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1 Introduction

As the quality of computer hardware increases over time, cloud service providers have the ability to

offer more powerful virtual machines (VMs) and other resources to their customers. But providers

face several trade-offs as they seek to make the best use of improved technology. On one hand,

more powerful machines are more valuable to customers and command a higher price. On the other

hand, there is a cost to develop and launch a new product. Further, the new product competes

with existing products. Thus, the provider faces two questions. First, when should new classes of

VMs be introduced? Second, how should they be priced, taking into account both the VM classes

that currently exist and the ones that will be introduced in the future?

This decision problem, combining scheduling and pricing new product introductions, is common

in a variety of settings. One aspect that is more specific to the cloud setting is that VMs are

rented rather than sold. Thus existing customers can switch to a new offering, albeit with some

inconvenience. There is indeed evidence of customers’ aversion to upgrades in the cloud computing

services market. Based on a study of Microsoft Azure, we estimate that customers who arrive after

a new VM class is launched are 50% more likely to use it than existing customers, indicating that

these switching costs may be substantial (see Appendix A for the analysis).

This opens up a wide range of possible policies for the cloud service provider. Our main result

is that a surprisingly simple policy is close to optimal in many situations: new VM classes are

introduced on a periodic1 schedule and each is priced as if it were the only product being offered.

We refer to this pricing policy as Myerson pricing, as these prices can be computed as in Myerson’s

classic paper (Myerson, 1981). This policy produces a marketplace where new customers always

select the newest and best offering, while existing customers may stick with older VMs due to

switching costs.

In more detail, we model product introduction as a discrete-time process over an infinite time

horizon, with future rewards discounted. The provider seeks to maximize expected discounted

return. At each time period, the provider decides whether or not to introduce a new VM class (at a

fixed cost) and at what price. The quality of a new VM class is assumed to grow linearly with the
1Periodic introductions have been noticeable in the practice of cloud computing. For example, Amazon Elastic

Compute Cloud (EC2) launched new classes of the m.xlarge series in October 2007, February 2010, October 2012,
and June 2015, i.e., in intervals of 28 months, 32 months, and 32 months (Barr, 2015).
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introduction time. Customers act as simple utility maximizers, and choose the VM offering that

is most valuable to them; if they are existing customers, they incur a switching cost for switching

technologies. New customers arrive at each time period, and stay for a fixed number of time periods.

For our first set of results, we analyze policies which introduce VM classes on a periodic schedule

and establish two key results. First, if the Myerson pricing rule is always used, then the optimal

introduction schedule is in fact periodic. Second, if a periodic schedule is used, then Myerson

pricing is optimal in the limit, in the sense that for introduction times sufficiently far in the future,

the (undiscounted) benefit of shading prices downward from the Myerson prices goes to zero.

With our second set of results, we argue that, given arbitrary fixed introduction times, Myerson

pricing is approximately optimal. Combined with our first result, this means that Myerson pricing

with periodic introductions is approximately optimal. Our analysis, which assumes the distribution

of customer types satisfies the monotone hazard rate condition, establishes an upper bound on the

possible revenue in a single time period and characterizes prices which achieve this upper bound

(Theorem 1). We extend this bound to discriminatory policies, which are permitted to charge

different prices to new and existing customers (intuitively to provide existing customers a discount

to entice them to switch), and provide a bound on the competitive ratio between such policies and

Myerson pricing (Proposition 3). This bound shows that Myerson pricing is approximately optimal

when switching costs are small or large.

Following our analysis, we conduct numerical simulations of our model for both regular and

discriminatory pricing. Our bounds can be used to show that, for several natural distributions,

gains over the Myerson policy are less than 10% even at intermediate values of the switching cost.

Furthermore, when we numerically compute optimal prices, rather than using our bounds, we find

that Myerson pricing is often several orders of magnitude closer to optimal than even this already

good bound suggests.

2 Literature Review

We first review works that study the optimal decision making of a firm which launches a new

product, or successive generations of a new product. Product launch policies have been studied,

among others, in the operations management, marketing, and economics literatures. The most
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commonly examined aspects of the firm’s decision about a new product launch are timing, level of

technology, and pricing, all directly relevant for this current work.

We start with the operations management literature. Perhaps the closest papers to ours are the

works by Krankel et al. (2006) and Lobel et al. (2016), which both consider a firm that introduces

successive generations of a product over an infinite time horizon. Both papers study a trade-

off between waiting for further technology improvements, or capturing the gains of technology

improvements sooner, possibly at the cost of slowing sales for the existing product. Krankel et al.

(2006) specify a state-based model of demand diffusion and construct a decision model to solve

the firm’s introduction timing problem. They prove the optimality of a state-dependent threshold

policy governing the firm’s product introduction decisions. Our setup is different in two important

ways. First, Krankel et al. (2006) look at durable goods and do not allow for upgrades or switches:

each purchase uses a unit from the market potential. Second, they assume a specific pricing strategy

(with constant unit profit margins) and don’t endogenize the pricing decision. In terms of results,

although Krankel et al. (2006) characterize the optimal introduction decisions, their setup does

not allow them to conclude optimality of a simple pattern of introduction times (such as periodic).

Lobel et al. (2016) consider forward-looking consumers and show that when the firm makes product

launch decisions “on the go”, it is optimal to release products cyclically, i.e., whenever the developed

technology is better than the one available in the market by a constant margin. When the firm

is able to precommit to a schedule of releases, the optimal policy generally consists of alternating

minor and major technology launch cycles. Our model is different in that we are studying a

subscription-based service, so revenue can be picked up all the time; and buyers want to maximize

their utility at each period, so they are not forward-looking.

Cohen et al. (1996) consider a firm deciding when to introduce a new product generation to

the market. They assume that the product can only be sold during a fixed time window and study

the following trade-off: delaying the introduction can lead to more development, and therefore a

better product and higher revenues, but over a shorter time. They show that it is better to delay

the introduction of the new generation (and develop a better product) if the existing product has

a high margin, and when the firm is faced with an intermediate level of competition.

Paulson Gjerde et al. (2002) model a firm’s decision regarding the level of innovation to incor-

porate into successive product generations and show that the structure of the internal and external

3



environment in which the firm operates suggests when to innovate to the technology frontier (as

opposed to pursuing incremental improvements). Kumar and Swaminathan (2003) consider a firm

that sells an innovative product with a given market potential and that may not be able to meet

demand due to capacity constraints. Their demand model, modified from the original model of Bass

(1969), captures the effect of unmet past demand on future demand. They show that a heuristic

“build-up” policy, in which the firm does not sell at all for a period of time and builds up enough

inventory to never lose sales once it begins selling, is a robust approximation to the optimal policy.

Klastorin and Tsai (2004) propose a game-theoretic model with two profit maximizing firms that

enter a new market and decide on the timing, design and pricing of their product introduction.

Their model shows that product differentiation always arises at equilibrium due to the joint effects

of resource utilization, price competition, and product life cycle. They conclude that it is not wise

for profit-maximizing firms to arbitrarily shorten product life cycle for the sake of competition,

because all firms are worse off.

Casadesus-Masanell and Yoffie (2007) study competitive interactions between Intel and Mi-

crosoft through a duopoly model between producers of complementary products. Contrary to the

popular view that two tight complements will generally have well aligned incentives, they demon-

strate that natural conflicts emerge over pricing, the timing of new product releases, and who

captures the greatest value at different phases of product generations.

Plambeck and Wang (2009) study the impact of e-waste regulation on new product introduction

in a stylized model of the electronics industry. The manufacturer decides on the development

time for the next product generation and on the expenditure level, making different decisions for

different types of environmental regulation. Consumers purchase the new product and dispose of

the previous generation product, which becomes e-waste. According to their model, “fee-upon-

sale” types of e-waste regulation cause manufacturers to increase their equilibrium development

time and expenditure, and thus the incremental quality for each new product. As new products are

introduced (and disposed of) less frequently, the quantity of e-waste decreases and, even excluding

the environmental benefits, social welfare may increase.

Araman and Caldentey (2016) consider a model for new product introduction where the seller

has the ability to first test the market and gather demand information through crowdvoting before

deciding whether or not to launch a new product. Eventually, the seller stops the voting phase
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and either discards the product or launches it and starts a regular selling phase. Araman and

Caldentey (2016) propose a stopping time formulation to determine the optimal duration of the

voting process (and therefore also whether and when to introduce a new product). Their model

allows to quantify the trade-off between the value of demand information and the financial impact

of delaying the product introduction to accumulate pre-orders, and also sheds some light on how

to price the voting phase to stimulate effectively this voting process.

We continue with the relevant marketing literature. The seminal work of Bass (1969) proposes

a growth model for the timing of initial purchase of a single innovative product based on diffusion

from innovators to imitators. A stream of papers build upon the work by Bass (1969) on product

diffusion, by incorporating multiple product generations in their models. Mahajan et al. (1990)

review and evaluate the various new product diffusion models proposed in the first two decades

after the work by Bass (1969). Bayus (1992) investigates the pricing problem for durables with two

successive generations. Norton and Bass (1987) propose a product growth model that encompasses

both diffusion and substitution between successive generations of a technology. Pae and Lehmann

(2003) focus on the impact of intergeneration time (i.e., time in between two generations) on prod-

uct diffusion, and show that predictions based on intergeneration time achieve improved accuracy.

Stremersch et al. (2010) empirically investigate whether introducing new product generations ac-

celerates demand growth, and find that passage of time, as opposed to generational shifts, is what

accelerates growth. Wilson and Norton (1989) consider the one-time introduction timing decision

for a new product generation and, under the assumption that the line extension has a lower profit

margin, show that it is best either to introduce the line extension early in the life cycle, or not

to introduce it at all. Mahajan and Muller (1996) extend the work of Wilson and Norton (1989)

to allow for general profit margins and conclude that it will be optimal to either introduce the

improved product early, or wait until the previous generation becomes mature.

Technology adoption and launch policies have also been studied in the economics literature.

Balcer and Lippman (1984) consider the problem of the adoption of new technology, which improves

over time. They show that the firm will adopt the current best practice if its technological lag

exceeds a certain threshold; moreover, as time passes without new technological advances, it may

become profitable to purchase a technology that has been available even though it was not profitable

to do so in the past. Farzin et al. (1998) investigate the optimal timing of technology adoption by
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a competitive firm when technology choice is irreversible and the firm faces a stochastic innovation

process with uncertainties about both the speed of the arrival and the degree of improvement

of new technologies. They explicitly address the option value of delaying adoption, compare the

optimal decision rule to traditional net present value methods, and observe that the optimal timing

decision is greatly affected by technological parameters. Goettler and Gordon (2011) study the effect

of competition on innovation in the personal computer microprocessor industry. They propose a

dynamic model where firms make dynamic pricing and investment decisions while consumers make

dynamic upgrade decisions, anticipating product improvements and price declines. They find that

the rate of innovation in product quality would be higher if Intel were a monopolist, though higher

prices would reduce consumer surplus. Gowrisankaran and Rysman (2012) propose a dynamic

model of consumer preferences for new durable goods that allows for consumers to upgrade to new

durable goods as features improve. They estimate their model on digital camcorder purchase data

and find that the 1-year elasticity in response to a transitory industrywide price shock is about 25

percent less than the 1-month elasticity.

A recent strand of the literature focuses specifically on the pricing problem for cloud services.

