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ABSTRACT 

Machine learning (ML) algorithms are rapidly advancing research across many fields of social 

science, including economics, marketing, and management information systems.  Management 

and organization studies are yet to (fully) leverage these methods. We argue that ML algorithms 

can benefit both qualitative researchers engaged in a small number of cases and quantitative 

researchers faced with a large number of observations. Such benefits arise from the ability of ML 

techniques to facilitate “algorithmic induction”—a form of inductive inference that yields 

identical (or highly similar) conclusions when applied by different observers to the same data. 

Algorithmic induction is valuable for researchers interested in theorizing through interpretative 

and comparative case analysis as well as generating hypotheses from large sets of quantitative 

data (followed by traditional testing approaches). We introduce variants of ML algorithms to 

management and organization researchers, develop the concept of algorithmic induction, and 

discuss its general potential for inductive theorizing in the field.  
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INTRODUCTION 

Inductive inferences occupy a prominent role in empirical management and organization 

research. Traditionally, theory induction appears to be reserved for researchers working with a 

“small N” rather than for those working with a “large N”. In this paper, we argue that machine 

learning (ML) represents a useful new methodology to facilitate inductive inferences for 

management researchers, be they deeply engaged in a small number of cases or faced with a 

large number of observations. This versatile utility arises from the ability of ML techniques to 

facilitate pattern detection and prediction in a flexible and robust manner. This allows for 

algorithmic induction, which we define as a form of inductive inference that yields identical (or 

highly similar) conclusions when applied by different observers to the same data. The 

applications of algorithmic induction span the entire empirical research process, from data 

coding and data reduction to stylized fact generation. In its ideal form, algorithmic induction 

should be less prone to biases arising from the limits of human judgment and the danger of over-

fitting (i.e., results that are highly idiosyncratic to the observed sample).     

 In the current stage of development, ML techniques do not represent a substitute for 

researchers’ human judgement. What ML can do in a powerful manner is establishing robust 

patterns in data. However, other fundamental steps in the research process that precede and 

follow the establishment of patterns, such as conceptualization (defining the constructs of 

interest), measurement (selecting or developing measures for the constructs), and explanation 

(theorizing via inductive and abductive reasoning, Sheperd & Sutcliffe, 2011) of the observed 

patterns, remain largely human prerogatives. Thus, we believe that ML techniques complement 

the current inductive approaches used by organization and management scholars, although they 

do require us to alter how we think about theorization, explanation, and prediction.  
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ML does not equate to, or always require, “Big Data”. While ML is a powerful way to 

analyze and make sense of large volumes of data, it can also be used to analyze datasets that are 

fairly small (with the obvious need to take extra precautions and be more skeptical about the 

conclusions). ML is fundamentally a tool for prediction, not statistical inferences (Mullainathan 

and Spiess, 2017). As a consequence, no discontinuity in sample size occurs beyond which the 

central limit theorem and its valuable properties become applicable. Instead, a primary concern 

in applying ML to small samples is over-fitting, which increases as the ratio of the number of 

observations to the number of variables decreases (Abu-Mostafa, Magdon-Ismail & Lin, 2012). 

This risk is particularly relevant to researchers who are interested in inductive work with 

relatively small samples. However, as long as the risks of over-fitting can be mitigated (by 

keeping the model complexity low and sampling error low) or at least explicitly acknowledged, 

the advantages of ML can apply to studies with smaller sample sizes. 

 Very few papers published in the leading organization and management journals have 

employed ML techniques thus far, yet our colleagues in adjacent disciplines have advanced more 

rapidly in applying these methods. In marketing, recent contributions draw on ML principles to 

improve model selection in order to enhance the model fit to the data while maintaining 

generalizability (e.g., Schwartz, Bradlow & Fader, 2014). Chen, Iyengar & Iyengar (2016), for 

example, apply one such method to investigate consumer heterogeneity. In management 

information systems, recent years have seen a surge in the application of ML techniques to 

understand complex information sets and to design systems for processing them (e.g., Zheng & 

Padmanabhan, 2006). In economics, researchers have introduced ML techniques in conjunction 

with instrumental variable analysis (which requires prediction accuracy in stage-one models) to 

improve causal inferences (e.g., Belloni, Chernozhukov & Hansen, 2014). ML techniques can 
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also be used as an alternative to propensity score matching (Varian, 2016). Another application 

in economics pertains to estimating heterogeneity in causal effects (Athey & Imbens, 2016). 

Mullainathan and Spiess (2017) provide an overview of ML applications in economics (see also 

Varian, 2014; Kleinberg, Ludwig, Mullainathan & Obermeyer, 2015). 

In this paper, our intent is to contribute to the vigorous debate on the methods of theory 

building in the Academy of Management Review (e.g., Eisenhardt, 1989; Eisenhardt, 1991; Dyer 

& Wilkins, 1991; Shepherd & Sutcliffe, 2011; Lewis & Grimes, 1999). Thus, we neither review 

all the emerging literature in adjacent disciplines nor provide a comprehensive discussion of ML 

techniques per se. Instead, we aim to provide an accessible introduction to the core logic of ML 

techniques with a unique epistemic focus on employing algorithmic induction to support theory 

building, whether in large or small samples. To explain the technical aspects of ML, we draw on 

analogies to regression methods and psychological learning principles with which management 

researchers are already familiar. Our aim is motivated by the observation that no prior attempts 

(to our knowledge) have been made to develop a systematic approach to use ML as a tool for 

inductive theory building in a manner that spans small and large sample analysis. 

Organization and management researchers, as with most social scientists, typically aspire 

to be sophisticated users rather than producers of statistical methodology. Identical to the 

adoption of techniques developed by statisticians, the adoption of ML techniques in organization 

and management research requires not only a solid conceptual understanding of what the 

algorithms do and what they assume but also familiarity and access to software that embeds 

these procedures. We see opportunities for improvement concerning both conditions in our field.   
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This paper is organized as follows. First, we offer a concise and accessible introduction to 

ML principles. While we do not recommend doing so, a reader who has no interest in the 

technical details and is focused only on possible applications can skip directly to the summary at 

the end of this first section. Second, we show how ML’s core analytical property—robust pattern 

detection—allows management and organization researchers to use ML for algorithmic 

induction. Third, we conclude with some thoughts about how ML principles can be more widely 

diffused in our field, and we suggest an agenda for future research.  

WHAT IS MACHINE LEARNING? 

ML is a subdomain within the field of Artificial Intelligence (AI). ML provides computers with 

“the ability to learn without being explicitly programmed” (Samuel, 1959: 120). ML has found 

extensive applications in various domains. In natural science, ML as a tool has been applied 

across various fields, from astronomy (Sokol, 2017) to biology (Shipp et al., 2002). In everyday 

life, ML applications appear in many forms, such as email spam detectors, software games, 

personal assistants, search engines and automatic translation.   

  The following definition by Mitchell (1997) provides a helpful base on which to ground 

our discussion on the components of a learning problem: “A computer program is said to learn 

[effectively; author’s note] from experience E with respect to some class of tasks T and 

performance measure P if its performance at tasks in T, as measured by P, improves with 

experience E”. Suppose that task T is that we want to predict the profits of a firm in the current 

year and future years. We want to do this based on the data from past years (experience E). 

