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1 Introduction

Targeting policies match different actions to different populations. For example, farmers may want
to give different fields different fertilizers, doctors give different patients different treatments, NGOs
offer different interventions to different students, or retailers target different customers with different
promotions. The gold-standard approach to comparing alternative targeting policies is to implement
the alternative policies on randomly selected groups of participants and then compare the resulting
performance. For example, Skiera and Nabout (2013) propose a model that targets different search
engine keywords with different bids by an advertiser. They test their model using a field experiment
in which bids for twenty keywords were submitted using either the current policy or the proposed
model. Similarly, Mantrala et al. (2006) proposed a model for setting different prices for different
automobile parts. They validated their model using a field experiment in which 200 stores were
randomly assigned to the proposed policy, and 300 stores were randomly assigned to the current
policy. Simester et al. (2006) test a policy for targeting customers with a sequence of catalogs.
A total of 60,000 customers were randomly assigned to receive catalogs using either the proposed
model or the current policy.1

It is common to analyze these experiments by calculating the aggregate outcome for each policy
and then comparing these aggregate outcomes across policies. In this paper, we show that the
efficiency of these comparisons can be improved by changing the analysis, without changing the
experiments. Rather than comparing the aggregate outcome from each targeting policy, we propose
to first segment the customers and then compare the outcome within each segment. This reduces
variation introduced by between-segment differences. We show that the segments can be designed
so that for some segments the difference in outcomes between policies is zero by construction. This
eliminates variation introduced by random noise within these segments.

These changes provide a more efficient comparison than simply comparing the aggregate out-
comes. More specifically, when holding the total number of participants fixed, one can obtain a more
accurate estimate of the difference in the performance of any set of policies compared to comparing
aggregate outcomes. Alternatively, one can obtain the same level of precision using fewer partici-
pants. The efficiency improvement can be large, particularly when comparing targeting policies that
are more similar. We show theoretically that our proposed method strictly improves the standard
error of the estimator of the performance of a single policy, as well as the standard error of the
estimator of the difference between policies. We also show empirically that our proposed method
reduces the standard error by more than 50% when evaluating policies and their differences, using
data from an actual large-scale field experiment (4.1 million households) run to investigate how a
retailer should target prospective customers with promotions (Simester et al., 2017). This reduction
has substantive importance in our example: the difference between policies becomes statistically
significant, whereas the difference was not significant when using the standard approach.

1Similar recent examples include: Belloni et al. (2012); Lu et al. (2016); Neslin et al. (2009); Simester et al. (2017);
Urban et al. (2014). We use data from the Simester et al. (2017) study in this paper.
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The design of the segments is important. We propose segmenting customers using the ac-
tions recommended by the candidate targeting policies. Targeting policies represent a mapping
from customer covariates to recommended actions and can be thought of as candidate methods for
summarizing the information provided by the covariates. The mapping to actions provides a seg-
mentation of customers. With two or more targeting policies, the intersection of their recommended
actions provides an even more fine-grained segmentation of customers.

These segments not only provide a natural basis for decomposing the comparison of the methods,
but also offer two important efficiency advantages that lie at the core of our paper. Consider the
segments in which the candidate policies recommend the same action. First, when evaluating a
single policy, we should use all of the customers in these segments, even if they were randomly
assigned to a different policy. Pooling across customers assigned to different policies will increase
the sample size used to measure the outcome and improve efficiency. Second, when comparing
policies within this segment, we know the true difference in the performance of the policies is
precisely zero, because the policies are identical for this segment of customers. Because of pooling
customers across the policies in these segments, the observed difference between the policies is also
zero. In contrast, under the standard approach, random error would have been introduced, and
the observed outcomes in the two conditions would have been different, although we know the true
outcomes should be identical in segments where the policies recommend the same action.

Our results also suggest a further implication. An experiment provides no information about the
difference in the performance of two policies in segments in which the two policies recommend the
same action. Therefore, if we are only interested in comparing the relative performance of candidate
targeting policies (rather than evaluating the absolute performance of any single policy), then we
can omit these segments of customers entirely from the experimental design. We can thus save
implementation costs with no loss of information about the relative performance of the policies.

Recall that the traditional approach to comparing targeting policies is to use one experimental
condition for each policy. We also consider an alternative experimental design that uses one experi-
mental condition for each possible action. This design allows evaluation of any targeting policy, and
so any new policy can be evaluated using the existing data, without being implemented. Our pro-
posed segmentation approach can also yield its benefits under this alternative experimental design.
We finally identify limitations that may hinder implementation of the proposed approach.

Related Literature
The efficiency advantage of aggregating within-segment differences was recently also proposed by
Imbens and Rubin (2015) and Athey and Imbens (2017). They recognize that the randomization
justifies comparison within segments. However, they contemplate segmenting participants by covari-
ates, rather than segmenting according to the actions recommended by alternative targeting policies,
as we propose. This distinction is important; the efficiency improvements that we describe depend
critically upon how customers are segmented. By segmenting using the recommended actions from
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the candidate policies, we identify segments of customers for whom the policies recommend the
same actions.

More generally, the paper contributes to a recent stream of research investigating how firms can
use field experiments to help optimize their marketing decisions. For example, Barajas et al. (2016)
investigate how to use field experiments to attribute the response to online display advertisements.
They propose two new experimental designs that allow firms to estimate the overall campaign
attribution without using placebo advertisements. These designs also allow the firm to disentangle
the effect of the campaign from potential confounds. Li et al. (2015) study the feasibility of using field
experiments to make category pricing decisions when items could be complements or substitutes.
They ask how many experiments are required as the number of products in the category grows.
They show that firms may be able to obtain meaningful estimates using a practically feasible number
of experiments, even in categories with a large number of products. Other studies have investigated
the required size of field experiments. For example, Lewis and Rao (2015) demonstrate that in
digital advertising settings where the effect sizes are small and the response measures are highly
stochastic, very large field experiments may be required to generate information.

The recent development economics literature also includes proposals to improve experimental
design. Congdon et al. (2017) propose conducting “mechanism experiments” designed to help
understand the underlying mechanism rather than the outcome of a specific policy. They argue
that these mechanism experiments may be useful both to screen potential policies, and to suggest
policy improvements.

Our findings are also related to work on optimal experimental design. This includes an extensive
literature studying how to design conjoint experiments (see Louviere et al., 2004 for a review).
Experimental design has also been interpreted as a multi-armed bandit problem (see for example
Mersereau et al., 2009); pulling arms of a multi-armed bandit samples the outcomes from different
marketing actions. The optimal experimental design introduces a trade-off between exploration and
exploitation.

2 An Illustrative Example

Before presenting a formal analysis of the efficiency advantages, we first illustrate these advantages
using an example. Consider a retailer who wants to target customers with promotional offers.
Consider two targeting policies that both recommend sending promotion a to male customers. The
policies differ in their recommendations for female customers. Both policies recommending sending
either promotion b or promotion c to female customers, but which female customers receive each
promotion varies across the policies. Randomly assigning half of the customers to each policy
will mean that half of the males will be assigned to each policy, and all of the males will receive
promotion a.

The analysis approach we propose segments the sample population according to the actions
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recommended by the two policies. Male customers are all in one segment because both policies
recommended promotion a for male customers. Female customers are divided into different segments
according to the promotions recommended by each policy. This example allows us to illustrate each
of our arguments.

First, comparing the difference in outcomes between policies within a segment allows us to
eliminate between-segment differences. For example, if males respond on average x% of the time but
females respond y% of the time, then calculating an aggregate outcome for each policy will include
variation introduced by gender. As a result, when comparing the average outcome between policies,
the standard error of the difference will also include variance introduced by gender differences. We
eliminate this variation if instead we compare the difference in outcomes within a segment, and
then aggregate these within-segment differences across segments. The differencing within segment
ensures we only compare males with males, and females with females. It is this insight that led
Imbens and Rubin (2015) and Athey and Imbens (2017) to also recommend analyzing randomized
experiments by stratum, i.e., by segment.

Second, because both policies recommend the same action for males, when measuring the abso-
lute outcome of either policy for males, we should pool across all of the males, irrespective of which
of the two policies they were assigned to. In our illustrative example, this will double the sample
size used to measure the outcome for male customers.

Third, because we segmented by the recommended actions and both policies recommend the
same actions for male customers, the true difference in the performance of the policies for males is
precisely zero, by construction. This provides an opportunity to improve efficiency by eliminating
the random errors introduced when calculating the aggregate outcome and comparing these aggre-
gate outcomes. This benefit will be particularly important when comparing two policies that are
more similar. The more similar the policies, the larger the segments of customers for which the two
policies recommend the same action, and for which the true difference in the performance of the
two policies is precisely zero.

This example also illustrates the opportunity to further improve efficiency through design of
the experiment. An experiment provides no information about the difference in the performance of
the two policies for males. If we are only interested in the relative performance of the two policies,
there is no need to implement either policy on the male customers; we know that the policies are
not different for male customers. We can omit male customers with no loss of information about
relative performance.

Notice that if we omit male customers, we can no longer calculate the absolute outcome across all
customers for any single policy. It will often be desirable not just to measure the relative performance
of two policies, but also to measure each policy’s absolute performance. For this reason, instead of
omitting male customers, it may be preferable to simply under-sample male customers.
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The Importance of Segmenting by Recommended Actions
The simplicity of our male/female example may give the misleading impression that we recommend
segmenting customers based upon gender (which is a covariate). Instead, we propose segmenting
based upon the actions recommended by the policies, which in this example coincides with gender
for the males (although not for the females). This distinction is important as many of the efficiency
gains are only achieved because we segmented customers using the actions recommended by the
candidate policies.

We can demonstrate this point by modifying our illustrative example. Imagine that we seg-
mented customers by age instead of gender, and that each age segment includes a combination of
both genders. Now the segments no longer contain a single recommended action for each policy.

Analyzing by segment still offers the first advantage of removing between-segment differences. If
there are differences in the probability of response by young customers and old customers, calculating
the difference in outcomes within each age segment and then aggregating the differences across age
segments will help to remove this source of variation. This will be more efficient than simply
calculating the aggregate outcomes and comparing these aggregate outcomes.

