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Assessing Uncertainty from Point Forecasts
Anil Gaba

Department of Decision Sciences, INSEAD

Dana G. Popescu
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Zhi Chen
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The paper develops a model for combining point forecasts into a probability distribution for a variable of

interest. Our approach allows for point forecasts to be correlated and admits uncertainty on the distribution

parameters given the forecasts. Further, it provides an easy way to compute an augmentation factor needed

to equate the dispersion of the point forecasts to that of the predictive distribution, which depends on the

correlation between the point forecasts and on the number of forecasts. We show that ignoring dependence

between point forecasts or parameter uncertainty can lead to assuming an unrealistically narrow probability

distribution. We further illustrate the implications in a newsvendor context, where our model in comparison

with other methods leads to an order quantity that has higher variance but is biased in the less costly

direction, and generates an increase in expected profit that can exceed 20%.

Key words : correlated experts, point forecasts, demand forecasting, newsvendor model

1. Introduction
Predicting an unrealized future variable is a continuous human endeavor, in part because it is

crucial for shaping the decisions that we must make. An investor or a financial institution might

be interested in predicting a future currency exchange rate for its hedging or trading strategy,

or a retailer might be interested in predicting the demand for a new upcoming product to deter-

mine the order quantity. At times, a decision maker might have access to plentiful and relevant

historical data such that robust statistical models could be established (e.g., electricity demand

in a region). However, in many instances, even in the presence of much past data, an overlay

of human judgment is inevitable due to an evolving context with rapidly changing conditions.

In predicting the demand for a new fashion product, for example, one must account for not

only issues such as rapidly changing tastes and competing products, but also the possibility

of inducing demand for the product that might not otherwise exist. In the case of insufficient

historical data, several new approaches involving, for example, artificial neural networks, fuzzy

logic, machine learning, have been proposed. Despite these, subjective human judgment remains

a key element in predictions across numerous real-life settings (Seifert et al. 2015).
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Subjective forecasts for a variable often come in the form of point forecasts, assessments of

complete probability distributions being a difficult cognitive task for even the most well-trained

in probabilities and practically next to impossible or very noisy at the least in real-life settings

with people not trained in probabilities. In one of the well-known industry practices in opera-

tions management, experts (such as sales people, designers, product managers, and the like) are

used to provide point forecasts for the demand of upcoming new products. These forecasts then

become a key input in inventory decisions such as order quantities for new products (Fisher and

Raman 1996). This, however, involves an additional step by the decision maker, to convert the

point forecasts for a variable into an estimate of uncertainty (such as a probability distribution)

for that variable, which is the broad focus of this paper.

Consider a decision maker who might judge that the demand for a new product is likely to

follow a normal distribution, but might have little or no information on the parameters of the

distribution such as the mean and variance of the distribution. The decision maker then obtains

point forecasts from k experts. It makes sense that the mean and dispersion of the k point fore-

casts are indicative of the mean and variance of the demand distribution. Fisher and Raman

(1996), for example, use the mean of k forecasts as an estimate of the expected (mean) demand

and augment the observed standard deviation of the k forecasts by a factor of 1.75 to create an

estimate of the standard deviation of demand. The augmentation factor of 1.75 is justified by

a calibration exercise with past data. In a similar setting in one of the widely taught cases in

operations management, Sport Obermeyer (Hammond and Raman 1994), an augmentation factor

of 2 is suggested. Gaur et al. (2007), using historical data on three different data sets, test the

hypothesis that the variance of demand is a positively correlated with both the mean and the

dispersion of the point forecasts. However, several questions remain. First, it is not conceptually

clear as to how the augmentation factor arises and what it depends upon. Second, any past data

used to estimate the augmentation factor might not be applicable for a new product, such as a

new fashion item or short life-cycle product. Third, while the point forecasts provide relevant in-

formation on the distribution parameters, those are unlikely to completely eliminate uncertainty

on the parameters. In this sense, the heuristics mentioned above are only certainty-equivalent ap-

proaches, as if the parameters of the demand distribution are certain once their point estimates

are obtained from the point forecasts. This is of course not the case. These are some of the specific

questions we attempt to answer in this paper.

Broadly speaking, we view our contribution as twofold. We first develop an approach that is

easily tractable, and hence practical, for combining point forecasts into a probability distribution

for a variable of interest. Our approach allows for the forecasts to be correlated and admits

uncertainty about the distribution parameters given the forecasts. Second, we show that the
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augmentation factor mentioned above is contingent upon the dependence between the forecasts

and on the number of forecasts. Although we refer to information sources for the point forecasts

as human experts, our approach is equally valid for any type of information sources, such as

models. We discuss all this in finer details below.

Despite all the efforts to create a group of independent experts, some form of stochastic de-

pendence between their forecasts is inevitable. For example, Winkler (1981) notes pairwise cor-

relations of sportwriters’ errors of prediction in the range of 0.84 to 0.97, suggesting that experts

might have similar training and experience, might have access to the same data, and might use

similar aids (such as models) for their predictions. Similarly, Ashton (1986) observes an average

correlation of 0.6 between business sales forecasts by managers. Fisher and Raman (2010) ob-

serve in a forecasting deliberation process that "one of the participants was more articulate and

assertive than the others. Often, she swayed her colleagues, so the final decisions represented

her preferences rather than the collective wisdom." It is intuitive that if the point forecasts are

highly correlated, then their dispersion would tend to underestimate the uncertainty about the

variable of interest, perhaps substantially so. A greater degree of dependence between experts

would then entail a larger augmentation factor. Further, number of experts has a bearing on

the parameter uncertainty. For example, 5 forecasts instead of 20 forecasts imply greater uncer-

tainty on the parameters estimated. A Bayesian approach, in contrast to a certainty-equivalent

approach, accounts for such parameter uncertainty.

Bayesian models for combining correlated point forecasts under normality have been devel-

oped, for example, by Geisser (1965), Winkler (1981), and Clemen and Winkler (1985), where

the latter also illustrate loss of information due to dependence between the information sources.

A necessary input in these models is a covariance matrix consisting of all pairwise correlations

between the experts (measures of dependence between experts) and variances of each point fore-

casts (measures of accuracy of the experts). Often, there might be little or no past applicable data

on the covariance matrix given a unique forecasting context. Further, there is frequently only one

k-variate observation in the sample, such as k experts providing one forecast each for a novel

product, which then contains no information content on either the pairwise correlations or the

variances of the experts’ forecasts. As a result, assessing the necessary prior parameters for the

covariance matrix entails a daunting task in real life. For example, with k experts, k + k(k− 1)/2

prior parameters need to be assessed on which the sample contains no information. Hence,

practical applications of such models have been limited. Moreover, several papers have raised

concerns around robustness of such models (Bunn 1985, Winkler and Clemen 1992, Chhibber

and Apostolakis 1993). Clemen (1989), in a comprehensive review of the literature on combining

forecasts, points out that such a model in real-life forecasting situations has had somewhat mixed
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results, along with a central finding that simple averaging of point forecasts often outperforms

more complex methods and is an easy and a fairly robust way in terms of accuracy to predict

an unrealized variable. This is reiterated in similar review on combining forecasts by Armstrong

(2001). Schmittlein et al. (1990) explore the tradeoff in a model between added estimation error

from using an additional parameter and the reduction in modeling misspecification associated

with the additional parameter. Using simulations, they compare a base model with equal vari-

ances and zero correlations with alternative models that combine equal or unequal variances

with a common zero or a non-zero correlation. The general spirit of their results is consistent

with the intuition that one should use different variances for different experts only when the

variances are expected to be “far" from the base case, with the threshold of “far" depending of

course among other things on the amount of information available for estimation of the param-

eters. At the same time, they conclude that “if there is one consistent finding from empirical

studies of multiple forecasts, it is that the forecasts are not uncorrelated."

Overall, there appears to be wide support in the literature for an equal-weights model (i.e.,

treating all experts equally) unless there is a strong reason to believe otherwise. In many real-life

settings, an equal-weights model might often be a good approximation, especially where there is

no way to confidently distinguish between the information content or capabilities of the different

experts.

Building on these ideas, we develop a Bayesian approach with exchangeable experts (all experts

are considered to have the same variance and a common correlation). This minimizes the assess-

ment of prior parameters on which there is no information content in the sample to only one

(the common correlation) as opposed to k + k(k− 1)/2 . We differ from earlier Bayesian aggre-

gation models in two respects. One, instead of assuming the covariance matrix to be known or

unknown, we assume the covariance matrix to be partially known (i.e., with unknown common

variance but known common correlation). Two, we extend our approach also to the lognormal

case, which to our knowledge has not been explored before.

We begin with a normal model, and provide a simple way to compute the augmentation

factor needed to equate the standard deviation of the predictive distribution to the observed

standard deviation of the point forecasts. We show that this augmentation factor depends on

correlation between the point forecasts and on the number of experts, and could be as high

as 6 or as low as 1. Given a number of experts, a higher correlation between point forecasts

leads to a higher augmentation factor, implying greater uncertainty in the predictive distribution.

This is consistent with Clemen and Winkler (1985), where they show that there is a loss of

information due to dependence between experts. On the other hand, given a correlation between

experts, a higher number of experts leads to lower uncertainty in the predictive distribution,
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resulting from lower parameter uncertainty, but only up to a limit. In other words, if there is

dependence between experts, the resulting loss of information cannot be compensated for by

simply increasing the number of experts. We compare our approach with other methods used,

for example, in the operations management literature, and highlight the impact of ignoring any

dependence between the experts or the parameter uncertainty or both. We extend this analysis

to a decision making context of a newsvendor setting, and show the impact of our approach on

the order quantity and expected profit. Our model in comparison with the other methods leads

to an order quantity that is biased in the less costly direction with a higher variance. At the same

time, our model leads to an increase in expected profit that can exceed 20%. We investigate our

model with uncertainty on the common correlation between experts and with heterogeneity in

the pairwise correlations between experts, and show that the augmentation factor in our model

is fairly robust in these respects. Finally, we extend our approach under normality to the case

where the variable of interest and the point forecasts have a lognormal distribution, and show

that the results under the normal model only get exacerbated.

