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1. Introduction

Online labor platforms (e.g. Amazon Mechanical Turk, Appen, Uber, Rev.com, etc.) employ mil-

lions of workers worldwide (Kässi and Lehdonvirta 2018). Such platforms match skilled workers

(the supply), with customers requesting certain tasks to be completed effectively (the demand).

For customers, platforms offer convenient on-demand services with minimum fixed costs, trans-

action costs, and search costs. For workers, platforms provide schedule flexibility and a source of

supplemental income with no long-term commitment.

However, double-sided labor platforms face complex operational challenges as they try to sustain

an effective matching of supply and demand; they need to operate profitably while ensuring that

the needs and constraints of consumers and workers are met. In particular, platforms need to

process their customers’ job requests in a timely and adequate manner as well as provide workers

with an attractive and worthwhile stream of jobs.

Managing the worker (supply) side of the platform is particularly difficult; job availability can be

unpredictable or below workers’ expectations and income may be inconsistent (Berg et al. 2018).

These issues may deter workers from using the platform, thus making job availability even more

inconsistent and high-quality service harder to achieve.

Within this context, our research explores how a two-sided labor platform’s pricing and job

allocation strategies attempt to mitigate such behavior. In particular, we model and analyze the

relationship between a platform’s pricing and job allocation policy and consider a platform that

maximizes an objective comprised of three components, (i) platform’s revenues, (ii) workers’ welfare

measured as the average variability of worker earnings, and (iii) customers’ dissatisfaction cost in

terms of delays in processing incoming jobs.

Typically, workers are assumed to be driven by the average income generated on a platform. Our

approach towards worker welfare is novel because it explicitly considers the variability of workers’

earnings. As for the platform’s control levers, part of the relevant literature, in particular with

respect to ride-hailing, have considered dynamic pricing mechanisms to make up for the mismatch

between supply and demand. Consistent with the rest of the literature and with the practice of

various platforms, we assume that the pricing decision is static, a constant fee (or a fixed percentage)

that the platform charges the worker for each transaction. In that context, another lever available

for the platform is the job allocation policy, which controls how and when jobs are allocated. This

policy would need to balance between the variability of worker revenue and workers’ response time

to jobs.

Optimizing the platform’s objective requires managing multiple sources of risk primarily related

to worker availability and workload. To study the relationship between these sources of risk and the
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platform’s objective we take a queuing-theoretic approach where workers and jobs arrive stochasti-

cally; workers engage for a certain amount of time on the platform and jobs take a random amount

of time to be processed. Workers are strategic in the sense that their decision to join the platform

is sensitive to the overall revenue they expect to generate from the platform.

This setting can be modeled as a dynamic stochastic optimization problem. Finding the optimal

pricing and dynamic job allocation policy in this setup is intractable, making it difficult to obtain

theoretical and managerial insights. Even under standard queuing assumptions (such as Poisson

arrival rates and Exponentially-distributed processing times), analyzing such platform performance

is akin to examining a network of multi-server queues where the number of servers endogenously

changes throughout time. This analysis is even more challenging due to the strategic behavior of

the workers.

In order to obtain both tractability and insight, we introduce the so-called Uniform Allocation

(UA) policies. These policies are static but practical as well as analytically tractable and specifically

designed having in mind worker welfare. UA policies assign jobs to workers in a uniform manner by

restricting the number of possible active workers. The policy replaces natural irregularity (resulting

from supply and demand uncertainties) with a short delay in the start time of the worker allocation

process. We design a policy in this class that achieves objectives (i), (ii) and (iii) when both supply

and demand markets are large (asymptotic analysis). When supply and demand are of moderate

size, any improvement in worker welfare is at the expense of maximal matching of supply and

demand. UA policies allow for an explicit characterization of the trade-off between worker welfare

and the other objectives of the platform.

Before detailing our main contributions, we present examples that motivate our research.

1.1. Practical Motivation: Microwork, Delivery, and Ridesharing Platforms

The first type of labor platform that motivates our research is online “microwork” platforms, such

as Samasource, Appen, and Clickworker. These distributed labor platforms are at the core of the

emerging “AI Economy” and companies such as Google, Uber, Baidu, Microsoft, and Amazon

outsource manual image classification, content filtering, data cleaning, and text translation and

transcription tasks to such platforms. These types of tasks are simple, standardized, only take a few

minutes to complete, and are time sensitive1. In such microwork platforms, workers usually have a

job queue and are paid per job. Platforms like Clickworker, CloudFactory, Appen, and Samasource

dispatch jobs directly to workers (Vakharia and Lease 2013).