However, the other efficiency gains are no longer available. In particular, because each age
segment contains both genders, and the policies recommend different actions for females, there will
be no age segment for which the two policies recommend the same action. Therefore, pooling across
conditions to increase the sample size is not possible, and relatedly there are no segments in which
we avoid the introduction of random error when calculating the difference between the two policies.
Segmenting by the recommended actions solves this issue. Because each policy recommends an
action for each customer, it is straightforward to segment customers according to these recommended
actions. Once the recommended actions are known, the segmentation can be accomplished without
reference to the covariates. Moreover, this segmentation immediately identifies any customers for
which the policies recommend the same action.

We formalize these arguments next by demonstrating how to estimate the outcomes and their
variance using both the standard approach and the proposed approach.

3 A Formal Analysis of Efficiency

We contemplate an experimental design in which each customer i is assigned to one of T policies,
or not assigned to any of the policies, by randomly selecting customers from a super-population
of size N . Letting Wi be a random variable indicating what policy customer i is assigned to,
we have Wi ∈ {P1, P2, . . . , PT , ∅}, where P1, . . . , PT denote the policies and Wi = ∅ denotes the
outcome when customer i is not sampled to any of the policies (and therefore does not participate
in the experiment). This random selection and assignment to the policies is the source of variation
in the system. We use NP1 , . . . , NPT

, N∅ to denote the number of customers assigned to each of
{P1, P2, . . . , PT , ∅}, so that NP1 + . . . + NPT

+ N∅ = N .
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We assume a completely randomized experiment:

Assumption 1 (Random sampling and assignment without replacement). Conditional
on NP1 , . . . , NPT

, N∅, the vector W has multinomial distribution, with

Pr(W = w | NP1 , . . . , NPT
, N∅) =


( N

NP1 ,...,NPT
,N∅

)−1 for all w with∑N
i=1 1wi=P1 = NP1 , . . . ,

∑N
i=1 1wi=PT

= NPT
,
∑N

i=1 1wi=∅ = N∅,

0 otherwise.

Customers are described by a set of covariates. We think of the policies as mappings from
the space of covariates to a selection of an action. For example, in the context of prospecting new
customers for a retailer, the actions are the types of promotional offers the retailer considers mailing
to different households according to their covariates, including the control treatment of no mail.
Suppressing the covariates from our notation, we denote by P`(i) the action that policy P` assigns
to user i.

We consider a finite set of possible actions. We follow the potential outcomes framework: for
each customer i and action s, we define the outcome Yi(s) that would have occurred, had customer i

been treated with action s. We define Yi(s) regardless of whether customer i is actually treated with
action s or not. Only one of the potential outcomes is realized and observed for customer i, which
we denote by Y obs

i . We do not observe what would have happened had customer i been exposed
to other actions. The uncertainty therefore does not only come from random sampling from the
super-population, but also from the unobserved potential outcomes, in the spirit of Abadie et al.
(2014).

We first describe how to evaluate a single policy under both the standard and proposed ap-
proaches. We then describe how to compare two policies. We summarize the resulting mean and
variance calculations under each approach in Table 1.

Evaluating a Single Policy Using the Standard Approach
We label the policy of interest as P1. Our target (estimand) when evaluating policy P1 is the
population-level measure

yP1 = 1
N

N∑
i=1

Yi (P1(i)) .

We do not observe the outcomes for the entire population under each policy. Therefore, the standard
approach is to estimate yP1 by

ŷP1 = 1
NP1

N∑
i=1

1Wi=P1Y obs
i .
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It is straightforward to establish that ŷP1 is an unbiased estimator of yP1 . As we show in the
Appendix, the variance of this estimator is given by

VarW (ŷP1) =
S2

P1,N

NP1

(
1− NP1

N

)
,

where

S2
P1,N = 1

N − 1

N∑
i=1

Yi (P1(i))− 1
N

N∑
j=1

Yj (P1(j))

2

. (1)

We estimate Var(ŷP1) by

V̂arW (ŷP1) =
s2

P1,N

NP1

(
1− NP1

N

)
,

where
s2

P1,N = 1
NP1 − 1

∑
i:Wi=P1

(
Y obs

i − ŷP1

)2
(2)

is an unbiased estimator for S2
P1,N (Imbens and Rubin, 2015, Chapter 6.5, Appendix A).

We next discuss how to estimate yP1 under the proposed approach.

Evaluating a Single Policy Using the Proposed Approach
Even though we are evaluating a single policy, the proposed approach recommends first segmenting
customers using the recommended actions from at least two policies. For this illustration we will
continue to evaluate policy P1, but will use the recommended actions from both policies P1 and
P2. We must first introduce some additional notation to identify segments of customers, where the
segments are constructed using the recommended actions from each policy.

Define gP1:s,P2:t as the segment of customers in the super-population to whom policy P1 would
assign action s and policy P2 would assign action t. Moreover, NP1:s,P2:t is the number of customers
in segment gP1:s,P2:t, and NP1

P1:s,P2:t is the number of customers in segment gP1:s,P2:t that are randomly
assigned to receive policy P1.

Our goal is unchanged. We are after the population-level measure

yP1 = 1
N

N∑
i=1

Yi (P1(i)) ,

which can also be written as

yP1 =
∑

s,t

∑
i∈gP1:s,P2:t Yi(s)∑

s,t NP1:s,P2:t
=
∑

s,t NP1:s,P2:t · yP1:s,P2:t

N
,

where yP1:s,P2:t =
∑

i∈gP1:s,P2:t
Yi(s)

NP1:s,P2:t
.

Under the proposed approach we estimate yP1 by calculating the outcome in each segment and
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then aggregating across segments:

ŷP1 =
∑

s,t NP1:s,P2:t · ŷP1:s,P2:t

N
,

with

ŷP1:s,P2:t =



∑
i∈gP1:s,P2:t

1Wi=P1 Y obs
i

N
P1
P1:s,P2:t

if s 6= t,∑
i∈gP1:s,P2:s

(1Wi=P1 +1Wi=P2)Y obs
i

N
P1
P1:s,P2:s+N

P2
P1:s,P2:s

if s = t,

where the first case is for segments for which the two policies recommend different actions, while
the second case is for segments for which the two policies recommend the same action.

Pooling customers across the two conditions in segments for which the two policies recommend
the same action, irrespective of which of the two policies they were assigned to, is one of the core
ideas of our paper. The efficiency gain of pooling is twofold. First, the sample size used to measure
the outcome for customers for whom the two policies would recommend the same action increases.
Second, as we illustrate later on in this section, the difference in the performance of the two policies
in the segments for which the two policies recommend the same action is estimated to be zero, as
it truly is. This eliminates the random error in these segments when comparing the performance of
the two policies.

It is straightforward to establish that ŷP1 is an unbiased estimator of yP1 . (We relegate the proof
to the Appendix.) We can also write expressions for the variance of the estimator ŷP1 within each
segment. To do so we again distinguish between segments in which the two policies recommend the
same or different actions.

For segments for which the two policies recommend different actions (i.e., s 6= t), we explain in
the Appendix that the variance is given by

VarW

(
ŷP1:s,P2:t

)
=

S2
P1,gP1:s,P2:t

NP1
P1:s,P2:t

(
1−

NP1
P1:s,P2:t

NP1:s,P2:t

)
,

where

S2
P1,gP1:s,P2:t = 1

NP1:s,P2:t − 1
∑

i∈gP1:s,P2:t

Yi(s)− 1
NP1:s,P2:t

∑
j∈gP1:s,P2:t

Yj(s)

2

. (3)

We estimate VarW

(
ŷP1:s,P2:t

)
by

V̂arW

(
ŷP1:s,P2:t

)
=

s2
P1,gP1:s,P2:t

NP1
P1:s,P2:t

(
1−

NP1
P1:s,P2:t

NP1:s,P2:t

)
,
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where
s2

P1,gP1:s,P2:t = 1
NP1

P1:s,P2:t − 1
∑

i∈gP1:s,P2:t,Wi=P1

(
Y obs

i − ŷP1:s,P2:t
)2

(4)

is an unbiased estimator for S2
gP1:s,P2:t (Imbens and Rubin, 2015, Chapter 9.5).

We next consider segments in which the two policies recommend the same action (i.e., s = t).
As we show in the Appendix, the variance in these segments is given by

VarW (ŷP1:s,P2:s) =
S2

gP1:s,P2:s

NP1
P1:s,P2:s + NP2

P1:s,P2:s

(
1−

NP1
P1:s,P2:s + NP2

P1:s,P2:s
NP1:s,P2:s

)
,

where

S2
gP1:s,P2:s = 1

NP1:s,P2:s − 1
∑

i∈gP1:s,P2:s

Yi(s)− 1
NP1:s,P2:s

∑
j∈gP1:s,P2:s

Yj(s)

2

.

We estimate VarW (ŷP1:s,P2:s) by

V̂arW (ŷP1:s,P2:s) =
s2

gP1:s,P2:s

NP1
P1:s,P2:s + NP2

P1:s,P2:s

(
1−

NP1
P1:s,P2:s + NP2

P1:s,P2:s
NP1:s,P2:s

)
,

where
s2

gP1:s,P2:s = 1
NP1

P1:s,P2:s + NP2
P1:s,P2:s − 1

∑
i∈gP1:s,P2:s,Wi∈{P1,P2}

(
Y obs

i − ŷP1:s,P2:s
)2

is an unbiased estimator for S2
gP1:s,P2:s .

Notice the benefit from pooling across both experimental conditions. In particular, the variance
is reduced because the sample includes data from the experimental condition associated with both
policy P1 and policy P2. This is an efficiency advantage over the standard approach, which does
not use any data from the experimental condition associated with policy P2 when evaluating policy
P1.

Overall, the variance of estimator ŷP1 across all segments is

VarW (ŷP1) =
∑
s,t

(
NP1:s,P2:t

N

)2
VarW

(
ŷP1:s,P2:t

)
,

which we estimate by

V̂arW (ŷP1) =
∑
s,t

(
NP1:s,P2:t

N

)2
V̂arW

(
ŷP1:s,P2:t

)
.