Our approach is easy to implement in practice and adds to a broader and growing stream of

research on forecasting in the operations management field. For example, to name a few, Kremer

et al. (2015) consider aggregate vs. sum of bottom-up forecasts for a firm and show that the

correlation structure between the bottom-up forecasts has informational value. Shumsky (1998)

explores optimal updating for forecasts for future events. Özer et al. (2011) investigate credible

forecast sharing between a supplier and a manufacturer. And, Schweitzer and Cachon (2000)

illustrate some behavioral biases in order quantity decisions.

The rest of the paper is organized as follows. In §2, we develop our model under normality.

In §3, we illustrate our results in a newsvendor settings. In §4, we investigate the robustness of

our model with respect to uncertainty and heterogeneity in the dependence between experts,

and extend our approach to the lognormal case. §5 follows with a summary and discussion. All

proofs are provided in the Appendix.

2. A Model for a Probability Distribution from Point Forecasts
Let a random variable of interest to a decision maker be ỹ, which for example could be a future

observation of demand for a new product. Suppose the decision maker models the probability

distribution of ỹ conditional on a parameter (or a vector of parameters) θ with density function

f (ỹ|θ), with θ unknown. For example, f (ỹ|θ) might be modeled as a normal density function

conditional on θ = (µ, σ2), where µ and σ2 are unknown mean and variance respectively of the

normal distribution. Further, let a probability density function h(θ) reflect the decision maker’s
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prior uncertainty on θ. Now suppose that the decision maker obtains some additional infor-

mation before realization of ỹ. We consider such information in the form of k point forecasts

x = (x1, x2, ..., xk)′ of ỹ from k different sources. Then, given x, the predictive distribution for ỹ is

given by

f (ỹ|x) =
∫

Θ
f (ỹ|θ)h(θ|x)dθ, (1)

where

h(θ|x) ∝ h(θ)l(x|θ) (2)

is the posterior distribution of θ given x and l(x|θ) is the likelihood function for x given θ. In

this setup, ỹ and x are conditionally independent given θ, and any dependence between the

point estimates x1, ..., xk is included in l(x|θ). If the decision maker does not have any prior

information on θ, then a diffuse (flat) prior on θ can be used. On the other hand, if the decision

maker does possess some prior information (such as relevant experience or past data), then that

information should be included in h(θ). Alternatively, decision maker’s prior information can

also be modeled as there being k + 1 experts instead of k experts and then assuming h(θ) to be

diffuse. Whether the decision maker’s information is included in h(θ) or in the form of (k + 1)th

expert hinges upon how to best model the dependence structure within experts and between the

experts and the decision maker. The predictive distribution for ỹ in (1) accounts for two types of

uncertainty, the uncertainty of ỹ given θ and the uncertainty about the parameter θ given x. This

is a typical Bayesian approach for aggregating expert opinions.

Dependence between experts is often modeled either as correlation between the experts’ pre-

dictions (Lichtendahl Jr et al. 2013) or as correlation between the errors of experts predictions

(Winkler 1981). We take the former approach, i.e., we define dependence between two experts

in terms of the correlation between their predictions, i.e., Corr[xi, xj|θ] = ρij = ρ, i 6= j. However,

our model can be easily adapted for other definitions of dependence, such as for correlations

between the errors of experts’ forecasts.

We extend this approach below under normality.

2.1. A Normal Model

Suppose that ỹ ∼ N(µ, σ2), with µ and σ2 unknown. The k experts provide point forecasts x =

(x1, ..., xk)′ for ỹ that follow a multivariate normal with a mean vector µ = µe, where e = (1, ..., 1)′

is a k× 1 column vector, and a k× k positive definite covariance matrix Σ with diagonal elements

σ2 and off-diagonal elements ρσ2. This implies that the experts are unbiased and exchangeable,

and that each expert receives a signal from the demand distribution.1 Additionally, we assume

that ρ is known. Later, in §4, we introduce uncertainty and heterogeneity with respect to ρ.

1 Any deviation from this assumption does not the change the overall nature of the results in terms of impact of
correlation between experts.
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The likelihood function for the k-variate forecast x is given by

l(x|µ, Σ) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
. (3)

Setting Σ = σ2Σρ, where Σρ is a k × k is a matrix with diagonal elements 1 and off-diagonal

elements ρ, and precision λ = 1/σ2, the likelihood function can be rewritten as

l(x|µ, Σ) = l(x|µ, λ) ∝ λ
k
2 exp

(
−λ

2
(x− µ)′Σ−1

ρ (x− µ)

)
. (4)

Lemma 1 below further simplifies the likelihood function in (4).

Lemma 1. The likelihood function in (4) can be represented as

l(x|µ, λ) ∝ λ
k
2 exp

(
−λk∗

2
(µ− x)2

)
exp

(
−λ

2
(k− 1)s∗2

)
, (5)

where x = (1/k)∑k
i=1 xi and s2 = ∑k

i=1(xi − x)2/(k− 1) are respectively the sample mean and the sample

variance obtained from the k point forecasts, k∗ = k/(1 + (k− 1)ρ), and s∗2 = s2/(1− ρ) is an unbiased

estimator of σ2.

We model the decision maker’s prior information on µ and λ with a normal-gamma (NG)

distribution which is a natural conjugate prior distribution for a normal process with unknown

mean and variance (for our parameterization, see Hoff 2009):

f (µ, λ) = NG(µ, λ|µ0, nµ, v0, nv)

= f (µ|λ) f (λ) = N(µ|µ0, (nµλ)−1)Ga(λ|nv

2
,

nvv0

2
)

∝ λ
1
2 exp

(
−

nµλ(µ− µ0)2

2

)
λ

nv
2 −1exp

(
−nvv0

2
λ
)

.

(6)

The NG prior in (6) can reflect a wide variety of information regarding µ and λ. A priori, the

conditional distribution of µ given λ is normal with mean µ0 and variance (nµλ)−1, where µ0 ∈R

and nµ > 0. And, the marginal distribution of λ is gamma with shape parameter nv/2 and rate

parameter nvv0/2 for some nv > 0 and v0 > 0, so that E(λ) = 1/v0 and Var(λ) = 2/(nvv2
0). With

this parametrization, one can say that a priori the decision maker’s best guess of µ is µ0 and nµ

can be viewed as the equivalent sample size for the prior information on µ. And, the decision

maker’s best guess of λ = 1/σ2 is 1/v0 with nv as the equivalent sample size for the prior

information on λ. Note that with the prior on λ in (6), σ2 has an inverse-gamma distribution with

shape parameter nv/2 and rate parameter nvv0/2, so that E(σ2) = (nv/(nv − 2))v0 and Var(σ2) is

decreasing in nv.

Theorem 1. Consider ỹ ∼ N(µ, σ2), with µ and σ2 unknown. Suppose that k experts provide point

forecasts x = (x1, ..., xk)′ for ỹ that follow a multivariate normal with a mean vector µ = µe, where e =
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(1, ..., 1)′ is a k× 1 column vector, and a k× k positive definite covariance matrix Σ with diagonal elements

σ2 and off-diagonal elements ρσ2, with the common correlation ρ known. Then, with the normal-gamma

prior on µ and σ in (6) and given a sample result of x̄ and s2 defined in Lemma 1,

a) f (µ, λ|x) is also a normal-gamma distribution of the same form as in (6) but with updated parame-

ters:
f (µ, λ|x) = NG(µ, λ|µ∗, n∗µ, v∗, n∗v)

= f (µ|λ, x) f (λ|x) = N(µ|µ∗, (n∗µλ)−1)Ga(λ|n
∗
v

2
,

n∗vv∗

2
),

(7)

where n∗µ = nµ + k∗, µ∗ =
nµµ0+k∗x

n∗µ
, n∗v = nv + k and v∗ = 1

n∗v

(
nvv0 + (k− 1)s∗2 + nµk∗

nµ+k∗ (x− µ0)2
)

, with

k∗ and s∗2 as defined in Lemma 1.

b) For ρ = 0, f (µ, λ|x) is the same as with k independent experts.

c) For ρ > 0, f (µ|λ, x) is the same as with k∗ independent experts, where k∗ ≤ k is a decreasing function

of ρ. And, f (µ, λ|x) is the same as if a sample variance of s∗2 rather than s2 is observed with k independent

experts, where s∗2 ≥ s2 is an increasing function of ρ, while at the same time as if a sample mean of x̄ is

observed with only k∗ of k independent experts.

Theorem 1, Part (a), states that posterior distribution of µ and λ is of the same natural-

conjugate form as the prior. Part (b) of the theorem shows that for ρ = 0 the posterior distribution

of µ and λ is the same as one would obtain with k independent observations. Finally, Part (c)

shows that for ρ > 0 the posterior conditional distribution of µ given λ is the same as one would

obtain with k∗ independent experts. In that sense, k∗ can be viewed as an equivalent indepen-

dent sample size for inferences about µ given λ. Note that k∗ = k/(1 + (k− 1)ρ). It is easy to see

that k∗ = k for ρ = 0. And, as ρ gets larger than zero, k∗ shrinks, decreasing to 1 for ρ = 1. This

is consistent with the results in Clemen and Winkler (1985) for the case of known λ, that any

positive dependence between the point forecasts reduces the information content of the forecasts

for inferences about µ. Further, while there is loss on information on µ, there is no loss of infor-

mation on λ. The sample variance s2 is simply adjusted by factor 1/(1− ρ) to obtain an unbiased

estimator s∗2 of σ2.