Borgs et al. (2014), motivated by the cloud computing market, study a multiperiod pricing prob-

lem of a service firm with capacity levels that vary over time, where customers strategically choose

the timing of their purchases, and where the firm wants to maximize its revenue while guarantee-

ing service to all paying customers. They provide a dynamic programming based algorithm that

computes the optimal sequence of prices in polynomial time, and their optimal policies only use a

limited number of different price levels. Kilcioglu and Maglaras (2015) study a problem of market

segmentation for a revenue maximizing cloud service provider that offers two classes of service:

guaranteed service (on-demand instances) and best effort (spot instances), in a market with het-

erogeneous customers with respect to their valuation and congestion sensitivity. They show that

in settings where the user congestion cost rate grows faster than the valuation rate, it is optimal

for the service provider to make the spot service option stochastically unavailable. Abhishek et al.

(2012) model a cloud computing service as a hybrid system where customers can choose to ob-

tain service from a fixed-price queue with infinite capacity, or enter a bid-based priority queue.

They characterize user equilibrium behavior and show its insensitivity to the precise market design

mechanism used. They provide evidence suggesting that a fixed price typically generates a higher
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expected revenue than the hybrid system for the provider.

Along the same strand, recent works have modelled the strategic interactions between compet-

ing cloud computing service providers. In the same vein as the work by Abhishek et al. (2012),

Gao et al. (2017), motivated by the cloud computing services of Microsoft Azure and Amazon

EC2, consider a service system with two competing firms: a fixed-price firm and a bid-based

firm. They characterize the structure of the resulting equilibrium strategy showing that customer

equilibrium behavior has a simple threshold structure, and use this characterization to study the

price competition between the two firms. Anselmi et al. (2014) propose a model to study the

interaction of price competition and congestion. They characterize competitive equilibria within

each level of a three-tier market model that captures a marketplace with users purchasing services

from Software-as-Service (SaaS) providers, which in turn purchase computing resources from either

Provider-as-a-Service (PaaS) providers or Infrastructure-as-a-Service (IaaS) providers. Nair et al.

(2014) consider the interplay between network effects, congestion, and competition in cloud services

with ad-supported revenues, and they find that users are generally no better off due to competition,

as the congestion levels are of the same order as if there were only one firm. Further, their analysis

highlights an important contrast between firm-specific and industry-wide network effects: multiple

firms can coexist in a marketplace with industry-wide network effects, but near-monopolies tend

to emerge in marketplaces with firm-specific network effects. Kilcioglu and Rao (2016) document

empirically the performance differentiation in the cloud Infrastructure-as-a-Service (IaaS) market

and use it to study optimal pricing, employing a theoretical model that focuses on capturing com-

petition. Finally, Kash and Key (2016) provide a survey of some of the issues inherent in pricing

the cloud, and related research work.

Our model assumes myopic customers, which we argue in Section 7 is a mild assumption, given

the structure of the optimal policies. In the canonical formulation of the revenue management

problem where a monopolist seller seeks to maximize revenues from selling a fixed inventory of a

product to myopic customers who arrive over time, maintaining prices fixed at an appropriate level

over the selling horizon is asymptotically optimal (Gallego and van Ryzin, 1994). Recent works have

allowed for forward-looking customers (i.e, customers that strategize about their time of purchase)

and have characterized optimal policies that are simple, or admit simple interpretations. Besbes

and Lobel (2015) provide a general formulation that allows for arbitrary correlation in customers’
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patience and valuation, prove that the firm can restrict attention to cyclic pricing policies which

have length, at most, twice the maximum willingness to wait of the customer population, and

develop a dynamic programming approach that efficiently computes optimal policies. Chen and

Farias (2015) propose a “robust” pricing mechanism that guarantees to achieve at least 29% of

the expected revenues of an optimal dynamic mechanism. Their robust pricing mechanism enjoys

the simple interpretation of solving a dynamic pricing problem for myopic customers, with the

additional requirement of a price constraint that discourages rapid discounting. Chen et al. (2017)

demonstrate that for a broad class of customer utility models, static prices surprisingly continue

to remain asymptotically optimal, and that, irrespective of regime, an optimally set static price

guarantees the seller revenues that are within at least 63.2% of the revenues under an optimal

dynamic mechanism. Chen and Hu (2017), motivated by the sharing economy, study a model with

forward-looking buyers and sellers and a single market-making intermediary, and find a simple

heuristic policy to be asymptotically optimal. Under their heuristic policy, forward-looking buyers

and sellers behave myopically. Caldentey et al. (2017) consider the dynamic pricing problem in

a robust formulation that is based on the minimization of the seller’s worst-case regret, without

distributional assumptions about customers’ willingness-to-pay or arrival times. They characterize

optimal price paths for both myopic and strategic customer purchasing behavior. Finally, Liu and

Cooper (2015) and Lobel (2017) deviate from strategic customers to study dynamic pricing in the

face of patient customers: a patient customer is willing to wait up to a certain number of periods

for a lower price and will make a purchase as soon as the price falls below her valuation. Liu and

Cooper (2015) prove that there is an optimal dynamic pricing policy comprised of repeating cycles

of decreasing prices, yet such cycles may no longer be optimal when customers have variable levels

of patience. Lobel (2017) proposes an efficient dynamic programming algorithm for finding optimal

pricing policies for arbitrary joint distributions of patience levels and valuations.

3 Model

Time is discrete with an infinite horizon. At each time period t, the cloud service provider can

introduce up to one new class of virtual machine (VM) at provisioning cost C > 0, and price it

at price xt. The provider thus decides when to introduce new VM classes and how to price them.
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We generally assume that VM classes, once introduced, remain available for customers to choose

thereafter.2 We assume an unlimited capacity of VMs for all introduced VM classes.3

At each period, a unit mass of new customers arrives. Customers stay in the system for two

periods before departing. Each customer has a type θ ≥ 0 that is drawn i.i.d. from a distribution

with differentiable density f and c.d.f. F .

We assume that the quality of the offered services grows linearly with time, so that a customer

of type θ enjoys benefit θ ·t when using a VM of a class that was introduced in period t. A customer

incurs cost xt for using a VM class introduced at time t, and a switching cost c > 0 for switching

to a different VM class. We assume that customers make decisions myopically, maximizing their

utility in the current time period. The assumption of myopic customers is a mild one in our setting,

as we discuss in Section 7.

We denote a policy for the provider π = ((s0 = 0, x0 = 0), (s1, x1), (s2, x2), . . .), which specifies

a (possibly infinite) sequence of pairs of introduction time and price, where we use (si, xi) to denote

the time and price of the ith introduction, respectively. A newly arriving customer of type θ at

time t simply chooses her preferred quality, q1 ∈ {0, 1, ...}, among the introduced VM classes, so

her choice is

q1(π, t, θ) = arg max
i s.t. si≤t

θ · si − xi.

Note that q1 = 0 encodes the customer opting out. We assume that customers who decline service

in the current period are not available as customers in future periods. An existing customer will

either stay with her previous choice or pay the switching cost to adopt a new technology introduced

this period, so her choice is

q2(π, t, θ) =



arg maxi s.t. si≤t θ · si − xi − 1si=tc

if arg maxi s.t. si<t
θ · si − xi ≥ 0

0 otherwise.

There is an inherent asymmetry between the first introduction period and subsequent periods: when
2In Section 7, we discuss how this and other model assumptions affect our results.
3This is consistent with the wide belief that cloud service providers are not capacity constrained in this stage,

but rather going through a phase of infrastructure investment aiming to increase their market share (Kilcioglu and
Maglaras, 2015).
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t = s1, only new customers can choose the new technology and necessarily q2(π, s1, θ) = 0. We

assume without loss of generality that in case of ties in the definitions of q1 and q2, the customer

chooses the latest VM class. In particular, we assume that a new customer who is indifferent

between opting out and buying will buy.

The (expected) revenue of policy π at time t is

Revenue(π, t) =
∫

(xq1(π,t,θ) + xq2(π,t,θ))f(θ)dθ.

The provider discounts future utility at a rate of δ per period, so the total revenue of a policy π is

Revenue(π) =
∞∑
t=1

δtRevenue(π, t).

The cost of policy π at time t is

Cost(π, t) = C1t∈π,

where we write t ∈ π as shorthand for t being an introduction time in policy π, i.e., for the existence

of some sj ∈ π such that sj = t. The total cost of policy π is

Cost(π) =
∞∑
t=1

δtCost(π, t) = C
∑
j≥1

δsj .

Last, we define the utility of a policy π at time t to be the net gain,

U(π, t) = Revenue(π, t)− Cost(π, t)

with total net gain U(π) = Revenue(π)− Cost(π).

4 Myerson Pricing

In this section we analyze a simple, natural pricing policy: simply compute the optimal price for

each class of VM as if it were the only item offered for sale, as per Myerson’s approach. We show this

has several nice properties. First, with this pricing all newly arriving customers will select the latest

quality. Second, with Myerson pricing the optimal policy has a periodic pattern of introductions.
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Third, if a periodic schedule is used, then Myerson pricing is optimal in the limit, in the sense that

Myerson pricing gets arbitrarily close to the optimal policy after sufficient introductions.

Consider the introduction sj , with Myerson pricing, so that xj = sjp
∗, where p∗ maximizes

expected revenue P(θ ≥ p) · p, and therefore satisfies p∗ = 1−F (p∗)
f(p∗) . New customers prefer buying

technology i to buying nothing if si(θ − p∗) ≥ 0, or θ ≥ p∗, so the set of customers willing to

buy each technology is the same, and it is exactly the set the optimal mechanism wants to sell

to. Customers prefer technology j to j − 1 if sj(θ − p∗) ≥ sj−1(θ − p∗), or θ ≥ p∗. Thus all new

customers choose the latest technology and Myerson pricing is optimal for new customers. Existing

customers prefer to switch to the new technology at a time t = sj if sj(θ − p∗)− c ≥ sj−1(θ − p∗),

or θ ≥ p∗ + c/(sj − sj−1).

Assuming a policy πM which follows Myerson pricing, we write down the revenue for the provider

at time t = sj :

Revenue(πM , sj) = (1− F (p∗)) sjp∗ +
(

1− F
(
p∗ + c

sj − sj−1

))
sjp
∗

+
(
F

(
p∗ + c

sj − sj−1

)
− F (p∗)

)
sj−1p

∗
(1)

The first summand is the revenue from the customers who arrive at period sj ; the second summand

is the revenue from the customers who arrive at period sj − 1 and switch to the new VM class

introduced at time sj ; and the third summand is the revenue from the customers who arrive at

period sj − 1 and do not switch to the new VM class at time sj . (In the special case of j = 1, we

have only the first summand.)

We also write down the revenue for the provider at time t > 0, sj < t < sj+1, at which no VM

class is introduced:

Revenue(πM , t) = 2 (1− F (p∗)) sjp∗ (2)

4.1 Under Myerson pricing, periodic introductions are optimal

Our first result shows that there exists a policy that is optimal within the class of policies which use

Myerson pricing, which uses periodic introductions. As previously discussed, there is an asymmetry

with the first introduction because there are no existing customers, but after that the optimization
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problem is invariant to being shifted by one introduction. Thus the proof inductively constructs a

periodic optimal policy from an arbitrary optimal policy.

Proposition 1. Assuming Myerson pricing, periodic introductions are optimal after the first in-

troduction.

All proofs are deferred to the Appendix.