Next we describe estimators for estimating the difference in two policies.
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Comparing Two Policies Using the Standard Approach
When comparing two policies, the standard approach is to first calculate the mean outcome for each
policy and then calculate the difference in these means. For this illustration we will calculate this
difference as the outcome for policy P1 minus the outcome for policy P2 .

The target estimand is the population-level measure

yP1−P2 = yP1 − yP2 = 1
N

N∑
i=1

(
Yi (P1(i))− Yi (P2(i))

)
.

Because we do not observe the outcomes for the entire population under each policy, we estimate
yP1−P2 using the unbiased estimator

ŷP1−P2 = ŷP1 − ŷP2 = 1
NP1

N∑
i=1

1Wi=P1Y obs
i − 1

NP2

N∑
i=1

1Wi=P2Y obs
i .

As shown in the Appendix, the variance of this estimator is given by

VarW (ŷP1−P2) =
S2

P1,N

NP1
+

S2
P2,N

NP2
−

S2
P1,P2,N

N
, (5)

where variances S2
P1,N , S2

P2,N are given by Equation (1), and the variance of the customer-level
differences between policies is

S2
P1,P2,N = 1

N − 1

N∑
i=1

(
Yi(P1(i))− Yi(P2(i))− 1

N

N∑
j=1

(
Yj(P1(j))− Yj(P2(j))

))2

.

We estimate S2
P1,N , S2

P2,N with s2
P1,N , s2

P2,N respectively, as defined in Equation (2). The term
S2

P1,P2,N is in general impossible to estimate empirically because we never observe the outcome of
both policies P1 and P2 for the same customer. It is common practice to thus approximate the
variance VarW (ŷP1−P2) using the first two terms and ignoring the third term of Equation (5), with
the Neyman estimator (Neyman, 1934)

VarNeyman
P1−P2

=
s2

P1,N

NP1
+

s2
P2,N

NP2
,

which is generally upwardly biased.

Comparing Two Policies Using the Proposed Approach
We complete this formal description by showing how to compare two policies under the proposed
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approach. Our target estimand is unchanged:

yP1−P2 = yP1 − yP2 = 1
N

N∑
i=1

(
Yi (P1(i))− Yi (P2(i))

)
,

which, accounting for the segmentation of the customers according to the recommended actions,
can also be written as

yP1−P2 =

∑
s,t

∑
i∈gP1:s,P2:t

(
Yi(s)− Yi(t)

)
∑

s,t NP1:s,P2:t
.

One of the main contributions of the paper is to recognize that in segments in which the two policies
recommend the same action, the difference in the performance of the two policies is equal to zero.
We can thus write

yP1−P2 =

∑
s,t
s 6=t

∑
i∈gP1:s,P2:t

(
Yi(s)− Yi(t)

)
∑

s,t NP1:s,P2:t
=

∑
s,t
s 6=t

NP1:s,P2:t
(
yP1:s,P2:t − yP1:s,P2:t

)
N

,

where, for s 6= t,

yP1:s,P2:t =
∑

i∈gP1:s,P2:t Yi(s)
NP1:s,P2:t

, yP1:s,P2:t =
∑

i∈gP1:s,P2:t Yi(t)
NP1:s,P2:t

.

We estimate yP1−P2 with the unbiased estimator

ŷP1−P2 =
∑

s 6=t NP1:s,P2:t
(
ŷP1:s,P2:t − ŷP1:s,P2:t

)
N

,

where, for s 6= t,

ŷP1:s,P2:t =
∑

i∈gP1:s,P2:t 1Wi=P1Y obs
i

NP1
P1:s,P2:t

, ŷP1:s,P2:t =
∑

i∈gP1:s,P2:t 1Wi=P2Y obs
i

NP2
P1:s,P2:t

.

In particular, the true difference in the outcome between the two policies is zero in segments for
which the two policies recommend the same action. Remember that because of pooling customers
across the two conditions in these segments, the observed difference in the outcomes between the
two policies in these segments is also zero. In contrast, under the standard approach, random error
would have been introduced, and the observed outcomes in the two conditions would have been
different, although we know the true outcomes should be identical in segments where the policies
recommend the same action.

In segments for which the two policies recommend different actions (s 6= t), the variance of the
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difference between the two policies is given by2

VarW

(
ŷP1:s,P2:t − ŷP1:s,P2:t

)
=

S2
P1,gP1:s,P2:t

NP1
P1:s,P2:t

+
S2

P2,gP1:s,P2:t

NP2
P1:s,P2:t

−
S2

P1,P2,gP1:s,P2:t

NP1:s,P2:t
,

where variances S2
P1,gP1:s,P2:t

, S2
P2,gP1:s,P2:t

are given by Equation (3), and the variance of the customer-
level differences between policies is

S2
P1,P2,gP1:s,P2:t = 1

NP1:s,P2:t − 1
∑

i∈gP1:s,P2:t

(
Yi(s)−Yi(t)−

1
NP1:s,P2:t

∑
j∈gP1:s,P2:t

(
Yj(s)−Yj(t)

))2

. (6)

We estimate S2
P1,gP1:s,P2:t

, S2
P2,gP1:s,P2:t

with s2
P1,gP1:s,P2:t

, s2
P2,gP1:s,P2:t

respectively, as defined in
Equation (4). The term S2

P1,P2,gP1:s,P2:t
is in general impossible to estimate empirically because we

never observe the outcome of both actions s, t for the same customer. This is the same issue that
arises with the standard approach. We again use the Neyman variance estimator

VarNeyman
gP1:s,P2:t =

s2
P1,gP1:s,P2:t

NP1
P1:s,P2:t

+
s2

P2,gP1:s,P2:t

NP2
P1:s,P2:t

,

which is upwardly biased.
Overall, the variance of estimator ŷP1−P2 across all segments is

VarW (ŷP1−P2) =
∑
s,t
s 6=t

(
NP1:s,P2:t

N

)2
VarW

(
ŷP1:s,P2:t − ŷP1:s,P2:t

)
,

which we estimate with
VarNeyman

P1−P2
=
∑
s,t
s 6=t

(
NP1:s,P2:t

N

)2
VarNeyman

gP1:s,P2:t .

This is upwardly biased and, as a result, confidence intervals will be conservative.

Summary
As we mentioned at the start of this section, in Table 1 we summarize the estimators and variances
for the performance of a single policy and comparison of two policies under the standard and
proposed approaches. We note that under both the standard approach and the proposed approach,
the calculations for the variances include an adjustment for the size of the super-population. We
also include this adjustment in our calculations in the example in the next section. However,
the adjustment asymptotes to zero as the super-population grows large and so for large enough
populations it is often ignored.

2The derivation for the variance of the difference in each segment is similar to the derivation of Equation (5) for
the overall variance under the standard approach.
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Table 1: Evaluating and Comparing Policies: Estimators and Variances

Standard Approach Proposed Approach
Single Policy
Evaluation

Estimator ŷP1
1

NP1

∑N
i=1 1Wi=P1Y obs

i

∑
s,t

NP1:s,P2:t·ŷP1:s,P2:t

N

Variance V̂arW (ŷP1) s2
P1,N

NP1

(
1− NP1

N

) ∑
s,t
s 6=t

(
NP1:s,P2:t

N

)2 s2
P1,gP1:s,P2:t

N
P1
P1:s,P2:t

(
1−

N
P1
P1:s,P2:t

NP1:s,P2:t

)
+
∑

s

(
NP1:s,P2:s

N

)2 s2
gP1:s,P2:s

N
P1
P1:s,P2:s+N

P2
P1:s,P2:s

·
(

1−
N

P1
P1:s,P2:s+N

P2
P1:s,P2:s

NP1:s,P2:s

)
Comparison of
Two Policies

Estimator ŷP1−P2

1
NP1

∑N
i=1 1Wi=P1Y obs

i
∑

s,t
s 6=t

NP1:s,P2:t

(
ŷP1:s,P2:t−ŷP1:s,P2:t

)
N− 1

NP2

∑N
i=1 1Wi=P2Y obs

i

Variance VarNeyman
P1−P2

s2
P1,N

NP1
+

s2
P2,N

NP2

∑
s,t
s6=t

(
NP1:s,P2:t

N

)2
(

s2
P1,gP1:s,P2:t

N
P1
P1:s,P2:t

+
s2

P2,gP1:s,P2:t

N
P2
P1:s,P2:t

)

The table summarizes the estimators and variances for the performance of a single policy and comparison of
two policies under the standard and proposed approaches.

We conclude this section with a formal comparison of the efficiency of the standard and the
proposed approaches and several comments, including a brief discussion of limitations.

Comparison of the Efficiency of the Proposed vs. the Standard Approach
The expressions in Table 1 allow us to analytically compare the efficiency of the proposed and
standard approaches. We have argued that our proposed method has two efficiency advantages: it
reduces variance introduced by between-segment differences; and it ensures the true and observed
difference between two policies in segments in which they recommend the same action is zero, instead
of introducing random noise. We now show analytically that the standard errors of the estimators
strictly improve under the proposed method.

Our argument requires two assumptions. The first assumption is that the experimental design
is balanced, i.e., for a policy we are evaluating, the proportion of customers assigned to that policy
within a segment is the same as the proportion of customers assigned to that policy in any other
segment:

NP1
P1:s,P2:t

NP1:s,P2:t
= NP1

N
, for all s, t,
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and the same is true for all policies we are evaluating. For example, if we are also evaluating policy
P2, then

NP2
P1:s,P2:t

NP1:s,P2:t
= NP2

N
, for all s, t.

The second assumption is that for all policies we are evaluating, the observed variance within
any segment that received the policy is not larger than the observed variance across all observations
in that condition:

s2
P1,gP1:s,P2:t ≤ s2

P1,N , s2
gP1:s,P2:s ≤ s2

P1,N , for all s, t.

This assumption is aligned with the well-known intended benefit of stratification (e.g., Imbens and
Rubin, 2015): we segment in order to achieve balance in the covariates. This means that the units
within each block would be similar with respect to the covariates or some functions of the covariates.
It therefore makes sense to expect that within any segment, the observed variance is not larger than
in the aggregate.

