0.29) − 1 = 0.15). 

In contrast, the negative and significant coefficient for Expertise similarity with non-stars (−1.032, p < .01) 

indicates that designers having greater expertise similarity with such non-star collaborators thereby reduce 

significantly their probability of becoming a star. Here an increase of one standard deviation in Expertise 

similarity with non-stars reduces the likelihood of emergence as a star by 27% (e(−1.032×0.31) − 1 = −0.27). 

4. ROBUSTNESS CHECKS 

We explore the range of conditions under which our claims hold by conducting extensive robustness 

analyses. In particular, we check the robustness of alternative cutoff points for identifying star designers. 

In our analysis, a star is defined as any designer whose popularity index—as measured by citations in a 

three-year rolling window—is in the top 2% of all designers in our database. The robustness tests 

systematically vary the two parameters in this definition to match alternative values proposed in the 

literature (e.g., Ahuja & Lampert, 2001; McFadyen & Cannella, 2004; Singh & Fleming, 2010). First, we 

hold constant our main model’s 2% cutoff while evaluating the effect of replacing that model’s three-year 

time window with a five-year and a seven-year window and also with a non-rolling time window (i.e., one 

that extends back to the start of our observation period). Second, we hold the three-year rolling window 

constant and compare results under various cutoff values (1%, and 5%) for the popularity index. The tests, 

whose results are reported in Table 8, show that our hypotheses are overwhelmingly robust to these 

variations in the definition of a star. The difference between direct ties to stars and direct ties to non-stars 

is positive and significant across all the models; in addition, the effect on emergence of network cohesion 

with stars (H2a) is positive and significant in all models (except for Model 6, in which the effect is 

positive but not significant) and, as expected, the effect of such cohesion with non-stars (H2b) is negative 
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and significant across all models. Finally, the effect on emergence of expertise similarity with stars is 

positive and significant (H3a) and with non-stars is negative and significant (H3b) across all the models.5F

6 

Table 8. Robustness Checks Using Various Definitions of “Star” 

  [1] [2] [3] [4] [5] [6] 
                                     Star definition: 2%3yr 2%5yr 2%7yr 2%allyr 1%3yr 5%3yr 
Variable             
Direct ties to stars (H1) 0.673*** 0.723*** 0.711*** 0.686*** 0.837*** 0.931*** 
  (0.089) (0.105) (0.111) (0.132) (0.113) (0.066) 
Direct ties to non-stars (H1) 0.426*** 0.354*** 0.416*** 0.545*** 0.479*** 0.056 
  (0.051) (0.057) (0.062) (0.074) (0.083) (0.042) 
Social cohesion with stars (H2a) 0.371**  0.475**  0.508**  0.638*** 0.622*** -0.212 
  (0.168) (0.191) (0.201) (0.227) (0.218) (0.156) 
Social cohesion with non-stars (H2b) -1.650*** -1.714*** -1.798*** -2.177*** -1.394*** -0.925*** 
  (0.205) (0.235) (0.246) (0.276) (0.25) (0.174) 
Expertise similarity with stars (H3a) 0.469*** 0.435*** 0.553*** 0.681*** 0.876*** 0.271**  
  (0.131) (0.142) (0.152) (0.173) (0.175) (0.124) 
Expertise sim. with non-stars (H3b) -1.032*** -1.196*** -1.132*** -1.148*** -1.524*** -0.728*** 
  (0.161) (0.181) (0.188) (0.227) (0.22) (0.141) 
Controls           

 Stars’ direct ties -0.333*** -0.352*** -0.379*** -0.389*** -0.486*** -0.273*** 
  (0.045) (0.053) (0.055) (0.064) (0.061) (0.039) 
Non-stars' direct ties -0.377*** -0.352*** -0.356*** -0.385*** -0.168**  -0.184*** 
  (0.044) (0.05) (0.054) (0.063) (0.07) (0.04) 
Attention pool of stars 0.153*** 0.220*** 0.251*** 0.272*** 0.297*** 0.239*** 
  (0.038) (0.045) (0.048) (0.059) (0.059) (0.035) 
Attention pool non-stars 0.311*** 0.328*** 0.332*** 0.351*** 0.239*** 0.229*** 
  (0.017) (0.019) (0.02) (0.023) (0.031) (0.018) 
Repeated collaboration with stars -0.025 -0.013 -0.014 -0.013 -0.01 0.058*** 
  (0.016) (0.013) (0.013) (0.011) (0.011) (0.013) 
Repeated collaboration with non-stars 0.114*** 0.098*** 0.102*** 0.111*** 0.097*** 0.004 
  (0.018) (0.015) (0.014) (0.013) (0.014) (0.016) 
Assignee's past patents 0.116*** -0.003 -0.009 0.002 0.150*** -0.002 
  (0.013) (0.006) (0.006) (0.007) (0.018) (0.004) 

