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1 INTRODUCTION 

Previous work in innovation and technology management has shaped our understanding of what drives 

the evolution of products. These studies have examined how discontinuities in technological advances 

redefine technological frontiers, initiate entirely new sets of product categories, and disrupt established 

players (Anderson and Tushman 1990, Baldwin and Clark 2000, Henderson and Clark 1990, Tushman 

and Anderson 1986, Utterback 1996, Utterback and Abernathy 1975). This large body of work rests on 

the assumption that technology, and hence function (how a product works), is the major source of change 

in product evolution. 

However, a product combines elements of both function and form, or how it looks (Alexander 

1964, Ulrich 2011). Indeed, the dynamics of such industries as clothing, furniture, kitchenware, and (more 

recently) computing seem to be driven as much by changes in form as in function (Dell’Era et al. 2010). It 

is widely perceived among practitioners that product form—and design in general (as the discipline 

responsible for the creation of new product form)—has become increasingly more important in the 

development of new products and services (Brown 2009, Maeda 2015). The jury’s initial nearly $1 billion 

(US) award to Apple in 2012 for Samsung’s infringement on design patents is testimony to this claim 

(The Economist 2012). And even though the literatures of marketing, engineering, and strategy have 

recently started to recognize the diverse roles that product form plays—for instance, in influencing 

perceptions of how customers value and understand a product (Bloch 2011), of how new product forms 

should be created and/or sourced (Erat and Krishnan 2012, Terwiesch and Loch 2004), and of how the 

links between technology and design should be managed (Rindova and Petkova 2007)—there is still no 

rigorous understanding of how product form evolves over time and, in particular, how a new product form 

comes to predominate. 

Businesses operate in a changing environment. Yet with the possible exception of work 

addressing the fashion industry (e.g., Cappetta et al. 2006, Cillo and Verona 2008), we know of few 

studies that focus on how product form changes. Do changes in form follow changes in function, or not? 
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Despite the century-old maxim of “form follows function” (Sullivan 1896), extant research has not 

achieved conceptual closure on the matter (for various views, see e.g. Eisenman 2013, Kreuzbauer and 

Malter 2005, Rindova and Petkova 2007) and neither is there large-scale direct empirical evidence to 

settle the question. Another leading question is: Has form become more relevant in the creation of new 

products? If so, then managers of new product development organizations need to adjust their 

organizational capabilities to changes not only in the technology landscape but also in the form factors of 

products that their firms develop (Rindova and Petkova 2007). However, the lack of large-scale 

quantitative data has prevented researchers from rigorously testing hypotheses about the role that product 

form might play in new product development. 

Defining technology boundaries and product (or industry) categories has been instrumental in 

understanding how technology evolves (Utterback 1996). The equivalent notion as regards product form 

is the style—a category of product designs that are similar in form. If we are able to categorize a body of 

individual designs into styles and develop an understanding of their temporal relations, then we could 

begin to address questions about the dynamics of product form. If we could also establish how styles are 

linked to functional categories, then we would have a solid empirical base that would enable us to study 

the dynamics of product form and its relationship to changes in product function. 

This paper offers two main contributions to the literature on technology and operations 

management. First, it makes available an unprecedented and rich data set of styles based on more than 

350,000 new product forms that have been granted patent protection in the United States during the 33-

year period starting in 1977. In order to identify these styles, we introduce a unique combination of state-

of-the-art clustering techniques and experimental validation to categorize patents in the design patent 

database. In doing so, we have made the first step toward a large-scale categorization of styles by 

showing that they can be identified based on measures of pairwise similarity. 

Second, having established this data set of styles, we advance the management literature by 

studying aspects of product evolution from the perspective of product form (rather than product function). 
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In doing so, we focus on unexpected changes in styles—and hence of product form—because such 

changes have the potential to disrupt business activities and thereby attract the attention of managers and 

academics both. Using the notion of turbulence (Miller and Glick 2006) to operationalize these 

unexpected changes, we study two key aspects of product form: we start by examining how turbulence in 

styles is related to turbulence in product functionality (using utility patents and functional product 

categories as a proxy for product function); we then study how style turbulence has changed over time. 

This approach reveals that turbulence in styles exhibits a U-shaped relation to turbulence in product 

functionality. The implication is that high levels of unpredictable changes in form are associated either 

with highly turbulent product functionality or with an utter lack of function turbulence. As a result, firms 

should treat turbulence in product form as a distinct source of uncertainty because disruptions in product 

form can arise even in the absence of disruptions in product function. We also find that changes in styles 

have become increasingly unpredictable over time, which suggests that firms should rethink their 

organizational setups so as to cope with the increasing uncertainty. That approach would involve 

detecting changes in new product form, adopting development cycles that accommodate such changes, 

and setting up a nimble production system that can react to emerging form trends (Bourgeois and 

Eisenhardt 1988, Eisenhardt and Tabrizi 1995, Teece et al. 1997). 

The rest of this paper proceeds as follows. Section 2 delves into how we operationalize “styles” 

for categorizing product designs. In Section 3 we discuss design patents and the unique features that make 

them ideal vehicles for an empirical study of product form. Sections 4 and 5 describe our methods—

respectively, the graph-clustering approach employed to identify styles within the US design patent 

database and the experimental approach used to validate our operationalization of style. In Section 6 we 

use the styles data set so constructed to study the dynamics of style turbulence and its relationship to 

turbulence in product function. We conclude in Section 7 by discussing the academic and managerial 

implications of our findings. 
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2 OPERATIONALIZING STYLES IN PRODUCT DESIGN 

Previous efforts to identify styles among a set of objects have aimed at explicitly identifying a style’s 

constituent physical design aspects. For instance, Munro (1946) describes a style as consisting “of a 

combination of traits or characteristics which tend to recur together in different works of art.” He uses the 

example of Gothic architecture—which features pointed arches, pitched roofs, slender piers, large 

stained-glass windows, and flying buttresses—to illustrate the idea that a style is defined by a set of well-

defined physical traits. However, most researchers acknowledge that the mere co-occurrence of certain 

individual traits is no more important than how those traits are configured, or how they interact (Stacey 

2006). In the field of engineering, efforts to capture and formalize not only a style’s defining elements but 

also their interactions have met with remarkable success. Consider shape grammar (Stiny 1980), a design 

language that consists of some basic geometric shapes together with a set of rules for transforming them 

into complex forms. This language has been used to describe the style of Harley-Davidson motorcycles 

(Pugliese and Cagan 2002) and of Buick automobiles (McCormack et al. 2004). 

The marketing and engineering design literatures have developed approaches that study designs 

directly, approaches that are tailored to specific product categories and hence implicitly take into account 

contextual information about those categories. For example, Cappetta et al. (2006) consider styles based 

on individual features of fashion designs (cut, length, etc.) and manually categorized a few thousand 

designs—based on pictures of clothes in 228 issues of the Italian Vogue magazine—into styles. Jupp and 

Gero (2006) analyze styles within a set of 131 architectural designs by examining such characteristics as 

symmetry, regularity, and how shapes contain other shapes. Orth and Malkewitz (2008) group 160 wine 

bottle designs into styles along the lines of higher-order design elements, such as whether a design relates 

to nature. Landwehr et al. (2011, 2013) process 28 images of popular car models and examine how 

measures of proto-typicality, complexity, and exposure predict sales. To identify styles in design patents, 

for which the corpus includes more than 350,000 designs across 33 product categories, we adopt a 

different approach that allows for massive scaling. 
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Since product form carries emotional and sociocultural meanings and since meanings are not 

measurable “objectively (without any human involvement)” (Krippendorff and Butter 1993, p. 33), it 

follows that operationalization in this case must ultimately rely on human judgment. Yet only human 

judgments that are relatively simple—and so can be deployed on a mass basis—can serve as the 

foundation of any broad effort to identify styles. We develop our approach by taking cues from research 

devoted to exploring how people perceive and understand complex objects. This research has developed 

the concept of cognitive categorization as one of its cornerstones (Simon 1969). In essence, humans 

simplify understanding of complex objects by categorizing them into groups; that process yields 

“archetypes” and thereby reduces cognitive load (Porac and Thomas 1990). Styles can be viewed as one 

such category. 

This categorization process is, in turn, driven by the visual perception of similarities and 

differences (Holland et al. 1986, Rosch 1978). In the context of styles, such attributes are based both on 

individual features and their configuration (Stacey 2006); observers are intuitively able to make 

judgments of visual similarity on a holistic basis such that a single overall visual impression of similarity 

is reached (Goldstone 1994). There is empirical evidence that visual similarity can serve as a basis for 

recognizing styles (Chan 2000, Jupp and Gero 2006). Hence we operationalize “styles” as categories of 

product form determined by perceived visual similarities. 

