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High-Performance Practice Processes

Guillaume Roels
INSEAD, Boulevard de Constance, 77305 Fontainebleau, France, guillaume.roels@insead.edu

Despite their idiosyncrasies, motor and cognitive learning and endurance sports training have in common

that they involve repeated practice. While considerable research has been devoted to the effect of practice on

performance, little is known about optimal practice strategies. In this paper, we model the practice process

for both skill acquisition and retention and optimize its profile to maximize performance on a predefined

date. For skill acquisition, we find that the optimal process involves multiple phases of practice increase

and decrease, yielding U-shaped effort consistent with the principle of distributing practice, and that the

transitions between phases are smoother for skills that are easily forgotten (e.g., cognitive skills) than for

those that are easily retained (e.g., continuous motor skills). In particular for the latter, an extended period

of rest should precede an ultimate high-intensity stress. For skill retention, the optimal practice strategy

consists of cycles of either constant effort (for skills that are easily forgotten) or pulsed effort (for skills that

are easily retained) consistent with the principle of alternating stress and rest. Our parametric model thus

indicates when commonly used high-performance practice strategies are indeed optimal.

Key words : process optimization, people-centric operations, learning, training, education, sports analytics

History :

1. Introduction

Consider the following three individuals: a runner training for a marathon, a machine operator

learning to operate a new machine, and a prospective MBA student preparing for a GMAT test.

Although they pursue different goals, they each go through a practice process, with a specific

performance horizon.1 Consistent with the saying “practice makes better” and the “10,000-hour

rule” popularized by Gladwell (2008), the link between deliberate practice and performance is well

established (Ericsson et al. 1993). However, practice per se may not suffice to improve performance.

Numerous scientific studies on the effect of practice on performance indeed indicate that, among

other factors, the type and timing of practice matter.

Building on these scientific studies, we take an optimization perspective on the practice process

and address the questions ‘What is the optimal practice process to maximize performance on a

given date? Should the practice involve breaks? Should it be massed or distributed? Should it

be pulsed? Should there be a decrease in practice intensity before the final performance test?

How is it affected by the stage of skill development (acquisition vs. retention), the type of skill

(cognitive vs. motor), and the difficulty of the final performance assessment?’ We consider a setting

1 Although physical training, motor learning, and cognitive learning involve different functions, the effect of practice
on performance often relies on similar behavioral mechanisms (Schmidt and Bjork 1992). As Stulberg and Magness
(2017, p. 21) put it, “Whether someone is trying to qualify for the Olympics, break ground in mathematical theory,
or craft an artistic masterpiece, many principles underlying healthy, sustainable success are the same.”

1
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where practices are free and unconstrained (unlike, say, a course with pre-defined session duration)

and individuals are captive learners (e.g., no drop-outs). We focus on optimizing the distribution

(intensity and timing) of practice and ignore other on-task and off-task practice considerations

(e.g., variability in the content of practice, motivation; see Anderson 2000).

Practice process optimization offers business opportunities for sports analytics, training in orga-

nizations, and business model innovations in education, as set out below.

The sport industry, which is worth $480-$620 billion globally (Collignon et al. 2011), has widely

adopted analytics to optimize athletes’ performance, as popularized by the books Moneyball (Lewis

2004) and Soccernomics (Kuper and Szymanski 2014), with direct implications for advertising (e.g.,

Nike’s Breaking2 two-hour marathon) and entertainment (e.g., broadcasting revenue). Moreover,

the highly visible successes of analytics in sports have convinced business leaders to adopt a more

analytical approach to management, e.g., for performance improvement (Davenport 2014).

In business, many operations (e.g., agriculture, factory work, call center operations) involve

routine tasks for which performance can be improved through repeated practice. Similar to an orga-

nization’s learning curve (Wright 1936), there are numerous opportunities for optimizing learning

at the individual level, in the spirit of Taylor’s time-and-motion studies (Taylor 1911). Companies

regularly require their workforce to undergo training (e.g., pilots use flight simulators), certification

programs (e.g., 6 sigma), rehearsals (e.g., plays, concerts), and drills (e.g., business continuity) to

improve their performance (Fisher et al. 2018). Employees themselves often engage in deliberate

practice to improve their performance (Sonnentag and Kleine 2000). In fact, lifetime learning has

become an economic imperative as routine tasks are increasingly automated or offshored due to

advances in technology, forcing people to reorient their careers (The Economist 2017, Staats 2018).

Practice process optimization could also lead to business model innovations in education. Global

education, which is worth $4.4 trillion (Strauss 2013), faces rising costs and disruption by infor-

mation and communication technologies that allow customization of course content and pacing

(Terwiesch and Ulrich 2014). For instance, SwissVBS’s ECHO’s learning app incorporates findings

from scientific research on cognitive learning to customize learning and optimize retention.

Our behavioral model builds upon the discrete-time, finite-horizon fitness-fatigue model pro-

posed by Banister et al. (1975). Although this model was developed in the context of endurance

sports training, practice process optimization can be applied to other contexts provided that the

effect of practice on performance is well understood. In this model, each practice session has a

positive impact on performance by contributing to a “stock of fitness” and a negative impact by

contributing to a “stock of fatigue.” Between practice sessions, both stocks decay exponentially.

Thus performance results from balancing stress and rest, consistent with a popular framework for

peak performance in sports, science, and the arts (Stulberg and Magness 2017).
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Although the fitness-fatigue model aptly describes performance in endurance sports (Taha and

Thomas 2003), it is not without limitations when it comes to optimization. Specifically, as the model

is linear, optimizing the profile of the practice process results in a corner solution, hence the optimal

solution is heavily dependent on specifying its feasible set. Moreover, it is typically a threshold

policy, e.g., it prescribes a phase of high-intensity practice followed by a phase of low-intensity

practice, in stark contrast with empirical evidence of the effectiveness of distributed practice.

Furthermore, because the performance objective function is separable, practices are independent

of each other and thus unaffected by the difficulty of the final performance assessment.

To overcome these shortcomings, we modify the fitness-fatigue model in three ways. First, we

incorporate the idea that adaptation plays a central role in practice processes. We model the impact

of a practice session on performance as a function of the effort expended, measured as the current

practice intensity relative to a base level, corresponding to the mean intensity of past practice

sessions. We consider two models of adaptation: (i) the geometric mean, which adapts slowly to

high-intensity practice but quickly to low-intensity practice, as is typically the case for skills that

are easily forgotten, such as cognitive skills; and (ii) the maximum mean, which adapts quickly to

high-intensity practice but slowly to low-intensity practice, as is typically the case for skills that

are retained over a long time horizon, such as continuous motor skills (e.g., skiing, riding a bicycle).

Second, we introduce nonlinearities to capture the diminishing marginal returns of practice on

fitness and its increasing marginal costs in terms of fatigue. Third, we propose a multiplicative

model of performance for skill retention as a complement to the original additive model, which is

better suited for modeling skill acquisition.

We then optimize the profile of the practice process for four specific variants of the model,

depending on (i) whether the effect of practice on performance is additive or multiplicative, (ii)

whether the base level adapts to past practices as the geometric mean of past intensities or as their

maximum. For each variant, we consider two scenarios, namely whether the effort associated with

the ultimate practice period (i.e., the final performance test) is required to be high or not.

We find that, for the additive model of performance (skill acquisition), the optimal process

involves phases of successive increases and decreases in intensity, consistent with the principle of

distributing practice to enhance learning (Brown et al. 2014), yielding U-shaped effort. Also, the

transitions in practice intensity are smoother for skills involving short-term memory (i.e., geometric

adaptation) as for cognitive skills, than for those involving long-term memory (i.e., maximum

adaptation) as for continuous motor skills. In the latter case, the optimal process prescribes a

pronounced period of rest before the ultimate performance test if it is demanding, akin to the

“tapering” principle in endurance sports.
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For the multiplicative model of performance (skill retention), the optimal practice process con-

sists of cycles of either constant effort or pulsed effort up to the final performance test, demon-

strating the power of habit. Constant effort is optimal for skills that involve short-term memory

(i.e., geometric adaptation), as is the case for cognitive skills. Pulsed effort is optimal before a

challenging final performance test for skills that involve long-term memory (maximum adaptation),

as is the case for continuous motor skills, consistent with the principle of alternating stress and

rest (Stulberg and Magness 2017) and periodization in sports.

The paper is organized as follows. We position our contribution relative to the extant literature

in §2 and propose a model of practice process in §3. In §4, we optimize the practice process model

to maximize performance on a given date and characterize the structure of its optimal solution.