Experience may comprise data on past profits with a set of predictors such as price and sales 

changes, CEO characteristics, planned expenditures, demand trends, liquidity position, or any of 
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the factors that researchers believe are associated with firm profitability. The performance of the 

algorithm (P) is considered satisfactory if it can predict a firm’s profits accurately. Hence, with 

increasing data from experience, the algorithm should behave in such a way that the difference 

between the actual and predicted profit is minimized. In the following text, we briefly introduce 

the three main ML paradigms that have been developed to address the learning problem. 

Supervised Learning 

In this setting, the dataset (E) contains explicit examples of what the correct output should be for 

a given (set of) inputs, i.e., both the set of predictors (X) and the outcome (Y). In the learning 

problem discussed above, the goal of a supervised learning algorithm is to make good 

predictions about future profits (future Ys) based on knowing only the future Xs. This is 

accomplished by fitting a model that does a good job of “predicting” past Ys based on past Xs 

and then assuming that the same relationship between Xs and Ys will hold in the future.   

We could obtain a similar prediction using the familiar ordinary least squares (OLS) 

regression. Through techniques such as step-wise regression, we can also find the best fitting 

model (i.e., linear weighted combination of Xs) that predicts Y in the past data and then use this 

model to make predictions about future Ys based on future Xs. In one critical way, ML 

algorithms are exactly like these familiar models in that the model fitting occurs by minimizing a 

“loss function”. A loss function penalizes the discrepancy between the predicted outcome and the 

actual outcome in past data. There are several types of possible loss functions (see Table 1 for a 

list of the most popular ones). OLS regression users will be aware that the loss function in OLS 

is the sum of squared error. ML algorithms use a broader range of loss functions. A loss function 
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can be minimized by rules (e.g., setting the derivative equal to zero and solving) or by searches 

(e.g., gradient descent, Newton–Raphson) when the former is not feasible.  

However, ML algorithms also offer improvements over statistical models such as OLS in 

two major directions: sophistication in functional form and protection against over-fitting. First, 

compared with most regression models commonly used in management research (e.g., OLS, 

Logistic, Poisson), ML algorithms can model a much more complex relationship between the Xs 

and Ys in existing data. Higher-order polynomials and interactions can be incorporated without 

having to be specified in detail in advance. The resulting models can achieve higher levels of fit 

in the data, which hopefully leads to better predictions in the future. This sophisticated functional 

form may make the models harder to interpret (e.g., what do we make of a result that the fourth 

power of CEO charisma interacts with sales volatility to predict profit?). However, this is not 

necessarily a concern if the goal is prediction rather than explanation (i.e., hypothesis testing). 

Second, ML algorithms use more advanced procedures than OLS (or other commonly 

used regression models) to guard against over-fitting. If we were to build a well-fitting OLS 

model by selectively adding or dropping variables, we would run two related risks of over-

fitting: a) Excessive model complexity: The realized R-squared may be high simply because we 

have too many parameters in the model. As users of OLS regression techniques know, we could 

fit a model with a perfect R-squared if we added as many variables as cases to the regression, b) 

Excessive sample dependence: Including cherry-picked variables can produce a model that may 

fit the particular sample of data but may not be generalized beyond the data at hand. 

More generally, statistical learning theory indicates that the complexity of a model 

selected to fit data has a U-shaped relationship with prediction error (see Figure 1). Put 
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differently, the prediction error initially decreases upon increasing the model complexity and 

then increases afterwards (Abu-Mostafa et al., 2012). The model is under-fitting in the region 

before the inflection point and over-fitting in the region after the inflection point. Under-fitting 

produces prediction errors that are systematically biased (because they represent a systematic 

deviation from true model), whereas over-fitting produces more variance (because the deviation 

is not systematic). The goal is to find the point where the model is sufficiently complex to 

accomplish the lowest prediction error. Excessive model complexity and excessive sample 

dependence both produce high prediction errors through over-fitting.  

------INSERT FIGURE 1 ABOUT HERE------ 

 OLS addresses the problem of excessive model complexity using adjusted R-squared, but 

it offers no standard solution to the second problem (excessive sample dependence). The second 

problem is also closely related to the issue of hypothesizing after knowing the results 

(“HARKing,” Kerr, 1998). When mining a sample for “good” predictors (i.e., those that have 

large effect sizes and/or statistical significance), we will likely find at least a few if we search 

hard enough, but we face a significant risk that these associations do not generalize beyond the 

current sample. This is why pretending that the results reported in a paper were based on tests of 

prior hypotheses when they actually resulted from data mining is not only unethical in 

misrepresenting inductive work as deductive hypothesis testing; it can also seriously impede the 

progress of a field by accumulating non-replicable results that are too sample specific (Ioannidis, 

2005; Gelman & Loken, 2014). 

ML algorithms solve the first problem (i.e., fitting overly complex models) through a 

procedure known as regularization and the second problem (i.e., excessive sample dependence) 



	 9 

through procedures known as cross-validation. Regularization penalizes model fit for 

complexity. The intuition is similar to the use of adjusted R-squared in OLS, though a wider 

variety of constraints on complexity can be adopted.   

For instance, the least absolute shrinkage and selection operator (LASSO), a popular ML 

algorithm, performs what is known as “L1 regularization”. This adds a penalty proportional to 

the absolute sum of the standardized coefficients in a linear regression model. This is comparable 

to minimizing the sum of squares with the additional constraint that the absolute sum of the 

standard coefficients should be less than or equal to a constant (e.g., 1). This type of 

regularization can result in sparse models with few coefficients. Coefficients of some variables 

with small effects can become zero and be eliminated from the model.  

Cross-validation, which is used to solve the problem of excessive sample dependence, is 

closely related to the idea of a hold-out sample. In this method, we split the available data on Xs 

and Ys into random sub-samples. Some of these sub-samples are used to fit the model (or “train” 

it), whereas others are used to evaluate or “test” the fitted model for its predictive accuracy. 

Models that fit the training datasets well while also achieving good predictive accuracy in the 

test sets can be found by repeating this procedure a large number of times.  

With these concepts, researchers can comprehend a large class of supervised ML models 

in terms of functional form complexity, loss functions, regularization strategies and cross-

validation techniques (see Table 1). Given the variety of functional forms and the models 

resulting from them, the task of model selection in supervised learning is also carried out by 

cross-validation. In traditional OLS regression, the user selects the best model by hand picking a 

set of models and adopting a criterion such as R-squared, adjusted R-squared, or Akaike’s 
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information criterion. Supervised learning typically applies cross-validation to select from a set 

of automatically generated models based on different levels of regularization. One can also rely 

on an “ensemble” of models, averaging across many different types.  

------INSERT TABLE 1 ABOUT HERE------ 

In essence, supervised learning involves learning from the past what correlates with a 

given outcome. It is similar to observing and learning from one’s own or others’ experiences that 

demonstrate relationships between actions and their outcomes (Bandura & Walters, 1963; 

Bandura, 1962). The key feature is that the learning involves studying patterns of Xs and Ys that 

have already occurred and finding the correlates of a particular “target” outcome. One can also 

think of this in terms of classical Pavlovian (or respondent) conditioning, which is well known to 

psychologists (Rescorla, 1967, 1988; Pearce, 1987).  