We remark that the optimal policy could be to not offer a service (πM = ((0, 0)). How-

ever, a sufficient condition to prefer to first introduce the service at a time t = s is δsC <

Revenue((0, 0), (s, sp∗)), which simplifies as

C <
1
δs

(
δs(1− F (p∗))sp∗ +

∞∑
t=s+1

δt2(1− F (p∗))sp∗
)

=
(

1 + 2δ
∞∑
t=0

δt
)

(1− F (p∗))sp∗

= 1 + δ

1− δ (1− F (p∗))sp∗.

Hence for finite C and δ < 1 it is always optimal to introduce at some time s. The optimal

policy depends upon C and δ (as well as c). However, the dependence upon C, ceteris paribus,

essentially constrains the periodicity and the time of the first introduction. Henceforth without

loss of generality we assume that the provider is only interested in maximizing revenue.

4.2 Under periodic introductions, Myerson pricing is optimal in the limit of

many introductions

We now show that, under periodic introductions, the potential additional revenue of any pricing

policy over Myerson pricing decays to zero. In particular, shading down prices doesn’t gain much

additional revenue. Informally, we have an incentive to increase the first introduction price, sac-

rificing short-term revenue; but shade down subsequent prices, giving extra incentive for existing

customers to switch. However, the latter effect diminishes with time, as we now prove formally.

Proposition 2. Let π be a policy with periodic introductions and πM be a policy that uses the same
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introductions as π, but Myerson pricing. Then we have

lim
j→∞

Revenue(π, sj)
Revenue(πM , sj)

≤ 1.

The key insight is that the potential gains from alternate prices can be bounded in terms of

the length of the periodicity used by π, independent of introduction index j. As a result, assuming

periodic introductions, the potential additional revenue of any policy over the Myerson policy

decays to zero as the introduction time increases. In particular, the potential additional revenue

earned by shading prices down from the Myerson prices decays to zero as the introduction time

increases. Among the class of policies, in other words, which use multiples of a fixed base rate (i.e.,

they charge xj = (1 − h)sjp∗, with 0 ≤ h < 1) and introduce periodically, Myerson pricing gets

arbitrarily close to the optimal policy, after sufficient introductions.

5 General Pricing

In this section we argue that in many cases Myerson pricing is near optimal even with arbitrary

patterns of introduction times. In view of Proposition 1, this shows that Myerson pricing combined

with periodic introductions is near optimal.

To begin, we consider the set of all policies with a particular pattern of introductions.

Definition 1. For a set of introduction times s = (s0, s1, s2, . . .), the set of all policies with these

introduction times is denoted Π(s) = {π′ = ((s′0, x′0), (s′1, x′1), (s′2, x′2), . . .) | si = s′i ∀i}.

Recall that the revenue of a policy π at time t is

Revenue(π, t) =
∫

(xq1(π,t,θ) + xq2(π,t,θ))f(θ)dθ.

Optimizing this in general is difficult because the price set for the jth introduction, xj , affects

periods after sj . Instead, we use the following trivial upper bound, for which the revenue in each

time period is optimized separately.
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Observation 1. Let introduction times s be given. Then we have

max
π∈Π(s)

∑
t

Revenue(π, t) ≤
∑
t

max
π∈Π(s)

Revenue(π, t).

The proposed upper bound calculates the revenue in the case where the provider were allowed to

pick new prices, at each time t, for introductions that have happened already. Clearly the optimal

revenue at time t in this case is an upper bound of the real revenue at time t under the optimal

pricing policy.

Note that, as we saw in deriving Equation (2), the optimal policy to select for non-introduction

periods simply uses Myerson prices. This just leaves the periods when a new VM class is introduced.

For these periods, we know that Myerson prices are the optimal setting of prices xq1 , but not

necessarily of prices xq2 . The following lemma captures the relevant facts about the optimization

over prices xq2 . In particular, it is optimal to set all prior introduction prices to the Myerson

price. Furthermore, we can put a lower and an upper bound on the optimal price for the current

introduction.

Before we state the lemma, we state a “niceness” assumption on F , in particular Myerson’s

regularity condition of monotone hazard rate, which our analysis requires.

Assumption 1. The function 1−F (p)
f(p) is monotonically decreasing.

Assumption 1 is common in the literature and satisfied by a number of common distributions,

including uniform, normal, exponential, beta (with shape parameters a ≥ 1, b ≥ 1), and gamma

(with shape parameter k ≥ 1).

Lemma 1. Assume F satisfies Assumption 1 and let introduction times s and time t be given with

sj = t for some introduction j. There exists a policy π′ ∈ Π(s) that maximizes
∫
xq2(π,t,θ)f(θ)dθ

among all policies π ∈ Π(s), and that uses pricing xi = sip
∗ for i < j and max(sj−1p

∗, sjp
∗ − c) ≤

xj ≤ sjp∗.

We use the lemma to characterize the competitive ratio of Myerson pricing, i.e., the ratio

between the optimal revenue and the Myerson revenue. As previously mentioned, we first provide

an upper bound of the optimal revenue by allowing a separate optimal policy to be chosen for each

time period. In turn, we now upper bound this upper bound by expanding the set of policies to

14



allow separate policies to be applied to new and existing customers. Such a discriminatory strategy

would separate new and existing customers at introduction times, offering a discount to existing

customers as an incentive to upgrade. The (expected) revenue of such a discriminatory strategy

employing policy π1 for newly arriving customers and policy π2 for existing customers at time t is

RevenueD(π1, π2, t) =
∫ (

xq1(π1,t,θ) + xq2(π2,t,θ)
)
f(θ)dθ.

Having fixed the introduction times, and per the characterization in Lemma 1, the optimal

choices of π1, π2 for the revenue of a single introduction period have a particular restricted form:

they charge Myerson prices for previous introductions and a price from within a restricted range for

the current introduction. We provide the following expressions for the revenue at a period when a

new VM class is introduced under this class of policies for both the original and the discriminatory

setting.

Lemma 2. Let introduction times s and introduction number j be given. Consider policy π ∈ Π(s)

that uses prices xi = sip
∗ for i < j and xj = x, with max(sj−1p

∗, sjp
∗−c) ≤ x ≤ sjp∗. The revenue

for the provider of policy π at time sj, which we denote Revj(x), is

Revj(x) = (1− F (p∗)) sj−1p
∗ +

(
1− F

(
x− sj−1p

∗ + c

sj − sj−1

))
(x− sj−1p

∗) +
(

1− F
(
x

sj

))
x. (3)

Consider also a discriminatory strategy that uses policies π1, π2 ∈ Π(s) with prices xi = sip
∗ for

i < j, xj = xn for new customers in period sj, and xj = xe for existing customers in period sj,

with max(sj−1p
∗, sjp

∗ − c) ≤ xn, xe ≤ sjp
∗. The revenue for the provider of policies π1, π2 at time

sj, which we denote RevDj(xn, xe), is

RevDj(xn, xe) = (1− F (p∗)) sj−1p
∗+
(

1− F
(
xe − sj−1p

∗ + c

sj − sj−1

))
(xe−sj−1p

∗)+
(

1− F
(
xn
sj

))
xn.

(4)

We provide an upper bound to the competitive ratio of Myerson pricing for policies of this form.

We note that the revenue under Myerson pricing at introduction period sj is given by Equations (1)

and (3), which are equivalent: Revenue(πM , sj) = Revj(sjp∗).
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Proposition 3. Assume F satisfies Assumption 1 and let x∗ be the value that maximizes Revj(x)

and x∗n = sjp
∗, x∗e be the values that maximize RevDj(xn, xe). It holds that

Revj(x∗)
Revj(sjp∗)

≤ RevDj(x∗n, x∗e)
Revj(sjp∗)

≤ 1 +
F
(
p∗ + c

sj−sj−1

)
−max

(
F (p∗), F

(
c

sj−sj−1

))
1− F (p∗) . (5)

The right-hand side is reduced to the trivial bound of 2 by observing that F
(
p∗ + c

sj−sj−1

)
−

max
(
F (p∗), F

(
c

sj−sj−1

))
≤ 1− F (p∗). Note also that the right hand side is close to 1 for large or

small c.

We have argued that the optimal policy for maximizing revenue of a particular introduction

period from new customers or existing customers in isolation will be of the following restricted form:

charge Myerson prices for previous introductions and a price from within a restricted range for the

current introduction. Therefore, the optimal policy for the discriminatory setting will also be of

the same form. Our final result shows that the optimal policy for maximizing combined revenue of

a particular introduction period from new and existing customers, for the original setting, will also

be of the same form. This follows from a quasiconcavity property implied by Assumption 1.

Theorem 1. Assume F satisfies Assumption 1 and let introduction times s and time t be given

with sj = t for some introduction j. There exists a policy π′ ∈ Π(s) that maximizes Revenue(π, t)

among all policies π ∈ Π(s), and that uses pricing xi = sip
∗ for i < j and max(sj−1p

∗, sjp
∗ − c) ≤

xj ≤ sjp
∗. Furthermore, the price xj of this policy π′ can be determined as the maximizer x∗ of

Revj(x).

Theorem 1 allows us to understand how the optimization of revenue from existing customers,∫
xq2f(θ)dθ, affects the optimization of revenue from new customers,

∫
xq1f(θ)dθ. In particular,

we know from Section 4 that Myerson prices optimize revenue from new customers, and at those

prices all arriving customers select the newest VM class. Optimizing revenue from existing, as

opposed to new, customers only affects the price of the newest VM class, by reducing it from

the Myerson benchmark. Thus, as long as the revenue from new customers and the revenue from

existing customers behave well as functions of prices xq1 and xq2 , which our assumption ensures, it

is still the case that under the optimal policy for revenue at a particular time, all new customers

choose the latest VM class; they may just pay a price for it lower than the Myerson benchmark.
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6 Numerical Illustrations

We now illustrate our results with a variety of distributions for customer type θ. We show that

our bounds for Myerson pricing from Section 5 can provide strong guarantees for natural families

of distributions. We also show numerically that in reality Myerson pricing is often some orders of

magnitude closer to optimal than our bounds suggest.

We first examine our analytical bounds for Myerson pricing from Proposition 3 and show that

they are tight not only for small and large values of the switching cost c, but also for intermediate

ones, for a variety of distributions for customer type θ.

We then run simulations and, for fixed introduction times, calculate the gain ratio of the op-

timal total revenue (estimated by a best-response updating algorithm we propose in Section 6.2),

throughout the horizon, over Myerson total revenue:

optimal revenue− Revenue(πM )
Revenue(πM ) .

We show that the gain ratio is small for a variety of distributions for customer type θ, thus showing

that Myerson pricing is near optimal in many cases. We also look at the gain ratio of the optimal

revenue for a single introduction period4 proposed in Theorem 1 over the Myerson revenue in that

introduction period, reporting the maximum gain ratio over all introductions,

max
j

Revj(x∗)− Revenue(πM , sj)
Revenue(πM , sj)

.

Finally, we also run numerical experiments for the setting with discriminatory pricing, which

separates new and existing customers at introduction times. Again, we show that Myerson pricing

is close to optimal.