We present our conclusions in §5. Appendices EC.1 and EC.2 calibrate the model with running

data and Appendix EC.3 contains the proofs and supporting lemmas.

2. Literature review

This paper relates to the literatures on endurance sports training, learning, and people-centric

operations management. We build on the first two streams by bringing a dynamic optimization

perspective to training and learning, and contribute to the third stream by introducing a novel

domain for process analysis and optimization.

2.1. Training for Endurance Sports

Although operations research has been applied to sports optimization (see Machol et al. 1976

and Gerchak 1994 for reviews), much of its focus is on in-game strategies, drafting, and team

scheduling. In contrast, training optimization has received less attention; Ladany (1975) and Zwols

and Sierksma (2009) are two notable exceptions, but they consider static training models.

In contrast, a large body of literature in physiology has modeled the dynamic effects of practice

on performance. In a series of papers, Banister et al. (1975) and Calvert et al. (1976) propose an

analytical model that related training intensity to performance through a positive effect (“fitness”)

and a negative effect (“fatigue”). Adapting their model to a discrete-time setting, Morton et al.

(1990) and Fitze-Clarke et al. (1991) showed that practice sessions do not all contribute equally

to performance. In particular, they derived analytical formulas when practice makes the biggest

contribution to performance, and when reducing practice intensity (or “tapering”) enhances per-

formance. This model is taken as a starting point for our study.

The fitness-fatigue model has been used to predict athletes’ performance in a variety of endurance

sports, including swimming (Banister et al. 1975, Calvert et al. 1976, Hellard et al. 2005), running

(Morton et al. 1990, Wallace et al. 2014, Wood et al. 2005), weight-lifting (Busso et al. 1990),

triathlon (Banister et al. 1999), and hammer-throwing (Busso et al. 1994), among others. To



Roels: High-Performance Practice Processes
Article submitted to ; manuscript no. 5

improve its descriptive ability, various enhancements have been proposed such as nonlinearities

(Hellard et al. 2005) or multiplicative effects of fitness and fatigue on performance (Moxnes and

Hausken 2008), which are also incorporated in our model. For more details on the fitness-fatigue

model and its descriptive ability, see Smith (2003) and Taha and Thomas (2003).

In addition to developing mathematical models, the physiology literature provides ample evidence

of high-performance strategies such as “tapering,” i.e., progressively reducing the training load

before a race (Mujika and Padilla 2003), “periodization,” i.e., structuring the training program

in cycles of high-intensity sessions followed by periods of recovery (Bompa and Haff 2009), and

lifelong exercise for long-term benefits (Gries et al. 2018). However, few attempts have been made

to demonstrate the optimality of such strategies besides Morton (1991) and Banister et al. (1999),

who evaluated the performance of a specific set of training profiles via simulation.

Our paper therefore bridges the gap between the operations research literature on (static) train-

ing optimization and the physiology literature on the dynamic effects of practice on performance,

using a dynamic model of the practice process to maximize performance.

2.2. Learning

Because learning and memory is one of the central topics in psychology, we summarize some of

the key results below. Terry (2009) and Anderson (2000) both offer comprehensive reviews and

Brown et al. (2014) provides a summary targeted to a broader audience. Schmidt and Lee (2011)

review the state of the art in motor learning, which has a strong connection with cognitive learning

(Schmidt and Bjork 1992). See also Staats (2018) for a behavioral treatment of the topic.

Combining outcomes from experiments across various settings (motor skills, memory, complex

tasks), Newell and Rosenbloom (1981) formulate the “power law of practice” according to which

performance improves with the number of trials as a power function. Building on Chambliss (1989),

Ericsson et al. (1993) find a correlation between musicians’ expertise and their cumulative practice

and suggest that expertise in contexts as varied as music, chess, typing, sports, and science is driven

less by innate ability than by the total amount of deliberate practice.

A second fundamental result is the “power law of forgetting” according to which a memory

decays as a power function of the time it is retained (Wixted and Carpenter 2007), although some

early work proposed that memory decays exponentially (Ebbinghaus 1913, Heathcote et al. 2000).

In this paper, we consider exponential decay as an approximation to power decay.

In operations management, the learning curve predicates a reduction in cost as volume of produc-

tion accumulates (Wright 1936), with significant implications for operations strategy (Henderson

1984, Hax and Majluf 1982). However, forgetting may happen during interruptions; see Jaber and

Bonney (1997) for a review of learning-forgetting models.
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The learning literature often makes the distinction between performance at the end of the skill

acquisition stage and long-term retention (Schmidt and Bjork 1992). In particular, some behavioral

responses to training may be only temporary. In particular, Schmidt and Bjork (1992, p. 207) argue

that “typical training procedures are far from optimal” in both the motor and verbal domains

because they tend to focus on short-term performance as opposed to long-term learning. As a result,

these authors recommend measuring performance during a retention (or transfer) period that occurs

after an extended period of rest during which no stimulus is applied, so as to measure the long-term

effects of training. Although we do not formally impose a rest period in our model, practice intensity

could easily be constrained to zero for a period of time before the final performance assessment.

Overall, the work by Schmidt and Bjork (1992) motivates taking an optimization perspective on

practice processes, applicable across motor and cognitive domains, which is the focus of this paper.

To counteract forgetting, multiple repetitions are usually necessary. Research suggests that spac-

ing repetitions, i.e., distributing practice, is more conducive to long-term retention than concen-

trated, or massed, practice (Bourne and Archer 1956), although it may lead to lower performance

in the short term (Schmidt and Bjork 1992); see reviews by Crowder (1976), Cepeda et al. (2006),

and Brown et al. (2014). This may be because resting shifts the forgetting curve, a phenomenon

originally called “reminiscence” (Williams 1926, Eysenck 1965), but now attributed to memory

consolidation (Brown et al. 2014), leading Cuddy and Jacoby (1982) to observe that “forgetting

improves remembering.” However, it could also be because the retrieval practice following a period

of inactivity is more effortful (Roediger and Karpicke 2006). Our model captures both effects.

To explain these phenomena, various theories of learning and memory have been proposed from

both behavioral and cognitive perspectives (Anderson 2000). We take a behavioral perspective, in

the same spirit as Hull (1943), whose theory continues to influence the development of modern

theories of learning and memory, despite its limitations (Anderson 2000). In particular, our model

relates to the dual-process theory of learning (Groves and Thompson 1970) since our dual constructs

of adaptation and stock increase parallel their constructs of habituation, which happens in the

stimulus-response pathway, and sensitization, which affects the state of the system. Our model also

relates to the cognitive theory of disuse (Bjork and Bjork 1992) in the sense that our dual concepts

of fitness and fatigue (stocks) and base level (regulating flow) echo their concepts of storage (stock)

and memory retrieval (regulating flow).

Most of the literature on learning and memory is scientific in the sense that is phenomenolog-

ical, with the exception of Newell and Simon (1972), which relates more to artificial intelligence

and engineering, with limited attention given to optimization of learning besides Atkinson (1972)

who, building on Markov models of learning (Bernbach 1965), proposes an optimization model for

sequencing words to study. Our contribution to the learning literature—bringing an optimization
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perspective—fills a gap in the sense that there is limited guidance on the optimal amount of spacing

or optimal intensity of each practice. We hope our analytical model will stimulate new practice

process configurations to be tested experimentally.

2.3. People-Centric Operations Management

Although research in operations management has traditionally considered people as fixed entities,

a growing stream has investigated how people interact with processes and its impact on operational

outcomes, in the tradition of time-and-motion studies by Taylor (1911) and work-curve studies

(Kraepelin 1902, Thorndike 1912), thanks in part to the greater availability of granular data sets.

Below we review the empirical literature on the effects of fatigue and adaptation on employee

productivity. While our model accounts for both effects, our focus is on short-term performance

and not long-term productivity.

On fatigue, KC and Terwiesch (2009), Powell et al. (2012), Green et al. (2013), Tan and Netessine

(2014), Dai et al. (2015) and Xu et al. (2017) investigate the effects of overload and shift duration

on employee performance, absenteeism, and process compliance. In particular, Dai et al. (2015)

report a decrease in process compliance between the beginning and the end of a shift and higher

compliance rates after longer breaks, which they attribute to fatigue.

On adaptation, Staats and Gino (2012) and Ibanez et al. (2017) study the impact of task special-

ization and task batching on productivity. In particular, Staats and Gino (2012) report that, within

a day, productivity increases when workers specialize. Similarly in our model, repeated practice

leads to adaptation, hence requires less subsequent effort.