Unsupervised Learning  

Unsupervised learning algorithms, as the name suggests, operate in the absence of a “supervisor” 

variable. The data (E) lack any specific target outputs (i.e., Y) associated with each input. These 

algorithms are generally tasked with detecting patterns of correlations between groups of X 

variables, without any particular variable being selected as the dependent variable. Unsupervised 

learning also has psychological analogies to classical conditioning in that the agent is learning 

the relationships between events that have already occurred, but in this case, none of the 

variables necessarily has to be distinguished as a “target”.   

Clustering is a canonical example of unsupervised learning with which most management 

scholars are already familiar. Its purpose is to partition cases into sub-sets such that similar cases 

are in the same cluster and dissimilar cases are in different clusters. In our profit prediction 
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example, unsupervised learning can help users find a cluster of firms that are similar to one 

another on observed dimensions such as CEO attributes, demand trends and profitability. By 

observing the other attributes of firms that fall into the clusters with high and low profitability, 

we can infer the correlates of profitability. Once clusters are known, we can use partial 

information (some of the Xs) to guess what the remaining Xs will be by assuming that the 

clustering structure stays the same in the future. Alternatively, we may be satisfied with 

identifying sub-groups of firms that seem very similar (and therefore, we believe, will react 

similarly to future events). Strategic group analysis (e.g., Harrigan, 1985), is a well-established 

technique based on cluster analysis.  

Unsupervised ML techniques for clustering use the same basic logic but provide much 

more flexibility in terms of choosing different types of algorithms. The algorithms include K-

means, hierarchical and spectral clustering, all of which largely share a similar intuition. These 

algorithms iteratively partition the data into sub-sets that show high similarity of cases within 

and low similarity between sub-sets.  Users may also cluster variables rather than cases. Principal 

component analysis (PCA) is another multivariate technique that is familiar to most management 

researchers. It involves reducing the number of variables by grouping together variables that 

contain essentially the same information. For instance, height and weight may contain much 

shared information that together they form a body index. ML algorithms embed PCA and other 

techniques (e.g., singular value decomposition) to obtain exactly these kinds of results. As with 

supervised learning, concerns around over-fitting and model selection can be addressed through 

regularization and cross-validation. 

Reinforcement Learning  
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Reinforcement learning is a method where the algorithm determines the actions that will help it 

attain its goals by interacting with its environment (for an accessible introduction, c.f. Sutton & 

Barto, 1998). This learning involves producing actions and discovering errors and rewards, 

which assists the algorithm in automatically determining the ideal actions within a specific 

context that maximizes the total reward (Alpaydin, 2004).  

The process of reinforcement learning is known under the labels of trial-and-error 

learning, experiential learning, operant or instrumental conditioning, and “win-stay-lose-shift” 

rules in the relevant literature in psychology, computer science, organization theory and 

evolutionary biology (Thorndike, 1911; March, 1991; Domjan 2010; Nowak and Sigmund, 1993; 

Sutton and Barto, 1998). All instantiate Thorndike’s law of effect from psychology, which holds 

that responses that produce a satisfying effect in a particular situation become more likely to 

occur again in that situation, and responses that produce a discomforting effect become less 

likely to occur again in that situation. This implies that favorable feedback (i.e., bringing desired 

outcomes) on selecting an alternative tends to positively reinforce the belief about an alternative 

and thereby make it more likely to be selected. Whereas agents cannot influence the events being 

observed in supervised and unsupervised learning, they can do so in reinforcement learning. It is 

thus a form of online learning (Levinthal, 1997; Gavetti and Levinthal, 2000), as opposed to 

supervised and unsupervised learning, which are both offline.  

 Software installed in self-driving cars, autonomous robots and drones applies 

reinforcement learning to dynamically update and determine their trajectory based on input from 

the environment. Recently, such algorithms have also been successful in outperforming humans 

in interactive games such as chess and Go. One could, in theory, imagine a reinforcement 

learning algorithm that takes the place of a CEO in making various policy changes, observing the 
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resulting profits and adjusting actions accordingly. This is the spirit with which many modelers 

of organizations as adaptive systems have used reinforcement learning principles (c.f. Puranam, 

Stieglitz, Osman & Pillutla, 2015 for a review), though they have done so in a metaphorical 

rather than literal sense. There are some early indications of more literal approaches in which 

algorithms learn to make managerial decisions in, for example, foreign exchange trading (Austin, 

Bates, Dempster, Leemans & Williams, 2004) or picking ventures to invest in (Nevmyvaka, 

Feng & Kearns, 2006); however, we are not aware of any application to the problems of general 

management more broadly defined. Nonetheless, a suite of algorithms that are each specialized 

to a particular task (e.g., project selection, employee recruitment and retention), each of which 

exists at least in rudimentary form today, may well come together in the future. 

Summary 

It is crude but accurate to think of all ML algorithm families as producing robust associations, 

i.e., associations between variables that are unlikely to be the result of sample idiosyncrasy. The 

“robustness” in associations produced by ML algorithms results from procedures that allow 

complex models to fit the data (reducing bias in prediction) while also mitigating against over-

fitting (reducing variance in predictions). The strength of these procedures lies in their ability to 

hunt for the best fitting functional forms with considerable flexibility while simultaneously 

guarding against over-fitting through the use of regularization, cross-validation and ensemble 

methods. However, three caveats must be borne in mind about these procedures:  

1. They are not a substitute for randomization to obtain a causal inference. All ML methods are 

meant to be correlational. As is well known, it is not possible to go from correlation to causation 

without additional assumptions (Shadish, Cook & Campbell, 2002).  
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2. All assume that the future can be predicted from the past. (More technically, probability 

distributions for relevant variables remain stationary.) 

3. In addition, none are primarily geared towards testing an explanation through inferences about 

the relationships between variables; instead, they focus on prediction (“y hat”, not “beta”, to use 

econometric terminology, as noted by Mullainathan & Spiess, 2017). 

ALGORITHMIC INDUCTION THROUGH MACHINE LEARNING 

At least in its idealized form, the scientific method begins with the observation of an empirical 

pattern, which then becomes the target of theorizing to be tested in additional data (e.g., Bernard 

2012, Lave & March, 1993). The preliminary step of constructing the pattern to be explained is 

essentially inductive, as it involves the observation of a pattern in the data. We would ideally like 

this pattern to be a property of the population, as well. While nothing but a census can guarantee 

such generalization, random sampling can help make this more likely.  

However, even within a randomly selected sample, sampling error will create random 

variation. This poses a key danger to inductive inference: over-fitting. We might mistakenly 

assume that a pattern (causal or not) we see in our sample will also occur in the population. 

Some philosophers of science have long argued that induction is not a logically defensible 

procedure because it involves the fallacy of assuming that samples are identical to the population 

(Popper, 1962). Nonetheless, it is routinely used by scientists in both a statistical and intuitive 

sense, and it proves a very fertile basis to obtain insights about a phenomenon and for theory 

generation. Thereafter, we may gain confidence in a theory if it escapes repeated attempts at 

falsification across a range of contexts and formulations of the test (i.e. the Duheme-Quine 

synthesis). If the central problem in deductive theory testing is spuriousness (i.e., omitted 
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variables that provide alternative explanations), the central problem in inductive theory building 

is over-fitting. However, it has not been given nearly as much attention as the problem of 

spuriousness, for which we have available a suite of statistical techniques (e.g., instrumental 

variables, matching, regression discontinuity designs, and ideally, of course, randomization). 