It follows from Theorem 1 that the marginal posterior distribution of µ, f (µ|x), is a t distribu-

tion with n∗v degrees of freedom, location µ∗ and scale
√

v∗/n∗µ, such that E(µ|x) = µ∗ for n∗v > 1

and Var(µ|x) = (n∗v/(n∗v − 2))v∗/n∗µ, for n∗v > 2.

The posterior mean of µ is a weighted mixture of the prior mean µ0 and the sample mean x̄,

where the weights depend on the relative strengths of the prior information on µ (i.e., nµ) and

the sample information on µ (i.e., k∗). A higher ρ decreases the weight on the sample informa-

tion. Further, E(λ|x) = 1/v∗, where v∗ is a weighted mixture of v0 and s∗2 (the sample variance

adjusted for known ρ), and an additional term that takes into account the difference between the
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prior mean of µ (i.e., µ0) and the sample mean (i.e., x̄). A higher ρ shifts the posterior distribution

towards lower values of λ, but the coefficient of variation remains the same regardless of ρ. In

that sense, there is no loss of information with respect to λ.

The decision maker’s primary interest is in the predictive distribution for ỹ given x, which is

shown in Corollary 1.

Corollary 1. The predictive distribution for ỹ|x is a t distribution with degrees of freedom n∗v, location

parameter µ∗, and scale parameter
√
(n∗µ + 1)v∗/n∗µ, so that

E(ỹ|x) = µ∗, for n∗v > 1, and (8)

Var(ỹ|x) = Var(ỹ|µ, x) + Var(µ|x) = n∗v
n∗v − 2

(
v∗ +

v∗

n∗µ

)
, for n∗v > 2. (9)

The first term in (9), Var(ỹ|µ, x), corresponds to the sampling uncertainty given µ. And, the

second term, Var(µ|x), reflects the uncertainty about µ itself. The uncertainty about the precision

λ is embedded in Var(ỹ|µ, x) and Var(µ|x). All else unchanged, a higher ρ leads to a greater loss

of information about µ in the sample (i.e., the forecast) and a lower expectation of λ given the

sample (i.e., increases v∗), resulting in a higher variance for ỹ|x. On the other hand, all else held

equal with ρ > 0, a higher k reduces the parameter uncertainty, although much less for µ than

for λ, resulting in a lower variance for ỹ|x.

Often, the decision maker might have very little or no any prior information on µ and λ, and

must rely entirely upon the information provided by the k experts. In that case, the predictive

distribution is much simplified, which we explore in much greater detail below.

2.1.1. Diffuse Prior Information on µ and σ2 . In this section, we focus on the case of the

predictive distribution for ỹ|x with a diffuse prior on µ and λ and compare our model with some

other purely data-based methods. More specifically, we compare four methods described below.

Predictive Distribution with Known ρ (PD). This is our model, with ρ known, and a diffuse

prior for µ and λ. A common choice for a diffuse prior is a NG prior in (6) with parameters

nµ = nv = 0, which is an improper prior and also the Jeffreys prior. With this diffuse prior,

f (µ, λ|x) = NG(µ, λ|µ∗, n∗µ, v∗, n∗v) with n∗µ = k∗, µ∗ = x, n∗v = k, and v∗ = (k− 1)s∗2/k. Then, f (ỹ|x)
is a t distribution with k degrees of freedom, location x̄, and scale

√
(k∗ + 1)v∗/k∗, which yields

E(ỹ|x) = x and

Var(ỹ|x) = k− 1
k− 2

(
1 + ρ

1− ρ
+

1
k

)
s2. (10)

The Var(ỹ|x) in (10) is larger for a higher ρ given k, reflecting a greater loss of information

due to higher correlation between the experts. On the other hand, it is smaller for a higher k

given ρ, reflecting reduced parameter uncertainty. For very large k, Var(ỹ|x)≈ (1+ ρ)s2/(1− ρ).
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Further, with also ρ = 0, Var(ỹ|x) ≈ s2. In other words, with k very large and ρ = 0, f (ỹ|x)
converges to a normal distribution with mean x̄, and variance s2. With respect to the hypothesis

formulated in Gaur et al. (2007), the variance of the predictive is indeed positively correlated

with the dispersion of the point forecasts, however it does not depend on the mean of the point

forecasts.

Predictive Distribution with ρ
set
= 0 (PD0). This is the same as PD above but with ρ assumed

to be 0. In other words, this approach retains parameter uncertainty, but assumes independence

between the experts. In this setup, E(ỹ|x) = x and

Var(ỹ|x) = k− 1
k− 2

(
1 +

1
k

)
s2. (11)

While ignoring ρ does not impact E(ỹ|x), VarPD0(ỹ|x) < VarPD(ỹ|x) for any ρ > 0, with

VarPD(ỹ|x) being larger by a factor of ((1 + ρ)/(1− ρ) + 1/k)/(1 + 1/k). Even in the limit with

a very large k, VarPD(ỹ|x) remains larger by a factor of (1 + ρ)/(1− ρ). The dependence among

experts (i.e., ρ > 0) causes a loss of information about ỹ, and even a very large k (number of

experts) can not overcome this. In other words, ignoring ρ leads to spurious accuracy in the

predictions.

Certainty Equivalent Method with ρ Known (CE). Here, it is assumed that ỹ|x ∼ N(x, s∗2 =

s2/(1− ρ)). In this approach, x is used as a point estimate of µ, and s∗2 (which is an unbiased

estimator of σ2) is used as a point estimate for σ2. While this approach incorporates the known

correlation between experts, it ignores any parameter uncertainty once the point estimates of the

parameters are obtained. In this sense, this is a certainty equivalent model corresponding to PD.

E(ỹ|x) is of course not impacted, but as one would expect VarCE(ỹ|x)< VarPD(ỹ|x) for any k > 2,

with

VarPD(ỹ|x)
VarCE(ỹ|x)

=
k− 1
k− 2

[
(1 + ρ) +

(1− ρ)

k

]
. (12)

Even with ρ = 0, CE yields a lower variance for ỹ|x than PD, as it ignores parameter uncertainty

and assumes a normal instead of a t distribution.

Certainty Equivalent Method with ρ
set
= 0 (CE0). In this approach, ỹ|x ∼ N(x, s2). As in CE,

this approach does not include any parameter uncertainty, and further ignores ρ. Note that

VarCE0(ỹ|x) is the smallest of all the models discussed here, and in that sense includes the most

spurious accuracy.

For ease of reading, Table 1 below summarizes our model along with the three other methods

discussed above, and provides for each the distribution of ỹ|x and the corresponding Var(ỹ|x),
where tk(a, b) denotes a t distribution with degrees of freedom k, location a, and scale b. As
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mentioned above, E(ỹ|x) = x in all the four methods, but the variances differ depending on

whether one accounts for the parameter uncertainty and the dependence between the experts.

Table 1 A summary of the four methods (PD, PD0, CE, CE0) in the normal model

Method f (ỹ|x) Var(ỹ|x)

PD tk(x,
√

k−1
k ( 1+ρ

1−ρ
+ 1

k )s)
k−1
k−2

(
1+ρ

1−ρ
+ 1

k

)
s2 includes ρ and parameter uncertainty

PD0 tk(x,
√

k−1
k (1 + 1

k )s)
k−1
k−2

(
1 + 1

k

)
s2 ignores ρ but includes parameter uncertainty

CE N(x, s2

1−ρ
) s2

1−ρ
includes ρ but ignores parameter uncertainty

CE0 N(x, s2) s2 ignores ρ and parameter uncertainty

Figure 1 shows the standard deviation of ỹ|x under the four methods as a function of ρ for k =

3, 7 and 100, rescaled by setting the standard deviation under CE0 for a given k equal to 1. Let SDi

be the standard deviation of ỹ|x under method i. As discussed above, for any k and ρ, SDCE0 is

the smallest and SDPD is the largest. Further, SDCE0 and SDPD0 are flat since these correspond to

approaches that assume ρ = 0. Note that while both PD and CE incorporate dependence between

experts, CE ignores uncertainty about the parameters. Hence, SDCE < SDPD. As k gets larger,

SDCE and SDPD get closer, since parameter uncertainty is reduced. However, this happens only

up to a limit (shown in (12)) due to the loss of information arising from the dependence between

experts. For example, with ρ = 0.6, SDPD as compared to SDCE is about 86% larger for k = 3, 41%

larger for k = 7, and still about 27% larger for k = 100. Comparing SDPD and SDPD0 reflects the

effect of ignoring ρ while incorporating uncertainty about the parameters. The gap between the

two becomes larger with a higher ρ. And, even with a very large k, SDPD is larger by a factor of

(1+ ρ)/(1− ρ) (shown in (10)). The two approaches PD0 and CE0 ignore ρ, but PD0 incorporates

parameter uncertainty. As k gets larger, there is reduction in parameter uncertainty, and for large

enough k (for example, k = 100), SDPD0 and SDCE0 are almost identical. Overall, it is clear that

ignoring ρ or the uncertainty about µ and σ2 leads to underestimation of uncertainty about ỹ.