In terms of modeling approach, ours is closely related to the service experience model of

Das Gupta et al. (2015) in the sense that we model human response to time-varying stimuli (i.e.,

practice) and formulate the resulting process optimization problem as a fixed-horizon dynamic opti-

mization problem. Our model of behavioral response includes elements of memory decay (Nerlove

and Arrow 1962, Das Gupta et al. 2015), satiation (Baucells and Sarin 2007, 2010), or more specif-

ically fatigue (Baucells and Zhao 2018), and adaptation (Wathieu 1997, Popescu and Wu 2007,

Baucells and Sarin 2010, Nasiry and Popescu 2011, Aflaki and Popescu 2013, Das Gupta et al.

2015). Although most adaptation models take as a reference point the arithmetic mean of past

stimuli, with the exception of Nasiry and Popescu (2011) who consider the minimum stimulus

experienced so far, we consider a geometric mean and a maximum mean. Obviously, other behav-

ioral effects could be incorporated into the model; see (Karmarkar and Karmarkar 2014) for an

overview of common behavioral responses. For a specific variant of our model, it may be optimal to

alternate high- and low-intensity practices, similar to advertising pulsing (Simon 1982) or service

delivery with gain-seeking consumers (Aflaki and Popescu 2013).
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To the best of our knowledge, practice has not been investigated from a process optimization

perspective. We thus contribute to the literature on people-centric operations by developing a novel

process model for optimizing learning and performance, incorporating the well-documented effects

of fatigue and adaptation.

3. Model

We first present the fitness-fatigue model proposed by Banister et al. (1975) in the context of

endurance sports and discuss its relevance to motor and cognitive learning. We argue that the model

is incomplete, in the sense that, when subject to optimization, it leads to unrealistic solutions. We

thus propose several modifications to make it more amenable to process optimization.

3.1. Fitness-Fatigue Model

Consider a practice process consisting of T evenly spaced impulse practice sessions with varying

intensities wt, t= 1, . . . , T , assumed to be unidimensional.2 Throughout this paper, we denote the

entire practice process as a vector w
.
= (w1, . . . ,wT ) or as a sequence {wt}

.
= {w1, . . . ,wT}.

Practice has two opposite effects on performance: On the one hand, practice increases strength

in fitness; on the other hand, practice develops fatigue. Thus, the flows of practice contribute to

two stock variables, namely fitness Ft and fatigue Gt. Without practice, these stocks are assumed

to decay exponentially, either due to forgetting (for fitness) or recovery (for fatigue). Denoting by

α and β the decay rates of fitness and fatigue, with α,β ∈ (0,1), we thus have, for any t= 1, . . . , T ,

Ft = αFt−1 +wt (1)

Gt = βGt−1 +wt, (2)

for some F0,G0 ≥ 0.

Performance increases with fitness and decreases with fatigue. Considering a linear relationship,

Banister et al. (1975) formulate performance in period t (Pt) as:

Pt = P0 + kFFt− kGGt, (3)

where kF , kG ≥ 0. As reviewed in §2.1, the model has descriptive ability for a variety of endurance

sports. Moreover, the parameters’ estimated values have proven to be robust across numerous

2 In endurance sports, the intensity of a particular session is usually measured as the product of its stress (duration,
distance) and its strain (measured on a cardinal scale, e.g., cardiovascular intensity, or on an ordinal scale based on the
athlete’s input). In cognitive learning, intensity can be measured on an ordinal scale taking into account the following:
(i) the intrinsic difficulty of the material (e.g., single-digit multiplications are simpler than multiple-digit ones); (ii)
the duration of the session; and (iii) the level of participation (passive encoding, e.g., listening, has lower intensity
than active encoding, e.g., studying, which has itself lower intensity than retrieval, e.g., being tested, explaining; see
Terry 2009, Brown et al. 2014). Motor learning would lie between these two extremes.
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studies (Taha and Thomas 2003). For these reasons, it has been implemented in software to provide

performance feedback to athletes during training (Coggan 2008).

In this model, not only does the cumulative amount of practice matter but also its timing.

Indeed, poorly-timed practice may have a detrimental effect on performance. Specifically when

α> β, practice in the last periods of the practice process, namely, when t > T − ln(kG/kF )/ ln(α/β),

has a negative effect on performance PT because ∂PT (w)/∂wt < 0 in those periods, demonstrating

the optimality of tapering, i.e., reducing the intensity of practice in the final days before a race.

3.1.1. Applicability to Motor and Cognitive Learning. Hull (1943) proposes a concep-

tual behavioral model of learning to describe an individual’s “effective reaction potential,” i.e., the

probability, speed, or force with which an individual’s behavior would be performed in response

to a stimulus. In Hull’s model, repeated practice of a stimulus-response association strengthens a

habit, which, like fitness, increases the reaction potential, but also develops an inhibitory potential,

which like fatigue, diminishes the reaction potential. Similar to (1)-(2), both the habit strength

and the inhibitory potential increase with the number of repetitions, and decay exponentially with

the passage of time (Hull 1943). At a high level, the model is consistent with the popular stress

and rest framework for peak performance in sports, science, and art (Stulberg and Magness 2017).

Model (1)-(3) captures many salient features of cognitive learning processes. First, according to

the power law of learning, memory strength increases as a power (or exponential, see Heathcote

et al. 2000) function of practice (Anderson 2000). With constant intensity wt =w and no fatigue

effects (kG = 0), we obtain Pt = P0 + kFw(1− αt)/(1− α), which increases exponentially in the

number of trials. Second, according to the power law of forgetting, memories decay as a power

(or exponential, see Ebbinghaus 1913) function of the time over which they are being retained

(Anderson 2000). With wt = 0 for t > 1 and no fatigue effects (kG = 0), we indeed obtain that

Pt = kFw1α
t−1, which decays exponentially in time. Third, recall capability may improve after some

rest, because of memory consolidation (Brown et al. 2014). Similarly research on conditioning has

reported phenomena of recall, reinstatement, and spontaneous recovery (Bjork and Bjork 1992).

Such phenomena can be described with Model (1)-(3) as an improvement of performance after a

period of rest due to the dissipation of the inhibitory potential (or fatigue) during rest (Eysenck

1965). Fourth, distributed practice is often more effective than massed practice (Schmidt and Lee

2011, Brown et al. 2014). Using (1)-(3), one can construct a problem instance where spaced practice

leads to greater performance than massed practice both at the end of the acquisition period and

after an extended period of rest, during the retention period (cf. discussion in §2.2).3

3 Consider a setup similar to Bourne and Archer (1956) for motor learning with 21 30-second trials, either performed
consecutively or interspersed by rest periods of 1 minute, then followed by 5 minutes of rest, and then by another
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3.1.2. Practice Process Optimization. Although scientific experimentation has uncovered

high-performing strategies (e.g., tapering, distributing practice), little is known about the optimal

profile of the practice process; moreover, intuition is often a poor guide to identify what strategies

may work best (Simon and Bjork 2001). For these reasons, optimizing a model with good descrip-

tive ability, such as the fitness-fatigue model, could help refine commonly used high-performance

practice strategies and identify the conditions under which they are indeed optimal.

In what follows, we assume that practices are free (e.g., there is no opportunity cost of time) and

nonnegative, i.e., wt ≥ 0 for all t= 1, . . . , T . In addition, we assume that the last practice (which

could consist of a performance test like a race or an exam) has a lower bound wT (potentially set

to zero),4 and we optimize the practice process to maximize performance in that period, PT .5

Given our objective and constraints, the fitness-fatigue model (1)-(3) appears incomplete, in the

sense that its optimized solution does not seem realistic. First, due to the model’s linear nature,

maximizing PT (w) may result in an unbounded solution. Imposing upper bound constraints on the

practice intensity, i.e., 0≤ wt ≤ wt, would lead to the following solution when α > β: wt = wt for

all t < T − ln(kF/kG)/ ln(α/β) and wt = 0 for all t > T − ln(kG/kF )/ ln(α/β). That is, the optimal

policy is a threshold policy. In this case, the optimal solution would be highly dependent on the

choice of upper bounds wt, which may be arbitrary. Second, the model would recommend exerting

no effort in the last few sessions, which few athletes would find credible. Third, the model would

not tailor the practice process to the type of performance assessment. Fourth, the threshold nature

of the optimal policy starkly contrasts with the principles of distributing practice or periodization,

despite strong empirical support. In the next section, we enhance the model to alleviate some of

these shortcomings.