Note that expanding the sample size will solve the problem of over-fitting but not the 

spuriousness of associations, whereas expanding the number of variables measured can help 

resolve spuriousness but not over-fitting.  

Algorithmic induction based on ML offers three potential advantages for inductive 

theorizing. First, being algorithmic in nature, it has high inter-subject reliability. An algorithm 

used by different individuals will still yield the same results. This is not necessarily an advantage 

if the goal is to enhance creative variation of interpretation, but it is an advantage if we want to 

enhance the reproducibility of an inductive inference. Second, the algorithms do not suffer from 

human “comprehension constraints”. The functional forms we use in our research to test 

hypotheses are rarely the result of a theoretical commitment to their shapes on our part; more 

often, they simply represent what we can easily comprehend and interpret. For instance, we 

doubt that any management theorist would hold an entrenched view about the key relationships 

in their models being linear, though linear regression is our workhorse for theory testing. Again, 

relaxing this constraint is not necessarily an advantage if our goal is to build theory that is 

comprehensible to fellow humans. However, when we want to reliably code a large dataset in 

ways that closely approximate how humans would do it, complexity need not be shunned. Third, 

the algorithms offer protection against results that are highly idiosyncratic to what is observed 

(over-fitting). This is an advantage if we wish to build generalizable theory from our inductive 
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efforts. It is irrelevant if we do not, as is the stance of some anthropologists and ethnographers 

who may favor descriptions of specific cases over generalized explanation.      

Next, we describe how a researcher may exploit these advantages across different kinds 

of inductive work. We illustrate how ML algorithms facilitate inductive theorizing in 

interpretative or comparative case methods and large-sample quantitative analysis. The 

discussion below is not exhaustive, and we believe the researcher’s creativity is the only real 

constraint to finding new applications.  

Machine Learning and Interpretative Case Analysis 

The interpretivist tradition of case analysis in organization research is rooted in work in 

anthropology and sociology. The emphasis is on an immersive, ethnographic observation of the 

empirical context (e.g., Bechky, 2003; Hargadon & Bechky, 2006; Kellogg et al. 2006). The 

basic procedures involved in systematically making sense of experience is well captured in 

Glaser and Strauss’s account of grounded theory (1967). “The basic idea of the grounded theory 

approach is to read (and re-read) a textual database (such as a corpus of field notes) and 

"discover" or label variables (categories, concepts and properties) and their interrelationships.  

The ability to perceive variables and relationships is termed "theoretical sensitivity" and 

is affected by a number of factors including comprehension of the literature and sensitivity of the 

phenomena (Glaser and Strauss, 1967: 46). The main steps involve 1) open coding, which is 

concerned with identifying, naming, categorizing and describing phenomena found in a text, 2) 

the process of relating codes (categories and properties) to one another via a combination of 

inductive and deductive thinking and 3) selective coding and memos (Glaser & Strauss, 1967). 

Selective coding isolates those codes that are particularly salient for explaining the phenomena 

within emerging theory. Such coding makes for frugal and fast interpretations but may expose 
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theorizing to various biases in individual judgement and over-fitting. The latter is particularly 

challenging when selective coding is used to direct further data gathering.  

While interpretative case analysis has the virtue of generating a deep understanding of 

phenomena and the causal mechanisms that may underlie them, it is prone to the dangers of 

over-fitting since the number of units being observed is typically equal to one (though there may 

be significant volumes of data capturing variations in sub-units within this unit). Some 

proponents of the interpretative method argue that they have no intention of generalizing beyond 

their sample, so over-fitting is irrelevant at the early stage of theorizing. For them, immersion 

into the field offers a wide variety of contextual data, allowing researchers to strive for 

contextual certainty; “One attains contextual certainty when there is a great deal of positive 

evidence supporting a conclusion and no contradictory evidence” (Locke 2007: 885).  

Other researchers, however, seek the breadth of insight generated by grounded theory 

building. They emphasize the importance of relying on standardized procedures for converting 

experience to data, thereby moving the inductive process more towards the algorithmic (Gioia & 

Chittipeddi, 1991; Corley & Gioia, 2004; Gioia, Corley & Hamilton, 2013). A comprehensive 

data structure is paramount to such procedures, demonstrating how the researcher makes 

interpretative “moves” from the raw data, via first-order categories and second-order theoretical 

themes, to aggregate dimensions. These dimensions are next incorporated (or, as Glaser & 

Strauss would say, “integrated”) into an overall explanatory theoretical framework using 

inductive and abductive reasoning. An advantage of this method that is relevant to the current 

argument is the high level of transparency in the interpretative process.  

Functionality 1: Coding data. We realize that the purpose of grounded theory and 

related methods is neither primarily the accurate presentation of raw data nor the “routine 
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application of formulaic techniques” to make sense of those data (Suddaby, 2006). Instead, 

grounded theory aims to understand social phenomena using a methodology that is attentive to 

issues of interpretation and processes and that does not bind one too closely to long-standing 

assumptions (Suddaby, 2006). To this end, ML algorithms can be useful in the interpretivist 

tradition when the quantity of data may be large, even though the number of units being studied 

is small or even one. It is not unusual for a qualitative researcher to gather large volumes of text, 

audio, video and image data. Current approaches to coding these data rely heavily on human 

judgement. While human judgement is critical to the construction of de novo categories and the 

interpretation of phenomena from the participant-observer’s viewpoint, the coding of (large 

volumes) of data along the lines of the schema generated by the researcher is more reliably done 

by algorithms than humans.  

Put differently, by using a small amount of hand-coded data as the training set, ML 

algorithms can learn the patterns implicit in this coding and “predict” the coding for a much 

larger dataset. For such an application, the interpretability of the models is less important; 

predictive accuracy is key. For the purpose of expanding the human-generated coding to a larger 

sample, semi-automatic annotation/coding techniques can be used for coding the dataset, where a 

limited amount of data is coded by humans, which is then used as a “seed” by an algorithm to 

“code” the rest of the dataset (c.f. Medlock & Briscoe, 2007). The challenge of low inter-rater 

reliability is mitigated (it only needs to be established in the seed or training data), while the 

scale of data that one can analyze within a single unit of observation can be almost limitless.  

A large set of natural language-processing algorithms are currently available that can 

assist researchers in data coding when dealing with large volumes of text data. Researchers can 

use automatic summary generation algorithms (c.f Dohare, Karnick & Gupta, 2017), which input 
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large volumes of text and generate a concise summary out of them. The summary can then be 

human coded or used to select documents to be human coded from a larger set. A set of 

sentiment analysis algorithms is currently available that facilitate the quantification of the 

sentiments embedded in texts. For example, in a recent study of leadership in online 

communities, Johnshon, Safadi & Faraj (2015) applied sentiment analysis to distinguish the 

language use patterns of leaders from those of non-leaders in these communities. Topic modeling 

approaches such as Latent Dirichlet Allocation (LDA) can be used to discover themes and trends 

in a collection of documents (Blei, 2012). A large number of studies on strategic alliances 

revolve around deep analysis of strategic alliance contracts (c.f. Reuer & Arino, 2007). In such a 

study, one could use LDA to automatically generate representative and meaningful topics from a 

large set of strategic alliance contracts.  