In many real-life settings, it might not be unusual for ρ to be moderately large (say, between

0.6 to 0.8), and k in the range of 5 to 10 is more the norm rather than the exception, in which

case not taking into account ρ or the parameter uncertainty leads to serious underestimation of

uncertainty about ỹ. For example, with k = 7 and ρ = 0.6, the underestimation of SD is about

46% due to ignoring ρ, about 29% due to ignoring the parameter uncertainty, and about 55% due

to ignoring both. The same percentages rise to 65%, 32%, and 70%, respectively, with ρ = 0.8.
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Figure 1 Standard deviation (SD) of ỹ|x under the four methods (PD, PD0, CE, CE0) in the normal model, rescaled

with SDCE0 = 1, as a function of ρ for selected values of k
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Table 2 below provides similar information. It shows an augmentation factor δ that is needed

to equate the standard deviation of the k estimates (i.e, s =
√

∑k
i=1(xi − x)2/(k− 1)) with the

standard deviation of ỹ|x in our model (i.e., SDPD) for different values of ρ and k. A popular

heuristic in the operations management literature for assessing the uncertainty about ỹ|x has

been a certainty equivalent model that assumes ỹ|x∼ N(x, (δs)2) with a choice of δ between 1.75

and 2 (Fisher and Raman 1996, Hammond and Raman 1994). The choice of δ is not motivated by

the potential dependence between experts or the number of experts, but more in terms of cali-

bration with past forecast errors. Further, while it has been acknowledged that the distribution of

ỹ|x might be a t rather than a normal, this is motivated not by uncertainty about the parameters

(µ and σ2) but more by empirical data on past forecast errors. Our model provides a rationale

for δ, with attribution to the dependence between experts and to the number of experts. In Table

2, δ decreases with a higher k given ρ, reflecting more information and hence lower uncertainty

about the parameters. However, for ρ > 0, even with large k, δ is higher than 1, significantly so

for high values of ρ. This is consistent with the earlier discussion about loss of information due

to dependence between the experts, and a large k does not compensate for that. In fact, as shown

in (10), in the limit, δ = (1 + ρ)/(1− ρ). On the other hand, δ increases with a higher ρ given

k, indicating greater loss of information about ỹ with greater dependence between the experts.

For example, given k = 6, δ increases from 1.99 for ρ = 0.5 to 3.39 for ρ = 0.8. A value of δ = 1.75

used in Fisher and Raman (1996) roughly corresponds to (k, ρ) pairs of, for example, (3, 0.1),

(4, 0.3), (7, 0.4), and (100, 0.5). And, similarly, the δ = 2 used in Hammond and Raman (1994)

corresponds to, for example, (4, 0.4), (6, 0.5), and (100, 0.6).

3. An Illustration for the Newsvendor Problem
We illustrate some of the implications of our model in §2 in the decision making context of a

newsvendor problem. In a typical newsvendor setting, a decision maker must make a one-time

ordering decision ahead of the selling season without knowing the demand. The parameters for
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Table 2 Augmentation factor δ in the normal model for selected values of k and ρ

ρ
k 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3 1.63 1.76 1.91 2.09 2.31 2.58 2.94 3.46 4.32 6.22
4 1.37 1.49 1.62 1.78 1.97 2.21 2.52 2.98 3.72 5.37
5 1.26 1.38 1.51 1.66 1.84 2.07 2.37 2.80 3.50 5.06
6 1.21 1.32 1.44 1.59 1.77 1.99 2.28 2.70 3.39 4.89
7 1.17 1.28 1.40 1.55 1.72 1.94 2.23 2.64 3.31 4.79
8 1.15 1.25 1.38 1.52 1.69 1.91 2.19 2.60 3.26 4.72
9 1.13 1.23 1.36 1.50 1.67 1.89 2.17 2.57 3.23 4.67

10 1.11 1.22 1.34 1.48 1.65 1.87 2.15 2.55 3.20 4.64
20 1.05 1.16 1.28 1.42 1.59 1.79 2.07 2.46 3.09 4.48
100 1.01 1.12 1.24 1.37 1.54 1.74 2.01 2.39 3.02 4.38

the newsvendor problem are as follows: c > 0 is the unit cost, p > c is unit selling price, and

v < c is the unit salvage value. Let Π(y, q) be the newsvendor profit function, where y is the

realized demand and q is the order quantity. For a given demand distribution, the solution to

the newsvendor problem is q∗ = arg maxq E[Π(ỹ|q)] = F−1
ỹ (CR), where Fỹ is the cumulative dis-

tribution function of demand and CR = (p− c)/(p− v) is the fractile of the demand distribution

corresponding to the optimal ordering quantity (a.k.a. critical ratio).

We focus on a comparison of the four methods described in §2.1.1 for the normal model. We

are interested primarily in order quantity and the profit associated with each of the demand

estimation methods, and how these might compare to the same under perfect information about

the demand distribution parameters. As before, k denotes the number of experts, x̄ and s2 denote

the sample mean and the sample variance respectively of the k point forecasts. In our normal

model, demand ỹ ∼ N(µ, σ2). Table 1 in §2.1.1 summarizes the estimated demand distribution

resulting from each of the four methods.

3.1. Impact of the Demand Estimation Method on the Newsvendor Order Quantity

Let tCR,k = T−1
k (CR) and zCR = Φ−1(CR), where Tk(·) and Φ(·) are respectively CDFs of the

standard t distribution with k degrees of freedom and the standard normal distribution. Then,

conditional on x = (x1, ..., xk)′, the optimal order quantities under each of the four methods is

given in Table 3.

Table 3 Optimal order quantities under the four methods (PD, PD0, CE, CE0) given x in the normal model

qPD = x + tCR,ks
√

k−1
k ( 1+ρ

1−ρ
+ 1

k )

qPD0 = x + tCR,ks
√

k−1
k (1 + 1

k )

qCE = x + zCRs
√

1
1−ρ

qCE0 = x + zCRs
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An immediate observation is that for all ρ ≥ 0, we have qPD ≥ qPD0 and qCE ≥ qCE0 whenever

tCR,k, zCR ≥ 0 (i.e., CR≥ 0.5). And, we have qPD ≤ qPD0 and qCE ≤ qCE0 whenever tCR,k, zCR ≤ 0 (i.e.,

CR≤ 0.5). Next, we compare qPD to qCE. Let xk(u) be the solution of the equation Tk(x) = Φ(u).

A simple lower bound on xk(u)/u can be obtained from the Cornish-Fisher expansion of xk(u)

(see, e.g., Fujikoshi and Mukaihata 1993):

xk(u) = u +
1
4k

(u3 + u) +
1

96k2
(5u5 + 16u3 + 3u) + ...

For all u > 0 and k > 0, we have xk(u)
u ≥ 1 + 1

4k . Similarly, for u < 0 and k > 0, xk(u)
u ≤ 1 + 1

4k . But,

for k > 2 we have: (
1 +

1
4k

)√
k− 1

k
(

1 + ρ

1− ρ
+

1
k
)≥

√
1

1− ρ
,

which implies that qPD ≥ qCE for CR≥ 0.5 and qPD ≤ qCE for CR≤ 0.5.

The above results are conditional on x, the k point forecasts. Let q̃i be the unrealized value

of qi for i ∈ {PD, PD0, CE, CE0}, i.e., before x is observed. Proposition 1 below provides some

properties of the unconditional distributions of the order quantities under the four demand

estimation methods.

Proposition 1. The following inequalities hold:

E[q̃PD] ≤ min{E[q̃PD0 ], E[q̃CE], E[q̃CE0 ]} , for CR≤ 0.5,

E[q̃PD] ≥ max{E[q̃PD0 ], E[q̃CE], E[q̃CE0 ]} , for CR≥ 0.5,

Var[q̃PD] ≥ max{Var[q̃PD0 ], Var[q̃CE], Var[q̃CE0 ]} , for any CR ∈ [0, 1].

The order quantity under the PD method is the most conservative of the four, by having

the greatest bias in the direction of the less costly consequence: underestimation of demand

for CR ≤ 0.5 and overestimation of demand for CR ≥ 0.5. However, the variance of the order

quantity is always highest under the PD model.

We also compare the order quantities under the four methods to the optimal order quantity

q∗ under perfect information about the demand distribution parameters (i.e., when µ and σ2 are

known). For such a comparison, we use simulations. For a given CR, CV, k, and ρ, we generate

100,000 k-variate observations of x from a multivariate normal and for each observation compute

the order quantities under each of the four methods along with q∗ (which does not depend on x

and hence is the same across all observations). We do this for the cases of low (0.2) and high (0.8)

CR, CV = 0.2 (assuming WLOG µ = 10 and σ = 2), k ∈ {3, 7, 100}, and ρ ∈ {0, 0.1, ..., 0.9}. Figure

2 shows the expected order quantities, rescaled with q∗ = 1, under the four methods for various
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levels of the parameters. Figure 3 shows, as an example, the complete distributions of the order

quantity, rescaled after setting q∗ = 1, under the four methods for the case of CV = 0.2, k = 7, and

ρ = 0.6 with low CR (0.2) and high CR (0.8). Given k, a higher ρ means greater uncertainty about

demand, and PD compensates for this by creating a greater bias in the order quantity relative to

q∗ in the direction of the less costly consequence (i.e., less than q∗ for CR≤ 0.5 and greater than

q∗ for CR ≥ 0.5). On the other hand, PD0 and CE0 lead to a bias relative to q∗ in the opposite

direction, the more costly direction. This arises due to underestimation of demand uncertainty

resulting from ignoring ρ. The CE method on average is the most consistent with q∗. This less

costly bias in PD on one hand and the more costly bias in PD0 and CE0 on the other hand

increases with ρ. Given ρ, all that a higher k does is bring the order quantities under PD0 and

CE0 closer (as a consequence of reduction in parameter uncertainty). But, the order quantities

under PD and CE methods that account for ρ, do not get closer with a higher k. This is because,

as mentioned earlier, dependence between experts causes a loss of information that cannot be

recovered by increasing k.

In sum, our model PD creates a bias in the order quantity in the less costly direction, whereas

PD0 and CE0 lead to a bias in the more costly direction. And, CE is the closest to the optimal

order quantity under perfect information. But, what does this mean for expected profit under

the four methods? We analyze this below.