1 For example, Uber drivers must take a picture of themselves when they log in to the app to verify their identity.
When Uber’s facial recognition algorithm fails to identify a driver’s picture, the identification job is forwarded to
FigureEight, who then sends the job to a worker on its platform that will compare the driver’s identity with the
photo stored by Uber (Gray and Suri 2019).
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The other type of platform that motivates our work are delivery and ridesharing platforms

such as Postmates, Uber, Lyft and Grab. Recent research reveals that although workers value the

flexibility offered by such platforms (Chen et al. 2017), these platforms (at least how they are

currently managed) are not necessarily a steady and viable source of income for workers (Daniels

and Grinstein-Weiss 2018). Delivery and ridesharing platforms usually allocate jobs directly to

workers and, in certain situations, might allow the worker to have a few jobs in its queue. Consistent

with recent literature such as Taylor (2018), we do not model the fact that workers in such platforms

move between different locations.

1.2. Summary of Main Contributions

The main contributions of the paper are described below.

We introduce an infinite-horizon analytical model of a two-sided labor platform based on con-

tinuous time dynamics, which incorporates the platform’s triple objective (revenues, customer

satisfaction, and worker welfare), the utility function of workers, the uncertainty of job availability

and workers, and uncertain job processing time. We model customer satisfaction as the average

sojourn time of jobs in the platform and worker welfare as the standard deviation of the number of

jobs workers receive during their time on the platform. We assume that workers decide to join the

platform based on their expected utility that incorporates the expected income rate on the plat-

form and its predictability. If they join, they spend time T on the platform and, during this time,

accept the jobs allocated to them. This framework allows us to explicitly model the interconnection

between the platform’s pricing policy, job allocation policy, and objective.

We propose a class of simple and practical policies called Uniform Allocation (UA) policies that

allocate jobs to workers in a rotating manner and use a “worker buffer” to control the uncertainty

in the system. We prove that, for this policy class, we can obtain analytical expressions for platform

revenues, for the average job sojourn time, and for the variability in worker revenues. Then, we

perform a large-scale system analysis and accordingly design a UA policy that is asymptotically

optimal. This analysis shows that a corrected fluid solution will be required to offset the impact of

uncertainty.

From a methodology point of view, we contribute to the literature of stochastic systems and

large-scale operations by demonstrating that, in two-sided platforms, a balanced loading setting is

economically optimal and causes limited congestion and more interestingly, little irregularity effects.

Furthermore, our model under UA policies allows us to analytically describe the cross-impacts of

uncertainty on the platform. Specifically, we derive expressions that describe how, under a UA

policy, the wait time for jobs is directly connected to the non-uniformity of workers’ schedules.

Based on this analysis, we introduce an optimization problem that allows a platform manager to

optimize the parameters of UA policies.
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Finally, we examine the behavior of the UA policy using discrete event simulation. We compare

the UA policy with a random allocation (RA) policy and Shortest Queue (SQ) policy. We find

that the UA policy leads to a significantly smaller coefficient of variation (CV) of worker revenues

compared to both RA and SQ policies. In addition, the CV of the UA policy is a decreasing function

of worker arrival rates while the CV of the SQ policy is increasing.

The paper is organized as follows: we review the literature in the next section; in Section 3,

we introduce our model and optimization problem; in Section 4, we introduce the UA policy and

provide an analytical characterization of the platform’s optimization problem under such policy as

well as solve the fluid version of the problem; in Section 5, we characterize the asymptotic behavior

of a UA policy and obtain an asymptotically optimal solution to the platform’s optimization

problem based on a corrected fluid solution; in Section 6, we examine natural extensions to our

model; Section 7 is devoted to a numerical analysis; in the concluding section, we summarize our

findings and list open questions.