3.2. A Generalized Fitness-Fatigue Model

We modify the fitness-fatigue model in three ways: First, we incorporate the effect of adaptation to

practice. Second, we introduce nonlinearities to capture diminishing marginal returns of practice

9 consecutive trials. Define a period as a 30-second interval and consider the following parameters (so as to match
the reported data): P0 = 36.785, kF = 3.0489, α= 1, kG = 12.902, β = 0.8286 and wt = 1 during a trial and wt = 0
otherwise. Under this calibrated model (1)-(3), performance in trials 21 and 22-30 is uniformly the highest under the
1-minute rest condition and uniformly the lowest under the no-rest condition, consistent with their reported results.

4 Similar to Footnote 2, the last-period intensity requirement wT can be defined as a combination of stress and strain.

5 Our approach can be extended to other objectives or incorporate additional constraints. For instance, there could
be a cost or upper bound on practice intensity in the event that time is limited. In addition, there could be an upper
bound on fatigue, e.g., to prevent injury. Third, there could be intermediate performance objectives (e.g., mid-term
exams), in which case the objective should take the weighted average of performance at difference time epochs. Finally,
research on learning has shown that strategies that maximize performance at the end of the acquisition period may
differ from strategies that maximize learning, i.e., performance after a retention period (Schmidt and Bjork 1992).
To focus on long-term learning, we could impose that wt = 0 for t= t̂, . . . , T − 1, for some t̂, so that the temporary
effects of learning have time to dissipate. We leave it for future research to explore such extensions.
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on fitness and increasing marginal costs on fatigue. Third, we propose that the effects of fitness

and fatigue can be either additive or multiplicative. We outline these modifications separately and

then combine them in a model that we calibrate in Appendix EC.1.

3.2.1. Adaptation. Although model (1)-(3) considers a uniform effect of practice on perfor-

mance, there is ample evidence of adaptation to repeated practice (Groves and Thompson 1970). In

physical training, “the benefit of [a] new training stress gets less as time goes by ... and eventually,

if you just continue doing the same training week after week, your new fitness level will no longer

improve” (Daniels 2014, p. 18). Similarly, “as people learn a motor skill, they appear to do the

task with less and less physical and mental effort” (Schmidt and Lee 2011, p. 340). Likewise for

cognitive skills (e.g., solving geometry problems), “as students become more practiced in a skill,

they come to recognize directly what they formerly had to think through” (Anderson 2000, p. 320).

In the spirit of adaptation models (Wathieu 1997) and consistent with the concept of deliberate

(or effortful) practice (Ericsson et al. 1993), we measure the impact of wt on fitness Ft and fatigue

Gt relative to a base level, denoted as bt. Specifically, we define the ratio wt/bt as effort. See Morton

et al. (1990) and Wallace et al. (2014) for dynamic normalizations of the effects of practice intensity

due to subjects’ changing physiology and Busso et al. (1997) for a dynamic model recalibration.

When bt is constant for all t, this adaptation model reduces to the original fitness-fatigue model.

We assume that the base level is the mean intensity of past practices. Thus, less effort is required

if one has practiced at high intensity (e.g., long runs, complex geometry problems) in the past,

especially in the recent past. Specifically,

bt = ε ·h (wt−1, bt−1) , (4)

for t > 1 with b1 > 0, in which h(w,b) is a generalized mean (Hardy et al. 1952), and 0 < ε ≤ 1

measures some decay in the base level.

For analytical tractability, we consider the geometric mean, i.e., h(w,b) =wθb1−θ with 0≤ θ≤ 1,

and the maximum mean, i.e., h(w,b) = max{w,b}. Adaptation to high- (low-)intensity practices

will be faster (slower) under the maximum mean than under the geometric mean. Given that

verbal-cognitive components tend to be more quickly forgotten than motor components (Schmidt

and Lee 2011) and that, within motor skills, discrete tasks (e.g., throwing, shifting gears in a car)

tend to be more quickly forgotten than continuous tasks (e.g., swimming, riding a bicycle), the

geometric mean model seems more relevant for cognitive tasks and the maximum mean model

seems more relevant for continuous motor tasks, with discrete motor tasks in between. Of course,

this is a generic guideline; the choice of the most appropriate model must be context-dependent.6

6 Alternatively, one could categorize skills along a continuous spectrum. In that case, a generalized mean function (e.g.,
h(w, b) = (θwr + (1− θ)br)1/r for r≥ 0) could map skills to specific values of the elasticity parameter (r). Moreover,
adaptation could happen in discrete steps (e.g., capability milestones or stratification, see Chambliss 1989) in certain
contexts. We leave it for future research to characterize the optimal processes under such alternative models.
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3.2.2. Nonlinearities. The extreme nature of the optimal solution of the optimized fitness-

fatigue model (1)-(3) comes from its linearity, yet there is ample evidence of nonlinearities in the

response of fitness and fatigue to effort (Hellard et al. 2005). In particular, Daniels (2014) formulates

principles of training intensity’s diminishing returns on fitness but accelerating setbacks, suggesting

concave effects on fitness and convex effects on fatigue. In cognitive processes, satiation or mental

fatigue within a practice session could lead to similar nonlinear effects.

For analytical tractability, we consider here power functions. Specifically, ignoring the effects of

adaptation, the effect of a practice session with intensity wt on fitness Ft is equal to wλt for some

λ< 1 and its effect on fatigue Gt is equal to wµt for some µ> 1.

3.2.3. Additive or Multiplicative Impact of Practice. In contrast to the original model

(1)-(2), which assumes an additive effect of practice on fitness and fatigue, there may be settings

where the effect is multiplicative. In the spirit of the principle of accelerating setbacks (Daniels

2014), the higher the fatigue, the more detrimental the impact of an intensive workout. Similarly

in cognitive processes, retrieval practices have a compounding effect on past memories through

a “reconsolidation” process, which “helps to reinforce meaning, strengthen connections to prior

knowledge, bolster the cues and retrieval routes for recalling it later, and weaken competing routes”

(Brown et al. 2014, p. 97). In fact, activation theories propose that retrieving a subset of some

studied material should facilitate retrieval of the remaining material, provided that some associative

links exist between them (Chan et al. 2006). Accounting for such effects, a multiplicative version

of the fitness-fatigue model could then be expressed as:

Ft = Ft−1 · (α+wt) (5)

Gt = Gt−1 · (β+wt) . (6)

In addition, instead of defining performance as the difference between fitness and fatigue, as in

(3), one could define performance as a function of their ratio:

Pt = P0 + γ · Ft
Gt

, (7)

where γ > 0; see Moxnes and Hausken (2008) and Wallace et al. (2014) for similar models.

Because early skill acquisition is needed before practice can have a compounding effect, the addi-

tive and the multiplicative models capture different stages of skill development. Unlike the additive

model (1)-(2), which can be initialized with F0 =G0 = 0 and gradually builds up through practice,

the multiplicative model (5)-(6) presumes that F0 > 0 and G0 > 0 so as to lead to compounding.

Thus, the additive model may be better suited to the early stages of skill development, i.e., the

skill acquisition stage, in which new material is added to the stocks of fitness (or memory strength)

and fatigue; whereas, the multiplicative model may be better suited to later stages, i.e., the skill

retention stage through on-the-job experience development or subsequent training.
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3.2.4. General Formulation. Combining the effects of adaptation and nonlinearities into

the additive model (1)-(3) and the multiplicative model (5)-(7), we obtain:

Pt = P0 + kFFt− kGGt, Ft = αFt−1 +

(
wt
bt

)λ
, Gt = βGt−1 +

(
wt
bt

)µ
(8)

or Pt = P0 + γ
Ft
Gt

, Ft = Ft−1 ·

(
α+

(
wt
bt

)λ)
, Gt =Gt−1 ·

(
β+

(
wt
bt

)µ)
, (9)

in which bt = ε · h (wt−1, bt−1) and either h(w,b) =wθb1−θ or h(w,b) = max{w,b}. Hence, we focus

on the following four variants of the model with the following interpretations:

• Additive model with geometric mean: Acquisition of cognitive skills,

• Additive model with maximum mean: Acquisition of continuous motor skills,

• Multiplicative model with geometric mean: Retention of cognitive skills,

• Multiplicative model with maximum mean: Retention of continuous motor skills.

In Appendix EC.1, we illustrate how the model can be calibrated with readily-available data

from a runner’s training program. For this particular data set, we find that all four variants of the

model have similar goodness of fit. Moreover, adaptation plays a more important role than the

differential in decay parameters (α and β) and nonlinearities (λ and µ). Even though the proposed

enhancements have a marginal impact on the fitting capability of the model (on this data set),

their primary goal remains to make it more amenable to optimization, as we explore next.