The following theorem formalizes our result that the proposed method strictly improves effi-
ciency. The proof is relegated to the Appendix.

Theorem 1. Assume random sampling and assignment without replacement as per Assumption 1.

Further, assume that
N

P1
P1:s,P2:t
NP1

=
N

P2
P1:s,P2:t
NP2

= NP1:s,P2:t
N and that s2

P1,gP1:s,P2:t
≤ s2

P1,N , s2
P2,gP1:s,P2:t

≤
s2

P2,N for all s, t with s 6= t, and s2
gP1:s,P2:s ≤ s2

P1,N for all s. Then for the evaluation of policy P1, the
estimated variance of the estimator under the proposed approach is strictly less than the estimated
variance of the estimator under the standard approach. Furthermore, for the comparison of policies
P1 and P2, the estimated variance of the estimator of the difference under the proposed approach
is strictly less than the estimated variance of the estimator of the difference under the standard
approach.

Comparing n Policies
We note that the extension from the comparison of two policies to the comparison of n > 2 poli-
cies, with n ≤ T , is straightforward. With multiple policies, the intersection of their recommended
actions provides an even more fine-grained segmentation of customers. For example, with two possi-
ble actions, a single targeting policy maps customers into two segments (assuming the policy is not
degenerate). The intersection of n targeting policies maps customers into 2n segments (although it
is possible that some segments may be empty). With n targeting policies, we define segments of
customers in the super-population in terms of what action each of the n policies would recommend.
The same efficiency advantages as described before are in effect. First, segmentation reduces vari-
ance introduced by between-segment differences. Second, in a segment in which k of the n policies
recommend the same action, the proposed approach uses the outcome from all customers within the
segment that were assigned to any of the k policies to evaluate these policies; the sample size thus
increases. Third, the proposed approach recognizes that in a segment in which k of the n policies
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recommend the same action, the difference in the outcomes of the k policies is zero by construction;
random error does not get introduced.

Limitations of the Proposed Approach
We have highlighted how segmenting by the actions recommended by candidate policies can improve
the efficiency of experiments designed to evaluate different targeting policies. Theorem 1 establishes
that, under assumptions, the estimated variance under the proposed approach will be smaller than
the estimated variance under the standard approach. However, we recognize that there are limi-
tations to this approach when the assumptions of Theorem 1 about balanced experimental design
and relatively small within-segment variances are violated. The most prominent limitation is that,
if the between-segment variation is small, this approach could theoretically lower precision due to
small sample effects.

As argued by Imbens and Rubin (2015) and Athey and Imbens (2017), in expectation the
variance under stratification (i.e., segmentation) cannot be larger than the variance without strat-
ification, despite the small samples. This means that there is no cost to segmentation in terms of
the variance itself; nevertheless, there is a cost in terms of estimation of the variance. The variance
with segmentation is less than or equal to the variance without segmentation, and, assuming unbi-
ased estimators for the variance, the expectation of the estimated variance with segmentation will
therefore be less than or equal to the expectation of the estimated variance without segmentation.
However, it is the variance of the estimator of the variance that can be larger with segmentation
than without segmentation. The reduction of the degrees of freedom due to smaller sample sizes
may result in cases where the estimated variance with segmentation is larger than the estimated
variance without segmentation.

In practice, because the segments are constructed using the recommendation actions, the ad-
justment in degrees of freedom due to small samples will generally be outweighed by the benefits
of comparing outcomes within segments and then aggregating within-segment differences to remove
between-segment variation. However, if there is a risk of large outliers, or there is a large number
of possible actions, then these small sample effects could be important. We briefly discuss both
possibilities.

An example of large outliers could include promotions sent to attract new customers. Typically
fewer than 1% of customers respond to prospecting promotions.3 If most of the customers who
respond spend an average of $500 a year, but an occasional customer spends over $10,000 (perhaps
because they are re-selling merchandise), then there is a risk of large outliers. This risk is not a
problem if the sample size is large enough. However, comparing outcomes within segments reduces
the sample size of the comparisons. This risk may be mitigated by truncating outlying observations
(such as capping annual purchases at $1,000).

3A low response rate is generally optimal. If the average response rate is above 1%, then it is often profitable for
the firm to mail to more prospective customers (including those who have a lower probability of responding).
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The small sample limitation also becomes more relevant if the number of possible actions is
very large. Segmenting by recommended actions may divide the sample into many segments. This
limitation is particularly relevant for dynamic policies that involve a sequence of actions. For
example, Simester et al. (2006) tested their dynamic catalog targeting policy using a sequence of
12 catalog mailing opportunities. This represents 212 possible mailing sequences, which correspond
to 4,096 different actions. Similarly, Toubia et al. (2013) tested their dynamic conjoint design
algorithm using a sequence of 16 paired comparison conjoint questions. An action in this setting
represents a sequence of 16 paired comparison conjoint questions, and each question is chosen from
a wide range of potential questions. As a result, the entire action space includes millions of potential
question combinations. In this setting it would be impractical to segment customers according to
the actions recommended by alternative policies.

4 An Example Using Actual Data

In this section we illustrate the efficiency advantages offered by the proposed approach using data
from an actual experiment designed to validate different targeting policies. We use this data to
calculate the estimates and standard errors under both the standard and proposed approaches.

In a recent study, Simester, Timoshenko, and Zoumpoulis (2017) (hereafter “STZ”) investigate
how a retailer should target prospective customers with promotions. They consider three different
actions, including two different types of promotions sent by mail and a third no mail (control)
treatment. We will label these actions as actions a, b and c. They compare seven different targeting
policies, which we label P1, . . . , P7.

In their study, STZ randomly assign approximately four million prospective households to ten
experimental conditions. These ten experimental conditions correspond to the seven candidate
policies and the three actions. If a household were in one of the seven experimental conditions
associated with a targeting policy, the household received the action recommended by that targeting
policy. If the household were in one of the three experimental conditions associated with an action,
the household received that action.

We will initially focus on the two experimental conditions associated with policies P1 and P2

(in the next section we extend the focus to the conditions associated with the three actions). We
illustrate the standard approach and proposed approach for comparing the outcomes of these two
policies. Table 2 reports the sizes of the samples that are assigned to each of the two policies P1

and P2 and the average outcomes for these samples, where the households are segmented according
to the actions recommended by each policy. To preserve confidentiality, the average profits are all
multiplied by a common random number.

When evaluating a single policy, the standard approach aggregates the outcomes within each
experimental condition. This yields standard errors of $0.043 and $0.038 for policies P1 and P2,
respectively, as shown in Table 3.
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Table 2: STZ study: Outcomes for the Experimental Conditions Associated with Policies P1 and P2

Recommended Action Sample Size Average Profit
Policy P1 Policy P2 Policy P1 Policy P2 Standard Approach Proposed Approach

Row s t NP1
P1:s,P2:t NP2

P1:s,P2:t P1 P2 ŷP1:s,P2:t ŷP1:s,P2:t
1 a a 492 924 $0.253 −$0.375 −$0.157 −$0.157
2 a b 17,342 12,285 $0.316 $0.048 $0.316 $0.048
3 a c 21,685 20,430 −$0.058 $0.191 −$0.058 $0.191
4 b a 28,182 32,236 $2.136 $1.757 $2.136 $1.757
5 b b 214,693 209,792 $1.886 $1.786 $1.837 $1.837
6 b c 67,405 69,165 $1.067 $0.800 $1.067 $0.800
7 c a 2,831 1,563 $0.043 −$0.056 $0.043 −$0.056
8 c b 19,946 14,772 $0.173 −$0.228 $0.173 −$0.228
9 c c 52,413 46,671 $0.086 $0.133 $0.108 $0.108

Total 424,989 407,838 $1.293 $1.210 $1.278 $1.192

The table reports outcomes from an experiment reported by Simester, Timoshenko, and Zoumpoulis (2017).
It reports the sample size and average profit in the two experimental conditions associated with policies P1
and P2. The outcomes are reported for each customer segment, where the customer segments are identified
by the actions recommended by P1 and P2. The shading identifies the segments in which the two policies
recommend the same action. The profits are all multiplied by a common random number.

The proposed approach introduces two changes when evaluating a single policy. First, standard
errors are calculated separately within each segment, and these standard errors are then aggregated
across segments. This helps reduce variation introduced by between-segment differences. Second,
for the three segments in which the two policies recommend the same action (rows 1, 5 and 9 in
Table 2), the proposed approach uses the outcome from all customers, irrespective of which of the
two policies they are assigned to. Pooling across the two conditions in these segments increases the
sample size, yielding an additional efficiency improvement. The standard errors under the proposed
approach are $0.033 and $0.032 for policies P1 and P2, respectively. As expected, these are both
smaller than the corresponding standard errors under the standard approach.

This pooling is only possible because we segmented the customers by the recommended actions
of the candidate policies. If we had segmented by a covariate, the recommended actions would have
almost certainly varied between the two policies within every segment. Recall also that the STZ
study actually implemented seven different targeting policies. Although not reported here, these
additional experimental conditions offer additional opportunities to pool across conditions where
the policies recommend the same actions.

The efficiency improvements when evaluating a single policy are relatively modest compared to
the efficiency improvements when comparing two policies. The standard approach to comparing the
outcome of two targeting policies is to first calculate the average outcome for each policy, and then
to calculate the difference in these means. This approach yields an estimated difference of $0.083
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Table 3: Evaluating and Comparing Policies P1 and P2 in the STZ study: Estimates and Standard Errors

Standard Approach Proposed Approach

Policy P1
Estimate $1.293 $1.278
Standard Error $0.043 $0.033

Policy P2
Estimate $1.210 $1.192
Standard Error $0.038 $0.032

Policy P1 - Policy P2
Estimate $0.083 $0.086
Standard Error $0.057 $0.026

The table reports the estimates of the performances of two policies and their comparison, along with standard
errors, using data from Simester, Timoshenko, and Zoumpoulis (2017). The profits are all multiplied by a
common random number.

with a standard error of $0.057.
The proposed approach again offers two efficiency advantages when comparing policies. The

first advantage is that it reduces variance introduced by between-segment differences. Differencing
outcomes within each segment and then aggregating these differences across segments is an effective
way of controlling for segment-specific effects. These segment-specific effects are a source of variation
in the standard approach, but are essentially removed under the proposed approach.