Class diversity 0.127*** 0.127*** 0.124*** 0.107*** 0.116*** 0.115*** 

 
(0.011) (0.012) (0.011) (0.01) (0.011) (0.016) 

Mobility 0.028 -0.040*   -0.040*   -0.032 0.047*   0.019 
  (0.024) (0.022) (0.021) (0.022) (0.025) (0.023) 

Location diversity 0.007 0.099 -0.003 0.07 0.009 0.068 
  (0.087) (0.082) (0.081) (0.083) (0.089) (0.084) 

Patent stock year 0.145*** 0.127*** 0.098**  -0.031 0.180*** 0.151*** 
  (0.037) (0.04) (0.043) (0.048) (0.049) (0.031) 
Cohort Yes Yes Yes Yes Yes Yes 
Log likelihood -20509 -16352 -14076 -9691 -10471 -23861 
Observations 27278 26027 25087 23323 22263 15546 

      * p<0.10, ** p<0.05, *** p<0.01  
																																																													
6 It is not surprising to see that as the cut-off threshold increases (e.g., 5% in Model 6 of Table 8) the effects of both 
network cohesion and expertise similarity with stars becomes less positive. For as we increase the cut-off threshold 
the star and the non-star converge and the distinction between stars and non-stars becomes less significant. 
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5. DISCUSSION AND CONCLUSION 

The discipline of design is receiving increased attention from the business community. In many industries, 

the core functionality of competing products has been converging and so functionality has lost some of its 

power to create product differentiation. The design (or the “form”) of products, rather than their 

functionality, has therefore been gaining importance (Ulrich 2011b)—a trend confirmed by many in the 

business press and in practitioner circles (BBC 2013, Brown 2008, Brunner et al. 2008, Miller 2013). The 

field of product design is one in which the star’s role figures prominently. In categories as varied as 

clothing, cars, furniture, computers, and communications equipment, star designers have become 

household names; in fact, they exert considerable influence over how entire industries conceive their 

next-generation products (Ulrich 2011a, Utterback et al. 2006). As a result, each firm competes with its 

rivals to recruit top designers so that it can build design capabilities and nurture its own design talents.  

This paper sheds light on two areas that have received little attention in the literature despite being crucial 

for innovation management. First, we investigate the antecedents of star emergence and in particular the 

role played, in star emergence, by interpersonal collaboration with stars. Second, because collaborating 

with stars differs substantially from collaborating with non-stars, we address the question of how 

collaborator quality (star versus non-star) moderates the effect of social- and knowledge-related factors on 

the focal designer’s emergence as a star. Overall, our findings—which highlight the distinct roles played 

by stars and non-stars in collaborative settings—uncover an important yet heretofore unexplored 

dimension that is highly relevant to the literature on interpersonal collaboration networks in creative 

contexts (Reagans and McEvily 2003, Sosa 2011, Tortoriello and Krackhardt 2010): the quality of a 

collaborator. 

Both of our contributions relate to a growing stream of studies in creativity research that aim to identify 

the drivers of outstanding versus average performance (Ahuja and Lampert 2001, Girotra et al. 2010, 

Singh and Fleming 2010, Terwiesch and Ulrich 2009). Previous work in this area adopts the idea as the 
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unit of analysis and explores the emergence of breakthrough ideas, but our study focuses on the individual.  

Our empirical baseline result distinguishes among collaborators based on their standing in the design 

community. We establish that star collaborators are considerably more instrumental than non-star 

collaborators in a focal designer’s transition to star status. We argue that collaboration with a star is more 

fruitful because the significant tacit (design) knowledge differential between star and non-star designers 

leads to superior (design) knowledge transfer. This dynamic helps us identify an important antecedent to 

outstanding performance at the individual level, which have been neglected by the prior literature 

focusing on stars (Azoulay et al. 2010, Groysberg et al. 2011).  

It may seem intuitive that collaborating with stars rather than non-stars raises considerably the focal 

designer’s likelihood of achieving stardom. Yet confirming this notion empirically, as we do in this paper, 

serves to answer the counterargument that star collaboration could be less beneficial given the constraints 

on a star’s time and dedication; empirical confirmation also offers a unique opportunity to deepen our 

understanding of the determinants of knowledge transfer within interpersonal collaboration networks. 

Because a focal designer can collaborate with actors of distinguishable quality (i.e., stars vs. non-stars), 

we are able to evaluate how collaborator quality moderates the effect of two key determinants of effective 

knowledge transfer—namely, network cohesion and expertise similarity—on the likelihood that a focal 

designer achieves outstanding creative performance.  