Figure 2 Expected order quantities under the four methods (PD, PD0, CE, CE0) in the normal model, rescaled with

q∗ = 1, for selected values of CR and k
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Figure 3 Distribution of q under the four methods (PD, PD0, CE, CE0) in the normal model, rescaled with q∗ = 1,

given ρ = 0.6, k = 7 and CV = 0.2, for low and high CR
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3.2. Impact of the Demand Estimation Method on the Newsvendor Profit

Here, we investigate the profit distributions associated with each of the estimation methods. For

analytical tractability, we first analyze the impact of the estimation method on the newsvendor

profit under a simpler setting where σ2 is known. Later, we show numerically that all the results

remain valid also for the case of unknown σ2.

When demand is normally distributed with unknown µ and known σ2, with a diffuse prior on

µ, the predictive distribution of demand f (ỹ|x) is normal with mean x and variance (1+ 1/k∗)σ2,

where k∗ = k/(1 + (k− 1)ρ) is the equivalent sample size as before (Clemen and Winkler 1985).

The corresponding predictive distribution that ignores ρ is normal with mean x and variance

(1 + 1/k)σ2. With σ2 known, the CE and CE0 are the same and involve simply estimating the

unknown parameter µ and result in a demand distribution that is normal with mean x and

variance σ2. Hence, ρ does not play any role in these two methods.

The optimal order quantities under the different estimation methods are given in Table 4.

Table 4 Optimal order quantities under the four methods (PD, PD0, CE, CE0) given x in the normal model with

known σ2

qPD = x + zCRσ
√

1 + 1
k∗

qPD0 = x + zCRσ
√

1 + 1
k

qCE = qCE0 = x + zCRσ

Conditional on µ, x ∼ N(µ, σ2/k∗). And, hence, conditional on µ, each of the order quantities

in Table 4 are normally distributed with variance σ2/k∗ and

E[q̃PD|µ] = µ + zCRσ

√
1 +

1
k∗

; E[q̃PD0 |µ] = µ + zCRσ

√
1 +

1
k

; E[q̃CE|µ] = µ + zCRσ. (13)

Under perfect information about µ and σ2 (i.e., these are known), the optimal order quantity

is q∗ = E[q̃CE|µ]. That is, conditional on µ, the certainty equivalent model in expectation will lead
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a decision maker to the optimal order quantity. However, as shown next, that expected profit

is highest under the PD method. That is, E[Π(ỹ, q̃PD)] ≥max{E[Π(ỹ, q̃PD0)], E[Π(ỹ, q̃CE)]}. The

following theorem states a more general result.

Theorem 2. Let ỹ ∼ N(µ, σ2) be the unrealized demand for a newsvendor and q∗ = µ + zCRσ be the

optimal order quantity under perfect information on the distribution of ỹ (i.e., µ and σ2 known). Also, let

q̃ε,τ ∼ N(q∗ + ε, τ2) be a random order quantity. Then

a) E[Π(ỹ, q̃ε,τ)] is decreasing in τ.

b) E[Π(ỹ, q̃ε,τ)] is a concave function of ε and attains its maximum at ε∗ = zCR

(√
σ2 + τ2 − σ

)
.

The implication of Theorem 2 for a decision maker is twofold. First, everything else equal, a

demand estimation method that leads to an order quantity with a higher variance will result

in a lower expected profit. Second, given a variance in the order quantity, a demand estimation

method that leads to an order quantity that is "optimal" on average will result in a lower expected

profit than a model that errs on the side of caution, provided that the bias is not too severe.

Corollary 2. a) E[Π(ỹ, q̃PD)]≥ E[Π(ỹ, q̃PD0)]≥ E[Π(ỹ, q̃CE)].

b) E[Π(ỹ, q̃PD)] = maxε E
[
Π
(

ỹ, q̃ε, σ√
k∗

)]
.

As shown in Corollary 2, among the methods considered, the expected profit is the highest

under our PD model. Moreover, no other model that leads to an order quantity with equal

uncertainty will perform better than the PD model in terms of expected profit. Figure 4 illustrates

this result for CR≥ 0.5, where ε = 0 for CE, ε = ε∗ for PD, and 0 < ε < ε∗ for PD0.

Figure 4 E[Π(ỹ, q̃
ε,σ/
√

k∗ )] as a function of ε for CR≥ 0.5
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Next, we show with simulations that these results hold also for a normal model with unknown

µ and σ2. For a given CR, CV =0.2 (WLOG, taking µ = 10 and σ = 2), k, and ρ, we generate a k-

variate observation of x from a multivariate normal and independently generate an observation
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of ỹ from the underlying normal model (µ = 10 and σ = 2). For this set of drawn observation,

we compute the profit under each of the methods along with profit under q∗ (as if µ and σ2

are known). We do this 100,000 times for each combination of CR ∈ {0.2, 0.8}, CV = 0.2, k ∈
{3, 7, 100}, and ρ ∈ {0, 0.1, ..., 0.9}. Figure 5, shows the expected profit, rescaled with E[Π(ỹ, q∗)] =

1, under the four methods for various levels of the parameters. Figure 6 shows, as an example,

the complete distributions of the profit, rescaled after setting Π(ỹ, q∗) = 1 under the four methods

for the case of CV = 0.2, k = 7, and ρ = 0.6 for low CR (0.2) and high CR (0.8). In Figure 5, for

all parameter values, the expected profit is highest under PD, followed by CE, then PD0, and is

lowest under CE0. Given k and CR ≤ 0.5, the expected profits under PD and CE (methods that

account for ρ) are close for low values of ρ but get higher under PD for moderate to large values

of ρ. Similarly the expected profits under PD0 and CE0 (methods that ignore ρ) are very close,

but are less than those under PD and CE with this difference becoming substantially larger at

high values of ρ. All that a higher k does is bring PD0 and CE0 much closer together. This overall

pattern is much less pronounced for CR ≥ 0.5, where expected profits tend to be much closer

under the four methods, but still highest under PD.

For reasons of space, we do not present here the variance of profit for the different parameter

values. However, for CR ≤ 0.5, the variance is lowest under PD, followed by CE, then PD0,

and highest under CE. This is expected as variance of profit is an increasing function of the

order quantity (Choi et al. 2008). For CR ≥ 0.5, the variance of profit is highest under PD, but

the differences among the four methods are very small, which is also not surprising as the

newsvendor model is much less sensitive to the order quantity relative to when CR ≤ 0.5. This

is somewhat reflected in Figure 6. For CR = 0.2, PD0 and CE0 have a heavier left tail compared

to PD and CE. On the other hand, for CR = 0.8, the same left tail is much more similar under all

four methods.

To summarize, we show that the four methods of demand estimation can have a significant

impact on the optimal order quantity and profit in a newsvendor setting. This impact is the

highest for low critical ratios. In particular, we have shown that our model PD yields the highest

(lowest) order quantity of all the models under consideration for high (low) CRs. In other words,

our model is biased in the direction of the less costly decision (i.e., underestimation of demand

with low CR and overestimation of demand with high CR). Further, the expected profit is the

highest under our model. For low CRs, this increase in expected profit can exceed 20% compared

to the other methods discussed. For high CRs, the impact is more muted, and the increase in

expected profit under our model compared to the other methods is generally less than 5%. This

is intuitive, because the newsvendor model is relatively insensitive to the order quantity for high
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Figure 5 Expected profit under the four methods (PD, PD0, CE, CE0) in the normal model, rescaled with E[Π(q∗)] =

1, given CV = 0.2, for selected values of CR and k
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Figure 6 Distribution of Π(q, y) under the four methods (PD, PD0, CE, CE0) in the normal model, rescaled with

E[Π(q∗)] = 1, given ρ = 0.6, k = 7 and CV = 0.2, for low and high CR
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CRs for normally distributed demand (for example, simply ordering the mean demand will yield

very similar profits as optimal order quantities under the four methods).

Ignoring ρ or the parameter uncertainty leads to lower expected profits. Ignoring ρ appears to

be a more costly mistake than ignoring parameter uncertainty, with expected profit being higher

under CE than under PD0. Not only is the expected profit highest under our model, but the

variance of profit is the lowest for CR≤ 0.5. For CR≥ 0.5, the variance under PD is the highest,

but the differences across the four methods are very small, in fact close to negligible.

We next investigate some extensions of the normal model in §2.

4. Extensions
In the model in §2, we have assumed that the pairwise correlation between experts is the same

and known. In this section, we introduce uncertainty on the common correlation ρ and also

heterogeneity in the pairwise correlations among the experts, to check for robustness of the
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augmentation factor δ shown in Table 2. We then extend our normal model to a lognormal

model.

4.1. Uncertainty and Heterogeneity about ρ in the Normal Model

We first explore uncertainty on the common ρ. Recall that in our model, δ depends only on ρ and

k. Given k, δ increases with ρ, indicating greater uncertainty about ỹ|x due to greater dependence

between the experts. On the other hand, given ρ, δ decreases with k, reflecting lower uncertainty

about ỹ|x due to reduced parameter uncertainty resulting from a higher number of experts. For

a given k, we take 10,000 independent draws of ρ from a beta distribution, f (ρ) ∝ ρα−1(1− ρ)β−1,

with α, β > 0, E(ρ) = α/(α + β), and Var(ρ) = αβ/(α + β)2(α + β + 1), and calculate the average

δ. We repeat this for k=3, 5, and 10, and for a variety of values for the parameters of the beta

distribution. Keeping E(ρ) constant at 0.1, 0.2, ..., 0.9, we vary α+ β from 100 (low uncertainty) to

50 (medium uncertainty) to 10 (high uncertainty). Table 5 below shows the average δ for different

values of k and E(ρ) with varying levels of uncertainty, along with the case of known ρ (no

uncertainty).