4. Optimal Practice Process Profiles

Using the four variants of the model introduced in the last section, we next optimize the practice

process w to maximize performance in period T , PT (w). We assume that the intensity of the last

practice (e.g., an exam, a race) must have at least intensity wT and require that the intensity of

the preceding practice sessions be nonnegative. We first consider the additive model (8) and then

the multiplicative model (9).

4.1. Additive Model (Skill Acquisition)

We first consider the additive model of performance (8), which, as discussed in §3.2.3, fits well the

skill acquisition stage of skill development. For the purpose of optimizing the profile of the practice

process, we assume without loss of generality that P0 = 0, kG = 1, and kF = γ > 0. Accordingly, the

optimization problem for the additive model (‘+’) can be expressed as follows:
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maximize
w,b,F,G

γFT −GT

subject to Ft = αFt−1 +

(
wt
bt

)λ
∀t > 1,

Gt = βGt−1 +

(
wt
bt

)µ
∀t > 1,

bt = ε ·h(wt−1, bt−1) ∀t > 1,

wT ≥wT ,

wt ≥ 0 ∀t≥ 1.

(P+)

We define the (relative) effort zt as the ratio of the current practice intensity wt over the mean

intensity of the past practice sessions bt, i.e., zt
.
= wt/bt. With that change of variable, after sub-

stituting the definitions of Ft and Gt into the objective, the problem can be simplified as follows:

maximize
z

γαTF0−βTG0 +
T∑
t=1

(
γαT−tzλt −βT−tz

µ
t

)
subject to zT

T−1∏
t=1

h (zt,1)≥ wT
εT−1b1

,

zt ≥ 0 ∀t > 1.

(P ′+)

The structure of the optimal solution depends on whether the coupling constraint in (P ′+) is loose

or tight at the optimum. For given effort z, the constraint will tend to be loose if the learner’s initial

abilities (b1) are high relative to the intensity of final performance assessment (wT ), and if they do

not decay too quickly (i.e., if ε is close to 1). Given that max{w,b} ≥wθb1−θ, for any θ ∈ [0,1], the

constraint will also tend to be looser for skills that have strong memory (e.g., continuous motor

skills) than for those that have short memory (e.g., cognitive skills). In either case, we will show

that the optimal practice process for skill acquisition is structured in phases of practice increase

and decrease, consistent with the principle of distributing practice (Brown et al. 2014).

4.1.1. Low Final Effort Requirement. We first consider the case of a low final effort

requirement, i.e., when the coupling constraint in (P ′+) is loose at the optimum. In that case, prob-

lem (P ′+) is additively separable; thus, efforts are independent of each other. In particular, deviating

from the optimal solution in one period (i.e., exerting more or less effort than optimal) will not

require adjusting the following periods’ efforts. Examining the objective function in (P ′+) reveals

that the fundamental trade-off in determining z lies in the relative values of the fitness and fatigue

decay rates α and β, similar to the original model (1)-(3). The next proposition characterizes the

optimal profile of the practice process and Figure 1 illustrates the optimal effort {z∗t } (solid lines)

and practice intensity {w∗t } (dashed lines) both when α≥ β and when α< β. Condition (C+) below

is obtained by first solving (P ′+) without the coupling constraint, and then plugging that solution

into the coupling constraint.
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Figure 1 Optimal Effort and Practice Intensity under the Additive Model with Low Final Effort Requirement

Note. h(w, b) =wθb1−θ, α= 0.7, γ = 0.8, θ= 0.6, ε= 0.9, wT = 0, b1 = 1, λ= 0.9, µ= 1.1, T = 12, β = 0.69 (left) and

β = 0.9 (right).

Proposition 1. For Problem (P+), when the ultimate effort requirement is low, i.e., when the

following condition holds:(
γλ

µ

) 1
µ−λ T−1∏

t=1

h

((
γλαT−t

µβT−t

) 1
µ−λ

,1

)
≥ wT
εT−1b1

, (C+)

• if α≥ β, the optimal effort {z∗t } is decreasing and the optimal practice intensity {w∗t } is quasi-

concave;

• if α< β, the optimal effort {z∗t } is increasing and the optimal practice intensity {w∗t } is quasi-

convex.

The optimal solution, when expressed in terms of effort z, is similar to the optimal solution of

the original model (1)-(3). Specifically if α > β, effort {zt} must be decreasing, consistent with

the often recommended tapering strategy; whereas if α < β, effort should be increasing since the

effect of practice on fitness is short-lived compared to its effect on fatigue. However, due to the

introduced non-linearities, the effort transitions are smoother than in the bang-bang solution of

the linear model discussed in §3.1.2.

The dynamics of practice intensity {wt} reflect the two ways practice affects performance. On

the one hand, practice at time t has a direct effect on both fitness and fatigue at time t, and

their combined effect on PT depends on their respective decay rates. On the other hand, it has

an indirect effect on PT through a change in the base level bt, which, if it increases, makes future

practice more effective at preventing fatigue, but less effective at further developing fitness. Thus,

a high-intensity practice session has a positive effect on performance because it increases current

fitness and makes future practice less prone to fatigue, but also a detrimental effect because it

increases fatigue and makes future practice less effective at further increasing fitness.

When fitness decays more slowly than fatigue, i.e., α ≥ β, the optimal profile of the practice

process {wt} is quasi-concave. Hence early in the process, effort {zt} is decreasing despite an increase
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in practice intensity {wt}. These different dynamics arise because of adaptation: Increasing practice

intensity develops the base level bt, which makes subsequent practices less effortful. Towards the

end of the process, effort and practice intensity are both decreasing and thus aligned.

To illustrate this profile of the practice process, consider a student learning how to multiply.

When first exposed to multiplications, this student may initially struggle with the novelty of the

topic, i.e., zt is large, even though the material (e.g., single-digit multiplications) is technically

simple. As time progresses, new material (e.g., multiple-digit multiplications) is introduced and the

student may be required to participate more actively (e.g., solving problems), i.e., {wt} is initially

increasing. However, as she accumulates practice, the student will make fewer and smaller errors

and gradually switch from a cognitive stage (slow and deliberate use of knowledge) to an associative

stage (more direct representation of what to do) (Anderson 2000); that is, {zt} is decreasing. At

some point, no new material is added and the retrieval sessions may be shorter, i.e., {wt} starts

decreasing, and the student’s skills become more automated and rapid, i.e., {zt} keeps decreasing.

In contrast, when α< β, fitness decays faster than fatigue, and the optimal profile of the practice

process {wt} is quasi-convex. Early in the process, effort thus increases despite a decrease in

process intensity. This different dynamics can again be explained by adaptation: decreasing practice

intensity lowers the base level bt, which makes subsequent practices more effortful. Towards the end

of the process, effort and practice intensity are both increasing and thus aligned. To understand

why it may be optimal to have the base level decrease initially, recall that memories are short-lived

when α < β (e.g., sensory memories; see Anderson 2000). One thus needs to give the last set of

practices as much attention as possible for these memories to be effectively captured. The decrease

in practice intensity characterizing the early part of the process thus aims to reset the base level at

a low value to build up the amount of future attention available and capture future memories more

effectively, similar to a wine taster who may need to reset her palate to give a wine full attention.

In sum, these two cases show that even though effort should be monotone, the intensity of

practice may not be so, and it is in general unimodal. In particular reducing practice intensity may

be optimal to either let fatigue recover while preserving most fitness (when α> β) or let the base

level reset for maximizing the benefit of future practice (when α< β).

4.1.2. High Final Effort Requirement. We next consider the case of a high final effort

requirement, i.e., when the coupling constraint in (P ′+) is tight at the optimum. In that case, effort

z should be guided not only by the difference in decay rates between fitness and fatigue, but also

by the preparation of the base level bt for the ultimate effort requirement.

We consider separately the cases of geometric and maximum adaptation. Overall, we find that

effort should in general be U-shaped. Hence, the high ultimate effort requirement introduces two
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Figure 2 Optimal Effort and Practice Intensity under the Additive Model with Geometric Adaptation and High

Final Effort Requirement

Note. α= 0.7, γ = 0.8, θ= 0.6, ε= 0.9, wT = 2, b1 = 1, λ= 0.9, µ= 1.1, T = 12, β = 0.69 (left) and β = 0.9 (right).

types of distortion in the (monotone) effort patterns characterized in Proposition 1, namely an

increase in effort at the end of the process (when α≥ β) and a decrease in effort at the beginning

of the process (when α< β).