Two comments are in order here. First, styles typically form a hierarchy. Munro (1946) proposes, 

in effect, a hierarchical structure when arguing that “restricted” styles (e.g., Florentine) are subsumed by 

“extensive” styles (e.g., Italian Renaissance). In this paper we focus on identifying the widest category of 

product form that humans would perceive to be a style. That category would be the root of a given style 

hierarchy; thus it might subsume substyles but would not be subsumed by other styles. We refer to such a 

categorization as a main style. So by identifying main styles, we are able to study changes at the highest 

level of styles (Alexander 1964, Simon 1969). 

Second, although individuals vary in their assessments of similarity, those who share a similar 
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sociocultural background and basic level of expertise tend to produce comparable assessments that lead to 

agreed-upon categories (Goldstone 1994). Yet because different sociocultural groups may apprehend 

designs differently, any categorization effort must identify the most appropriate reference group. 

In sum, we operationalize styles as categories of visually similar product form that are organized 

in a hierarchical fashion. They are (i) established via a holistic perception of visual similarity such that 

each category contains designs that are more similar to each other than to designs in other categories and 

(ii) organized in a nested (hierarchical) fashion. Our methodological challenge is to group designs into 

design styles that enable the identification of what we refer to as main styles. 

3 DESIGN PATENTS 

A novel design can be protected by filing a design patent with the US Patent & Trademark Office 

(USPTO). Once the patent is granted, it protects the intellectual property related to the design’s visual 

characteristics—that is, the “appearance … which creates an impression through the eye upon the mind of 

an observer” (USPTO 2006, pp. 1500–1). Design patents contain drawings that characterize the design; 

they also provide designer information, company information, location, date of filing, product category, 

and a list of references made to previous design works. 

In contrast to utility patents, which protect the intellectual property concerning a product’s 

functional aspects, design patents protect its form aspects. To the extent that patents—especially the most 

frequently cited ones—are correlated with market success (see Hall et al. 2005), inventors and designers 

both have a commercial motive to seek patents for protection, especially since design patent rights 

improved significantly with the establishment of the Court of Appeals for the Federal Circuit in 1982 (Du 

Mont and Janis 2011). It is therefore not surprising that product designers are increasingly encouraged to 

“think about patents” when creating a new form (Molotch 2004, p. 28) and that many patent litigation 

cases have centered on designs; examples include Apple Inc. v. Samsung Electronics Co. (2011) and 

Crocs Inc. v. Walgreens Co. (2011). 

In Section 2 we noted that styles are socioculturally dependent and thus can be defined only with 
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respect to an appropriate reference group. Although design patent law was not created with the intention 

of defining styles, it had to address the question of what was patentable and therefore needed to devise a 

criterion for determining whether (or not) a design was too similar to existing designs—that is, not 

sufficiently novel to merit patenting. Thus the patent law had to identify who would assess “similarity” of 

visual appearance across product designs. In its landmark Gorham v. White ruling of 1871, the US 

Supreme Court established that design patentability should be determined by an “average observer” 

(rather than an expert) who possesses reasonable familiarity with the designs (USPTO 2006, pp. 1500–

21). The logic underlying this decision was its commercial impact: if a product’s potential buyer confuses 

its design with a prior design, then the original design’s inventor could suffer a commercial loss in the 

event that both the original and a (similar but) subsequent design were patented. The law’s reasoning for 

and choice of the average US observer as the appropriate social reference group applies also to our task of 

identifying styles. 

The patent examination process ensures that the “average observer” test is rigorously applied to 

every design patent application and that results are consistently documented in the patent. Every 

application undergoes examination to determine the design’s patentability. This process involves a patent 

examiner searching through a list of prior patents to find those that are similar in “visual impression” 

(USPTO 2006, pp. 1500–29) to the applicant’s design.
1
 A patent application can be rejected if the 

resulting list contains a design that is substantially the same as the focal design. When an application is 

approved, the list of relevant patents found in the search process is documented in the patent documents 

                                                      

1
 Although the design patent examiner is likely to have much more experience than an average observer, patenting 

examination procedures provide clear guidelines for how the examination should proceed (USPTO 2006). The 

design patent examiner is trained in the capacity to observe designs as would an average person. Design patent 

examiners also follow a thorough search process: every design is listed in one (or more) product classes, and 

examiners typically search across multiple classes for related designs; moreover, designs may be separately 

annotated with search notes to make sure that the search is comprehensive (USPTO 2005). 
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as the list of references to prior works. This list of references constitutes the set of prior patents deemed 

most similar in visual concept to the focal patent. 

The base properties of the design patents—namely, a singular focus on the visual character of 

designs, reference to the “average US person” as the arbiter of visual similarity, and a rigorous process of 

identifying citations and hence similar designs—render such patents uniquely suitable for stylistic 

analyses. Furthermore, knowing the date when each patent was granted is an ideal setup for our 

examination of product form from an evolutionary perspective. Design patent data from January 1977 

onward is available on the Internet courtesy of the USPTO. In our effort to identify styles, we examined 

all 365,444 design patents granted from January 1977 through January 2010. 

4 CATEGORIZING DESIGNS INTO STYLES 

4.1 An index of similarity in form 

A necessary step in categorizing designs into styles is to identify an index of similarity in form—that is, a 

measure of how close two designs are in terms of form. Because a patent application’s list of references 

is selected for their visual similarity, such lists can serve as the basis for a measure. 

However, there are three problems with directly using the list of references as a similarity index. 

First, the list is binary (either a reference exists or it does not), which means that it is a relatively coarse 

measure of similarity. Second, a new patent can cite an existing patent but the existing patent cannot cite 

the new patent; thus a measure based solely on references entails asymmetry, whereas similarity is a 

symmetric notion. Third, there may be incomplete relationships. For instance, it is typical for an entire 

year to elapse between the application for and the granting of a design patent. Another patent that is either 

granted or applied for during this period is less likely to be cited than are patents granted before the time 

of application (Lei and Wright 2009). Our approach to constructing a similarity index from reference lists 
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in patents resolves these issues via a heuristic for creating a single measure that is fine-grained, symmetric, 

and complete.
2
 

In order to devise a measure that is more fine-grained, we start by observing that a focal design 

whose patent cites many other patents draws its design inspiration from a large pool of extant work; such 

sourcing suggests that the focal design is relatively less similar (to any single cited design) than in the 

case where only a few other patents are cited. Therefore, the first step of our heuristic is to (inversely) 

weight each individual reference listed in a patent by the total number of references in that patent’s list. 

Our heuristic’s second step is to impose symmetry by removing directionality from the references. These 

first two steps together yield a measure that we call citation coupling. The third step ensures completeness. 

For instance, similar patents filed at about the same time refer to (and are tested for patentability against) 

the same set of prior patents. Hence we can strengthen our similarity measure by also determining the 

extent of overlap in the sets of references. Given two patents and their respective sets of references, we 

count the number of references that are common to both patents and then divide that number by the total 

number of references (without double-counting); the resulting quotient is a measure of the proportion of 

overlap in the sets. This method is known as bibliographic coupling (Kessler 1963). Finally, we sum the 

measures from citation coupling and bibliographic coupling to obtain a similarity index that ranges 

between 0 and 1. 

This index is a score of the similarity in form between two designs. We can represent the entire 

set of relations as a similarity matrix. Alternatively, we can view this set as a weighted (nondirected) 

graph that spans all the designs (nodes of the graph) and where each edge of the graph constitutes a 

measure of similarity in form. 

                                                      

2
 One feature of the design patent is that designs in the corpus are unique—since designs that are similar enough to 

confuse the average observer are not considered patentable and so never appear in the USPTO database. An 

investigator using a database that contains essentially identical designs should consider an additional pre-processing 

step to merge those designs, because designs that are essentially identical belong by definition to the same style and 

hence should not undergo clustering. 
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4.2 Clustering method 

Clustering naturally lends itself to the task of identifying styles in our similarity graph. The choice of a 

specific method depends on the data and assumptions made about cluster structures.
3
 Two features of our 

similarity graph are relevant to this choice: (i) the similarity graph exhibits more clustering than a random 

graph; and (ii) the distribution of node degrees (i.e., the sum of each patent’s similarity links) is highly 

skewed. From a theoretical standpoint, a hierarchically nested clustering structure would simultaneously 

exhibit both high clustering and skewed node degrees (Ravasz and Barabási 2003)—in line with our 

theory of styles as hierarchically organized categories. With a few technical assumptions, it can be shown 

that the iterative divisive algorithm proposed here can optimally recover such a hierarchical style structure 

(see Part A of the e-companion for a discussion and Part B for details of the algorithm). 

Our algorithm takes the similarity matrix described in Section 4.1 as input (initially treating all 

365,444 designs as belonging to one cluster) and performs clustering by iteratively partitioning the cluster 

into subclusters. The outcome is a hierarchical partitioning tree. Each iteration consists of: 

1. selecting a cluster to partition; 

2. partitioning the selected cluster into two subclusters; and 

3. evaluating whether the resulting clusters so formed constitute styles. 