6.1 Examining our analytical bounds

Figure 1 shows the upper bound on the gain ratio Revj(x∗)−Revj(sjp∗)
Revj(sjp∗) from Proposition 3, which is

F

(
p∗+ c

sj−sj−1

)
−max

(
F (p∗),F

(
c

sj−sj−1

))
1−F (p∗) , against the scaled switching cost c

sj−sj−1
. We show the upper

4Remember from Section 5 and in particular Observation 1 that the optimal revenue for a single introduction
period is an upper bound of the real revenue in that period under the optimal policy, having fixed introduction times.
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Figure 1: The right-hand side of Equation (5) in Proposition 3, reduced by 1, against the scaled switching
cost c

sj−sj−1
, for the uniform distribution on [0, 1], the beta distribution with shape parameters α = β = 2,

and the gamma distribution with shape parameter k = 2 and scale parameter θ = 0.25.

bound for the uniform distribution on [0, 1], the beta distribution (p.d.f. f(x) = Γ(α+β)
Γ(α)Γ(β)x

α−1(1−

x)β−1) with shape parameters α = β = 2, and the gamma distribution (p.d.f. f(x) = 1
Γ(k)θkx

k−1e−
x
θ )

with shape parameter k = 2 and scale parameter θ = 0.25. The figure illustrates that Myerson

pricing is close to optimal for large or small scaled switching costs, while it raises the possibility

that there is room for substantial improvement over the Myerson pricing for intermediate scaled

switching costs.

We note that it is possible to derive tighter bounds for specific distributions. In the Appendix,

we derive a tighter bound of 1/4 for the Uniform(0,1) case.

We also note that, rather than applying the general bound from Proposition 3, we can directly

calculate the left-hand side of Equation (5) in Proposition 3, and subtract 1 to recover the gain ratio
Revj(x∗)−Revj(sjp∗)

Revj(sjp∗) . However, this now depends on the three parameters c, sj , and sj−1 separately.

Figure 2 plots the gain ratio for selected pairs of sj and sj−1, for the uniform distribution on [0, 1],

the beta distribution with shape parameters α = β = 2, and the gamma distribution with shape

parameter k = 2 and scale parameter θ = 0.25. As mentioned before, the optimal revenue for a

single introduction period is an upper bound on the real revenue in that period under the optimal

pricing policy, and therefore the gain ratio Revj(x∗)−Revj(sjp∗)
Revj(sjp∗) is an upper bound to the gain ratio in
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Figure 2: The left-hand side of Equation (5) in Proposition 3, reduced by 1, against the switching cost c, for
selected pairs of introduction times sj−1, sj , for the uniform distribution on [0, 1], the beta distribution with
shape parameters α = β = 2, and the gamma distribution with shape parameter k = 2 and scale parameter
θ = 0.25.

that period under the optimal pricing policy for the real problem. The gains over Myerson pricing

are less than 10% — a bound substantially tighter than the one given by the right-hand side of

Equation (5) in Proposition 3.

We can apply this approach to the exponential distribution to show that, for that distribution,

Myerson pricing is in fact optimal. This can be verified by observing that Rev′j(sjp∗) = 0.

6.2 Numerical experiments

We now turn from analyzing a single introduction time in isolation to analyzing a full policy. To do

so, we run 100 simulations for each combination of distribution f , switching cost c, and discount

rate δ. In each simulation, a set of 50 introduction times is randomly generated, with introductions

up to 15 periods apart.

We calculate the optimal pricing given the set of introduction times using the following best-

response updating algorithm: initialize prices, then optimize the price of each introduction given

the prices for the preceding and the subsequent introduction in the previous iteration, and proceed

through all the introductions (looping back to the first introduction after the last introduction has

19



0 2 4 6 8

1e
-1
7

1e
-1
4

1e
-1
1

1e
-0
8

1e
-0
5

Optimal, unif(0,1)

c

G
ai

n 
ra

tio

δ=0.1
δ=0.3
δ=0.5
δ=0.7
δ=0.9

Figure 3: The average of the gain ratio of optimal total revenue over Myerson total revenue, over 100 sim-
ulations, against the switching cost c, for discount rate δ = 0.1, 0.3, 0.5, 0.7, 0.9, for the uniform distribution
on [0, 1].

been optimized). Stop when no introduction can have an improvement ratio above 10−30. Because

of the arguments in Rosen (1965), and as shown in the Appendix, there is a unique revenue

maximizing price vector, and if our proposed updating algorithm converges (which it always did),

it converges to the unique optimal pricing.

Figure 3 plots the average of the gain ratio of the optimal total revenue over Myerson total

revenue,
optimal revenue− Revenue(πM )

Revenue(πM ) ,

against the switching cost c, for different values of the discount rate δ, for the uniform distribution

on [0, 1].

Holding the switching cost c constant, if c is small, then the higher the discount rate δ, the

smaller the gain ratio of the optimal total revenue over the Myerson total revenue. The near-

optimality of Myerson pricing, that is, is more pronounced as the provider becomes more patient.

If c is large, then the higher the δ, the larger the gain ratio of the optimal total revenue over the

Myerson total revenue. Note that these are ratios and that the absolute gain is small for small δ.

Holding the discount rate δ fixed, for switching cost c close to zero, an existing customer is likely
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Figure 4: Histograms of the gain ratio of optimal total revenue over Myerson total revenue, over 100
simulations, for the uniform distribution on [0, 1], for switching cost c = 0.5, and for discount rate δ =
0.1, 0.3, 0.5, 0.7, 0.9. Also, a histogram of the gain ratio of the optimal revenue for a single introduction
period over Myerson revenue, for the introduction that attains the best gain ratio, over 100 simulations.

to behave as if she were a new customer, and chooses her preferred quality among the available ones,

thus Myerson pricing is close to optimal. For large c, a customer is not likely to switch to a new

technology, and again Myerson pricing is close to optimal. Therefore, the gain ratio of the optimal

total revenue over the Myerson total revenue becomes smaller as the switching cost becomes very

large or very small.

We also look at the full histogram of the total revenue gain ratio over 100 simulations for

different values of c and δ, along with the histogram of the gain ratio of the optimal revenue for

a single introduction period over the Myerson revenue in that period, for the introduction that

attains the best gain ratio, maxj Revj(x
∗)−Revenue(πM ,sj)

Revenue(πM ,sj)
, over 100 simulations. Figure 4 shows the

effect of varying the discount rate δ in detail. The overall trend is consistent with the averages, so

the main additional takeaway from the full histogram is that in most instances Myerson pricing is

essentially optimal. The histogram of the gain ratio of the optimal revenue for a single introduction

period shows that this relaxation is often loose by an order of magnitude or more. We note that

21



0 2 4 6 8

1e
-1
8

1e
-1
4

1e
-1
0

1e
-0
6

Optimal, Beta(2,2)

c

G
ai

n 
ra

tio

δ=0.1
δ=0.3
δ=0.5
δ=0.7
δ=0.9

Figure 5: The average of the gain ratio of optimal total revenue over Myerson total revenue, over 100
simulations, against the switching cost c, for discount rate δ = 0.1, 0.3, 0.5, 0.7, 0.9, for the beta distribution
with shape parameters α = β = 2.

our worst case analytical bound of 1/4 for the uniform distribution on [0, 1] is loose even relative

to this relaxation. Figure 12 in the Appendix shows again that in most instances Myerson pricing

is essentially optimal, if instead we vary the switching cost c.

Figures 5 and 6 show experiments for the beta distribution and the gamma distribution. The

results for the beta and gamma distributions are consistent with our results for the uniform distri-

bution.

6.3 Numerical experiments for discriminatory pricing

We focus on the total revenue under a discriminatory strategy, which separates new and existing

customers at introduction times, offering a discount to existing customers as an incentive to upgrade.

In particular, at time sj when VM class j is introduced, the provider offers VM class j at price xj,n

to customers arriving at time sj , and at price xj,e to customers already in the system. As argued

in Section 5, the optimal revenue in this “discriminatory” setting is an upper bound of the optimal

revenue in the original (real) setting. Furthermore, such strategies are potentially interesting in

practice, although we are not aware of existing instances of their use in the cloud computing services

market.
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Figure 6: The average of the gain ratio of optimal total revenue over Myerson total revenue, over 100
simulations, against the switching cost c, for discount rate δ = 0.1, 0.3, 0.5, 0.7, 0.9, for the gamma distribution
with shape parameter k = 2 and scale parameter θ = 0.25.

Before presenting numerical experiments for the setting with discriminatory pricing, we first

look at the corresponding revenue optimization problem. Fix introduction times s0, s1, . . . and

introduction index j. We write down all the terms of total revenue that include xj,n or xj+1,e:

δsj ·
(

1− F
(
xj,n
sj

))
· xj,n

+ 2 · δ
sj+1 − δsj+1

1− δ ·
(

1− F
(
xj,n
sj

))
· xj,n

+ δsj+1 ·
(

1− F
(

max
(
xj+1,e − xj,n + c

sj+1 − sj
,
xj,n
sj

)))
· xj+1,e

+ δsj+1 ·
(
F

(
xj+1,e − xj,n + c

sj+1 − sj

)
− F

(
xj,n
sj

))
· xj,n · 1xj,n

sj
≤
xj+1,e−xj,n+c

sj+1−sj

, (6)

where the first term is the revenue accumulated in period sj from new customers who arrive in

period sj and buy VM class j, the second term is the revenue accumulated during the periods in

between introductions j and j + 1, the third term is the revenue accumulated in period sj+1 from

customers who arrive in period sj+1−1 and switch to VM class j+1 in period sj+1, and the fourth

term is the revenue accumulated in period sj+1 from customers who arrive in period sj+1 − 1 and
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do not switch to VM class j + 1 in period sj+1.

Assuming xj,n
sj
≤ xj+1,e−xj,n+c

sj+1−sj , the last two terms of (6) can be jointly rewritten as

δsj+1 ·
[(

1− F
(
xj,n
sj

))
· xj,n +

(
1− F

(
xj+1,e − xj,n + c

sj+1 − sj

))
· (xj+1,e − xj,n)

]
. (7)

Notice that the Myerson pricing xj,n = sjp
∗ optimizes the first term and the second term

of (6), as well as the first term of (7). So overall, an optimal setting for the total revenue

in the discriminatory setting is to set xj,n to the Myerson pricing, and then optimize the term(
1− F

(
xj+1,e−xj,n+c

sj+1−sj

))
· (xj+1,e − xj,n) over xj+1,e. This matches exactly the prices xj,n, xj+1,e

that would be set by optimizing RevDj and RevDj+1 in (4). Therefore, optimizing the total rev-

enue throughout the horizon in the discriminatory setting can be conveniently decomposed into

optimizing the revenue RevDj per introduction period, for all introductions j.

Numerical experiments. Figure 7 plots the average of the gain ratio of the optimal total revenue

over Myerson total revenue,

optimal discriminatory revenue− Revenue(πM )
Revenue(πM ) ,

against the switching cost c, for different values of the discount rate δ, for the uniform distribution

on [0, 1]. The same patterns are observed as in the original setting, with the difference that the

values of the gain ratio are now larger by some orders of magnitude.

We again also look at the full histogram of the total revenue gain ratio in the discriminatory

setting over 100 simulations for different values of c and δ, along with the histogram of the gain

ratio of the optimal revenue for a single introduction period over the Myerson revenue in that

period, for the introduction that attains the best gain ratio, maxj RevDj(sjp
∗,x∗e)−Revenue(πM ,sj)

Revenue(πM ,sj)
, in

the discriminatory setting, over 100 simulations. Figure 8 shows the effect of varying the discount

rate δ in detail. Similarly to the original setting, the overall trend is consistent with the averages,

so the main additional takeaway from the full histogram is that in most instances Myerson pricing

is essentially optimal. Notice that the values of the gain ratio as indicated in the histograms are

larger in the discriminatory setting than in the original setting. Figure 13 in the Appendix shows

again that in most instances Myerson pricing is essentially optimal, if instead we vary the switching
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Figure 7: The average of the gain ratio of optimal total revenue in the discriminatory setting over Myerson
total revenue, over 100 simulations, against the switching cost c, for discount rate δ = 0.1, 0.3, 0.5, 0.7, 0.9,
for the uniform distribution on [0, 1].

cost c.