2. Literature Review

Our work is related to different streams of literature around pricing and matching of labor plat-

forms. First, our work contributes to the literature on two sided-platform management (see Rochet

and Tirole 2006). Recent papers in this streamed examine the matching problem for such platforms

in various settings. In the context of ride sharing, Hu and Zhou (2016) and Ozkan and Ward (2017)

study the dynamic matching problem. Specifically, Ozkan and Ward (2017) study a continuous-time

setting and propose an LP relaxation that yields an asymptotically-optimal policy that performs

better than a “closest-driver policy”. Hu and Zhou (2016) consider dynamic matching in a discrete-

time system and provide conditions under which the optimal policy is a priority rule. Caldentey

et al. (2009) and Adan and Weiss (2012) examine the matching of two multi-type sequences on a

first-come first-served basis and quantify the matching rate between a type of customer and a type

of server.

Recently, Afèche et al. (2017), tackle driver and rider matching in a network matching problem.

They consider a fluid model that accounts for the network structure, driver incentives and driver

repositioning decisions. The authors then propose a policy that controls the admission to the

platform, repositions flows, and also matches drivers to riders locally.

Recent papers have addressed pricing in the context of labor platforms. Cachon et al. (2017)

compare different pricing schemes and show that dynamic pricing is better for all stakeholders.

Banerjee et al. (2015) study a stochastic queueing model with price sensitive riders and drivers

and show like us that static pricing are asymptotically optimal. Bimpikis et al. (2016) examine

the platform decisions with respect to the ride pricing and driver compensation across a network.

Bimpikis et al. (2016) assume that drivers behave strategically and perform an equilibrium analysis.
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Similar to the papers above, we model a two-sided on-demand labor platform with strategic

workers where the platform sets the price charged to the workers but, in contrast, we revisit the

way the platform should allocate the jobs given its concern with workers welfare.

As opposed to peer-to-peer product sharing (e.g. Benjaafar et al. 2018), our platform shares some

common features to so-called freelancing platforms (e.g. Moreno and Terwiesch 2014) but is closer

to what is known as on-demand platforms (see, Table 1 in Taylor 2018). In freelancing platforms,

jobs are matched with workers that have the proper skill for the job. Conversely, on-demand

platforms deal with non-differentiated jobs i.e., any worker can do any job. Taylor (2018) examines

an on-demand platform where customers are sensitive to delays and agents that are “independent”

can choose to participate in the platform or not. However, while the analysis in Taylor (2018)

focuses on the impact of consumer delay sensitivity and worker independence on optimal prices

and wages and takes the job allocation mechanism as given, we assume that jobs are homogeneous

and examine the design of the job allocation mechanism in order to reduce the unpredictability of

the number of jobs allocated to workers during their engagement time. We also assume that the

platform charges a fee from workers which is equivalent of charging a commission on the revenue

generated by a job. This type of contract has been explored by Hu and Zhou (2017) who show

that, under certain assumptions, a commission contract is near-optimal for platforms. Similar to

our work, Gurvich et al. (2016) model a setting where a platform optimizes worker pool size and

compensation. However, they consider a discrete-time dynamic set-up with less granularity (e.g,

no queueing effect), leading to a newsvendor-like relationship between the firm and the workers.

More generally, our work is also related to the literature on pricing and revenue management

for a queueing system. This literature often considers a standard single server or multiple server

queue and tackle various other issues besides pricing, such as capacity sizing (Savin et al. 2005),

lead time quotation (e.g. Çelik and Maglaras 2008, Ata and Olsen 2009), customers with different

priorities (e.g. Savin et al. 2005) or the multi-product setting (Maglaras and Meissner 2006).

Among these queueing-based pricing literature, the stream of papers that is most relevant to

ours is the one using large-capacity systems in the so-called Halfin-Whitt regime (e.g. Halfin and

Whitt 1981, Whitt 1992). This type of setting has been used extensively in various applications;

in particular in call centers (see Gans et al. (2003) for an overview). In this stream, the closest

works to ours are Maglaras and Zeevi (2003) and Maglaras and Zeevi (2005) who provide an

equilibrium analysis, determine the demand rate and capacity, and obtain approximations for the

optimal solution through “large-capacity asymptotics”. The asymptotic analysis they undertake is

similar in nature to the one we perform in (where the “heavy-traffic” regime is shown to be optimal

from an “economic optimization” point of view). Nevertheless, the system we study (a “wheel”
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type matching policy) and its analysis remain different from theirs. Moreover, besides pricing, in

a multi-class setting, we look at jobs allocation decisions under fixed total capacity of jobs.