Table 5 The impact of uncertainty about ρ on δ:

average δ for selected values of k and E(ρ) with varying levels of uncertainty about ρ

k and levels of uncertainty about ρ
k = 3 k = 5 k = 10

E(ρ) None Low Medium High None Low Medium High None Low Medium High

0.1 1.76 1.76 1.77 1.77 1.38 1.38 1.38 1.38 1.22 1.22 1.22 1.23
0.2 1.91 1.92 1.92 1.94 1.51 1.51 1.51 1.52 1.34 1.34 1.35 1.36
0.3 2.09 2.10 2.10 2.14 1.66 1.66 1.66 1.69 1.48 1.49 1.49 1.52
0.4 2.31 2.32 2.32 2.39 1.84 1.84 1.85 1.89 1.65 1.66 1.66 1.71
0.5 2.58 2.59 2.61 2.71 2.07 2.07 2.08 2.17 1.87 1.88 1.89 1.96
0.6 2.94 2.97 2.98 3.14 2.37 2.38 2.40 2.55 2.15 2.16 2.18 2.30
0.7 3.46 3.50 3.53 3.84 2.80 2.82 2.85 3.12 2.55 2.57 2.60 2.83
0.8 4.32 4.40 4.45 5.24 3.50 3.55 3.63 4.26 3.20 3.26 3.30 3.90
0.9 6.22 6.44 6.69 10.76 5.06 5.26 5.49 8.47 4.64 4.79 4.99 8.13

First note that, given k, δ under no uncertainty is the lowest. It makes sense that any un-

certainty about ρ is yet another addition to the parameter uncertainty and should increase δ.

Further, for E(ρ) ≤ 0.6, δ does not vary much at all with increasing uncertainty about ρ. Even

for E(ρ) ≥ 0.7, the impact is less than remarkable. For example, with E(ρ) = 0.7 the increase in

δ from no uncertainty to high uncertainty is 3.46 to 3.84 for k = 3, 2.8 to 3.12 for k = 5, and 2.55

to 2.83 for k = 10. It is only in the extreme case of high uncertainty and very high E(ρ) at 0.9

that the jump in δ is substantial. In sum, it appears that δ is reasonably robust with respect to

uncertainty about ρ. In any case, the no uncertainty case (i.e., known ρ) provides a lower bound
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on δ. And, this lower bound could be a reasonable value of δ to use in most practical situations

even if there is uncertainty about ρ.

Next, we explore heterogeneity among the experts in terms of the pairwise correlations. For

such a case, our model with a common ρ no longer holds. In Appendix B, we show a more

general model, where x = (x1, ..., xk)
′ follows a multivariate normal with mean vector µ = µe,

where e = (1, ..., 1)′ is a k× 1 column vector, and k× k positive definite covariance matrix Σ with

diagonal elements σ2 and off-diagonal elements ρijσ
2, with ρij known. Both E(ỹ|x) and Var(ỹ|x)

are weighted mixtures of all the ρijs and the observed x. And, the augmentation factor δ depends

not only of k and ρijs but also on the observed x.

To investigate the impact of heterogeneity in ρijs, for a given group of k experts, we generate

each pairwise correlation ρij independently from a beta distribution with the same parameters

as earlier. Here, the mean of the beta distribution is the average ρij among the k experts, and

the variance is the level of heterogeneity (higher variance indicating higher heterogeneity). If

the draws result in a covariance matrix that is not positive definite, then that draw is discarded

and another is taken until there are 10,000 draws in all. For each draw of a positive definite

covariance matrix, we generate a k-variate forecast from a multivariate normal with mean vector

0 and a covariance matrix based on the drawn observation of a set of ρijs and with σ2 = 1 (the

choice of 0 mean vector and σ2 = 1 is WLOG, as shown in Appendix C). We then compute δ

as the ratio of
√

Var(ỹ|x) with respect to the observed s. The proportion of positive definite

covariance matrices is small for large k and for high levels of heterogeneity with high E(ρ).

So, we generate simulations for k = 3, 5, and 10, and holding average ρij=α/(α + β) constant at

0.1, 0.2, ..., 0.7, we vary α + β (the level of heterogeneity) from 100 (low) to 50 (medium), along

with the corresponding case where the average ρij is the common ρ (none). For what we label

medium, the degree of heterogeneity is still reasonably high. For example, with average ρij = 0.5,

the standard deviation of beta distribution is 0.07 for medium heterogeneity and 0.05 for low

heterogeneity. Table 6 below shows the average δ for these cases.

Once again, the overall results are similar to the case of known and common ρ (shown in Table

2). Given k, a higher average ρij leads to a higher δ, and given average ρij a higher k leads to

lower δ. What is more reassuring is that, at least for the results we obtained, heterogeneity has

none to low effect on δ.

In sum, the results indicate that the δ in our model with common and known ρ provides a

lower bound for cases where ρ is common but uncertain and for cases where ρ equals the average

of ρijs. The level of uncertainty on the common ρ matters substantially only for the extreme cases

of high uncertainty and very high E(ρ), whereas δ is very robust with respect to heterogeneity in

pairwise correlations. This provides some further encouragement for our model with a common

and known ρ.
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Table 6 The impact of heterogeneity in pairwise correlations on δ:

average δ for selected values of k and average ρij with varying levels of heterogeneity in ρijs

k and levels of heterogeneity in ρijs
k = 3 k = 5 k = 10

Average ρij None Low Medium None Low Medium None Low Medium

0.1 1.76 1.77 1.76 1.38 1.38 1.38 1.22 1.22 1.22
0.2 1.91 1.92 1.92 1.51 1.51 1.51 1.34 1.34 1.34
0.3 2.09 2.10 2.10 1.66 1.66 1.66 1.48 1.49 1.49
0.4 2.31 2.32 2.32 1.84 1.84 1.85 1.65 1.66 1.66
0.5 2.58 2.59 2.60 2.07 2.07 2.08 1.87 1.88 1.89
0.6 2.94 2.96 2.97 2.37 2.38 2.39 2.15 2.17 2.18
0.7 3.46 3.49 3.52 2.80 2.82 2.85 2.55 2.57 2.58

4.2. A Lognormal Model

In §2.1, we assume that the distribution of ỹ given µ and σ2 is normal. This is often a reasonable

approximation for many real-life settings. However, in some instances, the decision maker might

consider the distribution above to be skewed and/or bounded from below with a long right tail,

such as demand for a new product that has a small chance but a large potential for blockbuster

sales. In such cases, a lognormal distribution might be more appropriate than a normal. In

that spirit, we modify our model in §2.1 such that ln ỹ ∼ N(µ, σ2) and ln x1, ..., ln xk follow a

multivariate normal with mean vector µ = µe, where e = (1, ..., 1)′ is a k× 1 column vector, and

k× k positive definite covariance matrix Σ with diagonal elements σ2 and off-diagonal elements

ρLσ2, where ρL = Corr[ln xi, ln xj|θ], i 6= j, which implies that ρ = Corr[xi, xj|θ] = eρLσ2
−1

eσ2−1
(Johnson

et al. 2002). Note that ρL = 0 when ρ = 0, ρL = 1 when ρ = 1, and they have a monotonically

increasing relationship between 0 and 1, where ρL depends also on σ (and hence the CV of the

distribution).

In our normal model, the sufficient statistics are x and s2, the sample mean and the sam-

ple variance of the k point estimates, such that f (ỹ|x) = f (ỹ|x, s2) is a t distribution. Using

the same results, in our lognormal model, the sufficient statistics are xt =
1
k ∑k

i=1 ln xi and s2
t =

1
k−1 ∑k

i=1(ln xi − xt)2. And, f (ln ỹ|x) = f (ln ỹ|xt, s2
t ) is a t distribution with the same parameters as

in the normal model except for xt and s2
t replacing x and s2, respectively. The distribution for

ỹ|x is then a log t distribution which is very heavy tailed with undefined moments. However, it

is still possible to construct prediction intervals for ỹ|x by simply taking the exponential trans-

forms of the corresponding quantiles of the underlying t distribution for f (ln ỹ|x). Table 7 below

summarizes the lognormal model under the four methods (PD, PD0, CE, CE0) defined in §2.1.1,

and provides for each of those the distribution of ln ỹ|x and the corresponding 100(1 − γ)%

prediction interval, 0≤ γ≤ 1, for ỹ|x.
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Table 7 A summary of the four methods (PD, PD0, CE, CE0) in the lognormal model

f (ln ỹ|x) A 100(1− γ)% Prediction Interval for ỹ|x

PD tk(xt,
√

k−1
k ( 1+ρL

1−ρL
+ 1

k )st) exp(xt±t1− γ
2 ,k

√
k−1

k ( 1+ρL
1−ρL

+ 1
k )st)

PD0 tk(xt,
√

k−1
k (1 + 1

k )st) exp(xt±t1− γ
2 ,k

√
k−1

k (1 + 1
k )st)

CE N(xt,
s2
t

1−ρL
) exp(xt±z1− γ

2

√
1

1−ρL
st)

CE0 N(xt, s2
t ) exp(xt±z1− γ

2
st)

Note that the prediction intervals are stated in terms of ρL = Corr[ln xi, ln xj|θ]. It is easy to

see that the rank order of the widths of these prediction intervals under the four methods is the

same as in our normal model. The prediction interval for PD (CE0) are the most wide (narrow).

Ignoring parameter uncertainty and/or the dependence between the experts creates spurious

accuracy in terms of an unrealistically narrow prediction interval for ỹ|x.

We also do some simulations to further explore the lognormal model. WLOG, we use a zero

vector for µ (See Appendix D). For a given k, ρ, and CV, we generate a k-variate observation of

x from the corresponding multivariate lognormal. For each observation, we compute the width

of a 95% prediction interval for f (ỹ|x) under each of the four methods, rescaled with the width

under CE0 set equal to 1. A comparison of the four widths indicates the impact of ignoring the

parameter uncertainty or ρ or both in a 95% prediction interval. For each combination of k=3, 7,

and 100, and CV= 0.2, 0.5 and 0.8, we repeat this 10,000 times and compute the average rescaled

widths under the four methods. Figure 7 shows these results, along with the corresponding

average rescaled widths under the four methods in the normal model (the first row of three

graphs) which do not depend on CV.