The second efficiency improvement when comparing policies occurs in segments for which the
candidate policies recommend the same action. By pooling customers across the two conditions
in these segments, the proposed approach recognizes that the difference in the outcomes of the
two policies is zero by construction. For example, in the first row of Table 2, policies P1 and P2

both recommend action a. Because the two policies both recommend the same action, there is
no difference in the true outcome for this segment. However, even though we know the outcomes
should be identical for this segment, under the standard approach the observed outcomes attributed
to each policy are different. The firm earned $0.253 on average from the 492 households in the
experimental condition associated with policy P1 and lost $0.375 on average from the 924 households
in the experimental condition associated with policy P2. By including these results in the aggregate
outcomes, the standard approach introduces an additional source of noise to its estimates. In
contrast, under the proposed approach, the estimates for both policies are the same for the segment
in the first row (and equal to −$0.157).

These changes reduce the standard error when comparing the two policies, from $0.057 under
the standard approach, to $0.026 under the proposed approach. This is a substantial efficiency
improvement, which also has substantive importance in our example. By cutting the standard
error in half, the difference in outcomes between the two policies becomes statistically significant
(p < 0.05), whereas the difference was not significant when using the standard approach.
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If we were only interested in the relative performance of the two policies, and were not interested
in the absolute performance of either policy, then we could omit from the study customers in the
three segments in which the two policies recommend the same action. This represents 524,985
customers, or 63% of the sample of customers that were assigned either to P1 or to P2. This 63% of
the sample provides no information about the relative performance of the two policies. The costs
associated with mailing to this 63% of the sample could either be saved, or re-allocated to increasing
the number of customers assigned to either P1 or P2 from the other six segments. If we were to
re-allocate this 63% of the sample to the other six segments using the weights reported in Table 2,
the expected average difference in the outcomes from the two policies would not change. However,
in those six segments the increase in sample size will reduce the standard errors of the differences
quite drastically.4

5 An Alternative Experimental Design: Randomizing by Action

Our primary focus is to illustrate how we can design segments that allow us to improve efficiency
when comparing targeting policies. These efficiency improvements require that we segment cus-
tomers by the actions recommended by the candidate targeting policies. At least some of the ben-
efits of this segmentation approach survive when evaluating targeting policies using an alternative
experimental design.

Recall that the traditional experimental design for evaluating targeting policies constructs a
separate experimental condition for each candidate policy. Customers are randomly assigned to
policies, and so all of the customers in an experimental condition are targeted with the actions
recommended by a single policy. A disadvantage of this traditional design is that it only allows
comparison of the policies that were implemented. If a new policy is subsequently identified, it is
generally not possible to compare the performance of the new policy without implementing it. An
alternative experimental design allows evaluation of any targeting policy, and so any new policy can
be evaluated using the existing data.

Instead of randomly assigning customers to policies, the alternative design randomly assigns
customers to actions. Instead of one experimental condition for each candidate policy, there is one
experimental condition for each possible action. The number of experimental conditions matches
the number of possible actions (i.e., the size of the action space). In contrast, under the traditional
design, the number of experimental conditions matches the number of candidate targeting policies,
which could be very large.

For example, consider a retailer choosing whether to mail promotion a, b or c. One randomly
4A simple simulation estimates the standard error of the difference in the two policies would be reduced from

$0.026 to $0.016. To run the simulation, we re-allocate each observation in the 63% of the sample (i.e., in the three
segments in which the two policies recommend the same action) to one of the remaining six segments, selected at
random, with probabilities proportional to the sizes of the six segments. Having chosen a segment for an observation,
we then simulate its profit value to be equal to one of the realized profit values within that segment, selected uniformly
at random. We repeat ten times and average the results.
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selected sample of customers receives promotion a, a second randomly selected sample receives
promotion b, and a third randomly selected sample promotion c. As long as the samples are
randomly selected, the sample sizes across these three experimental conditions need not be the
same. For example, 100,000 could receive promotion a, 50,000 could receive promotion b, and the
retailer’s remaining 20 million customers could receive promotion c (which might be no promotion
at all).5

Randomizing by action guarantees that, within each segment that is large enough, each possible
action is received by a random sample of customers. The key idea behind the alternative experi-
mental design is the following: to evaluate a policy on a segment of customers for which the policy
recommends a specific action, use the customers within the segment that were hit with that specific
action.

We can illustrate this point by returning to the example that we discussed at the start of
Section 2. Consider the segment of (female) customers for which policy P1 recommends promotion
b and policy P2 recommends promotion c. Consider an experimental design that randomly assigns
a third of all customers to each promotion (a, b, and c). Because the assignment is random,
the three sub-samples of female customers are equivalent. This allows us to directly evaluate the
outcomes from the female customers that received promotion b and the female customers that
received promotion c. If we also use the outcomes from the male customers who received promotion
a, we can then evaluate the outcome of each of the policies P1 and P2.

This is only possible if we segment customers using the recommended actions from each policy.
If instead of segmenting customers by the recommended actions, we segment by age, then within
each age segment the policies recommend different actions for male and female customers. As a
result, there is no longer a single action for each policy associated with a segment, and so we cannot
use the alternative experimental design to evaluate the outcome of a policy. An experimental design
in which we randomize by action allows us to evaluate the outcome of a policy on a segment for
which the policy recommends a single action, but does not allow us to evaluate the outcome of
multiple actions.6

It is obviously important that to evaluate every alternative policy, the experiment randomly
assigns every type of customer to every possible action. For example, if the experiment just included
experimental conditions for promotions a and b, we could not evaluate policies that recommend
policy c. This limitation never arises when customers are randomly assigned to actions. The random
assignment to actions ensures that for every large enough segment, every action is implemented for a

5This is a relatively simple experiment to implement. Within each experimental condition all participants receive
the same action. In practice, this is often easier to implement than targeting different participants within the same
experimental condition with different actions. It is also likely to be less susceptible to implementation errors.

6A rare exception could arise if a targeting policy recommended randomizing between actions within a segment.
In this case we could use a weighted average of the outcomes for each action. However, this would be a very unusual
targeting policy. In general targeting policies target customers with different actions because the customers are
different. It is these customer differences that prevent us from using a weighted average of the outcomes for each
action.
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random sample of customers. However, this condition may not be satisfied when randomly assigning
customers to policies instead of actions. Consider a segment of customers for which two policies
both recommend promotion a. Based on the outcomes of the two policies on the segment, we cannot
evaluate an alternative policy that recommends promotion b or c on that segment.7

Limitations of Randomizing by Action
While randomly assigning customers by actions has clear advantages, there are also disadvantages.
One potential disadvantage is cost. It is sometimes obvious that an action is optimal for only a
small segment of the population, and so randomly assigning customers to receive this action may
lead to an opportunity cost. For example, if mailing a catalog to customers is profitable for most
customers, then deciding to withhold these catalogs from a randomly selected sample of customers
will result in foregone profit. This cost can be minimized by under-sampling the actions that are
not optimal for most customers.

In a related point, it may be unethical or unacceptable to randomly assign some customers to
some conditions. For example, there is an extensive literature studying the impact of interventions
designed to reduce poverty. An important research question in this literature is the design of
targeting policies to ensure that the interventions only target the truly poor households and not
the rich (Hanna and Karlan, 2017). Randomly assigning actions to households could result in
some of the rich households receiving the interventions, which may be politically unacceptable.
Alternatively, in the medical field, it may be unethical to withhold some treatments from some
patients. This limitation can be easily addressed by designing the randomization procedures to
prevent experimental conditions that are unacceptable or unethical. Although this may prevent
evaluation of every possible policy, it does not prevent evaluation of any policy that is acceptable
and ethical.

Applying our Proposed Analysis to Randomization by Action
Randomization by action can be thought of as an example of cross validation. In order for cross
validation to be feasible, customers must be segmented according to the recommended actions
from each policy. In this respect, our insight about the benefits of segmenting customers using
recommended actions are critical to evaluation of policies under a randomized by action design.
Without this segmentation, we cannot evaluate a targeting policy when using this experimental
design.

7This is a second reason for which we may not want to omit segments of customers in which alternative policies
recommend the same action. Recall from our earlier discussion that omitting these customers results in no loss of
information about the relative performance of the two policies. However, omitting these customers means that it is no
longer possible to evaluate the absolute performance of either policy. It also makes it impossible to test policies that
recommend a different action for this segment of customers. Recall that evaluating every alternative policy requires
that we have randomly assigned every type of customer to every action. For both reasons, instead of omitting customer
segments for which the policies make the same recommendations, it will often be preferable to simply under-sample
these segments.
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This has an important implication when comparing the “standard” and “proposed” approaches
for estimating the outcome of a single policy or the difference in two policies. Because estimating
outcomes requires segmentation of the customers according to the recommended actions, a random-
ized by action design cannot use the “standard” approach that is available when randomizing by
policy. There is nothing equivalent to the standard approach when randomizing by action.

However, one could use the following standard approach to estimate the variance: identify all
of the observations that are used to evaluate a policy and estimate the variance in the outcome
using the sample variance across all of these observations. Such approach is neither mathematically
justified nor efficient. Instead, the proposed approach to estimating the variance discussed in the
previous sections can also be extended to a randomized by action design. In particular, the variance
of the outcomes can be estimated within each segment, and these within-segment variances can then
be aggregated across segments.

We make two additional comments. Our first comment focuses on the evaluation of a single
policy. In the previous sections we noted that when evaluating a single policy under a random-
ized by policy design, there are two sources of efficiency improvement; (a) improved treatment of
between-segment differences, and (b) pooling of observations across experimental conditions when
two policies recommend the same action. While the first benefit survives, the second benefit is
not relevant when analyzing a randomized by action experimental design. Because we do not have
separate experimental conditions associated with each policy, we do not have observations across
separate experimental conditions to pool over.