From a practical standpoint, “wheel” policies, similar to the policy we introduce, have been

successfully applied in manufacturing2, King et al. (2016). Scheduling with the goal of generating

predictable and smooth production and demand patterns is a key idea in lean manufacturing and

is known as heijunka in the terminology of the Toyota Production System (Wilson 2015). Thus,

our policy can be thought as an application of the concept of heijunka to a labor platform.

3. Modeling Framework

We model a two-sided labor platform. The demand side of the platform consists of customers that

submit jobs to be completed in a timely manner. The supply side consists of workers that connect

to the platform in search of jobs. The platform allocates jobs to workers and charges them a fee

per completed job. We now introduce and discuss our model.

3.1. Platform’s Decisions

We assume that a worker receives r dollars of revenue for each job she completes on the platform.

In return, the platform charges the worker a fee p for each completed job. We focus on the supply

(worker) side of the platform and assume the revenue r to be exogenous. The platform manager

decides the fee p and the allocation policy π for assigning jobs to workers. We assume that workers

are strategic because they are sensitive to the expected revenue they make during their engagement

with the platform. As a result, the fee p and the allocation policy π modulate the arrival rate of

workers.

In all generality, the platform can choose the fee p and allocation policy π dynamically. The

optimization of the resulting stochastic dynamic optimization problem is clearly intractable. Our

objective is to examine the problem at a tactical level and identify a simple and well-performing

pricing and job allocation policy. This policy should allow us to better understand the implications

of the platform’s pricing and scheduling decisions on the value generated to the platform, the

worker, and the customer. Thus, we restrict ourselves to a set P of policies that are static and

stationary. In other words, the allocation policy itself is not dependent on the state of the system3.

Moreover, we disregard any transient behavior and perform a steady-state analysis. In Section 7, we

compare the policy we propose to other state-dependent allocation policies through a discrete-event

simulation.

2 Product wheel (or rythm wheel) scheduling have been used in chemical and food manufacturing

3 The policy could well be for example threshold-based but those thresholds could not change with time
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3.2. The Demand (Job Arrivals)

We assume that jobs arrive to the platform according to a Poisson process with a rate of µ. The

platform allocates immediately a job to a worker. The time it takes a worker to complete a job

follows an exponential distribution with rate γ.

Remark 1 We restrict our analysis to platforms that allocates jobs to workers as opposed to

workers selecting available jobs. Many companies do follow such practice (e.g., Uber, Appen, Cloud-

Factory). Moreover, if jobs are homogeneous, such assumption is without loss of generality. It is

beyond the scope of this paper to analyze heterogeneous jobs and the implications on the workers’

selection process. As for the timing of the allocation. We consider policies that assign a job to

workers as soon as the job is received First, this choice leads to a simpler model and more ana-

lytical tractability. Second, this reflects the practice of companies such as Appen or Uber, which

immediately assign an incoming job to workers, even if all workers are busy finishing previous jobs.

However, this immediate allocation is not required in general and we could consider (static) policies

that could delay the assignment of a job before allocating it to an available worker.

3.3. The Supply (Worker Arrivals).

Workers continuously approach the platform for jobs. They are heterogeneous and differ in the

amount of time they remain in the platform as well as in the revenue they expect to generate.

Engagement time. Workers that enter the platform will accept any job allocated to them

during a period T . We call T the worker’s engagement period. It is an exogenous random quantity

drawn from some distribution FT (·). We assume that once a job is accepted the worker commits

to complete it.

Worker equilibrium arrival rate. We model worker arrivals to the platform as a Poisson

process with rate λ. The arrival rate λ is the result of an equilibrium that depends on the worker’s

utility function and on the platform’s choices of fee p and allocation policy π.

The supply dynamics that lead to the equilibrium arrival rate are as follows. A worker decides

to join the platform if her expected net utility U during the total time spent at the platform is

positive. The expected net utility depends on the expected number of jobs allocated to the worker

during her engagement period T , which in turn, depends on the rate at which workers join the

platform as well as the fee and allocation policy adopted by the platform. We denote by Θ(λ,π)

the random number of jobs allocated to a worker in steady state during (a random) engagement

period T and we let N(λ,π) =EΘ(λ,π). We note that the expected value is taken with respect to

all the relevant uncertainties, specifically, the arrival of jobs and workers and the engagement time.