Intuitively, the ideal algorithm should select a heterogeneous cluster to partition at each stage; 

failing to do so would lead to unbalanced clusters, some of which would be heterogeneous and others 

homogeneous. It would also partition such that the generated subclusters exhibit both convergence 

(homogeneity within clusters) and divergence (heterogeneity across clusters); failing to do so would result 

in clusters having mixed content. Finally, the algorithm would ideally evaluate whether the clusters 

formed can be considered styles. 

                                                      

3
 We draw inspiration from Kornish and Ulrich (2011), who faced a similar challenge of identifying clusters of 

unique ideas; they applied a clustering method after establishing a similarity measure across ideas. 



11 

 

In order to operationalize heterogeneity, convergence, and divergence, our implementation leans 

heavily on the graph concept of conductance. Conductance unifies these properties into a single measure 

by explicitly conceptualizing a graph’s “heterogeneity” as the presence of a partition that can separate the 

graph into two parts such that each part is internally convergent but externally divergent (Chung 1997). 

Kannan et al. (2004) showed that iterative conductance-based algorithms identify clusters correctly if the 

data indeed contain clusters and also that their errors do not scale with the size of the data set—an 

important consideration in view of our data set’s large size. We use the so-called NJW algorithm of Ng, 

Jordan, and Weiss (2002) to calculate the conductance of clusters and to generate partitions. 

In particular, we use conductance to operationalize the three steps of our algorithm. At the initial 

select step we select the subgraph with the lowest conductance (i.e., the most heterogeneous subgraph) for 

partitioning; then, at the partition step, we use the partition implied by conductance. Finally, at the 

evaluate step we identify sharp jumps in conductance between iterations; such jumps indicate a regime 

change in the underlying data structure, and the resultant grouping is therefore a prime candidate for the 

identifier of a main style. We identified five candidate solutions, corresponding to iteration 3,129, 5,749, 

9,690, 15,463, and 22,065 (these iterations are labeled 𝑂1, … , 𝑂5 , respectively); see Part B of the e-

companion for details. 

5 EXPERIMENTAL VALIDATION 

In Section 2 we established styles as categories of designs based on a holistic visual perception of 

similarity. Hence experiments with human subjects are well suited to validating the outcomes of our 

clustering approach. It is useful at this juncture to stipulate the three key assumptions that underlie our 

clustering approach, since the goal of our validation scheme is to test them. 

(i) Selection step: Conductance accurately measures how people perceive style heterogeneity 

in a set of designs. 

(ii) Partition step: The partition implied by conductance agrees with how people would 

categorize a set of designs into two groups based on perceived similarities and differences. 
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(iii) Evaluation step: There exists some value of conductance beyond which a cluster of designs 

is recognized by people as a style (and this cutoff point identifies the main styles). 

We note that if assumptions (i) and (ii) hold—that is, if the algorithm selects and partitions 

properly—then we can be assured that the hierarchical partitioning tree is properly identified. And if (i) 

and (ii) hold then we also can test the claim of assumption (iii) that there exists an iteration (a level of 

conductance) beyond which clusters are recognized as styles. If this is true, then that iteration is the one 

that identifies the main styles. 

In order to validate the selection step, we start by replicating—with human subjects—the 

selection tasks faced by the algorithm; then we compare the human and the algorithmic outputs. We 

perform this comparison in two ways. First, we test for whether there are nonrandom levels of agreement 

in the solutions that humans and the algorithm tend to propose. Second, we ask independent observers to 

assess the extent to which the algorithm’s outcomes are different from those obtained from humans. 

Validation of the partition step proceeds in the same manner. 

Finally, we validate that the clusters contained in one of the five candidate solutions are 

recognized by humans as styles. If at least one candidate solution is so recognized, then we expect 

subsequent candidate solutions (which contain still more homogeneous clusters) will also be recognized 

as styles. The first categorization that passes this test would be the one that establishes the main styles in 

our data set. 

In short: our approach uses humans to validate not only the algorithm’s assumptions but also its 

outcomes. Validating that the algorithm performs its elemental tasks properly ensures its integrity, which 

is crucial if it is to be used in future studies. 

5.1 Subject pool 

The subject pool for all of our experiments was recruited from Amazon’s Mechanical Turk (MT). The 

population of US MT workers differs from the general US population in that the former includes many 

more females (65%) than males (35%). The MT population is also younger (median age 36), has a higher 
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level of education, and has a lower income level than does the overall US population (Paolacci et al. 

2010). Despite these differences, the MT population still better represents the US population at large than 

do student participants in a university lab setup (Paolacci et al. 2010). Also, as the next section makes 

clear, the experiments require a fairly large number of responses; MT provides a technical advantage over 

other approaches in the sheer number of respondents that can be gathered in a cost-feasible manner. 

We restrict our sample in three ways. First, we limit the subject pool by requiring respondents to 

have a US-based IP (Internet protocol) address—to fulfill the requirement that styles be perceived by an 

average US person. Second, to ensure that MT subjects paid attention and properly understood the survey 

instructions, we implemented attention and comprehension checks in all surveys (see Part C in the e-

companion for details) and then excluded results from respondents who failed any of the checks. (Our 

results, however, remain robust to their inclusion.) Finally, we do not reuse subjects across experiments.  

5.2 Comparing human and algorithm outcomes for the selection task  

Human replication of algorithm decisions. To compare the outcomes of the algorithm with those 

produced by humans, we have the latter perform the same selection tasks faced by the former. 

Specifically, we first sampled 25 selection tasks faced by the algorithm; because it performs exactly one 

selection task at each iteration (i.e., selecting the most heterogeneous cluster from a set of clusters), 

sampling a task is equivalent to sampling an iteration. We performed stratified sampling—in particular, 

we sampled five iterations from the iterations leading up to 𝑂1 (the first candidate solution), five iterations 

from 𝑂1 leading up to 𝑂2, and so on up to 𝑂5. 

The algorithm also considers numerous (in some iterations, thousands of) clusters when choosing 

one to partition during the selection phase. For that reason, humans cannot directly replicate a specific 

selection within a given iteration. In order to reduce the cognitive load, we simplify the selection task by 

asking each subject to pick only one out of three clusters. To find out if the subject would (or would not) 

make the same choice as the algorithm, we sampled the cluster chosen by the algorithm together with two 

other random clusters that the algorithm did not choose; from the resulting three clusters, our subjects 
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were tasked with identifying the most heterogeneous one (see Figure 1 for a sample question presented to 

subjects). Each subject performed this task for five samples. Altogether, we collected 185 valid responses 

from 37 respondents. 

 

 

Figure 1: Sample question for the selection task 

 

Test of agreement. Given the algorithm and human outcomes, we can ask if the algorithm and humans 

tend to converge to the same solution. To perform this analysis, we tested for whether or not the level of 

coincidence in solutions (i.e., the same solution being chosen by the algorithm and by humans) is better 

than chance. Note that since the selection involves three clusters, the probability of coincidence is equal to 

0.33 if either the human or the algorithm does nothing more than pick clusters randomly. 

We estimate the empirical probability of coincidence with the random model via a logit 

regression; the dependent variable is a binary indicator denoting coincidence, and we are interested in the 

probability of coincidence as captured by the size of the constant term. Our estimate of the empirical 

probability of a match is 0.48 (0.40–0.56; confidence interval estimated with errors clustered by 

respondent), which is significantly greater than random. The implication is that neither the humans nor 

the algorithm are performing randomly because both have a better-than-random chance of choosing the 

Identify the group that is the 

most heterogeneous with 

respect to styles. Note that a 

heterogeneous group would 

contain figures from different 

styles.
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same solution. 

Turing test. The agreement test alone is insufficient to validate the selection step: on those occasions 

where it does not match with human responses, the algorithm may be generating outcomes that a human 

would consider to be unreasonable. Intuitively, we need to test whether the algorithm is “human-like” 

with respect to the selection task—that is, does it ever exhibit significantly non-human behavior? Yet 

because our tasks produce complex and unordered categorization outcomes, it is difficult to detect non–

human-like behavior. We address this challenge by deploying the Turing test (Turing 1950), where 

human judges attempt to detect non-human aspects of algorithm outcomes. 