The second comment makes a similar point when comparing two policies. Recall that under a
randomized by policy design the two benefits of using the proposed approach were: (a) improved
treatment of between-segment differences, and (b) recognition that the difference in performance
is truly zero in segments in which the policies recommend the same actions. The benefit from the
treatment of between-segment differences again survives under a randomized by action design. The
second benefit is embedded to the randomized by action design by construction: under this design,
any estimate of the outcome relies upon segmentation of customers using the recommended actions,
and so an estimator will recognize there is no difference in outcomes when policies recommend the
same actions. In a segment where both policies recommend the same action, the evaluation of
each policy uses an identical set of observations, and so there can be no difference in the policies’
estimated outcomes.

In the Appendix we demonstrate how to extend our estimate and variance calculations under the
proposed approach to an experiment in which customers are randomly assigned to actions (instead
of policies). We formally describe how to evaluate a single policy and how to compare two policies
under the proposed approach, and we derive expressions for the respective variance estimators.

In the remainder of this section we return to the STZ study and illustrate how our proposed
approach improves efficiency when using a randomized by action design.
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Application to the STZ Study
Recall that the STZ study implemented both a randomized by policy and a randomized by action
design. In seven of the experimental conditions customers were assigned a targeting policy, and
thus received the action that the policy would recommend for them. In three of the experimental
conditions customers were assigned an action. This provides an ideal dataset to illustrate the
application of the alternative experimental design.

In Table 2 we previously summarized the outcomes in the two experimental conditions associated
with two of the seven targeting policies (we labelled them policies P1 and P2). We again focus
on these two targeting policies and illustrate how to evaluate them using only the experimental
conditions associated with the three actions. In Table 4 we report the sample sizes and average
outcomes in each of these three experimental conditions. These findings are reported separately for
each segment, where the segments are defined by the actions recommended by the two policies.

Table 4: STZ Study: Outcomes for the Experimental Conditions Associated with the Three Actions

Recommended Action Sample Size Average Profit
Policy P1 Policy P2 Action a Action b Action c Action a Action b Action c

Row s t NPa

P1:s,P2:t NPb

P1:s,P2:t NPc

P1:s,P2:t
1 a a 1,579 3,963 869 −$0.347 −$0.157 $0.952
2 a b 13,057 11,564 16,744 $0.096 $0.013 $0.243
3 a c 21,789 10,712 18,480 −$0.089 −$0.009 $0.273
4 b a 21,688 17,076 26,424 $1.799 $1.467 $1.159
5 b b 204,833 225,996 202,136 $1.499 $1.750 $1.321
6 b c 64,403 51,847 73,883 $1.206 $1.194 $0.799
7 c a 3,714 3,165 3,251 −$0.392 −$0.535 $0.306
8 c b 22,281 21,448 18,675 −$0.263 −$0.081 $0.146
9 c c 50,838 51,153 52,333 −$0.268 −$0.308 $0.118

Total 404,182 396,924 412,795 $0.993 $1.166 $0.912

The table reports outcomes from an experiment reported by Simester, Timoshenko, and Zoumpoulis (2017).
It reports the sample size and average profit in the three experimental conditions associated with actions a, b,
and c. The outcomes are reported for each customer segment, where the customer segments are constructed
using the actions recommended by policies P1 and P2. The shading identifies the outcomes used to evaluate
policy P1. The profits are all multiplied by a common random number.

We use shading to highlight the outcomes that can be used to evaluate policy P1: to evaluate
a policy on a segment of customers to which the policy recommends a specific action, we use the
customers within the segment that were hit with that specific action. For example, for the segment
of customers in which P1 recommended action a and P2 recommended action b (row 2), we observe
an average profit of $0.096 as the outcome for action a, $0.013 for action b, and $0.243 for action c.
Only the outcome for action a is relevant for evaluating policy P1 for the segment of customers in
that row. Notice that randomization ensures that within this segment, a sub-segment of customers
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were assigned to each of the three actions.
In Table 5 we report the estimates and standard errors of the profits earned for each policy

and the difference in these profits between the two policies. As we discussed, in a randomized by
action design there is nothing equivalent to the standard approach for the estimator of the outcome.
Any estimator relies upon segmentation of the customers according to the recommended actions.
In particular, to evaluate policy P1 we first segment the 405,603 observations into nine segments
(represented by the nine shaded cells in Table 4). We calculate the average outcome in each segment,
and then aggregate these segment averages using their corresponding weights.

To estimate the variance of this estimator, we estimate the variance within each segment and
aggregate this variance across segments. In contrast, a standard (yet unjustified) approach would
be to use the sample variance across all 405,603 observations. These calculations are detailed in
Table 5.

To evaluate the difference in the performance of two policies, we calculate the difference in the
estimates of each policy’s performance. To estimate the variance in this estimate of the difference,
we estimate the variance of the difference within each of the nine segments, and aggregate this
variance across segments. In contrast, a standard (yet unjustified) approach would be to use the
overall variance estimates for policies P1 and P2. These calculations are detailed in Table 5. The
findings confirm that the proposed approach is more efficient as it produces smaller standard errors.

Table 5: Evaluating and Comparing Policies P1 and P2 in the STZ Study Using the Alternative Experimental
Design

Standard Approach Proposed Approach

Policy P1
Estimate — $1.206
Standard Error $0.047 $0.046

Policy P2
Estimate — $1.157
Standard Error $0.044 $0.043

Policy P1 - Policy P2
Estimate — $0.048
Standard Error $0.065 $0.027

The table reports the estimates of the performances of two policies and their comparison, along with standard
errors, when evaluating the policies using the alternative experimental design, using data from Simester,
Timoshenko, and Zoumpoulis (2017). The profits are all multiplied by a common random number.

Recall that the advantage of randomizing by action is that it allows evaluation of any targeting
policy. To evaluate every possible targeting policy we require that for any segment of customers
there is a random sample of customers that received action a, another random sample that received
action b, and a third random sample that received action c. Randomizing by action guarantees
that this is always satisfied, assuming the segments are large enough. In contrast, randomizing
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by policy does not guarantee this, as we mentioned above. However, it is possible that variation
in recommended actions across the seven targeting policies may mean that randomizing by policy
also satisfies that, for some segments, every action is implemented for a sample of customers. We
can investigate this possibility by asking: given a segment, are all three actions represented in the
actions recommended by the seven policies for the households in the segment? For example, if
policy P1 recommends action a, policy P4 recommends action c and policy P7 recommends action
b, then all three actions would be represented. A simple comparison reveals that in the STZ study,
all three actions are represented by the seven policies for just 30.92% of the approximately four
million households. For the remaining 69.08% of households, there is at least one action that is
not recommended by any of the seven candidate policies. For these households it is not possible to
evaluate policies that recommend the omitted action(s).

This example also highlights one of the limitations of the randomized-by-action experimental
design. Recall that randomly assigning actions to customers may introduce an opportunity cost if
some actions are optimal for only a small number of customers. In the STZ study, action b is more
profitable than the other two actions; the average profit from action b is $1.166 compared to $0.993
and $0.912 for the other two actions (see Table 4). The seven optimized policies P1, . . . , P7 recognize
the profitability of action b, and so they recommend this action for most of the households. As a
result, the average profit across the approximately 2.8 million households in the seven experimental
conditions pertaining to the seven policies is $1.208. This is significantly higher than the $1.022
average profit earned from the approximately 1.2 million in the conditions associated with the
three actions. Randomization by action on these approximately 1.2 million customers resulted
in an opportunity cost to the firm of approximately $225,000. This cost could be reduced by
underweighting actions a and c when randomly allocating customers to actions.

6 Conclusions

The gold standard for evaluating targeting policies is to evaluate them using an experiment. We
have presented an approach to analyzing these experiments that improves their efficiency. The key
insight is that there are important advantages of segmenting the experimental data according to
the actions recommended by the target policies. This segmentation not only controls for between-
segment differences, it also yields segments in which candidate targeting policies recommend the
same actions. Within the segments in which the policies recommend the same actions, we know
there is no difference in the true performance of the policies. This insight helps improve efficiency
both when evaluating a single policy and when comparing policies.

We provide expressions for the estimates and variance calculations under both the standard
approach and proposed approach. These expressions allow us to formally compare the efficiency of
the two approaches and establish conditions under which efficiency is guaranteed to improve under
the proposed approach. We also illustrate how to apply these calculations using data from an actual
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experiment.
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A Evaluating a Single Policy Using the Standard Approach - the
Variance

We have VarW (ŷP1) = EW [ŷ2
P1

]− (EW [ŷP1 ])2. For the first term, we write

EW [ŷ2
P1 ] = EW

( 1
NP1

N∑
i=1

1Wi=P1Y obs
i

)2 .

The squared terms of the sum are of the form

EW

[(
1Wi=P1Y obs

i

)2
]

= NP1

N
· Y 2

i (P1(i)) ,

while the cross terms are of the form

EW

[(
1Wi=P1Y obs

i

) (
1Wj=P1Y obs

j

)]
= Pr (Wi = Wj = P1) · Yi (P1(i)) · Yj (P1(j))

=

( N−2
NP1−2

)
( N

NP1

) · Yi (P1(i)) · Yj (P1(j))

= NP1(NP1 − 1)
N(N − 1) · Yi (P1(i)) · Yj (P1(j)) ,

for i 6= j. Overall, we can write

EW [ŷ2
P1 ] = 1

N2
P1

NP1

N

N∑
i=1

Y 2
i (P1(i)) + NP1(NP1 − 1)

N(N − 1)

N∑
i=1

∑
j 6=i

Yi (P1(i)) · Yj (P1(j))


and

(EW [ŷP1 ])2 =
(

1
N

N∑
i=1

Yi (P1(i))
)2

= 1
N2

 N∑
i=1

Y 2
i (P1(i)) +

N∑
i=1

∑
j 6=i

Yi (P1(i)) · Yj (P1(j))

 .