We also define the net utility of a worker at the time she is deciding to join the platform as

follows:

U(λ,p,π) = (r− p)N(λ,π)− ξET̂ (λ,π),
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where the first term is the expected revenues a worker generates during the engagement period and

ξ is the opportunity cost measuring the outside option revenue rate available to the worker. The

opportunity cost is known to the worker but the platform only knows the distribution of ξ, given

by Fξ. Finally, T̂ is the effective time spent at the platform. While T is the time during which

the worker accepts jobs, T̂ ≥ T is the time until the worker processes all the jobs allocated and

completely leaves the system. This time is random, and the worker knows its expected value and

accounts for it as she decides whether or not to join the platform.

Given an exogenous arrival rate Λ of workers who are contemplating joining the platform, only

a fraction of those will decide to join. We denote by λ(p,π) the steady state arrival rate of workers

which is the solution to

λ= ΛP(U(λ,p,π)> 0) = ΛFξ

(
(r− p) N(λ,π)

ET̂ (λ,π)

)
.

Under some minimal properties of U and Fξ, the equilibrium equation above will be guaranteed to

have a unique solution. These properties should, in general, hold and are acceptable for the type

of policies we are interested in. Note that N(Λ, π)/ET̂ ≤N(Λ, π)/ET. Hence, as long as

Fξ

(
r
N(Λ, π)

ET

)
< 1,

an equilibrium exists. This inequality should hold under some very general conditions on Fξ and

π. Moreover, N(λ,π) should be decreasing in λ for a given allocation policy π, where the more

workers approach the platform, the less jobs each should expect. The monotonicity of N in λ

guarantees that the upper bound ΛFξ

(
(r− p) N(λ,π)

ET

)
has a unique solution. As for the behavior of

T̂ , it depends on the specific allocation; however one would expect that, for reasonable allocation

policies, the equilibrium solution is still unique.

For the rest, without loss of generality, we assume that for each static allocation policy π ∈ P,

and fee p, the function λ(p,π) is known and belongs to (0,Λ). Equivalently, there also exists an

inverse function p(λ,π) for a given arrival rate λ. We will verify the existence and uniqueness of

these functions for the specific policies we are interested in.

Remark 2 The model we consider assumes that the engagement time T is an exogenous variable.

In practice, this time can be more elaborate and endogenous to the system. Specifically, this time

can be driven by a number of jobs the worker targets during the engagement time. In that case, the

target N would be an endogenous (random) variable and T is the time spent to reach the revenue

target. Reality is likely more complex and is a mix of these two behaviors. We discuss the case where

the engagement time is driven by the target N in the extensions of section 6 and in the appendix.
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Even though most of the analysis can be done for a random T (except for the main results

following Proposition 1), from this point on, we restrict our analysis to the setting in which the

engagement time T is constant. We analyze the case of a random T in Section 6. We also explore the

implications of a random T on the platform’s performance in our numerical analysis. This analysis

predicts that our certainty-equivalent-type approach with respect to T , would lead to adequate

approximations of the problem, even when T has a high standard deviation.

3.4. Platform’s Objective.

The platform has a balanced objective that needs to trade-off between its own revenues, workers

welfare and end-customers satisfaction. We describe each component of the platform’s objective

below. For ease of exposition, we omit T when convenient from the notations.

(i) Platform Revenues. The platform’s revenues in steady state are p(λ,π)λN(λ,π), where

p(λ,π) is given by the equilibrium equation described in the previous subsection.

(ii) Worker Welfare and Cost of Non-Uniformity. We model the impact of irregularity

on workers’ welfare as a cost that is proportional to the standard deviation of the number of jobs

allocated to a worker in steady state during their engagement time. For an arrival rate λ and

allocation policy π, the cost of non-uniformity per worker, Σ(λ,π), is given by

Σ(λ,π) = b (Var[Θ(λ,π)])
1/2
,

where b is a cost parameter and Var[Θ(λ,π)] =E[(Θ(λ,π)−N(λ,π))2].