The overall results are consistent with the normal model in terms of the rank orders of the

widths, except that CV plays a salient role in the lognormal model. Given k and CV = 0.2,

the widths of the intervals for the normal and the lognormal are similar. However, given k, as

CV increases, the width under PD in the lognormal model gets substantially higher. The main

implication we see from Figure 7 is that our PD approach in the lognormal model is even more

crucial for a higher CV.

To summarize the normal and lognormal models, we propose a predictive distributions for

ỹ|x that incorporates the parameter uncertainty and the dependence between the experts. Ig-

noring one or both can lead to serious underestimation of uncertainty. If there is dependence

between the experts, there is a loss of information that can not be compensated by simply in-

creasing the number of experts, even to an extreme. Any method that ignores the dependence
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Figure 7 Average widths of 95% prediction intervals under the four methods (PD, PD0, CE, CE0) in the normal and

lognormal models, rescaled with average width under CE0 =1, for selected values of CV and k
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necessarily underestimates the uncertainty about ỹ|x. Similarly, a certainty equivalent approach

even if it accounts for dependence between experts underestimates uncertainty about ỹ|x. Such

underestimation gets worse for a higher ρ.

In the normal model, the predictive distribution for ỹ|x is a t distribution with degrees of free-

dom k, location x, and scale δs, which implies that E(ỹ|x) = x and Var(ỹ|x) = (δs
√

k/(k− 2))2,

where δ =
√

k−1
k ( 1+ρ

1−ρ
+ 1

k ). Similarly, in the lognormal model, the predictive distribution for ln ỹ|x
is a t distribution with degrees of freedom k, location xt, and scale δLst, which implies that
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E(ln ỹ|x) = xt and Var(ln ỹ|x) = (δLst

√
k/(k− 2))2 where δL is the same as in the normal model

but with ρL replacing ρ, i.e., δL =
√

k−1
k ( 1+ρL

1−ρL
+ 1

k ). The factor δ (or δL) adjusts the observed sample

standard deviation of the k point estimates upwards for any given dependence between the ex-

perts and for any remaining parameter uncertainty given the k point estimates. These predictive

distributions are fairly easy to use, and in that sense practically viable.

5. Summary and Discussion
We develop a parsimonious approach for generating a probability distribution for a variable of

interest based on point forecasts provided by experts. Our approach allows for the possibility of

point forecasts to be correlated and admits parameter uncertainty given the forecasts. In keeping

with the extensive empirical findings on combining forecasts, we use an equal-weights model for

experts, i.e., all experts are treated equally in terms of their accuracy and with a common correla-

tion between their forecasts. The resulting predictive distribution shows that ignoring either the

parameter uncertainty or the dependence between experts can lead to much spurious accuracy

in terms of an unrealistically narrow distribution for the variable of interest. Further, we provide

a rationale for the augmentation factor used often in the operations management literature, as a

simple scalar factor that is needed to equate the standard deviation of the predictive distribution

to the observed standard deviation of the point forecasts. This augmentation factor, which is

always greater than 1, depends on the common correlation between the experts and on the num-

ber of experts. Given a number of experts, a higher correlation leads to a higher augmentation

factor, indicating greater uncertainty for the quantity of interest. This is consistent with earlier

findings in the Bayesian literature that greater dependence among experts causes a greater loss

of information. On the other hand, given a correlation between the experts, a higher number of

experts reduces the augmentation factor, indicating lower parameter uncertainty. However, loss

of information due to dependence between experts cannot be overcome by simply increasing the

number of experts, even to an extreme. For example, given ρ = 0.8, even with 100 point forecasts,

the augmentation factor remains at about 3. We compare our model with other methods that

ignore either the dependence between experts or the parameter uncertainty, or both, illustrating

potentially serious consequences in terms of underestimating the uncertainty on the variable of

interest.

We illustrate the same consequences in a decision making context of a newsvendor setting.

Our model, when compared to other methods that ignore dependence or parameter uncertainty,

or both, leads to an order quantity that on average is smaller (larger) for CR≤ 0.5 (CR≥ 0.5), but

has higher variance. However, in the same comparison, our model leads to the highest expected

profit. In fact, we show that a method that ignores dependence and parameter uncertainty leads
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to on average an order quantity that is optimal under perfect information on the distribution

parameters, but yet yields lower expected profit compared to our model. This is because, given

the uncertainty in the demand distribution after observing the point forecasts, our model errs

on the side of caution, whereas a method that ignores dependence and parameter uncertainty

retains much spurious accuracy (in terms of a distribution that is tighter than it should be)

and hence a greater chance of a costly mistake (in terms of the order quantity). The increase in

expected profit in our model can exceed 20%

In our base model, we assume that the common correlation between the experts is known.

However, we investigate the robustness of our model in terms of uncertainty on the common

correlation between experts and heterogeneity in pairwise correlations between experts. The

augmentation factor from our model is fairly robust in these respects. We further extend our

model under normality to the case where the quantity of interest and the point forecasts have

a lognormal distribution. The results under normality only get exacerbated in the lognormal

case, i.e., the consequences of ignoring dependence or parameter uncertainty lead to even more

unrealistically narrower distributions for the quantity of interest.

We feel that our model is not only more accurate but practically viable. A step-by-step prac-

tical implementation of our model would require the decision maker to do the following. First,

the decision maker must make a judgment whether the underlying distribution is normal or log-

normal. These two distributions can be reasonable approximations in a wide variety of real-life

situations. However, if it is strongly felt that the underlying distribution is other than normal

or lognormal, a model akin to our approach can be easily developed. If the decision maker has

any prior information on the distribution parameters, that must then be reflected in a prior dis-

tribution. Else, a diffuse prior can be used, allowing the data speak for themselves. The next

step requires estimation of the common correlation between a given set of experts. A full-blown

discussion on this is beyond the scope of the paper. However, there exist extensive literature on

such estimation with or without past data (Gokhale and James 1982, Clemen et al. 2000, Meyer

and Booker 2001, to name only a few). Thinking of the common correlation as the proportion

of total information that is common across experts (Lichtendahl Jr et al. 2013, Winkler 1981)

for example, could be a further aid in such estimation. It is worthwhile to mention again that

our model is fairly robust to uncertainty about the common correlation and to heterogeneity in

pairwise correlations among experts. In any case, the mean correlation in case of uncertainty or

heterogeneity provides at the very least in our model a lower bound on the uncertainty about

the variable of interest. Clearly, simply ignoring the dependence among experts is not a good

option. Given the number of experts and an estimated common correlation between them, com-

puting the appropriate augmentation factor is straightforward. What then remains is obtaining

the point forecasts and computing the relevant sufficient statistics.
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Appendix

A. Proofs

PROOF OF LEMMA 1:

Proof:

l(x|µ, Σ) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
=

λ
k
2√
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2
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ρ e
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It is easy to verify that e′Σ−1
ρ e = k∗, with k∗ = k/(1 + (k − 1)ρ);

e′Σ−1
ρ x

e′Σ−1
ρ e

= x, where x = (1/k)∑k
i=1 xi; and

x′Σ−1
ρ x

e′Σ−1
ρ e
−
(

e′Σ−1
ρ x

e′Σ−1
ρ e

)2
= (k− 1)s∗2, where s∗2 = s2/(1− ρ) and s2 = ∑k

i=1(xi − x)2/(k− 1).

PROOF OF THEOREM 1:

Proof:

f (µ, λ|x)∝NG(µ, λ|µ0, nµ, v0, nv)l(x|µ, Σ)
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.

Based on the identity nµ(µ− µ0)
2 + k∗(µ− x)2 = (nµ + k∗)(µ− µ∗)2 +

nµk∗(x−µ0)
2

nµ+k∗ , where µ∗ =
nµµ0+k∗x

nµ+k∗ ,

f (µ, λ|x) ∝ λ
1
2 exp
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2
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2−1exp
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where n∗µ = nµ + k∗, µ∗ =
nµµ0+k∗x

n∗µ
, n∗v = nv + k and v∗ = 1

n∗v

(
nvv0 + (k− 1)s∗2 + nµk∗
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2
)

PROOF OF COROLLARY 1:

Proof: The predictive distribution ỹ|x
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f (ỹ|x) =
∫

λ

∫
µ
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y+n∗µµ∗

n∗µ+1 ,

f (ỹ|x) ∝
∫

λ

∫
µ

exp
(
−λ

2
(1 + n∗µ)(µ− µ∗n)

2
)

exp

(
−λ

2

n∗µ(y− µ∗)2

n∗µ + 1

)
λ

n∗v
2 exp

(
−n∗vv∗

2
λ

)
dµdλ

∝
∫

λ
exp

(
−λ

2

n∗µ(y− µ∗)2

n∗µ + 1

)
λ

n∗v
2 exp

(
−n∗vv∗

2
λ

)
λ−

1
2 dλ

=
∫

λ
exp

(
−
(

n∗vv∗

2
+

n∗µ(y− µ∗)2

2(n∗µ + 1)

)
λ

)
λ

n∗v
2 −

1
2 dλ.

We recognize this is a Gamma distribution with shape parameter a = n∗v
2 + 1

2 and rate parameter b =
n∗vv∗

2 +
n∗µ(y−µ∗)2

2(n∗µ+1) .

f (ỹ|x) ∝ b−a

=

(
n∗vv∗

2
+

n∗µ(y− µ∗)2

2(n∗µ + 1)

)−( n∗v
2 + 1

2 )

∝

1 +
1

n∗v

(y− µ∗)2

n∗µ+1
n∗µ

v∗

−(
n∗v+1

2 )

.