Figures 9 and 10 show experiments for the beta distribution and the gamma distribution in the

discriminatory setting. The results are consistent with our results for the uniform distribution, and

the values of the gain ratio in the discriminatory setting are again larger than the values of the

gain ratio in the original setting, but still small in absolute terms.

7 Discussion

As technology improves over time, cloud service providers have the ability to offer more powerful

VMs, which are more valuable to customers. At the same time, introduction of a new VM class

comes at a cost for development and launching, and the new VM class competes with existing

classes. We have presented a model of new product introductions for the cloud services market

that addresses this trade-off, in the face of customers who are averse to upgrading to improved

offerings. The decision problem for the cloud service provider is when to introduce a new VM class

and how to price it in order to maximize total revenue, taking into account (discounted) future

rewards.
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Figure 8: Histograms of the gain ratio of optimal total revenue over Myerson total revenue in the discrim-
inatory setting, over 100 simulations, for the uniform distribution on [0, 1], for switching cost c = 0.5, and
for discount rate δ = 0.1, 0.3, 0.5, 0.7, 0.9. Also, a histogram of the gain ratio of the optimal revenue for a
single introduction period over Myerson revenue, for the introduction that attains the best gain ratio, in the
discriminatory setting, over 100 simulations.

In our analysis, we have shown that a surprisingly simple policy is approximately optimal: new

VM classes are introduced on a periodic schedule, and each is priced as if it were the only product

being offered (Myerson pricing). We first show that under a Myerson pricing rule, there is no

loss of optimality with a periodic schedule of introductions. We also show that under periodic

introductions, the potential additional revenue of any pricing policy over Myerson pricing decays

to zero after sufficiently many introductions.

We then show that, given arbitrary fixed introduction times, Myerson pricing is approximately

optimal. We characterize the prices that achieve optimal revenue in a single introduction period,

and provide a bound for the competitive ratio of Myerson pricing over the optimal single-period

pricing. This bound shows that Myerson pricing is approximately optimal when switching costs

are small or large. Overall, combined with our first result, this implies that Myerson pricing with

periodic introductions is approximately optimal.

Following our analysis, we examine our analytical bounds for Myerson pricing and show they
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Figure 9: The average of the gain ratio of optimal total revenue over Myerson total revenue in the discrim-
inatory setting, over 100 simulations, against the switching cost c, for discount rate δ = 0.1, 0.3, 0.5, 0.7, 0.9,
for the beta distribution with shape parameters α = β = 2.
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Figure 10: The average of the gain ratio of optimal total revenue over Myerson total revenue in the discrim-
inatory setting, over 100 simulations, against the switching cost c, for discount rate δ = 0.1, 0.3, 0.5, 0.7, 0.9,
for the gamma distribution with shape parameter k = 2 and scale parameter θ = 0.25.

can provide strong guarantees for all values of the switching cost, for several natural distributions.

Furthermore, we run simulations where we numerically compute optimal prices, rather than using
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our bounds, and we find that Myerson pricing is often several orders of magnitude closer to optimal

than our analytical bounds suggest.

We conclude by discussing our various model assumptions and their importance to our results.

Our assumption that VM classes remain available once introduced is not crucial, given that our

results for both Myerson pricing and our upper bound show that all new customers choose the

latest VM class anyways. Furthermore, our upper bounds apply even in the case of discriminatory

pricing, in which setting this assumption is without loss of generality if we can set arbitrary prices

for new customers: we can always set prices sufficiently high for old VM classes that they will never

be chosen.

Our results extend to the case where the number of customers arriving at each period is stochas-

tic rather than a unit mass, as long as the expected arrival rate is constant through time and the

policy is decided a priori rather than adaptively based on the state of the system. Time-varying

expected arrival rates will affect the relative weights between current and future customers and

the periodicity, but they will not affect the general shape of our results on the near-optimality

of Myerson pricing. Similarly, we can extend our results to the case where customers stay in the

system for a lifespan that is longer than two periods, and one that may be stochastic.

Our assumption of linear growth of the quality of the offered services with time is important only

for proving that a policy with periodic introductions is optimal under Myerson pricing. Otherwise,

the optimal policy is periodic in terms of the magnitude of the improvement, rather than time.

We restrict to myopic customers, as opposed to forward-looking customers. We now argue that

this is a mild assumption given the structure of the optimal policies. What might a forward-looking

customer do? Whichever VM class is myopically optimal for a customer in a period, will be again

in the next period, assuming no new introduction in the next period. If we allow for a lifespan that

is longer than two periods, then a customer may choose not to upgrade when a new VM class is

introduced, but upgrade on the next introduction. However, with a lifespan of two periods, this is

not possible. Note also that in our model we do not allow for patient customers, who are willing

to wait (and stay in the system) before buying in the next period. Therefore, the only thing that

changes with forward-looking customers in our setting is that it is possible that they will buy a VM

of a new VM class with negative utility in their first period, if an introduction in the next period

generates sufficient positive utility. This is a small effect and also not well aligned with common
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intuition about what customers actually do in practice.

Finally, one feature of our model that does not match reality is that in our model prices go up

over time, whereas in the cloud computing market prices are going down over time. One cause of

this is competition, which our model excludes. Another is that we have assumed that there is a

cost for developing and introducing new products, but no change in that cost over time. In practice

the cost of providing VMs is going down over time due to improvements in hardware and software

that manages it, as well as due to economies of scale. We leave modelling these issues to future

work.
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A Analysis of VM Series Launches

Every VM used on Microsoft Azure is part of a series (such as “Av2” or “NC”) which describes the

features (such as relative amount of memory or availability of a graphics card) that are associated

with it. Within each series, there are typically multiple different sizes of VM. We analyze the launch

of new series by Azure, ignoring size distinctions since all sizes are launched simultaneously. Recall

that our model assumes that customers are averse to switching away from a series of VM they are

already using when a new series launches. Here we provide evidence for this modelling assumption

based on a dataset consisting of a snapshot of all active VMs on Azure at a particular point in

time.

We note that while our dataset shows the set of currently running VMs, we lack the larger

context in which a given VM is being used. For example, a customer may be using multiple VMs

to run a service, and this service may automatically launch and terminate VMs over time. Or a

customer may have built a piece of software that launches a VM when run and terminates it when

the task is complete. So even a VM that was recently created may be a part of some long-standing

system. The switching cost in our model captures the cost of changing this underlying system, so

what we would really like to analyze is the date this system was created. Of course, that date is

not available.

Each VM running on Azure is associated with an account known as a subscription. As a proxy

for the creation date of the system, we use the creation month of the subscription. This is an

imperfect proxy for a number of reasons: a subscription could be repurposed or used for multiple

systems created at different times; a new subscription might be created for an existing system

for administrative reasons; a single system can span multiple subscriptions. Nevertheless, it is

reasonable to assume that creation time of the system and creation time of the subscription are

correlated. We show that subscriptions created before a VM series launches have less of a tendency

to use VMs of that series at the time of the snapshot compared to subscriptions that are created

after the VM series launches. We interpret this as evidence of customers’ aversion to upgrading,

and justification for the switching cost in our model.

From our snapshot of all active VMs on Azure we computed the number of VMs for each (series,

subscription creation month) pair. There is substantial variation in the number of subscriptions
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created each month as well as grown over time. Therefore, for each subscription creation month,

and each series, we calculate the following fraction:

number of VMs of the series from subscriptions created that month that are used at time of snapshot
total number of VMs from subscriptions created that month that are used at time of snapshot .

For the twenty series for which we had adequate data and could identify the month in which they

were launched, we calculated these fractions for each of seven months: from three months before the

launch, to three months after it. For each of these twenty series, we then summed these fractions

across the seven months to get to total relative usage over this seven month period, and plotted

what fraction of this total is associated with each of the seven months in Figure 11.
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Figure 11: Relative usage of twenty different VM series on Azure by subscriptions created the specified
number of months relative to their launch month.

While there is considerable variation among the series, the yellow bar, representing the launch

month, is typically shifted to the left of 0.5, indicating that subscriptions created after the launch

are typically more likely to use the series at the time of the snapshot than subscriptions created
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before the launch. On average, relative usage among subscriptions from the three months after

the launch is 50% higher than from the three months before the launch, suggesting a substantial

switching cost effect.

B Proof of Proposition 1

Proof. Let π∗M = ((s0 = 0, x0 = 0), (s1 = s∗1, x1 = s∗1p
∗), (s2 = s∗2, x2 = s∗2p

∗), (s3 = s∗3, x3 =

s∗3p
∗), . . .) denote an optimal policy which uses Myerson pricing.

First, since π∗M is an optimal policy, introduction times (s∗1, s∗2, s∗3, s∗4, . . .) optimize U(πM )=

Revenue(πM )−Cost(πM )=
∑∞
t=s1 δ

t (Revenue(πM , t)− Cost(πM , t)), i.e., revenue accumulated less

costs incurred during period s1 and subsequent periods. Second, for an arbitrary policy using

Myerson pricing πM = (s0 = 0, x0 = 0), (s1, x1 = s1p
∗), (s2, x2 = s2p

∗), (s3, x3 = s3p
∗), . . .) we can

write (1) as

Revenue(πM , sj) =2 (1− F (p∗)) p∗sj

−
(
F

(
p∗ + c

sj − sj−1

)
− F (p∗)

)
p∗ (sj − sj−1)) .

(8)

Notice that the first term depends only on the introduction times through sj while the second

second term only depends on the introduction times through the difference sj − sj−1. Consider the

policy π′M which instead uses introduction times (s′1 = s1 + (s2 − s1) = s2, s
′
2 = s2 + (s2 − s1) =

2s2 − s1, s
′
3 = s3 + (s2 − s1), . . .). Since it delays each introduction by the same constant, it affects

the timing and revenue from the first term but only the timing from the second term. Thus we

have

U(π′M ) =δs2−s1

δs1(1− F (p∗))p∗(s2 − s1) +

 ∞∑
t=s1+1

δt2(1− F (p∗))p∗(s2 − s1)

+ U(πM )


=δs2−s1

(
δs1 1 + δ

1− δ (1− F (p∗))p∗(s2 − s1) + U(πM )
)
.

Every policy whose first introduction is s∗2 can be written as π′M for some πM whose first introduction

is s∗1. Thus by the optimality of π∗M , π∗M
′ is optimal among all policies whose first introduction

time is s∗2. But then by our observations about (8), the policy that first introduces at s∗1 and then
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uses all the introductions in π∗M
′, i.e. the policy π(3)

M = (s1 = s∗1, s2 = s∗2, s3 = s∗2 + (s∗2 − s∗1), s4 =

s∗3 + (s∗2− s∗1), . . .), is also optimal. Notice that policy π(3)
M is periodic through the 3rd introduction.

By repeating this construction we can create a sequence of optimal policies π(j)
M which are

periodic through the jth introduction. Periodicity follows, with period s∗2 − s∗1.