Geometric Adaptation (Cognitive Tasks). We first consider the case with geometric adaptation,

which, as discussed in §3.2.1, tends to fit better cognitive or some discrete motor tasks. The next

proposition characterizes the optimal practice process and Figure 2 illustrates the optimal effort

{z∗t } (solid lines) and practice intensity {w∗t } (dashed lines) both when α≥ β and when α< β.

Proposition 2. For Problem (P+) with h(w,b) =wθb1−θ, when the ultimate effort requirement

is high, i.e., when Condition (C+) does not hold,

• if α≥ β, the optimal effort {z∗t }t=1,...,T−1 is decreasing (up to period T ) and there exist time

thresholds t1 ≤ t2 such that the optimal practice intensity evolves as follows: {w∗t }t=1,...,t1 is increas-

ing and {w∗t }t=t2,...,T−1 is decreasing.

• if α< β, the optimal effort {z∗t } is quasi-convex and there exist time thresholds t1 ≤ t2 ≤ t3 ≤ t4
such that the optimal practice intensity evolves as follows: {w∗t }t=1,...,t1 is increasing, {w∗t }t=t2,...,t3
is decreasing, and {w∗t }t=t4,...,T is increasing.

Comparing Proposition 2 to Proposition 1 reveals that a tighter coupling constraint in (P ′+)

distorts the profile of the practice process at its very end as well as in its early part. Specifically

when α ≥ β, we find that {z∗t }t=1,...,T−1 is decreasing, similar to Proposition 1, but this time, it

is possible that z∗T > z∗T−1 due to the final performance assessment in period T . As a result, the

effort profile {z∗t } can now be U-shaped. Similar to Proposition 1, {w∗t } is increasing when zt is

large, which happens in the early phase of the process, and decreasing when zt is small, which

happens in the late phase of the process, prior to period T −1. However, between these two phases,

i.e., when zt takes on intermediate values, the practice profile {w∗t } may be more convoluted. In

particular, it can be shown that, in the absence of nonlinearities (i.e., λ = µ = 1), {w∗t }t=1,...,T−1
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may go through up to three successive phases of decrease, increase, and then decrease. The higher

effort requirement in the last period thus distorts the profile of the practice process not only at

its very end, by boosting the final effort on the final performance assessment, but also in its early

part, by shaping the base level in anticipation of that last challenge.

When α< β, {z∗t } is increasing in the latter part of the practice process, similar to Proposition 1,

but due to the tightening of the coupling constraint in (P ′+), it can be decreasing initially. Similar

to Proposition 1, {w∗t } is increasing when zt is large, which may now happen in the early and late

phases of the process, and decreasing when zt is small, which now happens towards the middle of

the process. Although the profile of {w∗t } between these phases remains unspecified in general, it

can be shown that, in the absence of nonlinearities (i.e., λ= µ= 1), {w∗t }t=1,...,T−1 may go through

up to three successive phases of increase, decrease, and then increase. Hence, similar to the case

where α≥ β, the tightening of the ultimate effort requirement distorts the early part of the process

to shape the base level in anticipation of the last-period’s practice.

In sum, a higher effort requirement in the last period tends to distort not only the very end

of the process by inducing higher effort in the last period (on the performance assessment), but

also its early part. Moreover, the early distortion has to do less with the direct effect of practice

on fitness and fatigue, because it will have mostly decayed by the end of the process, but more

with its indirect effect, through the development of the base level to either make future practice

more effective or less demanding. As a result, the optimal profile of the practice process {w∗t } may

exhibit multiple phases of increase in intensity, to either build current fitness or grow the base

level so as to make future fatigue more bearable; and phases of decrease in intensity, to either

recover from accumulated fatigue or decrease the base level to make future practice more effective

at building fitness. This pattern of practice intensity is in fact similar to the notion of spacing out

(or distributing) practice to enhance learning (Brown et al. 2014), with enough time between two

peaks in practice intensity to recover from fatigue (so that memories have time to consolidate) and

reset the base level (so that future practice sessions are more effortful).

Maximum Adaptation (Continuous Motor Tasks). We next consider the case of maximum adap-

tation, which, as discussed in §3.2.1, tends to fit better continuous motor tasks. The next proposition

shows that the effort pattern can be characterized by a partition, S∗ = {1, . . . , t̂} ∪ {T} for some

t̂, such that effort is high initially, i.e., z∗t > 1 for all t ∈ S∗ \ {T}, and low subsequently up to the

final performance test, i.e., z∗t ≤ 1 for all t 6∈ S∗. Figure 3 illustrates the optimal effort {z∗t } (solid

lines) and practice intensity {w∗t } (dashed lines) both when α≥ β and when α< β.

Proposition 3. For Problem (P+) with h(w,b) = max{w,b}, when the ultimate effort require-

ment is high, i.e., when Condition (C+) does not hold, there exists an optimal partition S∗ =
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Figure 3 Optimal Effort and Practice Intensity under the Additive Model with Maximum Adaptation and High

Final Effort Requirement

Note. α= 0.7, γ = 0.8, ε= 0.9, wT = 2, b1 = 1, λ= 0.9, µ= 1.1, T = 12, β = 0.68 (left) and β = 0.9 (right).

{1, . . . , t̂} ∪ {T} for some t̂ such that z∗t > 1 for all t ∈ S∗ \ {T} and 0 < z∗t ≤ 1 for all t 6∈ S∗.
Moreover,

• if α ≥ β, the optimal effort {z∗t }t=1,...,T−1 is decreasing and the optimal practice intensity

{w∗t }t=1,...,T−1 is quasi-concave;

• if α< β, the optimal effort {z∗t }t∈S∗ is quasi-convex and {z∗t }t6∈S∗ is increasing; and the optimal

practice intensity {w∗t }t∈S∗ is structured in at most three phases: (i) increase, (ii) decrease, and

(iii) increase, and {w∗t }t6∈S∗ is monotone.

The optimal profile of effort under maximum adaptation tends to be similar to that under

geometric adaptation (Proposition 2), except that there is now a clear distinction between a phase

of high-effort (in which zt > 1) and a phase of low-effort (in which zt ≤ 1). Similar to the case of

geometric adaptation (Proposition 2), a higher ultimate effort requirement distorts the optimal

effort pattern (relative to the one described in Proposition 1) in two ways, namely at the very

end of the process as well as in its early part. The general dynamics in the high-effort phase

are similar to Proposition 2: {z∗t } has a U-shape and {w∗t } goes through at most three phases of

increase, decrease, and final increase. In the particular case where α≥ β, {z∗t }t=1,...,T−1 is decreasing,

{w∗t }t=1,...,T−1 is quasi-concave, and both have a potential uptick on the final performance test.7

Overall, the structure of the optimal solution depends less on the relative values of decays in

fitness and fatigue than in the unconstrained case (Proposition 1). Therefore, the increase in the

ultimate effort requirement shifts the early effects of practice on performance away from the relative

accumulation of fitness and fatigue to the development of the base level.

One key difference from the case with geometric adaptation is that, under maximum adaptation,

the evolution of effort {z∗t }t=1,...,T−1 up to the last period T is structured into two phases, first of

7 To illustrate this pattern, consider Muscle & Fitness’ 60-day workout plan (https://www.muscleandfitness.com/
workouts/workout-routines/60-day-revolution-workout-plan, last accessed on December 6, 2017) structured in
six phases of modulating intensity: one week of “Intro,” followed by a week of “Base,” then followed by 4 weeks of
“Overload,” followed by a relaxing week of “Deload,” and finishing with an intensive week of “Shock.”

https://www.muscleandfitness.com/workouts/workout-routines/60-day-revolution-workout-plan
https://www.muscleandfitness.com/workouts/workout-routines/60-day-revolution-workout-plan
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high effort (i.e., z∗t > 1) and then of low effort (z∗t ≤ 1), and the numerical examples in Figure 3

reveal that the transitions between these two phases can be quite abrupt. In particular, there is a

clear recovery phase near the end of the horizon under maximum adaptation. This is because the

base level is not affected by the intensity of the low-effort sessions in that phase and only decays at

rate ε. As a result, for skills that have long-term memory (e.g., continuous motor skills), a tapering

strategy is optimal if the performance assessment is challenging.8

4.2. Multiplicative Model (Skill Retention)

We next consider the multiplicative model (9), which, as discussed in §3.2.3, fits well the skill

retention stage. For the purpose of optimizing the profile of the practice process, we assume without

loss of generality that P0 = 0, F0 =G0 = 1, and γ = 1. Accordingly, the practice process optimization

problem for the multiplicative model (‘×’) can be expressed as follows:

maximize
w,b,F,G

FT/GT

subject to Ft = Ft−1×

(
α+

(
wt
bt

)λ)
∀t > 1,

Gt =Gt−1×
(
β+

(
wt
bt

)µ)
∀t > 1,

bt = ε ·h(wt−1, bt−1) ∀t > 1,

wT ≥wT ,

wt ≥ 0 ∀t≥ 1.