Combining the two, we have that

VarW (ŷP1) =
( 1

NP1 ·N
− 1

N2

) N∑
i=1

Y 2
i (P1(i))−

( 1
N2 −

NP1 − 1
NP1 ·N · (N − 1)

) N∑
i=1

∑
j 6=i

Yi (P1(i)) · Yj (P1(j))

(7)
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Starting from the definition of S2
P1,N , we write

S2
P1,N = 1

N − 1

N∑
i=1

Yi (P1(i))− 1
N

N∑
j=1

Yj (P1(j))

2

= 1
N − 1

( N∑
i=1

Y 2
i (P1(i))

)
−N

(∑N
i=1 Yi(P1(i))

N

)2


=
( 1

N − 1 −
1

(N − 1)N

) N∑
i=1

Y 2
i (P1(i))− 1

(N − 1)N

N∑
i=1

∑
j 6=i

Yi (P1(i)) · Yj (P1(j)). (8)

We compare expressions (7) and (8). We show that the coefficients for the terms
∑N

i=1 Y 2
i (P1(i)),∑N

i=1
∑

j 6=i Yi (P1(i)) · Yj (P1(j)) in Equation (7) equal the coefficients in Equation (8), scaled by
1

NP1

(
1− NP1

N

)
.

Indeed, we have

1
NP1

(
1− NP1

N

)( 1
N − 1 −

1
(N − 1)N

)
=

( 1
NP1

− 1
N

)( 1
N − 1 −

1
(N − 1)N

)
= N −NP1

NP1 ·N2

= 1
NP1 ·N

− 1
N2 .

We also have that

1
NP1

(
1− NP1

N

) 1
(N − 1)N = N −NP1

NP1 ·N2 · (N − 1) ,

which is equal to the respective coefficient of Equation (7), because

1
N2 −

NP1 − 1
NP1 ·N · (N − 1) = NP1(N − 1)− (NP1 − 1)N

NP1 ·N2 · (N − 1) = N −NP1

NP1 ·N2 · (N − 1) .

We have thus shown that VarW (ŷP1) =
S2

P1,N

NP1

(
1− NP1

N

)
.
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B Evaluating a Single Policy Using the Proposed Approach - Un-
biasedness

For s 6= t, we have

EW

[
ŷP1:s,P2:t

]
= 1

NP1
P1:s,P2:t

∑
i∈gP1:s,P2:t

EW [1Wi=P1 ] · Y obs
i

= 1
NP1

P1:s,P2:t

NP1
P1:s,P2:t
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∑
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Yi(s)

= 1
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∑
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Yi(s)

= yP1:s,P2:t.

We also have

EW [ŷP1:s,P2:s] = 1
NP1

P1:s,P2:s + NP2
P1:s,P2:s

∑
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EW [1Wi=P1 + 1Wi=P2 ] · Y obs
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= 1
NP1

P1:s,P2:s + NP2
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(
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NP1:s,P2:s

+
NP2
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) ∑
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Yi(s)

= 1
NP1:s,P2:s

∑
i∈gP1:s,P2:s

Yi(s)

= yP1:s,P2:s.

We can therefore write

EW [ŷP1 ] =
∑

s,t NP1:s,P2:t · EW

[
ŷP1:s,P2:t

]
N

=
∑

s,t NP1:s,P2:t · yP1:s,P2:t

N
= yP1 .

C Evaluating a Single Policy Using the Proposed Approach - the
Variance

Showing that, for s 6= t,

VarW

(
ŷP1:s,P2:t

)
=

S2
P1,gP1:s,P2:t

NP1
P1:s,P2:t

(
1−

NP1
P1:s,P2:t

NP1:s,P2:t

)
,

follows the exact same steps as the derivation in Appendix A, restricted to the segment gP1:s,P2:t.
The derivation for the case of a segment in which the two policies recommend the same action
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is similar: a calculation shows that

VarW (ŷP1:s,P2:s) =

 1(
NP1
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.

D Comparing Two Policies Using the Standard Approach - the
Variance

We start by writing

VarW (ŷP1−P2) = VarW (ŷP1 − ŷP2) = VarW (ŷP1) + VarW (ŷP2)− 2 · CovW (ŷP1 , ŷP2) .

We calculate the covariance. We have
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We first calculate, for i 6= j,
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We also calculate
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Overall, we have
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We write

S2
P1,N

NP1
= 1

NP1(N − 1)

N∑
i=1

Yi(P1(i))− 1
N

N∑
j=1

Yj(P1(j))

2

= 1
NP1(N − 1)

(1− 1
N

) N∑
i=1

Y 2
i (P1(i))− 1

N

N∑
i=1

∑
j 6=i

Yi (P1(i)) · Yj (P1(j))

 , (11)

32



S2
P2,N

NP2
= 1

NP2(N − 1)

N∑
i=1

Yi(P2(i))− 1
N

N∑
j=1

Yj(P2(j))

2

= 1
NP2(N − 1)

(1− 1
N

) N∑
i=1

Y 2
i (P2(i))− 1

N

N∑
i=1

∑
j 6=i

Yi (P2(i)) · Yj (P2(j))

 , (12)

and

S2
P1,P2,N

N
= 1

N(N − 1)

N∑
i=1

(
Yi(P1(i))− Yi(P2(i))− 1

N

N∑
j=1

(
Yj(P1(j))− Yj(P2(j))

))2

= 1
N(N − 1)

 N∑
i=1

Y 2
i (P1(i)) +

N∑
i=1

Y 2
i (P2(i)) + 1

N

(
N∑

i=1
Yi(P1(i))

)2

+ 1
N

(
N∑

i=1
Yi(P2(i))

)2

−2 ·
N∑

i=1
Yi(P1(i)) · Yi(P2(i))− 2 ·

N∑
i=1

Yi(P1(i))
∑N

j=1 Yj(P1(j))
N

+2 ·
N∑

i=1
Yi(P1(i))

∑N
j=1 Yj(P2(j))

N
+ 2 ·

N∑
i=1

Yi(P2(i))
∑N

j=1 Yj(P1(j))
N

−2 ·
N∑

i=1
Yi(P2(i))

∑N
j=1 Yj(P2(j))

N
− 2

N

(
N∑

i=1
Yi(P1(i))

)(
N∑

i=1
Yi(P2(i))

)]

= 1
N(N − 1)

[(
1− 1

N

)( N∑
i=1

Y 2
i (P1(i)) +

N∑
i=1

Y 2
i (P2(i))

)

− 1
N

 N∑
i=1

∑
j 6=i

Yi(P1(i)) · Yj(P1(j)) +
N∑

i=1

∑
j 6=i

Yi(P2(i)) · Yj(P2(j))


−
(

2− 2
N

) N∑
i=1

Yi(P1(i)) · Yi(P2(i)) + 2
N

N∑
i=1

∑
j 6=i

Yi(P1(i)) · Yj(P2(j))

 .(13)

We compare the terms of Equation (10) with the terms of

S2
P1,N

NP1
+

S2
P2,N

NP2
−

S2
P1,P2,N

N
, (14)

using Equations (11), (12), and (13).
We first compare the terms with

∑N
i=1 Y 2

i (P1(i)). Expression (14) has this term multiplied by
1

NP1 (N−1)

(
1− 1

N

)
− 1

N(N−1)

(
1− 1

N

)
. This is equal to 1

NP1 N −
1

N2 , which is the multiplier of term∑N
i=1 Y 2

i (P1(i)) in expression (10).
The comparison for the terms with

∑N
i=1 Y 2

i (P2(i)) is similar.
We now compare the terms with

∑N
i=1

∑
j 6=i Yi(P1(i)) · Yj(P1(j)). Expression (10) has this term

multiplied by NP1−1
NP1 N(N−1) −

1
N2 . This is equal to − 1

NP1 (N−1)
1
N + 1

N(N−1)
1
N , which is the multiplier

of term
∑N

i=1
∑

j 6=i Yi(P1(i)) · Yj(P1(j)) in expression (14).
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The comparison for the terms with
∑N

i=1
∑

j 6=i Yi(P2(i)) · Yj(P2(j)) is similar.
We now compare the terms with

∑N
i=1 Yi(P1(i)) · Yi(P2(i)). Expression (14) has this term multi-

plied by 1
N(N−1)

(
2− 2

N

)
. This is equal to 2

N2 , which is the multiplier of term
∑N

i=1 Yi(P1(i)) · Yi(P2(i))
in expression (10).

We finally compare the terms with
∑N

i=1
∑

j 6=i Yi(P1(i)) · Yj(P2(j)). In both expressions (10)
and (14), term

∑N
i=1

∑
j 6=i Yi(P1(i)) · Yj(P2(j)) is multiplied with − 2

N2(N−1) .
We have thus shown that

VarW (ŷP1−P2) =
S2

P1,N

NP1
+

S2
P2,N

NP2
−

S2
P1,P2,N

N
.

E Comparing the Efficiency of the Standard and the Proposed
Approaches

We first compare the estimated variances under each approach for single policy evaluation.
We start with the estimated variance under the proposed approach:

∑
s,t
s 6=t

(
NP1:s,P2:t

N

)2 s2
P1,gP1:s,P2:t

NP1
P1:s,P2:t

(
1−

NP1
P1:s,P2:t

NP1:s,P2:t

)

+
∑

s

(
NP1:s,P2:s

N

)2 s2
gP1:s,P2:s

NP1
P1:s,P2:s + NP2

P1:s,P2:s
·
(

1−
NP1

P1:s,P2:s + NP2
P1:s,P2:s

NP1:s,P2:s

)
,

(15)

which we want to compare to the estimated variance under the standard approach,

s2
P1,N

NP1

(
1− NP1

N

)
. (16)

We assume a balanced experimental design, such that the proportion of customers assigned to
a policy within a segment is the same as the proportion of customers assigned to that policy in any
other segment, i.e.,

NP1
P1:s,P2:t

NP1:s,P2:t
= NP1

N

for all s, t.
For s 6= t, we can write

(
NP1:s,P2:t

N

)2 s2
P1,gP1:s,P2:t

NP1
P1:s,P2:t

=
(

NP1
P1:s,P2:t
NP1

)2
s2

P1,gP1:s,P2:t

NP1
P1:s,P2:t

= 1
NP1

NP1
P1:s,P2:t
NP1

s2
P1,gP1:s,P2:t ,
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and for the segments where the two policies recommend the same action, we can write

(
NP1:s,P2:s

N

)2 s2
gP1:s,P2:s

NP1
P1:s,P2:s + NP2

P1:s,P2:s
=

(
NP1

P1:s,P2:s
NP1

)2
s2

gP1:s,P2:s

NP1
P1:s,P2:s + NP2

P1:s,P2:s

<

(
NP1

P1:s,P2:s
NP1

)2
s2

gP1:s,P2:s

NP1
P1:s,P2:s

= 1
NP1

NP1
P1:s,P2:s
NP1

s2
gP1:s,P2:s

We have 1−
N

P1
P1:s,P2:t

NP1:s,P2:t
= 1− NP1

N , and 1−
N

P1
P1:s,P2:s+N

P2
P1:s,P2:s

NP1:s,P2:s
= 1− NP1 +NP2

N < 1− NP1
N . We can

now compare the expressions (15) and (16), after eliminating the adjustment for the size of the
super-population.