The neighboring fields of marketing and economics have already adopted ML algorithms 

to manage large volumes of data in this manner. For example, in a recent study, Cui, Wong & 

Lui (2006) adopted artificial neural networks to gain insight into consumer behavior from large 

volumes of consumer datasets. The nature of these datasets varies from images, audio, and 

videos to human language. Due to their nature, these demand novel tools and techniques, which 

are available with ML. Puranam, Narayan & Kadiyali (2017) adopted flexible LDA models to 

investigate consumer opinions from online reviews of restaurants. Bajari, Nekipelov, Ryan & 

Yang (2015) applied ML methods based on regression trees to analyze and estimate consumer 

demand from scanner panel data related to sales from a grocery store. Kaminski, Jiang, Piller & 

Hopp (2017) used ML on video pitches to identify “lead user” entrepreneurs. Similarly, Zhang, 

Lee, Singh & Srinivasan (2016) used ML techniques to analyze the aesthetic quality of images 

on the Airbnb marketplace to investigate how the quality of images impacts room demand.  
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We illustrate how ML algorithms can be applied in an interpretative case for data coding. 

Ben-Menahem, von Krogh, Erden & Schneider (2016) gathered and analyzed qualitative data to 

inductively generate a model that stipulates interactions between formal and informal 

coordination in such projects. An open question from this study is how drug discovery projects 

originate in specific domain information (e.g., incorporating sources of detailed information on 

diseases or drug molecules) and whether and how such information potentially impacts their 

subsequent coordination. Patent analysis is a rapidly emerging application of ML that can shed 

light on this question (Trappey, Hsu, Trappey & Lin, 2006). More specifically, algorithmic 

induction could help researchers specify a grounded categorization and visualization of a firm’s 

knowledge domains using an algorithm that learns to classify the firm’s detailed patent 

information. Such categorization could form a basis for subsequent coding. The coded categories 

could then support within-case project sampling according to the novelty of the target proteins 

(disease) relative to the firm’s knowledge base. A within-case sample constructed accordingly 

may reveal whether and how the novelty of the target-domain relation shapes project 

coordination in the firm. Without the assistance of ML algorithms, it would be impractical to 

couple the analysis of detailed patent information (a large pharmaceutical firm may hold in 

excess of 50,000 patents) with extensive qualitative data gathering within one and the same field 

study. 

The use of algorithms for data coding simply expands the scale of data that can be coded 

and the reliability of coding in the interpretivist case analysis; the critical steps of gathering data, 

identifying patterns and building an abductive theoretical explanation of the pattern remain 

within the remit of the researcher. The inductive algorithms of ML are relegated to the role of a 

researcher’s data assistant, but the researcher remains in control of the induction needed to 
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observe patterns and the abductive reasoning needed to explain them. However, as Gerring 

(1994) noted, the analysis of variance in data is a feature of both interpretative and comparative 

case methodologies. In the former, the variation studied is within a unit of observation; in the 

latter, it occurs across units of observation. The interpretivist researcher may thus also find some 

value in the functionality of the algorithms that we describe below in terms of their use for 

comparative case analysis.  

Machine Learning and Comparative Case Analysis  

In contrast to the interpretative case analysis that emphasizes the insights derived from a 

single unit of observation (e.g., a community, an organization), the comparative method focuses 

on insights derived from comparison across cases. The interpretative analysis is stronger in terms 

of deep understanding and meaning construction within a unit. In contrast, the use of multiple 

units of observation in the comparative method offers an advantage over the interpretative 

method in terms of avoiding over-fitting.  

For instance, in the method described by Eisenhardt (1989), a single case is first used to 

tentatively establish a pattern. This is followed by a logic of replication, where extension to 

multiple cases is used to make the generated theory more likely to be “parsimonious, accurate 

and generalizable” (Eisenhardt 1989: 542). This method combines the logic (but not the 

statistical-algorithmic analysis) of quantitative induction in case control designs with a 

qualitative approach to within-case pattern discovery and categorization. Multiple cases (usually 

4-10) are first selected such that the cases sharply differ on one (or a few) key dimension(s) (e.g., 

performance) while remaining similar on others. Interview (and other qualitative) data are 

collected from diverse informants within the cases. The task of the researcher is next to identify 
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elements that distinguish high- and low-performing cases, building on cross-case comparison 

(Brown & Eisenhardt, 1997, Martin & Eisenhardt, 2010, Vuori & Huy, 2016).  

The comparative case analysis method draws its inspiration from Yin (2009) and Miles, 

Huberman & Saldana (1984). Compared with work in the interpretative tradition, comparative 

case analysis also tends to draw earlier and more extensively on prior theory (unfolding 

literature) in order to strengthen internal validity, sharpen construct definitions, and eventually 

increase theoretical sophistication and generalization.  

As Eisenhardt (1989: 545) notes, induction is a fairly subjective process in comparative 

case analysis. Despite the best attempts of researchers to ensure inter-subjective reliability and 

replication across cases, they could fall prey to motivated reasoning (where they may be 

unconsciously motivated to selectively pay more attention to evidence confirming an emerging 

pattern and ignore disconfirming evidence). The induced pattern is also limited in complexity to 

the functional forms with which our minds can work. Further, the risk of over-fitting, while 

perhaps lower than in the interpretivist case analysis, is still significant. What may be true in a 

sample of 8-10 cases may not be true in the population, although steps may be taken relate 

within- and across case patterns to what is known about the overall population (e.g., industry; see 

Ozcan & Eisenhardt, 2009). These weaknesses are well known to proponents of the method. 

They engage in a series of procedures such as theoretical sampling (although used differently 

than in the grounded theory method discussed earlier), cross-case analysis conducted after data 

collection has been completed, conceptual replication, iteration between data and theory, and the 

establishment of subjective convergence across researchers to mitigate against these weaknesses 

as best as they can. In some sense, these challenges are the price paid for the depth of insight 

obtained from the qualitative induction within cases.    
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Another approach to comparative cases that is popular in organization research is the 

qualitative comparative analysis method of Charles Ragin (Ragin, 1987, 2000). In this method, a 

case is coded in terms of its (fuzzy) membership in different sets, instead of variables. For 

instance, a firm may belong (to some extent) to the set “Has high profits” and to the sets “Has 

charismatic CEO”, “Has employee engagement program” and “Is in industry with low entry 

barriers”. This set of theoretic representations then allows the application of algorithms such as 

DeMorgan’s law in the crisp membership case and Quine–McCluskey reduction in the fuzzy set 

case (refer to Ragin, 2000 for details on algorithms) to identify the combinations of conditions 

associated with a given outcome (e.g., membership in the set “Has high profits”). In contrast to 

traditional regression methods, this approach produces combinations of factors that associate 

with the presence or absence an outcome rather than the marginal effect of each factor. One can 

see qualitative comparative analysis (QCA) results in terms of a regression-like equation that fits 

many-way interactions. Consequently, it can also produce results that are hard to interpret.    