To implement the Turing test, we first supplement the 25 algorithm-generated solutions (where a 

“solution” is the outcome of one selection task—that is, three clusters with one identified as the most 

heterogeneous) used in the previous coincidence test with 25 human-generated solutions (randomly 

picked from the human responses in the previous test) to form a total of 50 solutions. We draw one 

solution at random from this group of 50 and show it to a human subject (i.e., one not involved in 

replicating the algorithm’s tasks). We task the subject with assessing whether the solution is of 

algorithmic or human origin (see Figure 2). If the subject can correctly identify outcomes generated by 

the algorithm, then those are clearly different from the outcomes generated by humans—here, the 

algorithm is not human-like in the sense that it exhibits significant non-human behavior and so the 

validation fails. However, if the subject is unable to distinguish between algorithm and human outcomes 

then we can reasonably presume that the former can generate human-like outcomes with respect to the 

selection task. 

Statistical inference setup. The Turing test has long been used to test the output of systems that are 

designed to mimic humans (Armstrong 2001, Barlas 1996, Sargent 1999, Van Horn 1971). Because the 

algorithm passes if it is indistinguishable from humans, the Turing test is effectively a “null effect” test 

(Oppy and Dowe 2016). Such tests rely on (i) a measure of the strength of the signal (of non–human-like 

behavior) exhibited by the algorithm and (ii) a statistical means of testing whether this signal strength 
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allows for distinguishing algorithm and human. 

Given that the algorithm should be indistinguishable from humans, many authors have found the 

probability that a judge correctly identifies an outcome’s source to be an intuitive measure of the signal 

strength (see e.g. Church and Guilhardi 2005, Geman et al. 2015). More specifically, suppose that a judge 

is given the task of deciding whether a solution is algorithm-generated (response 𝑟 = 𝐴) or human-

generated (𝑟 = 𝐻). Correct answers occur when the response matches the true origin of the solution—that 

is, the judge should respond 𝐴  to algorithm-generated solutions and should respond 𝐻  to human-

generated ones. Thus we can write 

𝑃(Correct) = 𝑃(𝐴)𝑃(𝑟 = 𝐴|𝐴) + 𝑃(𝐻)𝑃(𝑟 = 𝐻|𝐻); 

here 𝑃(𝐴) (resp. 𝑃(𝐻)) is the probability of the judge being presented with an algorithm (resp. human) 

outcome. Note that our research design implies 𝑃(𝐴) = 𝑃(𝐻) = 0.5. 

The intuition is that if humans are unable to distinguish between the two outcome types then their 

responses should be random with respect to the underlying truth; in that case, 𝑃(𝑟 = 𝐴|𝐴) =

𝑃(𝑟 = 𝐴|𝐻) = 𝑝, where p is an individual’s propensity to designate a presented outcome as algorithm-

generated. Then 𝑃(Correct) = 0.5𝑝 + 0.5(1 − 𝑝) = 0.5 . Yet if these two outcome types are easily 

distinguished, then P(Correct) should deviate from 0.5. So in this case, P(Correct) could either approach 1 

(i.e., when the judge always identifies a solution’s origin correctly) or approach 0 (when the judge never 

does so). Thus the more that P(Correct) deviates from 0.5, the more it indicates a strong algorithmic 

signal—which means that we should reject the claim that the algorithm’s selection task performance is 

human-like. 

Our testing strategy relies on previous work in the fields of economics, psychology, and medicine 

that aims to make statistically reliable statements concerning whether or not treatment effects are 

negligible (Cohen 1988, Solon 1992, Ziliak and McCloskey 2004). This work acknowledges that classical 

statistics cannot accept a null hypothesis. However, the essence of “null effect” testing (as is typical for 

the Turing test) is to show that any difference between humans and the algorithm is at most negligibly 
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small; in other words, the algorithm is human-like in the sense that it generates at most negligible non-

human signals (Shieber 2007). With respect to our selection task, this approach mandates that first of all 

we identify an interval around 𝑃(Correct) = 0.5 that we consider to be—for all practical purposes—

“indistinguishable” from 0.5. In accordance with the most stringent standards for effect sizes in the 

medical and psychological literature (see e.g. Cohen 1988, Ferguson 2009, Nakagawa and Cuthill 2007, 

Sawyer and Ball 1981), we require that P(Correct) fall within the range 0.5 ± 0.1. Second, we must 

ensure that P(Correct) is within this range with at least 95% probability. The implication is that with at 

most 5% probability we make the error of claiming that an algorithm outcome is no different from a 

human outcome when, in fact, it is different. In short, the entire 95% confidence interval of P(Correct) 

must lie in the range 0.5 ± 0.1. 

When estimating P(Correct) we use the same logit specification as for the test of agreement in the 

previous section. To calculate the number of samples needed for an estimate of this precision, we 

performed a statistical power analysis (Cohen 1988) and found that guaranteeing the necessary 

confidence interval requires 𝑛 = 384 responses. Formally, 𝑛 = (2𝜎𝑧0.975/0.1)2, where 𝑧0.975 = 1.96 is 

the 𝑧-score corresponding to a 5% two-tailed probability and where 𝜎 is the theoretical standard deviation 

of a Bernoulli response. To produce the most conservative (i.e., the largest) estimate of 𝑛, we assume that 

𝜎 = 0.5—the largest value possible with a binary outcome distribution. 
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Figure 2: Sample question for the Turing test (selection task) 

 

Results. We employed 404 respondents for the selection task, and each respondent performed ten Turing 

tests. Because the first few answers for each respondent may be noisier owing to unfamiliarity with the 

task, in the statistical analysis we present results using only the last answer given by each respondent. We 

remark that our results are robust to picking any one of the ten answers and also to including all ten 

answers from each respondent (using respondent fixed effects). The value of P(Correct) is estimated as 

0.46 (0.41–0.51), and the 95% confidence intervals are estimated with robust clustering on samples. Since 

P(Correct) is observed to be bounded within the range 0.5 ± 0.1, it follows that our subject judges cannot 

accurately distinguish between algorithmic and human outcomes. Hence human–algorithm differences in 

performing the selection task are negligible, and in this sense we claim that the algorithm is human-like 

(Shieber 2007). 

5.3 Comparing human and algorithm outcomes for the partition task  

Human replication of algorithm decisions. Just as we did for the selection task, here we must replicate 

the partition task using human subjects in order to build a basis for our statistical comparisons. For the 

partition task, the sampling procedure and the number of samples mirrors those used for the selection task; 

thus we sampled 25 partitioning tasks faced by the algorithm, five tasks for each of the five potential 

The group of designs at the top 

(in red borders) had previously 

been identified as the group that 

is most heterogeneous with 

respect to styles. Note that a 

heterogeneous group would 

contain figures from different 

styles. 

Do you think this is identified 

by a machine or a human?

Machine             Human
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candidate solutions (𝑂1  to 𝑂5). Because clusters are far too large for subjects to replicate the actual 

partitioning, this task is simplified by having them split ten randomly chosen designs from a randomly 

chosen cluster into two subclusters of five designs each. Figure 3 illustrates the exact task. We had 40 

respondents perform five partitions each to establish a pool of 200 human responses. 

 

 

Figure 3: Sample questions for the partition task (top) and its Turing test (bottom) 

 

Test of agreement. As before, our results are based on verifying whether the algorithm and the humans 

tend to converge to the same solution (again, by testing for better-than-random agreement). For the 

partition task there are 125 distinct ways of categorizing objects into two groups of five, which means that 

the probability of coincidence is only 0.008; our empirical estimate for coincidence yields 0.20 (0.14–

Categorize the designs into two 

groups (with each group containing 

exactly five designs), so that each 

group contains designs that share a 

similar appearance. That is, objects 

within each group look more similar 

to each other than with those in the 

other group.

Group 1

Group 2

The following ten designs have been categorized 

into two groups (the top row of five designs 

forming one group, and the bottom row of five 

designs the other group). The categorization is 

done so that each group contains designs that 

share a similar appearance. That is, objects 

within each group look more similar to each 

other than with those in the other group. 

Do you think this categorization is done by a 

machine or a human?

Machine             Human
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0.25).
4
 These results imply that the partition task carried out by the algorithm coincides with results 

carried out by humans. 

Turing test. For the Turing test, we garnered 415 valid respondents (more than the 𝑛 = 384 required by 

the power analysis). We obtain an estimate for P(Correct) of 0.53 (0.49–0.58). As was the case for our 

selection task, the algorithm does not produce unnatural results (i.e., those detectable by humans to be of 

algorithmic origin).
5
 

5.4 Identifying the main styles 

So far we have established—for the selection and partition tasks both—that the algorithm produces 

outcomes that overlap with humans and also that algorithm–human differences are at most negligible. Yet 

there is one task still to be completed. The algorithm selects and partitions iteratively: starting with the 

entire data set as one big cluster, the algorithm could in principle continue iterating until each design 

forms a unique, single-patent style. So where does the algorithm start producing clusters homogeneous 

enough to be considered styles? Because styles are hierarchically organized, multiple categorizations can 

be viewed as “containing styles”. However, our interest is in finding the main styles—which is equivalent 

to the first categorization (among the potential candidate solutions) under which the clusters match well 

with a human understanding of styles. This decision procedure can be operationalized via an easily 

interpreted criterion of simple majority: a candidate solution “matches well” when more than half of the 

population agrees that its clusters constitute styles. 