∑
s,t
s 6=t

(
NP1:s,P2:t

N

)2 s2
P1,gP1:s,P2:t

NP1
P1:s,P2:t

+
∑

s

(
NP1:s,P2:s

N

)2 s2
gP1:s,P2:s

NP1
P1:s,P2:s + NP2

P1:s,P2:s

<
1

NP1

∑
s,t
s 6=t

NP1
P1:s,P2:t
NP1

s2
P1,gP1:s,P2:t +

∑
s

NP1
P1:s,P2:s
NP1

s2
gP1:s,P2:s

 .

If it holds that s2
P1,gP1:s,P2:t

≤ s2
P1,N for all s, t with s 6= t, and s2

gP1:s,P2:s ≤ s2
P1,N for all s, then

the previous expression is bounded above by

1
NP1

∑
s,t

NP1
P1:s,P2:t
NP1

s2
P1,N =

s2
P1,N

NP1
,

showing that the proposed method strictly improves the variance over the standard method.
We now compare the estimated variances under the standard and the proposed approach for

comparing two policies. We start with the estimated variance under the proposed approach

∑
s,t
s 6=t

(
NP1:s,P2:t

N

)2
s2

P1,gP1:s,P2:t

NP1
P1:s,P2:t

+
s2

P2,gP1:s,P2:t

NP2
P1:s,P2:t

,

which can be written as

∑
s,t
s 6=t

(
N

P1
P1:s,P2:t
NP1

)2
s2

P1,gP1:s,P2:t

N
P1
P1:s,P2:t

+
∑

s,t
s 6=t

(
N

P2
P1:s,P2:t
NP2

)2
s2

P2,gP1:s,P2:t

N
P2
P1:s,P2:t

= 1
NP1

∑
s,t
s 6=t

N
P1
P1:s,P2:t
NP1

s2
P1,gP1:s,P2:t

+ 1
NP2

∑
s,t
s 6=t

N
P2
P1:s,P2:t
NP2

s2
P2,gP1:s,P2:t

,
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where we have used the assumption of a balanced experimental design:

NP1
P1:s,P2:t
NP1

=
NP2

P1:s,P2:t
NP2

= NP1:s,P2:t
N

.

If it holds that s2
P1,gP1:s,P2:t

≤ s2
P1,N and s2

P2,gP1:s,P2:t
≤ s2

P2,N for all s, t with s 6= t, then the
expression for the variance is strictly less than

1
NP1

∑
s,t

NP1
P1:s,P2:t
NP1

s2
P1,N + 1

NP2

∑
s,t

NP2
P1:s,P2:t
NP2

s2
P2,N =

s2
P1,N

NP1
+

s2
P2,N

NP2
,

which is the estimated variance under the standard approach.

F Randomizing by Action — Evaluating a Single Policy Using the
Proposed Approach

We use Ps to denote the policy that assigns action s, regardless of the customers’ covariates. We
want to evaluate a targeting policy P1 without implementing it, using the outcomes from the
experimental conditions pertaining to the actions.

Our goal (the estimand) is the population-level measure

yP1 = 1
N

N∑
i=1

Yi (P1(i)) ,

which can also be written as

yP1 =
∑

s,t

∑
i∈gP1:s,P2:t Yi(s)∑

s,t NP1:s,P2:t
=
∑

s,t NP1:s,P2:t · yP1:s,P2:t

N
,

where yP1:s,P2:t =
∑

i∈gP1:s,P2:t
Yi(s)

NP1:s,P2:t
.

We estimate yP1 by calculating the outcome in each segment and then aggregating across seg-
ments:

ŷP1 =
∑

s,t NP1:s,P2:t · ŷP1:s,P2:t

N
,

with

ŷP1:s,P2:t =
∑

i∈gP1:s,P2:t 1Wi=PsY obs
i

NPs
P1:s,P2:t

,

where NPs
P1:s,P2:t is the number of customers in segment gP1:s,P2:t that are randomly assigned to

receive policy Ps. This estimator is at the heart of the proposed alternative experimental design:
to evaluate a policy on a segment of customers to which the policy recommends a specific action,
we look at customers within the segment that were hit with that specific action.
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It is straightforward to establish that ŷP1 is an unbiased estimator of yP1 . We can also write
expressions for the variance of the estimator ŷP1 within each segment:

VarW

(
ŷP1:s,P2:t

)
=

S2
P1,gP1:s,P2:t

NPs
P1:s,P2:t

(
1−

NPs
P1:s,P2:t

NP1:s,P2:t

)
,

where S2
P1,gP1:s,P2:t

is given by Equation (3). We estimate VarW

(
ŷP1:s,P2:t

)
by

V̂arW

(
ŷP1:s,P2:t

)
=

s2
P1,gP1:s,P2:t

NPs
P1:s,P2:t

(
1−

NPs
P1:s,P2:t

NP1:s,P2:t

)
,

where
s2

P1,gP1:s,P2:t = 1
NPs

P1:s,P2:t − 1
∑

i∈gP1:s,P2:t,Wi=Ps

(
Y obs

i − ŷP1:s,P2:t
)2

.

Overall, the variance of estimator ŷP1 across all segments is

VarW (ŷP1) =
∑
s,t

(
NP1:s,P2:t

N

)2
VarW

(
ŷP1:s,P2:t

)
,

which we estimate by

V̂arW (ŷP1) =
∑
s,t

(
NP1:s,P2:t

N

)2
V̂arW

(
ŷP1:s,P2:t

)
.

Next we describe an estimator for estimating the difference between two policies.

G Randomizing by Action — Comparing Two Policies Using the
Proposed Approach

Our target estimand is

yP1−P2 = yP1 − yP2 = 1
N

N∑
i=1

(
Yi (P1(i))− Yi (P2(i))

)
,

which, accounting for the segmentation of the customers according to the recommended actions,
can also be written as

∑
s,t

∑
i∈gP1:s,P2:t

(
Yi(s)− Yi(t)

)
∑

s,t NP1:s,P2:t
=

∑
s,t
s 6=t

∑
i∈gP1:s,P2:t

(
Yi(s)− Yi(t)

)
∑

s,t NP1:s,P2:t
=

∑
s,t
s 6=t

NP1:s,P2:t
(
yP1:s,P2:t − yP1:s,P2:t

)
N

,
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where, for s 6= t,

yP1:s,P2:t =
∑

i∈gP1:s,P2:t Yi(s)
NP1:s,P2:t

, yP1:s,P2:t =
∑

i∈gP1:s,P2:t Yi(t)
NP1:s,P2:t

.

We estimate yP1−P2 with the unbiased estimator

ŷP1−P2 =

∑
s,t
s 6=t

NP1:s,P2:t
(
ŷP1:s,P2:t − ŷP1:s,P2:t

)
N

,

where, for s 6= t,

ŷP1:s,P2:t =
∑

i∈gP1:s,P2:t 1Wi=PsY obs
i

NPs
P1:s,P2:t

, ŷP1:s,P2:t =
∑

i∈gP1:s,P2:t 1Wi=PtY
obs

i

NPt
P1:s,P2:t

.

In segments for which the two policies recommend the same action, the true difference in the
outcome between the two policies is zero. In segments for which the two policies recommend different
actions (s 6= t), the variance of the difference between the two policies is given by

VarW

(
ŷP1:s,P2:t − ŷP1:s,P2:t

)
=

S2
P1,gP1:s,P2:t

NPs
P1:s,P2:t

+
S2

P2,gP1:s,P2:t

NPt
P1:s,P2:t

−
S2

P1,P2,gP1:s,P2:t

NP1:s,P2:t
,

where variances S2
P1,gP1:s,P2:t

, S2
P2,gP1:s,P2:t

, S2
P1,P2,gP1:s,P2:t

are given by Equations (3) and (6). We
estimate S2

P1,gP1:s,P2:t
and S2

P2,gP1:s,P2:t
with

s2
P1,gP1:s,P2:t = 1

NPs
P1:s,P2:t − 1

∑
i∈gP1:s,P2:t,Wi=Ps

(
Y obs

i − ŷP1:s,P2:t
)2

and
s2

P2,gP1:s,P2:t = 1
NPt

P1:s,P2:t − 1
∑

i∈gP1:s,P2:t,Wi=Pt

(
Y obs

i − ŷP1:s,P2:t
)2

,

respectively.
The term S2

P1,P2,gP1:s,P2:t
is in general impossible to estimate empirically because we never observe

the outcome of both actions s, t for the same customer. We use the Neyman variance estimator

VarNeyman
gP1:s,P2:t =

s2
P1,gP1:s,P2:t

NPs
P1:s,P2:t

+
s2

P2,gP1:s,P2:t

NPt
P1:s,P2:t

,

which is upwardly biased.
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Overall, the variance of estimator ŷP1−P2 across all segments is

VarW (ŷP1−P2) =
∑
s,t
s 6=t

(
NP1:s,P2:t

N

)2
VarW

(
ŷP1:s,P2:t − ŷP1:s,P2:t

)
,

which we estimate with
VarNeyman

P1−P2
=
∑
s,t
s 6=t

(
NP1:s,P2:t

N

)2
VarNeyman

gP1:s,P2:t .

This is upwardly biased and, as a result, confidence intervals will be conservative.
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