(P×)

Similar to the additive model, we change variables by considering the (relative) effort zt
.
=wt/bt.

With that change of variable, after substitution of the definitions of Ft and Gt into the objective,

the problem can be simplified as follows:

maximize
z

T∏
t=1

(
α+ zλt
β+ zµt

)

subject to zT

T−1∏
t=1

h (zt,1)≥ wT
εT−1b1

,

zt ≥ 0 ∀t.

(P ′×)

Similar to §4.1, we successively consider the cases where the coupling constraint in (P ′×) is loose

or tight. In both cases, we will show that the optimal practice process can be structured in cycles,

8 This recovery phase towards the end of the practice process is in fact similar to the phase of no practice introduced
in learning experiments to ensure that the temporary effects of learning have dissipated (Schmidt and Bjork 1992).
This suggests that, under maximum adaptation (which is more relevant to continuous motor skills), a practice process
that maximizes performance (which is the objective here) will be similar to one that optimizes (long-term) learning
since the short-term effects are forced to dissipate. This is in stark contrast with the geometric model of adaptation
(which is more relevant to cognitive skills), characterized in Proposition 2, for which the tension between short-term
performance and long-term learning may be more severe.
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Figure 4 Optimal Effort and Practice Intensity under the Multiplicative Model with Low Final Effort Requirement

Note. h(w, b) =wθb1−θ, α= 0.7, γ = 0.8, θ= 0.6, ε= 0.9, wT = 0, b1 = 1, λ= 0.9, µ= 1.1, T = 12, β = 0.69 (left) and

β = 0.9 (right).

demonstrating the power of habit for skill retention, consistent with the empirical evidence of the

benefits of lifelong exercise (Gries et al. 2018).

4.2.1. Low Final Effort Requirement. We first consider the case of a low final effort

requirement, i.e., when the coupling constraint in (P ′×) is loose. The next proposition characterizes

the optimal profile of the practice process and Figure 4 illustrates the optimal effort {z∗t } (solid

lines) and practice intensity {w∗t } (dashed lines) both when α ≥ β and when α < β. Condition

(C×) below is obtained is obtained by first solving (P ′×) without the coupling constraint and then

plugging that optimal solution into the coupling constraint.

Proposition 4. For Problem (P×), when the ultimate effort requirement is low, i.e., when the

following condition holds:

ζ · (h(ζ,1))
T−1 ≥ wT

εT−1b1
, (C×)

in which ζ is the unique positive root of βλζλ − (µ − λ)ζλ+µ − αµζµ, the optimal effort {z∗t } is

constant and equal to ζ and the optimal practice intensity {w∗t } is monotone.

In contrast to the additive model, which prescribes monotone effort (Proposition 1) for skill

acquisition, the multiplicative model prescribes constant effort for skill retention. Moreover, because

the optimal effort level (ζ) is independent of T , the time horizon does not matter for skill retention,

provided that the practice process does not involve a high effort at its end. However, given that

the base level changes over time, practice intensity {wt} may be decreasing or increasing, and the

direction of change can be shown to depend on the relative rates of decay of fitness and fatigue.

Specifically, {wt} is decreasing if α� β and increasing if α� β.
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Figure 5 Optimal Effort and Practice Intensity under the Multiplicative Model with Geometric Adaptation and

High Final Effort Requirement

Note. α= 0.7, γ = 0.8, θ= 0.6, ε= 0.9, wT = 2, b1 = 1, λ= 0.9, µ= 1.1, T = 12, β = 0.69 (left) and β = 0.9 (right).

4.2.2. High Final Effort Requirement. We next consider the case of a high final effort

requirement, i.e., when the coupling constraint in (P ′×) is tight at the optimum. We consider

separately the cases of geometric and maximum adaptation. Overall, we find that the optimal

practice process operates in cycles of either constant effort under geometric adaptation or pulsed

effort under maximum adaptation.

Geometric Adaptation (Cognitive Tasks). We first consider the case of geometric adaptation,

which, as discussed in §3.2.1, tends to fit better cognitive and some discrete motor tasks. The next

proposition characterizes the optimal practice process and Figure 5 illustrates the optimal effort

{z∗t } (solid lines) and practice intensity {w∗t } (dashed lines) both when α≥ β and when α< β.

Proposition 5. For Problem (P×) with h(w,b) =wθb1−θ, when the ultimate effort requirement

is high, i.e., when Condition (C×) does not hold, the optimal effort {z∗t }t=1,...,T−1 is constant and

the optimal practice intensity {w∗t }t=1,...,T−1 is monotone.

We find that the optimal effort is constant up to period T − 1. Hence, the higher final effort

requirement distorts the effort profile only by making the last effort differ from the preceding efforts.

(However, the value of the constant effort {z∗t }t=1,...,T−1 is now dependent on the time horizon T .)

Hence in settings where the multiplicative model with geometric adaptation is the most relevant,

such as the retention of cognitive and some discrete motor skills, constant effort is optimal up

to (but with the exclusion of) the final performance assessment. The resulting practice intensity

{w∗t }t=1,...,T−1 is monotone. Under a technical condition (see Corollary C-1 in Appendix EC.3 for

details), we show that the practice profile {w∗t } depends on the decay rates of fitness and fatigue in

a similar fashion to the case where efforts are unconstrained (Proposition 4). In sum, the tightening

of the coupling constraint in (P ′×) raises the effort exerted throughout the practice process, and

in particular the last-period’s effort; however, the overall pattern of the practice process, with the

exception of the last period, remains unchanged.



Roels: High-Performance Practice Processes
Article submitted to ; manuscript no. 23

Figure 6 Optimal Effort and Practice Intensity under the Multiplicative Model with Maximum Adaptation and

High Final Effort Requirement

Note. α= 0.7, γ = 0.8, ε= 0.9, wT = 2, b1 = 1, λ= 0.9, µ= 1.1, T = 12, β = 0.69 (left) and β = 0.9 (right).

Maximum Adaptation (Continuous Motor Tasks). We finally consider the case of maximum

adaptation, which, as discussed in §3.2.1, tends to fit better tasks that have a low degree of

forgetting, such as continuous motor tasks. The next proposition characterizes the optimal practice

process and Figure 6 illustrates a typical solution in terms of effort {z∗t } (solid lines) and practice

intensity {w∗t } (dashed lines) when both α ≥ β and α < β. Similar to the additive model with

maximum adaptation, the optimal solution is characterized in terms of a partition S∗ ⊆ {1, . . . , T},

including period {T}, such that z∗t > 1 for all t∈ S∗ \ {T} and z∗t ≤ 1 for all t 6∈ S∗.

Proposition 6. For Problem (P×) with h(w,b) = max{w,b}, when the ultimate effort require-

ment is high, i.e., when Condition (C×) does not hold, there exists an integer κ such that for any

partition S∗, {T} ⊆ S∗ ⊆ {1, . . . , T} with |S∗|= κ,

• The optimal effort {z∗t }t∈S∗\{T} is constant and equal to some z > 1; across the high-effort

sessions, the optimal practice intensity is monotone, i.e., for all t such that {t, t+ 1} ⊆ S∗ \ {T},

either wt ≥wt+1 or wt ≤wt+1;

• The optimal effort {z∗t }t 6∈S∗ is constant and equal to some z ≤ 1; within a low-effort session

interval, the optimal practice intensity is decreasing, i.e., wt ≥wt+1 if t+ 1 6∈ S∗.

Under maximum adaptation, {z∗t } may thus take on at most three values: z, common across all

high-effort sessions (up to T − 1), z, common across all low-effort sessions (up to T − 1), and z∗T

in the last period. Hence, in contrast to the case with a low final effort requirement (Proposition

4) or the case with geometric adaptation (Proposition 5), effort is pulsed. To retain continuous

motor skills (e.g., swimming, riding a bicycle) with the prospect of a challenging assessment, one

thus needs to periodically alternate high-effort practices with low-effort practices, similar to the

periodization principle in endurance sport training (Morton 1991, Smith 2003).