Experimental design. For each of the five candidate categorizations, we sample ten of the most 

                                                      

4
 An agreement probability of 0.20 is not low given the strict requirement that all items must categorize exactly. If 

we relax the matching criterion and allow for slight deviation—for example, allowing one item to be miscategorized 

(as would be very common when we compare human answers—then the probability of agreement increases to 0.60. 
5
 We replicated all the validation results while controlling for task difficulty (not presented here). Easier tasks have a 

weak (𝑝 < 0.10) effect on increasing levels of agreement but have no effect on the Turing test. All our insights are 

robust to this alternative formulation. 
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heterogeneous clusters (as measured by conductance) to yield a total of 50 clusters.
6
 Each cluster is 

represented by ten randomly sampled designs. We presented ten randomly sampled clusters to a human 

subject and asked whether the designs in that cluster should be viewed as a style; the instructions and a 

sample are given in Figure 4. We obtained valid results from 233 respondents. To ensure independence of 

observations, we based the subsequent analysis on the subject’s answer to only one question; for this we 

used the last question because that answer is probably less noisy. Our results are robust to basing the 

analyses on any one of the ten answers as well as to including all ten answers (using respondent fixed 

effects). 

 

We show below a group of 10 

product designs. Please indicate 

whether you agree that the 

designs belong to the same 

style. 

Agree                Disagree

 

Figure 4: Human perception versus algorithmic determination of styles 

 

Results. In order to test whether respondents agree that the clusters representing each of the algorithm’s 

candidate solutions can be considered a style, we specify a logit model in which the independent variables 

are indicators for each of the candidate solutions. Figure 5 plots the marginal probabilities from that 

model. Observe that the first candidate solution that earns a simple majority vote is 𝑂3. Points prior to 𝑂3 

(i.e., 𝑂1 and 𝑂2) contain clusters too broad to be viewed as styles; points after 𝑂3 (i.e., 𝑂4 and 𝑂5) do 

contain styles but, as explained previously, we are seeking the first categorization that passes this test. 

                                                      

6
 A random sampling over all clusters would tell us whether the average cluster in a categorization is considered a 

style. However, we perform this test in a more robust manner by sampling over the most heterogeneous clusters in 

each categorization (i.e., those least likely to be judged as styles). Operationally, we define as “heterogeneous” those 

clusters identified for partitioning before the next candidate solution is reached (this amounts to about 20% of the 

most heterogeneous clusters in each candidate solution). 
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Hence these results, which are based on a majority criterion, suggest that we use 𝑂3 for identifying the 

main styles. 

 

 

Figure 5: Percentage of subjects who agree that “these designs are from a single style” 

 

A second criterion—based on “structural breaks”—also supports the idea that clusters in 𝑂3 

constitute our main styles. Research in decision and psychology (e.g., Rosch and Mervis 1975) has 

identified structural breaks, or “regime changes”, as viable indicators of different categorizations. Figure 

5 shows that there is a sharp and statistically significant structural break between 𝑂2 and 𝑂3; in contrast, 

𝑂2 and 𝑂1 as well as 𝑂3, 𝑂4, and 𝑂5 are statistically indistinguishable. Furthermore, and in line with our 

conceptualization of styles as a hierarchy of substyles, subjects recognize 𝑂4  and 𝑂5  (which further 

partition 𝑂3) as styles. That the level of agreement does not rise for finer partitions (the actual data 

display some noisy vacillations) reinforces the notion of a structural break (Mervis and Rosch 1981). 

5.5 Summary of the validation steps 

In sum, we have shown that the algorithm selects and partitions in a human-like fashion. Starting from a 

certain cutoff point, categorizations are recognized by humans as styles; this means that the cutoff point 

itself is a reasonable threshold for indicating main styles. 
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Cluster O2

Cluster O3 A Cluster O3 B

Cluster O4 BCluster O4 A1 Cluster O4 A2

 

Figure 6: Example of a hierarchical partitioning tree generated by the algorithm 

 

We can also inspect the algorithm’s clustering paths visually. The example presented in Figure 6 

reproduces actual output derived from the algorithm and offers a visual summary of the validation tests 

conducted. In particular, we have shown that an average US observer would: 

1. judge Cluster O3A to be more heterogeneous than Cluster O3B; 

2. partition Cluster O3A into Cluster O4A1 and Cluster O4A2 ; and 

3. view Cluster O3A and Cluster O3B as main styles. 

The outcome of our algorithm is a total of 9,690 styles covering over 350,000 design patents. 

Figure 7 plots the size distribution of the styles. The graph indicates that design patents are distributed 

across both large “encompassing” and smaller “niche” styles. Thus our data set captures not only 

successful styles but also many failed styles that never reach the limelight. 

The raw data support a second interesting conclusion. A comparison of our styles with the 

existing USPTO classification of designs reveals that they are separate constructs. The USPTO deploys a 

system that broadly classifies designs into 33 major product families. Although a style concentrates 80% 

of its designs (on average) in a single product family and hence has a dominant product family, a style 

typically spans 2.9 different product families. At the same time, each product family contains at least 
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hundreds and often thousands of styles. There is also a finer USPTO classification of more than 5,000 

subcategories such as “high chair for juvenile” and “simulative seating units” (USPTO 2005). Not 

surprisingly, this lower-level categorization further emphasizes the difference between our style construct 

and the USPTO classification—for which, on average, a style would contain designs coming from 8.4 

different product subcategories while a product subcategory would contain 15.5 different styles. 
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Figure 7: Size Distribution of Styles 

 

 

6 THE DYNAMICS OF STYLES 

Figure 8 plots the number of patents granted each year for the three most frequently occurring telephone 

handset styles—as identified from the data by our algorithm. The solid line represents designs of classic 

handsets, the dashed line represents designs of the candy-bar style (cell phones shaped like a block), and 

the dotted line represents designs of the clamshell style (cell phones that can be flipped open and closed). 

The graph shows the classic handset style enjoying a period of gradual growth leading up to a peak in 

patenting activity in 1986, followed by a long and slow decline. The candy-bar and (especially) the 

clamshell styles seem to follow a much more zig-zagged pattern of growth. 
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Figure 8: Number of patents granted annually for the three most popular telephone styles 

 

Examining how the prevalence of some established styles (such as those exhibited in Figure 8) 

evolves lends additional face validity to the outcome of our clustering approach. That is, the algorithm 

correctly accounts for the history of mobile phone design—identifying the best-known styles within the 

time frame considered
7
—even though it is completely agnostic with respect to each patent’s time 

characteristics (since all temporal patterns are emergent) and all industry characteristics. 

In addition to corroborating our algorithm with historical facts, Figure 8 suggests that year-to-

year changes in the granting of design patents become more “jagged” over time for each new style. Thus 

changes in a style’s predominance might become less predictable. Turbulence captures this notion of 

unpredictable change (Miller and Glick 2006). We define style turbulence as the amount of unpredictable 

changes—from year to year—in the popularity or “size” of a style (i.e., in the number of patents granted 

within that style). 

It is intuitive that style turbulence measures the chance of today’s hot style suddenly going cold 

                                                      

7
 Because our data end at the beginning of 2010, “smartphones” had not yet become one of the top three design 

styles. Even so, after 2007 our clustering approach identifies smartphones as a growing style. 
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tomorrow or the reverse: a style with little activity suddenly gaining traction. In that sense, turbulence 

catches some firms off-guard while creating opportunities for others. In general, high levels of turbulence 

demand flexibility from an organization’s internal structures, supply chain setup, and decision-making 

processes—placing greater emphasis on probing for change, willingness of management to switch tacks, 

and flexible design and production structures that can adapt to such changes (Eisenhardt 1989, Fine 1998). 

Our data allow us to break new ground by linking style turbulence with two important questions. 

First, how is style turbulence related to turbulence in the underlying functionality of the patents associated 

with a given style? In other words, does style turbulence result mainly from the turbulence associated 

with the creation of new functionality or is the relationship more nuanced? Second, are styles becoming 

more turbulent—and hence are design capabilities becoming more transient—over time? 

6.1 Studying style turbulence 

One might wonder why style turbulence would be related to function turbulence. One reason is that, even 

though styles reflect only the similarity of product form, those products can be viewed as a bundle of 

functions (Ulrich 2011). So to the extent that styles are linked to product function, they are susceptible to 

changes in the functional domain. It is noteworthy that the relationship between function turbulence and 

style turbulence is nontrivial. 