C Proof of Proposition 2

Proof. Fix the periodicity of introductions τ > 0 and the introduction times. Using the alternative

expression (8), the revenue of policy πM , which uses Myerson pricing, at period sj can be written

as

Revenue(πM , sj) = 2 (1− F (p∗)) p∗sj −
(
F

(
p∗ + c

τ

)
− F (p∗)

)
· p∗τ.

Note that the first term is linear in sj , while the second term is constant with respect to sj . By

the optimality of p∗, an upper bound on the possible revenue of any policy at time period sj is

2 (1− F (p∗)) p∗sj , so

lim
j→∞

Revenue(π, sj)
Revenue(πM , sj)

≤ lim
j→∞

2 (1− F (p∗)) p∗sj
2 (1− F (p∗)) p∗sj −

(
F
(
p∗ + c

τ

)
− F (p∗)

)
· p∗τ

= 1.

D Proof of Lemma 1

Proof. In the spirit of Myerson’s argument, we know that all allocation rules achievable by pricing

are monotone, so we can optimize over them instead. In particular, with a finite menu of VM

classes, the monotone allocation function is piecewise constant: customers who do not buy get an

allocation of 0, those who do get some VM class i. By monotonicity, we just need to choose the
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thresholds θ1, . . . , θj where the transitions occur. Fixing these, we get an allocation function:

a(θ) =



0 if θ < θ1

i if θi ≤ θ < θi+1, i ≤ 1 ≤ j − 1

j if θj ≤ θ.

(9)

Fix a and the resulting policy π′(a), and let Iθj (θ) = 1 if θ ≥ θj be an indicator for agents who

do switch (and thus pay the cost of c). Then the payment the provider gets from a customer of

type θ who arrived in the prior period is

xq2(π′(a),t,θ) = sa(θ)θ −
∫ θ

0
sa(θ′)dθ

′ − Iθj (θ)c. (10)

This makes the expected revenue from a customer who arrived in the prior period
∫
xq2(π′(a),t,θ)f(θ)dθ

equal to

∫ θ1

0
xq2(π′(a),t,θ)f(θ)dθ +

j−1∑
i=1

∫ θi+1

θi

xq2(π′(a),t,θ)f(θ)dθ +
∫ ∞
θj

xq2(π′(a),t,θ)f(θ)dθ

=
j−1∑
i=1

∫ θi+1

θi

(
siθ − si(θ − θi)−

i−1∑
i′=1

si′(θi′+1 − θi′)
)
f(θ)dθ

+
∫ ∞
θj

sjθ − sj(θ − θj)− j−1∑
i′=1

si′(θi′+1 − θi′)− c

 f(θ)dθ

=
j−1∑
i=1

∫ θi+1

θi

siθif(θ)dθ −
j−1∑
i=1

∫ ∞
θi+1

(si(θi+1 − θi)) f(θ)dθ +
∫ ∞
θj

(sjθj − c) f(θ)dθ

=

j−1∑
i=1

(F (θi+1)− F (θi)) siθi − (1− F (θi+1)) si(θi+1 − θi)

+ (1− F (θj)) (sjθj − c)

=

j−1∑
i=1

(1− F (θi)) siθi − (1− F (θi+1)) siθi+1

+ (1− F (θj)) (sjθj − c)

=

j−1∑
i=1

(1− F (θi)) (si − si−1)θi

+ (1− F (θj)) ((sj − sj−1)θj − c) . (11)

Each summand in the summation of terms i = 1, . . . , j − 1, is, up to a constant multiplier,

exactly what p∗ is defined to optimize, so it is optimal to set θi = p∗ for i < j. The term after the

summation can be optimized using a first order condition. Taking the derivative with respect to θj
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yields

(−f(θj)) ((sj − sj−1)θj − c) + (1− F (θj)) (sj − sj−1),

or

(sj − sj−1) (1− F (θj)− f(θj)θj) + f(θj)c. (12)

The first order condition can then be rewritten as

(sj − sj−1)
(
θj −

1− F (θj)
f(θj)

)
= c. (13)

By the definition of p∗, the left hand side of Equation (13) is exactly 0 for θj = p∗, and is increasing

in θj by Assumption 1. Thus the optimal solution satisfies θj ≥ p∗ and so our separate optimization

of each θi does produce a monotone allocation rule.

We wish to turn θj ≥ p∗ into a lower bound on xj . The threshold θj at which customers switch

to technology j solves sjθj − xj − c = sj−1θj − xj−1. We observe that for xj−1 = sj−1p
∗ and

xj = sjp
∗ − c, we have θj = p∗. Therefore the optimal pricing satisfies xj ≥ sjp∗ − c.

Furthermore, a customer can only switch to technology j if she has already bought technology

j − 1, so any choice with xj < sj−1p
∗ is dominated by xj = sj−1p

∗, because in the latter case,

customers that switch to the new technology pay strictly more than in the former case.

We have concluded that optimizing
∫
xq2(π′,t,θ)f(θ)dθ boils down to optimizing over a threshold

θj , as it is optimal to set xi = sip
∗ for i < j. For arbitrary xj ≥ xj−1, the threshold θj at which

existing customers switch to technology j solves

sjθj − xj − c = sj−1θj − xj−1, (14)

or

θj = xj − xj−1 + c

sj − sj−1
. (15)

Let policy π′ have pricing xi = sip
∗ for i < j and xj = x. Then, using Equations (11), (14)

and (15), we can write

∫
xq2(π′,t,θ)f(θ)dθ = (1− F (p∗)) sj−1p

∗ +
(

1− F
(
x− sj−1p

∗ + c

sj − sj−1

))
(x− sj−1p

∗). (16)
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The first order condition is

1− F
(
x− sj−1p

∗ + c

sj − sj−1

)
− f

(
x− sj−1p

∗ + c

sj − sj−1

)
x− sj−1p

∗

sj − sj−1
= 0,

or
x− sj−1p

∗

sj − sj−1
−

1− F
(
x−sj−1p∗+c
sj−sj−1

)
f
(
x−sj−1p∗+c
sj−sj−1

) = 0.

Note that if c = 0, the left hand side equals 0 for x = sjp
∗. Also, note that the left hand side

is increasing in both x and c by Assumption 1. Therefore the maximizing x for c ≥ 0 is at most

sjp
∗.

E Proof of Lemma 2

Proof. We have

Revj(x) =
(

1− F
(
x

sj

))
x+

(
1− F

(
x− sj−1p

∗ + c

sj − sj−1

))
x

+
(
F

(
x− sj−1p

∗ + c

sj − sj−1

)
− F (p∗)

)
sj−1p

∗.

The first summand is the revenue from the customers who arrive at period sj and buys the new

VM class as long as θsj − x ≥ 0⇐⇒ θ ≥ x
sj

. Notice that this customer would buy VM class k < j

instead of VM class j if sk(θ− p∗) ≥ 0⇐⇒ θ ≥ p∗ and θsj − x < sk(θ− p∗)⇐⇒ θ < x−skp∗
sj−sk . Since

x−skp∗
sj−sk ≤

sjp
∗−skp∗
sj−sk = p∗, the two cannot happen at the same time.

The second summand is the revenue from the customers who arrive at period sj−1 and switches

to the new VM class introduced at time sj , because θsj −x− c ≥ sj−1(θ− p∗)⇐⇒ θ ≥ x−sj−1p∗+c
sj−sj−1

.

Notice that x−sj−1p∗+c
sj−sj−1

≥ sjp
∗−c−sj−1p∗+c
sj−sj−1

= p∗, therefore as long as θ ≥ x−sj−1p∗+c
sj−sj−1

, this customer

buys VM class j − 1 in period sj − 1 and doesn’t opt out, because θ ≥ p∗ ⇐⇒ sj−1(θ − p∗) ≥ 0.

The third summand is the revenue from the customers who arrive at period sj − 1 and do not

switch to the new VM class j, because θsj − x − c < sj−1(θ − p∗) ⇐⇒ θ <
x−sj−1p∗+c
sj−sj−1

, while she

buys VM class j − 1 in period sj − 1, because sj−1(θ − p∗) ≥ 0⇐⇒ θ ≥ p∗.

Equation (3) follows.
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We similarly have

RevDj(xn, xe) =
(

1− F
(
xn
sj

))
xn +

(
1− F

(
xe − sj−1p

∗ + c

sj − sj−1

))
xe

+
(
F

(
xe − sj−1p

∗ + c

sj − sj−1

)
− F (p∗)

)
sj−1p

∗,

from which Equation (4) follows.

F Proof of Proposition 3

Proof. Defining x∗2 to be the optimal price for existing customers, we have

Revj(x∗)
Revj(sjp∗)

≤ RevDj(sjp∗, x∗2)
Revj(sjp∗)

= 1 + RevDj(sjp∗, x∗2)−Revj(sjp∗)
Revj(sjp∗)

= 1 +

(
1− F

(
x∗2−sj−1p∗+c
sj−sj−1

))
(x∗2 − sj−1p

∗)−
(
1− F

(
p∗ + c

sj−sj−1

))
(sj − sj−1)p∗

Revj(sjp∗)

≤ 1 +

(
F
(
p∗ + c

sj−sj−1

)
− F

(
x∗2−sj−1p∗+c
sj−sj−1

))
(sj − sj−1)p∗

Revj(sjp∗)

≤ 1 +

(
F
(
p∗ + c

sj−sj−1

)
− F

(
x∗2−sj−1p∗+c
sj−sj−1

))
(sj − sj−1)p∗

(1− F (p∗)) sjp∗

≤ 1 +
F
(
p∗ + c

sj−sj−1

)
− F

(
x∗2−sj−1p∗+c
sj−sj−1

)
1− F (p∗)

≤ 1 +
F
(
p∗ + c

sj−sj−1

)
− F

(
max(sj−1p∗,sjp∗−c)−sj−1p∗+c

sj−sj−1

)
1− F (p∗)

= 1 +
F
(
p∗ + c

sj−sj−1

)
−max

(
F (p∗), F

(
c

sj−sj−1

))
1− F (p∗) .

The first inequality follows because sjp∗ is the optimal price for new customers and we define x∗2

to be optimal for existing ones, the second because x∗2 ≤ sjp
∗ by Lemma 1, the third because, by

the definition of Revj , Revj(sjp∗) ≥ (1− F (p∗)) sjp∗, and the fifth by the lower bound on x∗2 from

Lemma 1.
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G Proof of Theorem 1

Proof. By definition, we have

Revenue(π′, t) =
∫

(xq1(π′,t,θ) + xq2(π′,t,θ))f(θ)dθ.

The essence of our proof is that our assumption makes both terms quasiconcave. While the sum of

two quasiconcave functions is not necessarily quasiconcave, for univariate quasiconcave functions

it holds that if there is an interval that contains the maxima of both functions, then their sum is

also maximized in that interval. We establish this for the interval (max(sj−1p
∗, sjp

∗ − c), sjp∗).

We begin with the second term. Let policy π′ have pricing xi = sip
∗ for i < j and xj = x.

Then, as in the proof of Lemma 1, we can write

∫
xq2(π′,t,θ)f(θ)dθ = (1− F (p∗)) sj−1p

∗ +
(

1− F
(
x− sj−1p

∗ + c

sj − sj−1

))
(x− sj−1p

∗). (17)

By Lemma 1, the maximizing x is at least max(sj−1p
∗, sjp

∗ − c) and at most sjp∗. Furthermore,

Assumption 1 is equivalent to the log concavity of 1−F (x) as a function of x, which in turn implies

Equation (17) is a log concave function of x, and thus quasiconcave on [sj−1p
∗,∞) (see Bagnoli

and Bergstrom, 2005).