QCA typically works with many more cases than the Eisenhardt/Yin method. It is thus 

less prone to over-fitting (which necessarily decreases with sample size) but is also less geared 

towards the generation of qualitative insight within cases. Further, the induction itself is 

algorithmic, making it less susceptible to the twin problems of motivated reasoning and 

complexity constraints to human cognition. However, in absolute terms, the risk of over-fitting 

remains in the multi-case method in the same way that data mining, even with a large sample, is 

prone to over-fitting. 

ML can contribute to strengthening both of the approaches to comparative case analysis 

discussed above. Exactly as with the interpretive case approach, ML can simply help with data 

coding at a large scale and in a reliable fashion. For example, one could use existing sentiment 
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analysis tools to quantify sentiments in written texts or speeches (Feldman, 2013) for an input to 

QCA. However, an additional functionality of ML is data simplification, which is a powerful 

complement to comparative case analysis with QCA. 

Functionality 2: Simplifying data. A technical challenge for researchers using QCA is 

that the number of cases may fail to accommodate all possible combinations of variables or 

conditions, as the number of possible combinations increases exponentially with the number of 

conditions. Having too many conditions means that no case falls into a particular configuration 

or that a configuration cannot be assessed by empirical examples, causing limited diversity 

(Ragin, 2008; Schneider & Wagemann, 2012). We illustrate how ML algorithms can be used to 

manage such situations in a hypothetical comparative case study of new ventures. Assume the 

researchers collect rich data on a cohort of 20 new ventures over a course of  five years. At the 

end of the observation period, 10 ventures went bankrupt, and the other 10 survived. Within the 

study sample, the researchers have identified 12 variables (i.e., lead founder’s social capital, 

founding team size, etc.) that might influence the venture’s survival outcome, and they would 

like to use QCA to further identify the configuration of conditions and make causal inferences. 

However, given the sample size of 20, they face the problem of limited diversity. Assuming that 

the researchers do not have sufficient theoretical grounding to guide their selection of variables 

for the subsequent QCA, ML algorithms can prove highly useful for variable reduction. The 

researchers could use ML algorithms to identify a smaller set of variables (those that are robustly 

associated with venture survival outcomes), which can then form the basis of QCA.  

There are two forms of variable reduction with which ML algorithms can help 

researchers. First, there is the familiar summarization of multiple variables that contain 

redundant information into small set of factors through PCA. Second, variables can be discarded 
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based on their low association strength with outcomes of interest. Using the principles of 

regularization and cross-validation, the variables that reliably have limited effects on a target 

variable can be dropped from further consideration, without incurring the risk that these variables 

in fact mattered. This too can lead to over-fitting if not validated; the model that drops variables 

because they did not fit in the current sample (but do in fact matter in the population) is also an 

over-fitted model. Algorithms such as LASSO can deliver this form of data reduction while 

mitigating the risks of over-fitting.  

Data simplification methods are very useful when the ratio of case to variable is small 

(c.f. Wasikowski & Chen, 2010, for comparison of variable reduction methods), which is a 

common situation in comparative case analysis. A preliminary reduction step can help reduce the 

number of variables to a point where comparison across cases becomes more interpretable. Other 

methods for small datasets include aggregation of regularized classifiers (Lu, Eng, Guan, 

Plataniotis & Venetsanopoulos, 2010), robust sparse representation (Haq, Tao, Sun & Yang, 

2012) and discriminant analysis (Chen, Liao, Ko, Lin & Yu, 2000).   

Functionality 3: Constructing stylized facts. Ultimately, the comparative case method 

aims to build “stylized facts”—patterns of associations between a few key variables that must 

then be explained through inductive and abductive theorizing. This is why comparative case 

researchers espouse the logic of replication, where the same patterns of co-occurrence of 

variables are documented across cases (Eisenhardt, 1989). Cross-validation procedures in ML 

offer a ready-made set of tools to help the researcher produce reliable associations that replicate 

across sub-samples of data. Indeed, the result of the cross-validation exercise may reveal few 

robust patterns—a finding that is valuable in and of itself. Mullainathan and Speiss (2017) 

demonstrated that it was possible to build comparably predictive models of house prices across 
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sub-samples of data, but the predictors used in each sample differed substantially. In our view, 

this points a) to the need to focus on models that work reasonably well across a range of data 

segments even though their predictive power may be lower and b) to the acceptance that 

sometimes, models that work across all data simply may not exist. If the latter is true, then the 

algorithms have saved the researcher from making an egregious error of over-fitting in their 

inductive theorizing, though the result in terms of publishability may not be as uplifting.  

At this point, a natural question arises concerning the sample size required to be able to 

apply ML algorithms. In principle, it is possible to build robust induction of patterns through ML 

with relatively small sample sizes. In contrast to hypothesis testing, the key concern with 

induction through ML is over-fitting, not statistical inference. For instance, one of the most 

widely known datasets for teaching ML, known as “iris”, contains only 150 observations of data 

with 5 columns variables. This is a dataset for three species of iris flowers and has been used 

extensively to test and validate diverse ML algorithms and models in more than 100 academic 

papers (Iris Data Set). In medicine, where generating cases is costly, ML techniques to work with 

small dataset has been developed (see, e.g., Shaikhina & Khovanova, 2017 where N=56).  

One can imagine using algorithms sequentially in a “cascade of comprehensibility” in 

which a small dataset is initially analyzed using an ML algorithm with very high flexibility of 

functional form (e.g., support vector machine or tree induction). Such an algorithm will typically 

suffer from low interpretability. However, if the model has good predictive accuracy, it can be 

used to create a much larger predicted sample of data, which can then be analyzed using ML 

algorithms with much greater interpretability (e.g., LASSO, or step-wise logit). This is basically 

a way to amplify the signal-to-noise ratio in the small sample. A recent study by Jiang, Li & 



	 27 

Zhou (2009) is an instance of such an approach; they proposed clever modifications in existing 

ML algorithms for learning from samples as small as 24 cases (see also Zhou & Jiang, 2003).  

In sum, algorithmic induction can be a powerful tool for researchers who perform 

comparative case analysis. It can accommodate a larger number of cases than is traditionally 

used in the Eisenhardt method, but well within the range of the sample size common to QCA, 

and larger samples. It helps to separate the inductive process needed to discover patterns in data 

(to determine which algorithm is helpful) from the abductive creative leaps needed to explain 

them (for which the researcher is still responsible). This separation itself may eliminate some of 

the biases arising from motivated reasoning to which researchers, as any humans, could 

potentially fall prey. To be clear, when ML is combined with these traditional comparative case 

analysis methods, it helps make the induction process underlying the construction of stylized 

patterns more robust because its algorithmic nature and measures help avoid over-fitting. It does 

not substitute for the inductive and abductive reasoning that researchers routinely perform when 

faced with the stylized patterns and the need for an interpretable theory (i.e., a proposed set of 

causal mechanisms) that accounts for these patterns.   

Machine Learning and Quantitative Induction 

It becomes clear that the first two functionalities of ML (i.e., data coding and data 

simplification) are as (if not even more) useful with large-sample quantitative analysis as they 

are in interpretive or comparative case methods. However, we focus here on the crucial 

importance of the third functionality (i.e., stylized fact generation) to quantitative researchers.  