(iii) Customer Dissatisfaction and Job Sojourn Time. The platform’s goal is to offer

a high-quality service to end-customers. We measure service quality based on how long a job

remains in the platform, from the time it is received until the processing is complete. In practice,

depending on the type of platform, jobs can be done sequentially in the order received or in

parallel. Workers may even prioritize some jobs over others. In many settings, the job flow and

allocation process will impact the efficiency at which workers process jobs, and as a result, a cost of

dissatisfaction is incurred. For the sake of anchoring the discussion and obtaining an analytically

tractable dissatisfaction cost, we assume the following setting: workers process jobs in a first-come

first-served (FCFS) manner and the cost of dissatisfaction is proportional to the expected sojourn

time (waiting time plus processing time), in steady-state, of a single-server-queue in which the

arrival process results from both the job allocation policy as well as the job and worker arrival

rates. We denote by W (λ,π) the expected sojourn time and the cost of customers’ dissatisfaction

per worker as:

C(λ,π) = cN(λ,π)W (λ,π),

where c is a cost parameter. Note that the rate at which the platform processes jobs is λN(λ,π).
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Finally, we revisit the equilibrium equation governing the arrival rate. Given the above model of

how jobs are allocated and processed, we conclude that in steady state, it will take each worker,

on average, an additional W (λ,π) beyond the engagement time to process all remaining jobs in

her queue. Recall that this time is accounted for by the worker, in the utility function, before

the decision to join the platform is made. Hence, the expected effective time is given by ET̂ =

T +W (λ,π) and therefore, the equilibrium arrival rate λ(p,π) (or equivalently, the price, p(λ,π))

is solution to

λ= ΛFξ

(
(r− p) N(λ,π)

T +W (λ,π)

)
. (1)

Remark 3 We view each worker as a stationary single server queue. Clearly, the waiting time of

jobs at a worker’s queue will first follow a transient behavior before reaching steady state. But, we

do not analyze the transient behavior for tractability reasons and because we believe that the steady

state analysis of this queue suffices to demonstrate the general behavior of the above mentioned

dissatisfaction cost which could easily apply beyond the specific case of a generic single server queue.

We also note that the expected value of the steady state waiting time is an upper bound on the

time-average waiting time for each queue. Moreover, as long as the the steady state is eventually

reached before the worker leaves the system, we can still write: ET̂ = T +W (λ,π). These two facts

will guarantee that our asymptotic results will not be affected by this assumption.

Putting all the above elements together, we define the profit rate as

Π(λ,π) = λ [p(λ,π)N(λ,π)−Σ(λ,π)−C(λ,π)] ,

where p(λ,π) is the solution to equation (1).

The platform’s optimization problem is then given by

max
π∈P,λ∈[0,Λ]

Π(λ,π), (P)

Remark 4 The problem formulation (P) is exactly the same to the one obtained if we would

have considered that, instead of the platform incurring the non-uniformity cost, the worker’s utility

accounted for both the expected revenues and the variability of the jobs allocated by the platform.

In this case, the equilibrium equation is:

λ= ΛFξ

(
(r− p)N(λ,π)− Σ(λ,π)

T +W (λ,π)

)
. (2)

where the constant b measures the workers sensitivity with respect to the predictability of their

income. The price is then given by

p(λ,π) = r− T +W (λ,π)

N(λ,π)
F−1
ξ

(
λ

Λ

)
− Σ(λ,π)

N(λ,π)
.
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For the rest we use the equilibrium equation (1), and the notion of cost of non-uniformity introduced

above. The latter can still be interpreted as an additional element to the workers’ utility function.

Remark 5 Utilization of the Worker and Stability of the Platform. We define the work-

ers’ utilization as the average fraction of time workers are busy during their engagement with the

platform. The platform manager sets the price and the allocation policy so that the workers’ utiliza-

tion is small enough to ensure a low job waiting time, but not too small to discourage workers from

joining the platform. In particular, the cost of dissatisfaction guarantees that any optimal solution

ensures that the platform is demand constrained4 , i.e., µ< λ(p,π)T γ.

The optimization problem (P) is, in general, intractable even when we have restricted our feasible

policies to the set P. In the next section, we introduce a policy class that is adapted to the problem

at stake, allows for analytical tractability and is asymptotically optimal.

4. The Uniform Allocation (UA) Policy

In this section, we introduce and examine a simple and well-performing class of policies, called

Uniform Allocation (UA) policies. These policies are designed to balance components (i), (ii), and

(iii) of the platform’s objective and are tractable. Specifically, such policies allow us to measure

the impact of uncertainty in the system through what we call the engagement delay as well as

discover the synergies between the pricing lever and the allocation mechanism. In the next section,

we prove that such synergies may lead to an asymptotically optimal performance. We denote the

class of UA policies by PUA.