Turning to the first term, note that q1 and q2 are identical if c = 0, and our analysis only

assumed that c ≥ 0. Thus the exact same analysis shows that the desired properties hold for xq1

as well.

Finally, when taking into account the first term (i.e., new customers), the optimal price is the

one that optimizes

(1− F (p∗)) sj−1p
∗ +

(
1− F

(
x− sj−1p

∗ + c

sj − sj−1

))
(x− sj−1p

∗) +
(

1− F
(
x

sj

))
x = Revj(x)

over x, where we add the term corresponding to revenue extracted from new customers to the right

hand side of Equation (17).
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H A 1/4 Bound for Uniform(0,1)

The derivative of Revj(xj) in Equation (3) is

1− xj − sj−1p
∗ + c

sj − sj−1
− 1
sj − sj−1

(xj − sj−1p
∗) + 1− xj

sj
− 1
sj
xj ,

or

2− 2xj − sj−1p
∗

sj − sj−1
− 2xj

sj
− c

sj − sj−1
.

This is clearly decreasing in xj and plugging in xj = sjp
∗ = sj/2 yields −c/(sj − sj−1).

The second derivative with respect to xj is

− 2
sj − sj−1

− 2
sj
.

This means the difference in price between the Myerson price and the optimal price is at most

c
sj−sj−1

2
sj

+ 2
sj−sj−1

= sjc

4sj − 2sj−1
.

Multiplying these gives a bound on the gain of

sjc

4sj − 2sj−1
· c

sj − sj−1
= sjc

2

(4sj − 2sj−1)(sj − sj−1) . (18)

Plugging Myerson pricing into (3) and specializing to the uniform case gives a Myerson revenue

at time sj of

(1− p∗)sj−1p
∗ +

(
1− sjp

∗ − sj−1p
∗ + c

sj − sj−1

)
(sjp∗ − sj−1p

∗) + (1− p∗)sjp∗

= sj−1p
∗ − sj−1(p∗)2 + sjp

∗ − sj−1p
∗ − sj(p∗)2 + sj−1(p∗)2 − cp∗ + sjp

∗ − sj(p∗)2

= 2sjp∗ − 2sj(p∗)2 − cp∗

= sj − c
2 .

We now bound the ratio of the revenue gain to the Myerson revenue, assuming that c ≤

(sj − sj−1)/2 (beyond this c, no customer will switch under Myerson pricing, and it can be directly
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verified that gains from non-Myerson pricing are small):

sjc
2

(4sj−2sj−1)(sj−sj−1)
sj−c

2
= 2sjc2

(4sj − 2sj−1)(sj − sj−1)(sj − c)

≤ 2sj(sj − sj−1)2

(4sj − 2sj−1)(sj − sj−1) (4sj − 2(sj − sj−1))

= sj(sj − sj−1)
(4sj − 2sj−1)(sj + sj−1) (19)

This is decreasing in sj−1, so we take sj−1 = 0. The expression then simplifies to 1/4.
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Figure 12: Histograms of the gain ratio of optimal total revenue over Myerson total revenue, over 100
simulations, for the uniform distribution on [0, 1], for discount rate δ = 0.5, and for switching cost c =
0.1, 0.5, 2, 4, 6, 8.
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Figure 13: Histograms of the gain ratio of optimal total revenue over Myerson total revenue in the discrim-
inatory setting, over 100 simulations, for the uniform distribution on [0, 1], for discount rate δ = 0.5, and for
switching cost c = 0.1, 0.5, 2, 4, 6, 8.

J Unique Maximum for Revenue and Convergence of Best-Response

Updating

We express the revenue of the provider as a function of the prices x1, x2, . . ., given introduction

times s1, s2, . . ..

We make the following additional assumptions:

Assumption 2. Function p(1− F (p)) is strictly concave for p > 0.

Assumption 3. For all introductions j ≥ 2, we have that xj ≥ sj
sj−1

xj−1 − c.

Both of these assumptions provide sufficient rather than necessary conditions for the subsequent

analysis. In terms of applying this analysis to our numerical bounds, Assumption 2 is satisfied for

the uniform distribution we use. It is not satisfied for the beta and gamma distributions we use,

because at unreasonably high prices both become convex. However, it does hold for a large range
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of plausible prices, which is sufficient in practice. Similarly, it is possible to construct prices which

violate Assumption 3, but such prices are typically unreasonable in practice and we did not observe

them in calculating our numerical bounds.

To simplify notation, we denote by Rt the provider’s discounted revenue accumulated during

time period t (i.e., due to customers who arrived in periods t− 1 and t). We have

Rs1(x1) = −δs1C + δs1P
(
θ ≥ x1

s1

)
· x1, (20)

and for j ≥ 2,

Rsj (xj−1, xj) =− δsjC

+ δsj ·
[
P
(
θ ≥ xj

sj

)
· xj

+ P
(
θ ≥ max

(
xj − xj−1 + c

sj − sj−1
,
xj−1
sj−1

))
· xj

+ P
(
xj−1
sj−1

≤ θ < xj − xj−1 + c

sj − sj−1

)
· xj−1 · 1

(
xj−1
sj−1

≤ xj − xj−1 + c

sj − sj−1

)]
(21)

= δsj ·
[(

1− F
(
xj
sj

))
· xj +

(
1− F

(
xj − xj−1 + c

sj − sj−1

))
· xj

+
(
F

(
xj − xj−1 + c

sj − sj−1

)
− F

(
xj−1
sj−1

))
· xj−1

]
,

where the first line in (21) captures the introduction cost to the provider, the second line captures

the revenue due to customers who arrive in period sj , the third line captures the revenue due to

customers who arrive in period sj − 1 and switch in period sj , and the fourth line captures the

revenue due to customers who arrive in period sj − 1 and do not switch in period sj . Notice that

because of Assumption 3, we have xj−1
sj−1

≤ xj−xj−1+c
sj−sj−1

necessarily.

The discounted revenue accumulated during periods sj + 1, . . . , sj+1− 1, preceding the j+ 1-th

introduction, is given by

Rsj+1(xj) +Rsj+2(xj) + . . .+Rsj+1−1(xj) =
sj+1−sj−1∑

t=1
δsj+t · 2 · P

(
θ ≥ xj

sj

)
· xj

= 2 · δ
sj+1 − δsj+1

1− δ ·
(

1− F
(
xj
sj

))
· xj . (22)
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Fix an integer n. Assuming the horizon stops when the n-th VM class is introduced, i.e.,

exactly at period sn, we denote the total revenue TR for the provider, given introduction times

s1, s2, . . . , sn, by TRs1,...,sn(x1, . . . , xn), so that

TRs1,...,sn(x1, . . . , xn) =Rs1(x1) +Rs1+1(x1) + . . .+Rs2−1(x1)

+Rs2(x1, x2) +Rs2+1(x2) + . . .+Rs3−1(x2)
...

+Rsn−1(xn−2, xn−1) +Rsn−1+1(xn−1) + . . .+Rsn−1(xn−1)

+Rsn(xn−1, xn).

In what follows, we show that total revenue TRs1,...,sn(x1, . . . , xn) has a unique maximum with

respect to prices x1, . . . , xn, and that an algorithm based on best-response updating would converge

to it.

J.1 Revenue has a unique maximum

We define5

φ1(x1, x2) = Rs1(x1) +Rs1+1(x1) + . . .+Rs2−1(x1) +Rs2(x1, x2),

and, for 2 ≤ j ≤ n− 1,

φj(xj−1, xj , xj+1) = Rsj (xj−1, xj) +Rsj+1(xj) + . . .+Rsj+1−1(xj) +Rsj+1(xj , xj+1),

and

φn(xn−1, xn) = Rsn(xn−1, xn).

Notice that
∂TRs1,...,sn

∂xj
= ∂φj
∂xj

, 1 ≤ j ≤ n. (23)

We can consider function φi as the payoff of player i in a n-person game, where player i’s

strategy is xi. We will use Theorem 2 in Rosen (1965) to show that there is a unique equilibrium
5We sometimes use instead the notation φj(x), where x is a n× 1 price vector. This notation specifies all prices

rather than only those used in the calculation of φj for each j.
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point x0 = (x0
1, . . . , x

0
n) satisfying

φ1(x0
1, x

0
2) = max

y1
φ1(y1, x

0
2), (24)

φj(x0
j−1, x

0
j , x

0
j+1) = max

yj
φj(x0

j−1, yj , x
0
j+1), 2 ≤ j ≤ n− 1, (25)

φn(x0
n−1, x

0
n) = max

yn
φn(x0

n−1, yn), (26)

Any equilibrium point, i.e., any price vector satisfying (24), (25), and (26), maximizes φj for all j

(holding x−j fixed), and because of (23), it also maximizes (locally) the total revenue TRs1,...,sn .

Conversely, any (local) maximizer of total revenue TRs1,...,sn (locally) optimizes φj for all j (holding

the x−j fixed). If all local maxima of each φj are global maxima, this is an equilibrium point of

the proposed game. Therefore, uniqueness of equilibrium of the game plus strict concavity of each

φj implies uniqueness of the maximum for the total revenue.

First, we show that each φj is strictly concave in xj . We have

∂2φj
∂x2

j

=
sj+1∑
`=sj

∂2Rs`
∂x2

j

, 1 ≤ j ≤ n− 1,

∂2φn
∂x2

n

= ∂2Rsn
∂x2

n

.

The first (partial) derivative of revenue accumulated during a period with an introduction of

new technology is
dR1
dx1

= δs1 ·
(
−f

(
x1
s1

)
x1
s1

+ 1− F
(
x1
s1

))
,

and for 2 ≤ j ≤ n,

∂Rsj
∂xj

= δsj ·
[
−f

(
xj
sj

)
xj
sj

+ 1− F
(
xj
sj

)
− f

(
xj − xj−1 + c

sj − sj−1

)
xj

sj − sj−1

+1− F
(
xj − xj−1 + c

sj − sj−1

)
+ f

(
xj − xj−1 + c

sj − sj−1

)
xj−1

sj − sj−1

]
.