Because technological research and development tends to produce discontinuous changes in 

products, it also tends to precede and disrupt other aspects of products—for instance, industrial design 

(Veryzer 2005). Beyond this “knock-on” effect from technological changes leading to directly visible 

form changes, even potentially invisible technological changes (such as the improved processing 

performance of a computer chip) may lead to changes to the product’s physical form, especially since 

form can be used to focus consumer attention on superior functional features (Hoegg and Alba 2011, 

Molotch 2004). This dynamic applies in particular to radically new technologies that depart from existing 

trajectories, because these technologies usually require that customers learn how to use them (Dougherty 

1990, 2001) and such learning is facilitated by a well-designed product form (Hargadon and Douglas 
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2001). Hence the introduction of radically new technologies often requires that radically new forms be 

tried as both producers and customers seek to establish a common understanding of the new product 

(Rindova and Petkova 2007). This explains the results reported by Rubera and Droge (2013), who found 

that firms with high levels of both form and technological innovation do best. It follows that, if the 

designs of a given style are associated with technologies or functional domains experiencing high levels 

of turbulence, then the style itself is also likely to exhibit such turbulence. This argument is consistent 

with the widely held belief that “form follows function” (Sullivan 1896). 

That being said, styles can also be turbulent in the absence of changes in function, and a 

decidedly different mechanism may be at play for styles that are associated with stable functional regimes. 

At the extreme, the fashion industry (where technology seldom plays more than a marginal role) is a 

highly turbulent environment in which styles can change quickly and unpredictably from season to 

season—so much so that the entire high-fashion industry is organized around reducing the impact of such 

uncertainties (Godart 2012). Indeed, Kreuzbauer and Malter (2005) show experimentally that changes in 

form can influence how consumers perceive a product’s use and market category (e.g., off-road versus 

street motorbike)—implying that firms can rely on form changes (i.e., without major technological 

changes) to enable entry into related markets. Finally, technological stability may even facilitate 

experimentation in form by introducing technology platforms that reduce the cost of creating functionally 

equivalent products in various forms (Hölttä-Otto et al. 2008). So when styles consist of designs that rest 

on stable functionality, the incentives to differentiate in form may become even higher and thus lead to 

highly turbulent styles. 

These considerations suggest that the relationship between form and function is not linear 

(Eisenman 2013). In other words, turbulence in form can be triggered either by radical changes in 

function or by entrenched functional stability. We can express this idea formally as follows. 

Hypothesis 1 (H1). A given style’s turbulence has a U-shaped relationship with respect to 

the function turbulence linked to that style. 
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Are styles themselves—that is, beyond the effect of function turbulence—likely to become more 

turbulent over time? Previous work has suggested that there is a fundamental rhythm or “clock speed” 

with which new products arrive to market (Fine 1998). For example, Mendelson and Pillai (1999) offered 

empirical evidence from the electronics industry that the rhythm of technological change is accelerating 

over time. 

Two fundamental reasons may contribute to the increasing speed of new design introductions. 

First, the process by which firms deliver and market new designs is changing. Firms may leverage 

concurrent engineering (Loch and Terwiesch 1998), rapid prototyping (Thomke 1998), and open 

innovation (Terwiesch and Ulrich 2009) to become increasingly capable of delivering new designs in an 

ever shorter time frame. Also, social media allows instant feedback (Hildebrand et al. 2013) and can 

amplify the “contagion” effects of a viral design (Aral and Walker 2011). As a result, firms may become 

more capable of delivering new designs faster. 

Second, there is evidence of a demand shift toward more innovative designs; in fact, such 

established companies as Sony, Apple, and Philips depend on bold designs for their success (Ravasi and 

Lojacono 2005). Such a shift may be the result of an increasing recognition of the importance of design 

(Maeda 2015). It may also reflect a move away from technology as increasing levels of effort are required 

to produce the same extent of technological breakthrough (Jones 2009). 

Taken together, these two effects could lead to a self-reinforcing cycle in which styles churn at an 

ever faster rate. We therefore expect to observe an increase in style turbulence over time—even when 

function turbulence is taken into account. We thus posit our second hypothesis. 

Hypothesis 2 (H2). Irrespective of function turbulence, style turbulence tends to increase 

over time. 

6.2 Variables for empirical analysis  

Dependent variable: Style turbulence. The idea behind this measure is to separate those parts of style 

movements that are predictable from those that are unpredictable; the unpredictable parts are a measure 
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for the uncertainty surrounding a style. To measure style turbulence, we follow Dess and Beard (1984) 

and define it as the “dispersion around a trend line, controlled for absolute size” (p. 58). In the spirit of 

that approach (as refined by McNamara et al. 2003), we calculate an index for a style’s turbulence as 

follows. First, we segment the style’s annual number of granted patents into four different five-year 

panels (1990–1994, 1995–1999, 2000–2004, and 2005–2009).
8
 Then, for each five-year panel of a style, 

we estimate a trend by regressing the number of patents granted yearly against a variable denoting the 

years in that panel. Finally, we obtain the dependent variable of interest as that regression’s standard error. 

Each observation yields 𝑇𝑠𝑝, or the turbulence of style 𝑠 at period 𝑝. 

Function turbulence. In order to analyze the link between form and function, we need a predictor 

variable that reflects how each style is influenced by function turbulence—that is, the uncertainty 

regarding functions that are associated with a given style. Constructing such a predictor requires that we 

first identify functional domains with respect to which such turbulence can be defined and then link those 

functional domains to our styles. The USPTO defines domains of utility patents by grouping them into 

classes and subclasses based on “proximate functionality” (USPTO 2005, p. 3). Much as in Fleming and 

Sorenson (2004), we base our measure on the subclass of each utility patent (our results are also robust to 

using a class-based definition). Consistent with our measure of style turbulence, we conceptualize 

function turbulence as unexpected changes in the number of utility patents in these subclasses. Hence, we 

calculate function turbulence (for each utility category 𝑢 in each period 𝑝, denoted 𝑇𝑢𝑝) in the same way 

as for style turbulence. We link a specific style to a specific utility patent subclass by using citations from 

design patents to utility patents (design patents can cite utility patents because form and function are not 

                                                      

8
 For the analysis undertaken here, we use data from 1985 through 2009 because design patent protection was 

weaker until 1982 (Du Mont and Janis 2011). We also lose one period owing to our use of a lag structure in the main 

model; hence we can use only four periods of five years each. For this we select the two most recent decades. Our 

results are robust to specifying four-year or ten-year panels instead. However, extremely long (more than ten-year) 

panels may bias the measure upward because bona fide trends lasting fewer than ten years may be wrongly 

interpreted as turbulence. 
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“easily separable” in practice; USPTO 2006, pp. 1500–2): when a style contains design patents that cite 

utility patents, the implication is that the form depicted in those design patents is influenced by the cited 

utility patents’ product functionality. Then, in order to calculate the total influence of turbulence from the 

utility domain on a design style 𝑠 in period 𝑝, we identify the set of utility categories, 𝑼𝑠𝑝, to which any 

design patent in the style period refers (while allowing for repeated citations). We then calculate the total 

influence of function turbulence (on a style period) as 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑠𝑝 = ∑ 𝑇𝑢𝑝𝑢∈𝑼𝑠𝑝
. 

Style activity. Given that style periods characterized by higher activity levels are likely to exhibit a higher 

standard error, we measure the mean number of patents granted yearly to the focal style by period. We 

use this value to control for variations in activity levels across style periods. 

Product categories. Finally, we remark that our data comprise products from multiple categories. There 

are 33 major product categories defined by the USPTO for the purpose of broadly grouping all design 

patents. Those categories may differ systematically in terms of market features (e.g., market size). As the 

market for a product increases, there could be more consumers willing to support a larger number of style 

changes. The patent document contains product category information (as for utility patents, those product 

categories defined on the basis of product function; USPTO 2005); hence we can control for market-

related explanations by first identifying, for each style, the dominant product category (on average, a style 

has 80% of its designs from a single product category). We then add a time-varying control for the 

category activity (based on the total number of design patents in each product category in the period). We 

also control for any unobserved time-invariant characteristics of product categories by including fixed 

effects 𝑐𝑖 for each product category 𝑖.9 Table 1 reports the summary statistics and pairwise correlation of 

variables. 

 

                                                      

9
 We have also tested a model that applies fixed effects to all the product categories to which any design in a style 

belongs. Our results are robust to this alternative formulation. 
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Table 1: Summary statistics of the variables (N = 28,483 style-period observations 

Variable Description 

Mean 

(S.D.) 