4.1. Description of a UA Policy

UA policies are static and parameterized each by a positive constant κ. This parameter regulates

the allocation frequency of jobs to workers in the following way: incoming workers are assigned

to slots on a “wheel” with κ fixed slots. Incoming jobs are assigned to the κ slots in a rotating

manner (i.e., the wheel “turns”). Hence, a slot (and the worker assigned to it) will receive a job

every κ jobs received by the platform. This way, the jobs that are allocated to a worker are spread

throughout the worker’s engagement period. Figure 1 depicts this policy.

We call a worker active, if she is currently assigned to one of the κ slots. If all κ slots are occupied

and a worker joins the platform, she will enter a worker queue where she waits for a slot to become

available and, as a result, the effective start of her job allocation process is delayed. A worker in

the queue is said to be in a passive state. We denote the time between the worker’s arrival to the

platform and the time she receives her first job by τ and we call it the engagement delay. Passive

4 If the market is supply constrained then the platform will necessarily have to reject on arrival a portion of the
demand that is large enough so that the remaining demand rate is again upper bounded by the supply capacity.



Araman, Calmon, and Fridgeirsdottir: On-Line Labor Platforms
Working Paper - June 2019 13

Job queue.
Service rate of
� jobs/hour
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The wheel turns with each job arrival.
Jobs are allocated sequentially.
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� workers/hour.

Workers spend an engagement
time T in the platform.
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Figure 1 illustration of a UA policy. Workers are represented by circles while jobs are represented by squares.

workers become active in a FCFS manner as slots become available; a slot becomes available as

soon as the engagement period of an active worker ends. An active worker is allocated a job every

full rotation of the wheel and, therefore, the interarrival time of jobs to an active worker is the

sum of κ exponential random variables.

In summary, a UA policy restricts the number of active workers, and hence a worker entering

the platform could first experience a potential delay τ during which she receives no jobs. Once the

worker is allocated to one of the κ slots, she becomes active for the remainder of the engagement

period, T − τ . We call the regularity parameter κ the wheel size. An active worker receives jobs at

a rate µ/κ. The arrival rate λ is still given by the equilibrium equation (1) and becomes a function

of the price p and the wheel size κ that parameterize the allocation policy. We denote the expected

number of jobs each worker receives during the engagement time T by N(λ,κ). As a result, the

behavior of the entire platform has been reduced to two parameters: λ (alternatively, p) and κ.

By introducing the regularity parameter, κ, UA policies allow us, to some extent, decouple the

arrival of workers and the allocation process. This will be crucial in controlling the variability of

the jobs allocation process and in reducing the variability of the jobs sojourn time.

Remark 6 Jobs allocated to empty slots. When the number of workers on the platform is

strictly smaller than κ, the UA policy as defined above might allocate an incoming job to an empty

slot. There are different options to deal with this case:

• In order to preserve the uniformity of the allocation process, the platform drops the job. The

job is then lost and the platform potentially incurs a penalty5. This approach will be the norm in a

supply-constrained market where jobs need to be rejected for the lack of available workers.

5 The platform could use some external capacity and outsources job processing. This is typical in online advertising
where jobs correspond to viewers and workers to advertisers. In such setting, the platform could direct some of its
excess viewers to ad networks. By doing so, they typically generate a lower profit margin.
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• The platform reallocates the job to another slot sampled at random. If the sampled slot is

empty, the platform can decide to sample a slot again until the job finds a non-empty slot. This

way, in a demand-constrained settings, the platform is guaranteed that no job is lost unless it is

empty. By doing so, each worker receives a new stream of jobs that perturbs the uniform allocation

process but where the overall variability would remain manageable.

In all cases, the job is lost if the platform is empty where no worker is in the system. We analyze in

Section 6 the two possible approaches introduced in Remark 6. We also discuss their implications

on the optimal solution which remains of the same form. For the rest, we ignore the jobs that

arrive to empty slots. However, for the numerical analysis we adopt a UA policy with a random

reallocation.