Our results reveal that, contingent on the collaborator’s quality, network cohesion and expertise similarity 

have opposite effects on a designer’s creative outstanding performance. Thus the collaborator’s quality is 

a moderator that helps us reconcile this seeming puzzle: greater network cohesion and expertise similarity 

with star collaborators both have positive effects on a focal designer’s emergence as star, but in the case 

of non-star collaborators we observe negative effects under the same conditions. We claim that the 

primary reason for these contrasting effects is, once again, the significant difference in tacit (design) 

knowledge between stars and non-stars. In star collaborations, the designers’ strong network cohesion 
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provides convergent social forces while their high expertise similarity provides absorptive capacity; these 

outcomes are conducive to superior knowledge transfer, which ultimately fosters outstanding creative 

performance. A focal designer and a non-star collaborator, in contrast, differ little in terms of experience 

or talent. As a result, high social cohesion and high expertise similarity lead instead to “group thinking” 

and redundant sources of information, which are both well known to have negative effects on creative 

performance. 

Our results speak directly to the literature on knowledge transfer (Boland & Tenkasi 1995; Argote et al. 

2003). Unlike previous research that focuses on procedures to facilitate such transfers, our study focuses 

on the knowledge provider’s quality as a contingency that well explains the varying effectiveness of 

knowledge transfer. Adopting that perspective enables us to reconcile conflicting results (reported in the 

extant literature) regarding the effects of network structure and expertise similarity on knowledge transfer 

in interpersonal collaborations (Burt 2004, Fleming, Mingo, et al. 2007, Groysberg et al. 2011, Reagans 

and McEvily 2003, Sosa 2011, Tortoriello et al. 2015).  

From an empirical standpoint, examining the effects of interpersonal collaboration is a challenging 

exercise because the focal designer’s quality could affect not only her likelihood of engaging in a star 

collaboration but also the likelihood of emerging as a star herself. An ideal empirical setting would 

involve pairs of twins being randomly assigned to collaborate with stars and non-stars. Of course, that 

type of data is not easily available; hence we resort to “constructing” such a database by way of a 

coarsened exact matching approach (Iacus et al. 2011). Using the sample so constructed to test our 

baseline hypothesis isolates as much as possible the effects of collaborating with a star from possible 

factors that could also drive the tie formation with a star. We also employ a DID framework to show that 

star collaboration does lead to a significant increase in the focal designer’s post-collaboration productivity, 

which is in line with the design knowledge transfer mechanism underlying our hypotheses.  
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This study relies on archival data derived from design patents, and that approach imposes several 

limitations common to all research based on patent activity. For example, the findings reported here are 

based on successful collaborations—those resulting in patents that are actually granted. However, 

designer–star collaborations may sometimes fail. Yet that should not jeopardize our conclusions because 

this paper’s focus is on how collaboration affects exceptional outcomes (i.e., becoming a star). 

Furthermore, by evaluating the work of designers in terms of the USPTO’s consistent standards, we 

ensure that our definition of a “star” is likewise consistent and hence that our comparisons (and 

conclusions) across time are justified. Finally, we note that establishing causality with our empirical 

method is complicated not by sorting or double selection per se but rather by the possibility of unobserved 

characteristics driving both the exposure to and the outcome of the “treatment” (becoming a star). We 

acknowledge that the nature of our data does not allow us to remove all doubts unequivocally; 

nevertheless, our robustness checks offer consistent evidence that the effect of a star collaboration should 

not be viewed as spurious. 

Our focus on the phenomenon of star emergence raises intriguing questions that can spark additional 

research. For instance: Given that the achievement of star status is both desirable and challenging, how 

can that status be sustained? What factors might accelerate a decline from stardom? Future work that 

explores these and other related questions would advance our knowledge about the topic of stardom. 

In reviewing the lives of eminent philosophers from ancient China and Greece, Collins (1998) shows that 

philosophers of comparable creative eminence tend to appear in the same generation. There is anecdotal 

evidence from historians and sociologists that great figures, early in their careers, studied under prominent 

individuals of their era. Our paper is the first one that employs an extensive patent data set as a means to 

quantify the effects of collaborating with a star designer and thus to explain the phenomenon of star 

emergence. A unique aspect of this study is our finding that knowledge transfer in such collaborations 

should be considered while accounting also for the quality of collaborators. A firm could use these results 
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when seeking to improve its cultivation of future stars, thereby increasing its own design competitiveness 

and perhaps beneficially shifting the firm’s focus and direction. 
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