In management and organization research, explicit quantitative inductive inferences, i.e., 

the use of data primarily to describe a pattern rather than test a hypothesis, is rare. This may be 

partly the result of an incorrect (but, in our experience, widely held) premise that induction is 
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necessarily restricted to qualitative data (c.f. Shah & Corley, 2006; see also Locke, 2015). As 

also noted by Glaser (2008), who helped lay the foundations for qualitative induction along with 

Strauss (Glaser & Strauss, 1967), quantitative induction can serve as a powerful stimulus to 

theory building. Case control designs, which are popular in medical research, represent 

quantitative induction. In this method, a sample of cases that vary in their outcome of interest are 

statistically (i.e., algorithmically) analyzed to detect the correlates of the outcome in the data 

(Shadish, Cook & Campbell: 128).  

At the same time, many scholars suspect that at least some quantitative studies that are 

reported as purely deductive may in fact have some disguised inductive elements. The 

“inductiveness” in these studies lies in the moments when the quantitative researchers look for 

patterns in the data before finalizing their hypothesis. The inductive elements are disguised 

because the patterns are then stated as if they are a priori expectations, which the data are then 

argued to confirm (Kerr, 1998). Setting aside the ethical issues this involves, from a purely 

statistical sense, the danger of over-fitting in such disguised inductive practice is eminent.  

ML algorithms, as we have discussed, come equipped with two powerful techniques (i.e., 

regularization and cross-validation) to avoid over-fitting. These techniques can help us find 

patterns inductively that are less likely to be sample specific than if we did not use these 

techniques. Consider the following two approaches (shown in Table 2) that quantitative 

researchers may follow when they acquire a new and interesting dataset. We fear the description 

of Procedure A is less of a caricature of current ways of working than we hope it is.    

------INSERT TABLE 2 ABOUT HERE------ 

Now consider Procedure B. The key point is that Sample I is reserved for inductivework, 

and Sample II is the deductive or “hold-out” sample. We use the inductive samples to search for 
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interesting patterns in the data (Locke, 2015)—this is honest and sophisticated data mining—and 

the hold-out sample to test the hypotheses so generated. The smaller sample used in Sample II 

may imply lower power unless the initial unpartitioned sample was large enough. However, 

recall that a) Samples IA, IB and II need not be of identical size, and b) low power has 

asymmetric effects—if no effect is detected, it may still exist in the population. Therefore, if an 

effect is detected, it is very likely present in the population.   

To us, it seems, Procedure B dominates Procedure A in terms of transparency, and it is 

particularly useful when we do not start with strong theoretical priors. It has the virtue of 

allowing for induction and hypothesis in the same study (but in different sub-samples), and it 

delivers a result that we can feel confident is unlikely to be the result of over-fitting. As the 

reader would have noticed, almost everything we have said regarding the application of 

algorithms to the comparative case method stays true for quantitative induction. Indeed, 

quantitative induction is an instance of comparative case analysis, one that yields considerably 

fewer within-case findings but still follows the logic of replication. As with comparative case 

analysis, the abductive reasoning needed to formulate theories in quantitative induction remains 

the researcher’s forte, whereas the inductive establishment of a stylized pattern can now be made 

algorithmic. The appropriate choice of algorithm can maintain comprehensibility while 

improving the protection against biases arising from subjectivity and over-fitting.     

CONCLUSION: TRAINING PAVLOV’S DOG 

ML algorithms such as supervised and unsupervised learning can be considered the descendants 

of Pavlov’s dogs: they are “trained” to develop associations between variables (e.g., establish the 

co-presence of bell ringing and food) and then tested in their ability to predict the rest when 

presented with only some of the variables (e.g., will the bell ringing predict the presence of 
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food?). Reinforcement learning, in turn, is the direct descendant of Thorndike’s cat, who learned 

through reinforcement (i.e., reward on success and punishment on failure) how to escape a cage. 

However, these rudimentary learning mechanisms found (even) in our pets have 

enormous power and are at the heart of the current explosion of interest in ML. Robust pattern 

detection, beyond human comprehension constraints and free of judgement biases, is the key 

functionality on offer here. The adjacent fields of marketing, management information systems, 

and economics have already initiated important attempts to integrate this functionality into their 

traditional concerns such as model fitting, similarity detection, and causal inference. Inductive 

theorizing occupies an important place in management and organization research and, to us, 

seems to be a useful place to consider the value provided by ML algorithms. Once harnessed, 

algorithmic induction may constitute a domain in which organization researchers can contribute 

to the broader social science community. 

We have outlined three broad applications of ML algorithms: data coding, data 

simplification and stylized fact generation. In interpretative case analysis, data coding—and to 

some extent data simplification—are the primary application. In comparative case and large-

sample analysis, data simplification and stylized fact generation apply, in addition to data coding 

(see Table 3). While interpretability may not matter as much for data coding, it will be an 

important factor in data simplification and stylized fact generation. Some ML algorithms, such as 

LASSO, use a simpler functional form that does not violate the comprehension constraint.  

------INSERT TABLE 3 ABOUT HERE------ 

In our view, the most promising application of ML is stylized fact generation. Robust 

(i.e., replicable) stylized facts form a basis on which new theoretical progress is founded, to 

which existing theories compete to offer useful explanations, and with which additional data is 
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used for testing theories. In management and organization research, there are very few such 

robust stylized facts, and these have been built across many individual studies (e.g., the variance 

decomposition studies in strategy). ML techniques can help researchers generate robust stylized 

patterns even within single studies. This insight may have long-term consequences for the way 

we craft theories in our field; in the future, we may come to think of a pronounced search for 

stylized facts as a sign of high-quality work. At the very least, ML algorithms are likely to lend 

increasing prominence to theorizing from single and multiple cases, as a manner of knowledge 

creation in our field.      

As we have stressed at multiple points in the paper, ML algorithms can support but 

cannot replace human judgement in inductive research. Choosing what to measure (constructing 

categories), how to measure (developing a coding protocol) and what explanation to offer for the 

observed pattern among variables (theorizing via inductive or abductive reasoning) remain 

human prerogatives, at least at the current state of development in the field of AI. We can choose 

to use algorithms simply as robotic coders that never tire or make errors and can be taught by 

example rather than instruction (e.g., the application to interpretivist case work). Alternatively, 

we can use them to generate the raw material every theorist craves: robust stylized facts. With 

these robust patterns, we take joy in developing different, internally consistent explanations, 

which are then submitted to the challenge of critical hypothesis testing. We must also be careful 

to remember that no robust pattern may emerge in some cases and further that the result of this 

inductively derived exercise awaits hypothesis testing. Falsification of a hypothesis constructed 

most carefully with algorithm-assisted induction can (of course) occur; this indicates that despite 

our best efforts, we stand defeated by sampling error or undetected flaws in measuring the data 

used for induction. That is learning too, of course.       
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The adoption of algorithmic techniques for induction requires management and 

organization researchers to be willing to try them out with their own data. The barriers to such a 

trial, in our view, are quite low. Excellent introductions to the various algorithms used are readily 

available in online courses, often pitched at the same or even lower levels of technical difficulty 

as that of most graduate-level statistics or econometrics courses that our PhD students take. We 

can, for example, recommend ML courses available in Coursera (ML–Stanford University, 

Practical ML–Johns Hopkins University) and OCW MIT (Introduction to Neural Networks). 

Analysis packages available in R and Python come equipped with modules that make it fairly 

easy, given some basic programming skill, to apply. This skill, in our view, is critical for 

management and organization researchers to acquire irrespective of whether they will ever use 

algorithm-assisted induction.   