Correlation Matrix 

1 2 3 4 5 

Dependent Variable 

1. ln Style_turbulencesp Log of the standard error of the linear regression 

for the annual style activity of style s in period p 

0.72 

(0.39) 

1.00     

Independent Variables 

2. ln Function_turbulencesp–1 Log of the sum of all turbulence of utility patent 

category receiving a citation from a design 

patent in a style s in period p – 1 

1.66 

(1.62) 

0.46 1.00    

3. Period Time period: 1 (1990-1994), …, 4 (2005-2009) 2.51 

(1.11) 

0.16 0.34 1.00   

4. ln Style_activitysp Log of the mean annual patents granted in a 

style period 

1.71 

(0.96) 

0.86 0.56 0.14 1.00  

5. ln Category_activityip Log of the total activity of product category i in 

period p (to which the designs in style s 

predominantly belong) 

7.92 

(0.82) 

0.10 0.12 0.34 0.10 1.00 

Note: All correlation coefficients are significant at the p = 0.05 level. 

 

Empirical model. The full specification of our model is given by Equation 1. We make several 

observations as follows. First, all variables (except the time period) are logged because of their skewed 

distributions.
10

 Second, we use the single-period lagged variable ln 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑠𝑝−1. By using 

predetermined variables in the regression, we can establish whether or not function turbulence is 

predictive of style turbulence. Third, we include a quadratic term, (ln 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑠𝑝−1)2 , 

because we are positing a curvilinear relationship between the effect of function turbulence and the effect 

of style turbulence. The full specification is 

ln Tsp = ci + β1(ln Function_turbulencesp–1) + β2[(ln Function_turbulencesp–1)
2
] 

 + β3(Period) + β4(ln Style_activitysp) + β5(ln Category_activityip) + ε. (1) 

                                                      

10
 We drop observations where a style exhibits no activity because inactivity perfectly predicts zero turbulence, in 

which case the other variables have no informational value. 
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We are mainly interested in the coefficients β1, β2, and β3; the first two specify the relationship between 

function turbulence and style turbulence, and the third specifies the time trend in style turbulence. 

Note that our panels are wide (9,352 styles) but short (on average, each style is observed for only 

three five-year periods). Given these features, the appropriate estimation method is generalized least 

squares using robust errors clustered by styles. For wide panels, this method will yield asymptotically 

correct standard errors even in the presence of heteroskedasticity and serial correlation (Cameron and 

Trivedi 2009). 

6.3 Analysis 

Table 2 summarizes the regression results. We discuss the full model as specified in Equation 1. The 

coefficient for ln 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑠𝑝−1 is negative whereas the coefficient for its quadratic term is 

positive; these results jointly suggest a convex relationship between form turbulence and function 

turbulence, which supports H1. Figure 9 plots the marginal effects of ln 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑠𝑝−1 

(estimated semiparametrically);
11

 the graph confirms our hypothesized U-shaped relation. 

  

                                                      

11
 To perform this estimation, we first segment ln 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑠𝑝−1 into seven discrete “buckets”. More 

specifically, we create indicator variables 𝐾𝑗, 𝑗 = 0, … ,5, that take the value 1 when ln 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑠𝑝−1 is 

in the range [𝑗, 𝑗 + 1) and otherwise take the value 0; we put 𝐾6 = 1 when ln 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑠𝑝−1 is greater 

than 6 (𝐾6 corresponds to about 1% of the data). Then we estimate the effects of each bucket on our dependent 

variable while controlling for the other variables in Equation 1. This approach allows us to model any arbitrary 

(stepwise) relation between the variables ln 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑠𝑝−1 and ln 𝑆𝑡𝑦𝑙𝑒_𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑠𝑝. 



33 

 

Table 2: Regression model predicting style turbulence (N = 28,483 style-period observations) 

Variable Function Only Time Only Full Model Semiparametric 

ln Function_turbulencesp–1 –4.62*** (0.37)  –4.70*** (0.37) — 

(ln Function_turbulence sp–1)2 0.81*** (0.09)  0.81*** (0.09) — 

Period  0.70** (0.24) 1.30*** (0.24) 1.46*** (0.24) 

ln Style_activitysp 35.41*** (0.28) 34.92*** (0.32) 35.48*** (0.28) 35.58*** (0.29) 

ln Category_activityip 5.65*** (0.40) 2.21* (0.89) 1.50 (0.89) 1.33 (0.89) 

Product category fixed effects Yes Yes Yes Yes 

ln Function_turbulencesp–1 dummies No No No Yes 

R2 0.75 0.75 0.75 0.76 

F-statistic 631*** 428*** 617*** 541*** 

Notes: Standard errors (in parentheses) are clustered by style. Coefficients and standard errors are scaled 100×. 

*p < 0.05, **p < 0.01, ***p < 0.001 

 

 

Figure 9: Marginal effects of function turbulence on style turbulence 

 

Our full model also shows a positive and significant coefficient for Period. This finding indicates 

that, even after accounting for the effect of function turbulence, there is a steady increase in style 

turbulence over time. Thus, H2 is supported. 
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6.4 Robustness tests 

In this section we present the results of five robustness tests performed under alternative specifications; 

see Table 3 for a summary. In all cases we obtain significant support for our hypotheses. 

First, our base model presumes that activity levels of the utility categories (i.e., the mean number 

of patents granted annually under the utility category 𝑢 in period 𝑝, denoted 𝑀𝑢𝑝) do not affect style 

turbulence. Yet our main regression has shown that turbulence and category size are highly correlated for 

individual styles. One might therefore argue that it would be preferable to use a predictor of function 

turbulence that is net of any activity effects. To allay such concerns, we control for the 

variable ln 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = ln ∑ 𝑀𝑢𝑝𝑢∈𝑼𝒔𝒑
, which captures the influence of the total level of activity 

in a utility category, by summing 𝑀𝑢𝑝 over all utility patent categories that receive a citation from any 

design patent in the style (Model 1). 

Second, we test a model where the controls for product categories are more refined (Model 2). 

We introduce dummies for each product category and for each time period; in essence, this allows also 

the unobserved product category–level characteristics to vary over time. In addition, we tested a model 

that allows the U-shape curve to vary across product categories. We find a significant U-shape in 12 of 

the 33 categories, and no category is significantly related to any other shape. 

Third, we used a different method to calculate style turbulence (Model 3). Namely, given the 

annual number of patents of a style 𝑠 in period 𝑝 (denoted {𝑥𝑠𝑝
1 , … , 𝑥𝑠𝑝

5 }), we could alternatively calculate 

the turbulence of this style by assuming that the series evolves according to a random walk process with a 

linear drift; thus, 𝑥𝑠𝑝
𝑖+1 = 𝑥𝑠𝑝

𝑖 + 𝑢 + 𝜀. The unpredictability of this process is captured by the error term 

(𝜀). We can estimate the standard error of 𝜀 by taking first differences and then calculating the sample 

standard deviation: 𝑆𝑠𝑝(𝜀) = √Var(Δ𝑥𝑠𝑝) (see e.g. Cachon et al. 2007). 

Fourth, our main model establishes that function turbulence is predictive of style turbulence one 

period later. We can establish a stronger form of predictive causality (Granger 1969) by including the 
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lagged value of the dependent variable (i.e., ln 𝑆𝑡𝑦𝑙𝑒 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒) in the regression (Model 4). This 

would help us determine whether function turbulence has predictive power beyond that implied by lagged 

values of style turbulence itself. 

Fifth, we use instrumental variables (Model 5) to better establish the direction of our effects. We 

develop two instruments based on the idea of inventor churn. Arrivals of new inventors and departures of 

existing inventors clearly create disruptions in the technology world. However, if we assume that 

technology inventors do not patent designs and that designers do not patent technologies, then inventor 

arrivals and departures in the utility domain should not have any direct effect on style turbulence (and 

hence inventor churn can affect only function turbulence, not style turbulence). Consequently, inventor 

Table 3: Results of selected robustness tests (N = 28,483 style-period observations) 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 

ln Function_turbulencesp–1 –10.13*** (1.00) –4.51*** (0.38) –2.81*** (0.31) –5.32*** (0.45) –4.93*** (0.38) 

(ln Function_turbulence sp–1)2 1.14*** (0.12) 0.77*** (0.09) 0.60*** (0.07) 0.83*** (0.09) 0.87*** (0.09) 

Period 1.27*** (0.24) — 1.11*** (0.30) 1.34*** (0.24) 1.27*** (0.24) 

ln Style_activitysp 35.52*** (0.28) 35.47*** (0.29) 44.31*** (0.29) 34.98*** (0.25) 35.40*** (0.29) 

ln Function_activitysp–1 2.54*** (0.35)     

ln Category_activityip 1.26 (0.88) — 2.43* (1.09) 1.50 (0.88) 1.50 (0.88) 

ln Style_turbulencesp–1    3.39*** (0.77)  

Category fixed effects Yes No Yes Yes Yes 

Category-period fixed effects No Yes No No No 

R2 0.76 0.76 0.77 0.75 0.75 

F-statistic 590*** 182*** 970*** 677*** 588*** 

Notes: Standard errors (in parentheses) are clustered by style. Coefficients and standard errors are scaled 100×. 