Note also the difference in effort patterns between the additive and the multiplicative models

under maximum adaptation: Under the additive model, which fits better the skill acquisition phase
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Figure 7 Daniels’ 18-Week Marathon Training Program and Fitted Multiplicative Model with Maximum Adap-

tation

of learning, it is optimal to front-load the high-effort sessions (Proposition 3) so as to have time

to recover or reset the base level before the ultimate session. In contrast, under the multiplicative

model, which fits better the skill retention stage, high-effort practices can be periodically introduced

to maintain a high base level bt. As a result of this pulsed pattern of effort, the optimal practice

intensity {w∗t } also follows a pulsed pattern.

Moreover, the optimal set of high-intensity practice sessions is only defined in terms of its size

κ, not in terms of its actual composition. Accordingly, there exist multiple optimal solutions.

For instance, the optimal value in the right panel of Figure 6 is obtained with the set S∗ =

{6,7,9,11,12}, but it could have also been obtained with the set S = {1,2,3,4,12}, which would

have front-loaded the high-effort sessions, or the set S = {8,9,10,11,12}, which would have back-

loaded them. Hence, the optimal practice process offers some flexibility, and the choice of when to

schedule the high-effort sessions may be driven by other considerations, such as the desire to build

up a strong base early or the desire to develop a regular practice habit.

To illustrate the pulsed pattern under the multiplicative model with maximum adaptation,

consider Daniels’ 18-week marathon program, with 2 quality runs (i.e., runs combining long distance

with speedwork) per week and a 55-mile peak mileage (Daniels 2014, Table 14.3). We convert the

intensity of each session in Training Impulses (TRIMPs), weighting the recommended miles of each

session by their recommended pace; see Appendix EC.2 for details. Figure 7 shows (in black) the

intensities (in TRIMPs) of the daily practice sessions, including the marathon on the final day.

In addition, Figure 7 shows (in gray) the optimal practice process under the multiplicative

model with maximum adaptation with the following parameter values: λ = 0.999995, µ = 1.0,
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α= 0.999995, β = 1.0, ε= 0.999993, and b1 = 32.7902, which leads to an optimal value of low effort

z = 0.194068 and that of high effort z = 1.0041. (See Appendix EC.2 for details on how these values

were identified.) We observe that the difference in the estimated decay rates between fitness and

fatigue, although central in the original fitness-fatigue model, is relatively marginal here. Similarly,

the effect of nonlinearities seems small. As a result, the pulsed pattern of the practice process

appears to be mostly driven by the adaptation mechanism, i.e., by the fact that effort adapts

rapidly to high-intensity practices and decays slowly between practice periods.

In summary, the optimal practice process for skill retention (multiplicative model) may operate

in cycles of either constant effort under geometric adaptation (typically, for cognitive tasks) and

pulsed effort under maximum adaptation (typically, for continuous motor tasks), up to the last

period, consisting of a final performance assessment.

5. Conclusion

This paper introduces a model of the practice process for skill acquisition and retention with

applications to endurance sports training, motor learning, and cognitive learning. Adopting an

optimization perspective, we characterize the optimal practice strategies that maximize perfor-

mance on a given date. Our approach has business implications for sports analytics, training in

organizations, and business model innovations in education.

Although we built on a model that was developed in the context of endurance sports training,

practice process optimization can in principle be applied to other contexts, provided that the effect

of practice on performance is fully understood. The model has the following characteristics. Each

practice session affects performance positively by contributing to a stock of fitness and negatively

by contributing to a stock of fatigue. Between practice sessions both fitness and fatigue decay

exponentially. The effect of a practice on fitness and fatigue is defined in terms of effort, rela-

tive to the mean intensity of past practices. Furthermore, the effect is nonlinear, with decreasing

marginal returns on fitness and increasing marginal costs on fatigue. Finally, the effect of practice

on performance can be additive or multiplicative.

We characterize the optimal practice process under four variants of the model, depending on

whether the effect of practice on performance is additive (corresponding to the skill acquisition

stage) or multiplicative (corresponding to the skill retention stage), and depending on the effort

adaptation mechanism to past practices, which is function of either their geometric mean (as would

typically be the case for tasks that are easily forgotten with lack of practice such as cognitive tasks)

or their maximum (as would typically be the case for tasks that are not easily forgotten with lack

of practice such as continuous motor tasks). For each model variant, we consider two scenarios,

namely when the ultimate effort requirement (when performance is assessed) is low or high.
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Table 1 Optimal Effort Profiles

Performance Model
Final Effort Req. Adaptation Mechanism Additive (Skill Acquisition) Multiplicative (Skill Retention)

Low Monotone Constant

High
Geometric (Cognitive Skills) U-shaped (smooth) Constant up to T − 1

Maximum (Cont. Motor Skills) U-shaped (abrupt) Pulsed

Table 1 summarizes the optimal effort profile for each model variant and scenario. For the

additive model (skill acquisition), the optimal practice process involves phases of intensity increase

and decrease, yielding U-shaped (or monotone) effort. Consistent with the principle of spacing

out practices to enhance learning, practice intensity may first increase to build the base level and

then decrease to either recover (if fatigue decays more quickly than fitness) or reset the base level

(if fitness decays faster than fatigue); there may be one last increase in intensity near the end of

the horizon, either limited to the final performance test or extending to the last set of practices

preceding that performance assessment to rebuild fitness (if fitness decays faster than fatigue).

The transitions in intensity are smooth under geometric adaptation (cognitive skills) but may be

abrupt under maximum adaptation (continuous motor skills). In the latter case, it may be optimal

to have a pronounced period of recovery before a demanding final performance test, similar to the

tapering strategy in endurance sports.

For the multiplicative model (skill retention), the practice process consists of cycles of either

constant effort under geometric adaptation (cognitive skills) or pulsed effort under maximum adap-

tation (continuous motor skills), consistent with the principle of alternating stress and rest.

Overall, our approach demonstrates the optimality of common high-performance practice strate-

gies (and characterizes the conditions under which they are optimal) with a stylized model that

involves a dual set of constructs, namely stocks (fitness and fatigue) and flow regulators (adapta-

tion), formalizing similar ideas by Groves and Thompson (1970) and Bjork and Bjork (1992). Our

findings suggest a key distinction between the practice process for skill acquisition, which proceeds

in phases, and that for skill retention, which consists of cycles of either constant effort or pulsed

effort. Our findings also suggest that the tension between short-term performance and long-term

learning (Schmidt and Bjork 1992) is more severe for cognitive skills (geometric adaptation) than

for continuous motor skills (maximum adaptation), since the practice process of the latter may

include more pronounced periods of rest before a challenging assessment. Yet, multi-period breaks,

which often arise in both research experiments on learning and practice (e.g., summer breaks), are

typically suboptimal.

We outline several promising model extensions. First, the model could be extended to capture the

multi-dimensional nature of learning, similar to Ladany (1975) and Zwols and Sierksma (2009), but

with dynamic effects. In particular, interleaving different topics helps develop discrimination skills
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and is therefore more conducive to long-term retention (Brown et al. 2014), although there exist

few guidelines about the optimal degree of interleaving. Second, it would be worthwhile to build a

continuous-time version of the model, similar to Baucells and Zhao (2018), to accommodate non-

impulse practices. Third, one might consider how to achieve longer-term performance objectives,

such as health or long-term retention, with shorter-term objectives (e.g., races, exams). Finally,

the profile of the practice process could be optimized subject to constraints on the total amount of

practice (e.g., a 30-hour course) or on their duration (e.g., 1.5 hour) to shed light on the benefits

and challenges of common course formats.

Given its parametric form, the proposed model can be tailored to fit individual characteristics

and specific contexts. Our preliminary empirical analysis (Appendices EC.1 and EC.2) suggests

that, in the context of long-distance running, adaptation matters more than the gap in decay rates

between fitness and fatigue and other nonlinearities. Along these lines, future research should test

the model’s robustness with respect to its parameters and identify the typical values for those

parameters in different contexts (motor vs. cognitive learning). A calibrated model could potentially

be implemented in software to provide feedback to athletes, employees, or students about their

performance over time and help them optimize their training or learning schedule. As the nature

of work continues to evolve, requiring constant learning (Staats 2018), and as the development of

technologies (such as wearables) provides greater access to tracking data on both the duration and

intensity of practice and on performance, there is a growing opportunity for developing not only

the science of training and learning, but also its engineering. We hope that this paper will inspire

others to pursue this emerging field of research.
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