Future work on algorithmic induction in management and organizations should focus on 

the match between various types of data (video, image, text, speech) gathered by the researcher 

and various ML techniques (supervised, unsupervised, reinforcement). Overall, future inductive 

theorizing would benefit from detailed reporting on the procedures undertaken to integrate ML 

algorithms into the various steps in the research process. For journal editors, this implies that 

papers utilizing ML methods should be submitted with a detailed Appendix specifying the 

algorithms used. Finally, an exciting avenue for future research in the field of management and 

organization would be to “replicate” prior hypothetico-deductive studies with publicly accessible 

data using algorithmic induction. Scholars may be able to advance theory rapidly by comparing, 

rejecting or compounding a corpus of established theory confirmed in prior work, with 

conclusions obtained from automated induction processes applied to the same dataset. 
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TABLE 1Common Functional Forms, Loss Functions and Regularization Techniques in Machine Learning. 

Type Model 
Name 

Functional Form Loss Function Regularization Loss 
Minimization 

Technique 

Regression Linear 
regressio
n (Seber 
& Lee, 
2012) 

0 1 1( ; ) p pf x x xb b b b= + × + + ×!  

( 1, , px x!  are p independent 

variables, and 0 , , pb b!  are model 

parameters.) 

Squared loss 

2( , ( ; )) ( ( ; ))l y f x y f xb b= -  

( y  is the dependent 
variable/target) 

- First order 
optimality 

LASSO 
regressio
n 
(Tibshira
ni, 1996) 

L1-norm: 

0

p

j
j

l b
=
å  

(l  controls the 
extent of 
regularization) 

Sub-gradient 
descent, proximal 
gradient descent 

Ridge 
regressio
n (Hoerl 
& 
Kennard, 
1970) 

L2-norm: 
2

0

p

j
j

l b
=
å  

(l  controls the 
extent of 
regularization) 

First order 
optimality 

Neural 
network 
(Specht, 

1 1
( ) ( ( ))

q p

h h jh j
h j

g x f w w xa f a
= =

= + × + ×å å! !
Squared loss Weight decay 

(Krogh & Hertz, 
1992), L1-norm, 

Back-propagation 
(gradient descent) 
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1991)  

( 1, , px x!  are p independent 

variables, and ,w a  are model 
parameters.) 

 

2( , ( )) ( ( ))l y g x y g x= -  

( y  is the dependent 
variable/target) 

dropout 
(Srivastava, 
Hinton, 
Krizhevsky, 
Sutskever & 
Salakhutdinov, 
2014) 

Classificati
on 

Support 
Vector 
Machine 
(SVM) 
(Suykens 
& 
Vandewa
lle, 1999) 

( ) 1y w x b× - ³
! !  

(x is a vector of independent variables 
and y is the predicted class. w and b 
are model parameters) 

Hinge loss 

( , , , ') (0,1 ( ) ')l x w b y bax x ywm= - - ××
! !! !

 

(y’ is the target class) 

L1-norm, L2-
norm 

Sub-gradient 
descent 

Logistic 
regressio
n 
(Menard, 
2002)  

0
1

( 1| )ln( )
1 ( 1| )

p

i i
i

P Y x
y w w x

P Y x =

=
= = + ×

- = å
 

(x is a vector of independent variables 
of dimension p and y is the logit (log 
odds). 0 , , pw w!  are model 

parameters) 

Logistic loss 

( , ') (1 exp( '))l y y log y y= + - ×  

(y’ is the target class) 

- Gradient descent 

Neural 
network 
Hagan, 
Demuth, 

0
1 1

( ) ( ( ))
q p

k k hk h jh j
h j

g x f w w xa f a
= =

= + × + ×å å! !

 (1 hidden layer, 1, , px x!  are p 

Cross entropy loss 

( , ') ln( ') (1 ) ln(1 ')l y y y y y y= - - - -
 

Weight decay, 
L1-norm, dropout 

Back-propagation 
(gradient descent) 
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Beale & 
De Jesus, 
2014) 

independent variables, and ,w a  are 
model parameters.) 

( ) argmax ( )j
j

C x g x=  

(C(x) is the predicted class) 

( ( )y C x=  is the predicted 
class and y’ is the target class) 

Clustering Gaussian 
mixture 
model 
(Bilmes, 
1998) 

( | , ) ( | , )k k k kP x N xµ µS = S  

1 1
( ) ( | , ), 1

K K

k k k k
k k

P x P x µ
= =

= F S F =å å  

( ( | , )k kN x µ S  is the multivariate 
normal distribution, x is a vector of 
independent variables and , ,µ S F  are 
model parameters) 

Negative log-likelihood 

1

( , , , ) log( ( | , ))
K

k k k
k

l x P xµ µ
=

S F = - F × Så
 

- EM algorithm 

K-means 
(Hartigan 
& Wong, 
1979) 

2

2
( ) argmin k

k
C x x µ= -  

(x is the vector of independent 
variables, 0 1, , Kµ µ -!  are model 
parameters, C(x) is the predicted 
class) 

L2-distance 

2

( ) 2
( , ) C xl x u x µ= -  

- EM algorithm 
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TABLE 2 Two Approaches to Large Sample Analysis 

Procedure A Procedure B 

1.  Examine the variables and consider how 

they link to prior theory as well as what 

relationships one should expect between 

them.  

2. Test for these relationships.  

3. If no “statistically significant” patterns are 

found, revise the thinking about which 

variables (and their transformations) and 

relationships to focus on. 

4. Iterate between steps 2 & 3 until some 

interesting (i.e., publishable) results are 

found. 

5. Write up the results in the format of the 

results of a hypothesis testing exercise, in 

which the hypothesis (or at least its specific 

wording) is consistent with the results.   

 

1. Examine the variables and consider what 

relationships one should expect between 

them.  

2. Partition the data randomly into two sub-

samples, Sample I, and Sample II. Put 

Sample II away in the “vault” and focus 

for now on Sample I. 

3. Split Sample I further into Samples IA 

and IB.  

4. Use ML algorithms (including cross-

validation, within Sample IA) to generate 

a robust pattern of associations that seems 

theoretically interesting. However, choose 

models carefully since interpretability 

remains important (e.g., LASSO rather 

than neural nets).  

5. Derive additional implications of the 

theories we construct that explain the 

observed patterns in Sample IA.  

6. Test for the replication of the observed 

pattern as well as the additional 

theoretical implications derived from 

Sample IA in Sample IB.  
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7. Iterate between steps 3 and 6 until the 

results in Sample IB confirm the 

observed patterns and predictions derived 

from Sample IA.  

8. Test for the replication of the observed 

pattern as well as the additional 

theoretical implications in Sample II. 

Report the results of Sample II alone as 

the result of the hypothesis tests and the 

analysis of Sample I as a purely inductive 

process.  

	

TABLE 3. Machine Learning Functionality and Application across Research Approaches 

 Data coding Data simplification Stylized fact 
construction 

Interpretive case 
analysis 

Yes Yes -- 

Comparative case 
analysis 

Yes Yes Yes 

Large sample 
analysis 

Yes Yes Yes 
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       FIGURE 1 Relationship between Model Complexity and Prediction Error 