*p < 0.05, **p < 0.01, ***p < 0.001 
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churn can be an instrument to introduce exogenous change to style turbulence through function 

turbulence. 

The patent documents themselves contain the names of inventors, which are needed to create our 

instrumental variables. We rely also on the disambiguation of names into unique inventor IDs by Lai et al. 

(2014). We start by creating two variables for each period 𝑝 of a utility category 𝑢. The first variable is 

𝐴𝑟𝑟𝑖𝑣𝑎𝑙, defined as the number of unique inventors observed in category 𝑢 for period 𝑝 but not for 𝑝 − 1. 

The second is 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒, defined as the number of unique inventors observed in category 𝑢 for period 

𝑝 − 1 but not for 𝑝. We then implement a two-stage least-squares model with the two (logged) variables 

as instruments for ln 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒.
12

 We note that either of these instruments can be used in 

isolation. More crucially, neither instrument is weak: the F-statistics for these variables—7,889 for 

ln 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 and 8,053 for ln 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒—are much higher than the critical value of 10 (Stock et al. 2002). 

Finally, the Hansen test does not reject the null hypothesis that the instruments are exogenous: Hansen’s J 

= 0.22 (𝑝 = 0.90). 

Finally, we also tested (but do not report here) our results using different parameter choices—

including four-year and ten-year instead of five-year time windows, main utility categories rather than 

subcategories, styles identified by 𝑂4  instead of by 𝑂3 , and alternative lag structures (i.e., no lags or 

controlling for multiple lags of 𝑝 − 1  and 𝑝 − 2 ). Our results are robust to all of these alternative 

treatments. 

7 DISCUSSION 

It is of great interest to understand how products evolve and progress. Business managers seek to 

                                                      

12
 Note first that the regression setup also includes a quadratic term for function turbulence, which by extension 

could also be endogenous; hence, for any instrument 𝑋 that we identify, we also include 𝑋2 as an instrument (cf. 

Wooldridge 2010). Second, function turbulence is the sum of turbulence over all relevant utility categories 

(indicated by citations from the focal style); so for the identified instruments, we similarly sum over the same 

categories. Finally, we use the same one-period lag for the instrument as we do for function turbulence. 
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understand past events and to predict future events so that they can steer their company appropriately. As 

a result, this topic has spawned a wide literature on technology evolution that has found its way into the 

tool kits of many business decision makers and consultants (Baldwin and Clark 2000, Utterback 1996). 

Yet that literature has viewed progress in products almost exclusively from the technology standpoint—in 

other words, from the perspective of product function. Although functionality is arguably the most 

important factor in determining how products evolve, designers and marketers have long argued that 

products should be viewed as bundles of function and form (Bloch 1995, Ulrich 2011). Thus product 

evolution might be determined not only by functionality but also by form. 

Despite product form having recently garnered more attention in business circles (Ravasi and 

Lojacono 2005, Verganti 2006) and even though there is a large body of work in the field of marketing 

that focuses on how consumers perceive and value designs, the management of design has not received 

sufficient interest in the academic management community with regard to any topic other than marketing 

(Noble 2011). Although many reasons can be advanced to explain this deficiency, an important factor is 

the lack of an empirical basis for rigorous, large-scale studies focused on product form. The first 

contribution of our paper is thus to render product form (and design, as the discipline that leads the 

creation of new forms) amenable to empirical research by making available a broad data set on styles. We 

achieve this by (i) identifying styles in the USPTO design patent database through a rigorous 

conceptualization of “design style”, (ii) deploying a state-of-the-art clustering algorithm, and (iii) using a 

set of experiments to verify rigorously the algorithm’s output. 

Our styles data set features three important properties that make it a useful platform for studying 

the role of product form in new product development. First, the styles data set disentangles product form 

from product function because it is built from design patents, which systematically capture a product’s 

novel form factors; hence their citation patterns establish unambiguous evidence of form similarity among 

design patents. As a result, the styles presented here are new entities formed by visually similar products 

(i.e., irrespective of their functionality). Second, our styles data set is based on the hundreds of thousands 
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of design patents granted in the United States during the period 1977–2010, which enables us to examine 

the dynamics of styles over three decades. Third, because design patents capture diverse information 

about their creation—such as the time of patent application, the link to the technology that underlies the 

product, and information about designers—the USPTO database provides a rich empirical basis on which 

to advance our understanding about the creation of product form (i.e., beyond the influence of product 

function). 

A second contribution of this paper consists of using our styles data set to study what drives the 

unpredictability of changes in product form—that is, style turbulence. Style turbulence captures the 

inherent uncertainty associated with changes in product form, and understanding its drivers yields insights 

on managing the risks associated with the creation of a new product form. After examining the effect of 

function turbulence on style turbulence, we find that highly turbulent styles can be associated with 

products whose functionality is either turbulent or stable. This finding leads us to conclude that the 

relationship between form and function is nontrivial; in particular, it is certainly not always the case that 

form follows function (Veryzer 2005). 

The U-shaped relation that we identify between function turbulence and form turbulence also 

speaks to the literature on a product’s life cycle (Utterback and Abernathy 1975). In particular, the S-

curve view of product evolution postulates that dynamism might decline during the later phases of a 

product’s (or industry’s) life. Yet our findings indicate that product categories or industries can avoid 

becoming less dynamic by shifting their source of dynamism from function to form, thus extending their 

life cycles. Indeed, in a further analysis of the trends of function turbulence and style turbulence over time, 

we find corroborating evidence that styles associated with relatively stable technologies tend to see 

decreasing function turbulence (reflecting technology maturing) and increasing style turbulence 

(reflecting shifts of dynamism to styles). The computer industry during recent decades is a vivid example 

of this assertion (Maeda 2015). Hence investments in changing product form—and managing its 

uncertainty—could become new managerial imperatives during the waning phase of a product’s life cycle. 
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Our analysis also reveals that—irrespective of the functional domain’s influence—the extent of 

style turbulence is increasing over time. That is, we continue to see more aesthetic “churn”. Because this 

analysis accounts for the effect of changes in product function, our findings on the increasing time trend 

of style turbulence indicate that unexpected changes in product form occur at a faster rate than do changes 

in product function. The implication is that managing the uncertainty and risk associated with product 

form is more important now than ever before. Practitioners have long been offering anecdotal evidence of 

the increasing importance of design (Brown 2009, Maeda 2015). We show rigorously that this increasing 

importance for the development of products is not simply a matter of some companies paying more 

attention to this aspect; rather, it is a general trend across industries. More than half of the product 

categories in our data set exhibited increasing style turbulence, and none of the categories exhibited a 

significantly decreasing trend. 

More broadly, the results of this research constitute evidence that product managers need to 

depart from the traditional view that product function is the main driver of product evolution and also to 

consider product form as an important source of both uncertainty and opportunity when developing new 

products. To the extent that the resources, competencies, and processes employed in product design 

activities differ from those employed in technological design activities, turbulence in product form can 

introduce significant challenges to managing these capabilities. This means that adaptation to increasingly 

turbulent styles requires more flexible design processes allowing for more rapid iterations of form; it may 

also require new product architectures to allow for greater design flexibility. For example, many 

automobile companies have recently employed “platforming” to separate a vehicle’s core mechanical and 

electronic components from its “hat” (i.e., the parts that are visible to a consumer). Any such changes 

need to be synchronized with the firm’s production systems, including supplier structure and supplier 

management. When product cycles indicate faster design churn, marketing cycles should be adjusted 

accordingly. Firms may ultimately need to elevate the presence of design in the organizational structure 

so as to reflect these new, design-driven realities. 
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There are, of course, some limitations to our method of identifying styles. First, although our 

experimental comparisons of algorithm- versus human-generated outcomes indicate that the human–

algorithm differences are negligible, these comparisons are based on (random) samples of a size that 

humans can comfortably handle. Second, our approach to identifying styles does not rely on identifying 

the specific physical or psychological features of each style. Yet we believe that our work provides an 

important empirical basis upon which—in combination with other techniques (such as shape grammar, 

psychological research, conjoint analysis, etc.)—each style can be substantially interpreted. Third, we 

used patent data to disentangle the form and function aspects of products; more work would be required 

to link such data to actual products and thereby devise more direct measures of product success. 

Despite its limitations, we envision this paper serving as a research platform. The styles data set 

that we have assembled opens opportunities for researchers to investigate, in a rigorous way and on a 

large scale, questions about product form. Do designers and design firms concentrate their efforts within 

certain styles? To what extent are “star” designers instrumental in the creation of new styles? Do design 

“hubs”, such as Southern California and New York, play a role in a style’s emergence?—are styles 

initiated there, or are those areas primarily marketing hubs? Which style adoption strategies most improve 

the firm’s financial viability? The styles data set described in this work offers a foundation on which the 

research community can build to develop an evidence-based perspective on the management of product 

form and design. 
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