The second partial derivative is

d2R1
dx2

1
= δs1 ·

(
−f ′

(
x1
s1

)
x1
s2

1
− 2f

(
x1
s1

) 1
s1

)
, (27)
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and for 2 ≤ j ≤ n,

∂2Rsj
∂x2

j

= δsj ·
[
−f ′

(
xj
sj

)
xj
s2
j

− 2f
(
xj
sj

)
1
sj
− f ′

(
xj − xj−1 + c

sj − sj−1

)
xj

(sj − sj−1)2

−2f
(
xj − xj−1 + c

sj − sj−1

)
1

sj − sj−1
+ f ′

(
xj − xj−1 + c

sj − sj−1

)
xj−1

(sj − sj−1)2

]
. (28)

The second derivative of revenue accumulated during periods in between introductions is, for

1 ≤ j ≤ n− 1,

d2(Rsj+1 +Rsj+2 + . . .+Rsj+1−1)
dx2

j

= 2 · δ
sj+1 − δsj+1

1− δ ·
(
−f ′

(
xj
sj

)
xj
s2
j

− 2f
(
xj
sj

)
1
sj

)
. (29)

The second partial derivative of revenue accumulated during the subsequent period right after

a new VM class is introduced is, for 1 ≤ j ≤ n− 1,

∂2Rsj+1

∂x2
j

= δsj+1 ·
[
−f ′

(
xj+1 − xj + c

sj+1 − sj

)
xj+1

(sj+1 − sj)2 + f ′
(
xj+1 − xj + c

sj+1 − sj

)
xj

(sj+1 − sj)2

−2f
(
xj+1 − xj + c

sj+1 − sj

)
1

sj+1 − sj
− f ′

(
xj
sj

)
xj
s2
j

− 2f
(
xj
sj

)
1
sj

]
. (30)

By Assumption 2, we have

−f ′(x) · x− 2f(x) < 0 for x > 0. (31)

It follows that the expressions in (27) and (29) are negative. Similarly, the sum of the first two

terms in (28), which is also the sum of the last two terms in (30), i.e., −f ′
(
xj
sj

)
xj
s2
j
− 2f

(
xj
sj

)
1
sj

, is
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also negative. The sum of the remaining (i.e., the last three) terms in (28) is negative, because

− f ′
(
xj − xj−1 + c

sj − sj−1

)
xj

(sj − sj−1)2 − 2f
(
xj − xj−1 + c

sj − sj−1

)
1

sj − sj−1
+ f ′

(
xj − xj−1 + c

sj − sj−1

)
xj−1

(sj − sj−1)2

= −f ′
(
xj − xj−1 + c

sj − sj−1

)
xj − xj−1

(sj − sj−1)2 − 2f
(
xj − xj−1 + c

sj − sj−1

)
1

sj − sj−1

≤ 2
xj−xj−1+c
sj−sj−1

f

(
xj − xj−1 + c

sj − sj−1

)
xj − xj−1

(sj − sj−1)2 − 2f
(
xj − xj−1 + c

sj − sj−1

)
1

sj − sj−1

= 2 · f
(
xj − xj−1 + c

sj − sj−1

)
1

sj − sj−1

(
xj − xj−1

xj − xj−1 + c
− 1

)

< 0, (32)

where the first inequality follows from (31). Similarly, the sum of the remaining (i.e., the first three)

terms in (30) is negative.

Having shown that φj is strictly concave in xj for all j, it follows that

(
x

(1)
j − x

(2)
j

)
·

∂φj
∂xj

∣∣∣∣∣
x=x(2)

− ∂φj
∂xj

∣∣∣∣∣
x=x(1)

 > 0, for all x(1),x(2) s.t. x(1)
j 6= x

(2)
j , for all j,

because ∂φj
∂xj

is strictly decreasing in xj . It follows that

n∑
j=1

(
x

(1)
j − x

(2)
j

)
· ∂φj
∂xj

∣∣∣∣∣
x=x(2)

+
(
x

(2)
j − x

(1)
j

)
· ∂φj
∂xj

∣∣∣∣∣
x=x(1)

> 0, for all x(1),x(2) s.t. x(1) 6= x(2).

We recognize this as the definition of diagonal strict concavity (Definition in Section 3, Rosen,

1965) for function
∑n
j=1 φj(x). By Theorem 2 in Rosen (1965), it follows that there exists a unique

equilibrium point x0 satisfying (24), (25), (26).

50



J.2 Best-response updating converges to the unique maximizer of revenue

Following Rosen (1965), for vectors x = (x1, . . . , xn), r = (r1, . . . , rn), we define

g(x, r) =



r1
∂φ1(x)
∂x1

r2
∂φ2(x)
∂x2
...

rn
∂φn(x)
∂xn


.

We will show that the symmetric matrix G(x, r)+G′(x, r) is negative definite for some r, where
G(x, r) is the Jacobian of g(x, r) with respect to x:

G(x, r) =



r1
∂2φ1
∂x2

1
r1

∂2φ1
∂x2∂x1

0 0 0 . . . 0 0 0 0

r2
∂2φ2
∂x1∂x2

r2
∂2φ2
∂x2

2
r2

∂2φ2
∂x3∂x2

0 0 . . . 0 0 0 0

0 r3
∂2φ3
∂x2∂x3

r2
∂2φ3
∂x2

3
r3

∂2φ3
∂x4∂x3

0 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 . . . 0 rn−1
∂2φn−1

∂xn−2∂xn−1
rn−1

∂2φn−1
∂x2
n−1

rn−1
∂2φn−1
∂xn∂xn−1

0 0 0 0 0 . . . 0 0 rn
∂2φn

∂xn−1∂xn
rn

∂2φn
∂x2
n


.

(33)

We notice that for ri = 1
2 for all i, G

(
x, 1

2

)
+G′

(
x, 1

2

)
is



∂2φ1
∂x2

1

1
2

∂2φ1
∂x2∂x1

+ 1
2

∂2φ2
∂x1∂x2

0 0 0 . . .

1
2

∂2φ1
∂x2∂x1

+ 1
2

∂2φ2
∂x1∂x2

∂2φ2
∂x2

2

1
2

∂2φ2
∂x3∂x2

+ 1
2

∂2φ3
∂x2∂x3

0 0 . . .

0 1
2

∂2φ2
∂x3∂x2

+ 1
2

∂2φ3
∂x2∂x3

∂2φ3
∂x2

3

1
2

∂2φ3
∂x4∂x3

+ 1
2

∂2φ4
∂x3∂x4

0 . . .

...
...

...
...

...
. . .


,

where the last three rows are


0 . . . 0 1

2
∂2φn−3

∂xn−2∂xn−3
+ 1

2
∂2φn−2

∂xn−3∂xn−2

∂2φn−2
∂x2
n−2

1
2

∂2φn−2
∂xn−1∂xn−2

+ 1
2

∂2φn−1
∂xn−2∂xn−1

0

0 . . . 0 0 1
2

∂2φn−2
∂xn−1∂xn−2

+ 1
2

∂2φn−1
∂xn−2∂xn−1

∂2φn−1
∂x2
n−1

1
2

∂2φn−1
∂xn∂xn−1

+ 1
2

∂2φn
∂xn−1∂xn

0 . . . 0 0 0 1
2

∂2φn−1
∂xn∂xn−1

+ 1
2

∂2φn
∂xn−1∂xn

∂2φn
∂x2
n

 .
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This can be written as



∂2(Rs1+Rs1+1+...+Rs2 )
∂x2

1

∂2Rs2
∂x1∂x2

0 0 0 . . .

∂2Rs2
∂x1∂x2

∂2(Rs2+Rs2+1+...+Rs3 )
∂x2

2

∂2Rs3
∂x2∂x3

0 0 . . .

0 ∂2Rs3
∂x2∂x3

∂2(Rs3+Rs3+1+...+Rs4 )
∂x2

3

∂2Rs4
∂x3∂x4

0 . . .

...
...

...
...

... . . .


, (34)

where the last three rows are


0 . . . 0 ∂2Rsn−2

∂xn−3∂xn−2

∂2(Rsn−2+Rsn−2+1+...+Rsn−1 )
∂x2
n−2

∂2Rsn−1
∂xn−2∂xn−1

0

0 . . . 0 0 ∂2Rsn−1
∂xn−2∂xn−1

∂2(Rsn−1+Rsn−1+1+...+Rsn )
∂x2
n−1

∂2Rsn
∂xn−1∂xn

0 . . . 0 0 0 ∂2Rsn
∂xn−1∂xn

∂2Rsn
∂x2
n

 .

We recognize (34) as the Hessian H of total revenue TRs1,...,sn .

We show that the negation of the Hessian H is a strictly diagonally dominant6 matrix with

positive diagonal entries, and therefore that it is positive definite. It then follows that G
(
x, 1

2

)
+

G′
(
x, 1

2

)
is negative definite.

We first compute the derivative

∣∣∣∣∣ ∂2Rsj
∂xj−1∂xj

∣∣∣∣∣ = δsj ·
[
f ′
(
xj − xj−1 + c

sj − sj−1

)
xj

(sj − sj−1)2 + 2f
(
xj − xj−1 + c

sj − sj−1

)
1

sj − sj−1

−f ′
(
xj − xj−1 + c

sj − sj−1

)
xj−1

(sj − sj−1)2

]
, (35)

for 2 ≤ j ≤ n. Notice that the right hand side of Equation (35) is positive, by Equation (32).

For 2 ≤ j ≤ n− 1, we want to compare the magnitude of the jth diagonal entry of the Hessian

|Hjj |, to the sum of magnitudes of the non-diagonal entries in the same row j, |Hj,j−1|+ |Hj,j+1|.
6A square matrix A is strictly diagonally dominant if |aii| >

∑
i 6=j |aij |, for all i, where aij denotes the entry in

the ith row and jth column of A.
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We have

|Hj,j−1|+ |Hj,j+1| =
∣∣∣∣∣ ∂2Rsj
∂xj−1∂xj

∣∣∣∣∣+
∣∣∣∣∣ ∂2Rsj+1

∂xj∂xj+1

∣∣∣∣∣
= δsj ·

[
f ′
(
xj − xj−1 + c

sj − sj−1

)
xj

(sj − sj−1)2 + 2f
(
xj − xj−1 + c

sj − sj−1

)
1

sj − sj−1

−f ′
(
xj − xj−1 + c

sj − sj−1

)
xj−1

(sj − sj−1)2

]

+ δsj+1 ·
[
f ′
(
xj+1 − xj + c

sj+1 − sj

)
xj+1

(sj+1 − sj)2 + 2f
(
xj+1 − xj + c

sj+1 − sj

)
1

sj+1 − sj

−f ′
(
xj+1 − xj + c

sj+1 − sj

)
xj

(sj+1 − sj)2

]
, (36)

while

|Hjj | =

∣∣∣∣∣∣∂
2Rsj
∂x2

j

+
∂2
(
Rsj+1 + . . .+Rsj+1−1

)
∂x2

j

+
∂2Rsj+1

∂x2
j

∣∣∣∣∣∣
=
∣∣∣∣∣∂2Rsj
∂x2

j

∣∣∣∣∣+
∣∣∣∣∣∣
∂2
(
Rsj+1 + . . .+Rsj+1−1

)
∂x2

j

∣∣∣∣∣∣+
∣∣∣∣∣∂2Rsj+1

∂x2
j

∣∣∣∣∣ , (37)

where the second equality follows because the expressions on the right hand side of each of Equa-

tions (28), (29), (30) are negative. By comparing Equation (36) to Equations (28), (29), and (30),

it follows that |Hjj | > |Hj,j−1|+ |Hj,j+1|.

It is also clear that

|H1,1| =
∣∣∣∣∣∂2Rs1

∂x2
1

+ ∂2 (Rs1+1 + . . .+Rs2−1)
∂x2

1
+ ∂2Rs2

∂x2
1

∣∣∣∣∣
>

∣∣∣∣∣∂2Rs2

∂x2
1

∣∣∣∣∣
>

∣∣∣∣∣ ∂2Rs2

∂x1∂x2

∣∣∣∣∣
= |H1,2|,

where the second inequality follows by comparing Equations (30) for j = 1 and (35) for j = 2.
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Also, we have that

|Hn,n| =
∣∣∣∣∣∂2Rsn
∂x2

n

∣∣∣∣∣
>

∣∣∣∣∣ ∂2Rsn
∂xn−1∂xn

∣∣∣∣∣
= |Hn,n−1|,

where the inequality follows by comparing Equations (28) and (35) for j = n.

Having shown that the Hessian G
(
x, 1

2

)
+G′

(
x, 1

2

)
is negative definite, we can show, for some

algorithms based on best-response updating, that the solution converges to the unique equilibrium

x0. For example, we can employ Theorem 9 in Rosen (1965).
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