The predictive distribution for ỹ|x is a t distribution with degrees of freedom n∗v , location parameter µ∗,

and scale parameter
√
(n∗µ + 1)v∗/n∗µ.

PROOF OF PROPOSITION 1:

Proof: For CR ≤ 0.5, q̃PD ≤min
{

q̃PD0 , q̃CE, q̃CE0

}
for any given x and s. Hence, the inequality holds for

the expected values as well. Similar argument holds for CR≥ 0.5.

We now show that Var[q̃PD]≥Var[q̃PD0 ]. We make use of a known result that x and s2 are independently

distributed when xis follow a multivariate normal distribution with identical pairwise ρs (Rao 1973, p.

196-197). It then follows that x and s are independently distributed, i.e., Cov[x, s] = 0.

Hence,

Var[q̃PD] = Var[x] + t2
CR,k

k− 1
k

(
1 + ρ

1− ρ
+

1
k

)
Var[s], and

Var[q̃PD0 ] = Var[x] + t2
CR,k

k− 1
k

(
1 +

1
k

)
Var[s].

Since k−1
k

(
1+ρ
1−ρ + 1

k

)
≥ k−1

k

(
1 + 1

k

)
, it directly follows that Var[q̃PD] ≥ Var[q̃PD0 ]. The same argument

holds for Var[q̃PD]≥Var[q̃CE] and Var[q̃PD]≥Var[q̃CE0 ].
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PROOF OF THEOREM 2:

Proof: a) Given an order quantity, the expected profit is given by:

E[Π(ỹ|q̃ε,τ = q] = (p− v)µ− (c− v)q− σL(z)(p− v), (A.1)

where z = q−µ
σ and L(z) =

∫ ∞
z (x− z)dΦ(x). Then,

E[Π(ỹ, q̃ε,τ)] = (p− v)µ− (c− v)(q∗ + ε)− σ(p− v)
∫ ∞

−∞
L(z)

1
τ
√

2π
e−

(q−q∗−ε)2

2τ2 dq. (A.2)

And,

∂E[Π(ỹ, q̃ε,τ)]

∂τ
=

σ

τ
(p− v)

∫ ∞

−∞
L(z)

e−
(q−q∗−ε)2

2τ2

τ
√

2π
dq− σ(p− v)

∫ ∞

−∞
L(z)

(q− q∗ − ε)2

τ3
e−

(q−q∗−ε)2

2τ2

τ
√

2π
dq.

Integrating by parts twice the second term in the expression, we get:

∂E[Π(ỹ, q̃ε,τ)]

∂τ
= −τσ(p− v)

∫ ∞

−∞

∂2L(z)
∂q2

1
τ
√

2π
e−

(q−q∗−ε)2

2τ2 dq.

But L(z) is a convex decreasing function of q and the result follows.

b) From (A.2), differentiating with respect to ε, we get the following first order condition:

∂E[Π(ỹ, q̃ε,τ)]

∂ε
= −(c− v)− σ(p− v)

∫ ∞

−∞
L(z)

(q− q∗ − ε)

τ3
√

2π
e−

(q−q∗−ε)2

2τ2 dq = 0.

Integrating by parts, we get:

∂E[Π(ỹ, q̃ε,τ)]

∂ε
= −(c− v)− σ(p− v)

∫ ∞

−∞

∂L(z)
∂q

1
τ
√

2π
e−

(q−q∗−ε)2

2τ2 dq

= −(c− v) + (p− v)− (p− v)
∫ ∞

−∞
Φ(z)

1
τ
√

2π
e−

(q−q∗−ε)2

2τ2 dq

= −(c− v) + (p− v)− (p− v)P(Y≤ 0)

= 0.

Equivalently, P(Y ≤ 0) = CR, where Y is a normally distributed random variable with mean µ−q∗−ε
σ and

standard deviation
√

σ2+τ2

σ2 . Then

0 =
µ− q∗ − ε∗

σ
+ zCR

√
σ2 + τ2

σ2 ⇔ ε∗ = zCR

(√
σ2 + τ2 − σ

)
.

We used the fact that q∗ = µ + zCRσ. Note also that ∂2E[Π(ỹ,q(ε))]
∂ε2 ≤ 0, so ε∗ maximizes (A.2).

PROOF OF COROLLARY 2:

Proof: Conditional on µ, x ∼ N(µ, σ2/k∗). And, hence, conditional on µ, each of the three order

quantities are normally distributed with variance σ2/k∗. Moreover, E[q̃CE|µ] = q∗, E[q̃PD|µ] = q∗ +

zCRσ

(√
1 + 1

k∗ − 1
)

and E[q̃PD0 |µ] = q∗ + zCRσ

(√
1 + 1

k − 1
)

. Also, 0 ≤ |ε| =
∣∣∣∣zCRσ

(√
1 + 1

k − 1
)∣∣∣∣ ≤

|ε∗| =
∣∣∣∣zCRσ

(√
1 + 1

k∗ − 1
)∣∣∣∣, because k ≥ k∗. Then, from Theorem 1, it follows that E[Π(ỹ, q̃PD)|µ] ≥

E[Π(ỹ, q̃PD0)|µ]≥ E[Π(ỹ, q̃CE)|µ]. Hence, for any prior density function on µ, the result follows.
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B. Normal Model with Heterogeneous ρijs

We extend §2.1 by allowing heterogeneous ρijs in Σ. In this case, the covariance matrix Σ has diagonal

elements σ2 and off-diagonal elements ρijσ
2, with ρij = Corr[xi,xj|θ], i 6= j. Assume ρijs are known.

Setting Σ = σ2Σρij where Σρij is a k× k is a matrix with diagonal elements 1 and off-diagonal elements

ρij. With λ = 1/σ2, the likelihood function can be rewritten as

l(x|µ, λ) ∝ λ
k
2 exp

(
−λk∗

2
(µ− µ̂)2

)
exp

(
−λ

2
(k− 1)ŝ2

)
, (B.1)

where k∗ = e′Σρij
−1e, µ̂ =

e′Σρij
−1x

e′Σρij
−1e

and ŝ2 =
(x−µ̂e)′Σρij

−1(x−µ̂e)
k−1 .

Using the normal-gamma prior distribution on µ and λ in §2.1, the posterior distribution of µ and λ is

given by

f (µ, λ|x) = NG(µ, λ|µ∗, n∗µ, v∗, n∗v) = N(µ|µ∗, (n∗µλ)−1)Ga(λ|n
∗
v

2
,

n∗vv∗

2
), (B.2)

where n∗µ = nµ + k∗, µ∗ =
nµµ0+k∗ µ̂

n∗µ
, n∗v = nv + k and v∗ = 1

n∗v

(
nvv0 + (k− 1)ŝ2 +

nµk∗

nµ+k∗ (µ̂− µ0)
2
)

.

It then follows that f (ỹ|x) is a t distribution with degrees of freedom n∗v , location parameter µ∗, and scale

parameter
√
(n∗µ + 1)v∗/n∗µ, so that E(ỹ|x) = µ∗ for n∗v > 1 and, for n∗v > 2, Var(ỹ|x) = n∗v

n∗v−2

(
v∗ + v∗

n∗µ

)
.

With a diffuse prior on µ and σ2 (i.e., with nµ = nv = 0), f (ỹ|x) is a t distribution with k degrees of

freedom, location µ̂, and scale
√
(k∗ + 1)v∗/k∗, which yields E(ỹ|x) = µ̂ and

Var(ỹ|x) =
(

1 +
1
k∗

)
(x− µ̂e)′Σρij

−1(x− µ̂e)
k− 2

(B.3)

C. Normal Model with Heterogeneous ρijs: Impact of µ and σ2 on δ

Consider x = µ + zσ, where z = (z1, ..., zk)
′ follows a multivariate normal with mean vector 0 and a covari-

ance matrix Σρij as in Appendix B. Substituting x = µ + zσ into (B.3), we obtain

Var(ỹ|x) =

(
1 +

1
k∗

) (µ + zσ−
e′Σρij

−1(µ+zσ)

e′Σρij
−1e

)′
Σρij

−1
(

µ + zσ−
e′Σρij

−1(µ+zσ)

e′Σρij
−1e

)
k− 2

(C.1)

=

(
1 +

1
k∗

)
(z− µ̂ze)′Σρij

−1(z− µ̂ze)
k− 2

σ2, (C.2)

where µ̂z =
e′Σρij

−1z

e′Σρij
−1e

. Similarly, we can apply the same transformation x = µ + zσ to sample variance s2 =

∑k
i=1(xi−x)2

k−1 = ∑k
i=1(µ+ziσ−(µ+zσ))2

k−1 = ∑k
i=1(zi−z)2

k−1 σ2, where z = 1
k ∑k

i=1 zi. It is evident that the ratio between

Var(ỹ|x) and s2 is independent of µ and σ2.

D. Lognormal Model: Impact of µ on Rescaled Interval Width

In the lognormal model in §4.2, consider xt = µ + ztσ, where zt = (ln z1, ..., ln zk) follows a multivariate

normal with mean vector 0 and a covariance matrix with diagonal elements σ2 and off-diagonal elements

ρLσ2.
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By substituting xt = µ + ztσ, where zt =
1
k ∑k

i=1 ln zi, the widths of prediction intervals under PD and

CE0 (Table 7) are respectively given by:.

exp

(
µ + ztσ±t1− γ

2 ,k

√
k− 1

k
(

1 + ρL
1− ρL

+
1
k
)st

)
, and (D.1)

exp
(

µ + ztσ±z1− γ
2

st

)
. (D.2)

Since st is also independent of µ, the ratio between (D.1) and (D.2) is independent of µ. Similar argument

holds for the ratio of prediction intervals widths of PD0 and CE0, and of CE and CE0.
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