Remark 7 Any allocation policy (even dynamic) generates irregularity (e.g., long or short idle

times) in the job allocation process throughout the engagement time. Such inevitable irregularity is

“replaced” under the UA policy by an initial delay at the start of the engagement period followed by

a (more) regular assignment of jobs to workers. Our assumption is that the worker is strategic in

her decision to join the platform, in the sense she is not affected by a short-term behavior (initial

delay or irregularity); instead, her decision takes into account a holistic view by calculating its

expected utility for the entire interaction with the platform - which accounts for both the overall

expected revenues and the corresponding time spent at the platform (see, equation (1)).

4.2. Engagement Delay

The model we are considering for the labor platform has, under a UA policy lens, a unique feature,

whereby the engagement delay plus the time during which the worker is active equals the exogenous

constant T . This is not a standard feature of a typical queuing system. However we are able to

obtain a tractable formulation of the platform’s behavior.

Next, we introduce an expression of the engagement delay τ that will play a central role in

quantifying the cost of non-uniformity as well as the cost of customer dissatisfaction. We denote

by τ̄(λ,κ) =E[τ(λ,κ)] and by σ2
τ (λ,κ) = Var[τ(λ,κ)]. All proofs are in the appendix.

Proposition 1

i.) For an arrival rate of workers λ and a UA policy with κ slots the engagement delay is

τ(λ,κ)
d
=

[
T −

κ∑
i=1

vi

]+

,

where vi’s are the interarrival times of workers to the platform.
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ii.) The expected engagement delay satisfies the following:

For all κ≥ 1, τ̄(λ,κ)≤ τ̄(λ,1) and τ̄(λ,κ)→ 0, as κ→∞.

The main property that enables us to derive Proposition 1(i) is that the UA reduces the problem

to a single server queue where workers are fulfilled in a FCFS manner.

4.3. Fulfillment Constraint

Under the UA policy with κ slots and an arrival rate λ, each worker will be active for a period

T − τ(λ,κ). During this period, the worker receives Θ(λ,κ) = bΘ̂(T − τ(λ,κ))/κc jobs, where Θ̂(t)

is the Poisson process with rate µ counting all the jobs received by the platform during an interval

of length t. As a result, N(λ,κ) = EbΘ̂(T − τ(λ,κ))/κc and what we denote as the fulfillment

constraint, is given by

N(λ,κ) = (T − τ̄(λ,κ))
µ

κ
. (3)

4.4. Cost of Non-uniformity

Next, we obtain a closed-form expression for the cost of non-uniformity.

Lemma 1 Given λ and κ and assuming that workers have a fixed engagement time T , the cost of

non-uniformity is given by

ΣUA(λ,κ) = bVar(Θ(λ,κ))1/2 = b

(
µ

κ2
(T − τ̄(λ,κ)) +

µ2

κ2
σ2
τ (λ,κ))

)1/2

. (4)

As mentioned above, there are three sources of uncertainty in this system that may affect the

number of jobs received by the worker. The above lemma is quite revealing, as it shows how a

UA policy allows us to measure the impact of these three sources of uncertainty through the

engagement delay τ of workers. Indeed, the result translates the variability of the number of jobs

a worker receives to the steady-state worker’s engagement delay distribution (through its average

and variance). As for the impact of the uncertainty in the processing times, parameterized by γ,

it is implied through the value of the equilibrium arrival rate λ obtained following equation (1).

4.5. Customers Dissatisfaction Cost

The customer dissatisfaction cost is proportional to the expected sojourn time of jobs. Consider

the single-server queue of an active worker. Under the UA policy, the arrival process of jobs to the

worker’s queue follows a renewal process. Given that the processing times of jobs are exponentially

distributed, the worker’s queue is a G/M/1 queue in which the interarrival times of the arrival

process is a random variable of the form
∑κ

i=1 ui where the ui’s are exponentially distributed with

rate µ. The sojourn time for jobs in this queue is stated in the lemma below.
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Lemma 2 For a G/M/1 queue where the job interarrival rate is the sum of κ exponential random

variables with rate µ, the expected sojourn time is finite if and only if µ
κγ
< 1, (i.e. the worker’s

utilization is less than one). In this case, the expected sojourn time is given by

W UA(κ) =
1

γ (1− ν(κ))
,

where ν(κ)∈ (0,1) is the unique solution to ν = (1 + γ(1− ν)/µ
)−κ

.

Using this result, the customer dissatisfaction cost is given by:

CUA(λ,κ) =
cN(λ,κ)

γ (1− ν(κ))
= c

(T − τ̄(λ,κ))µ

κγ (1− ν(κ))
. (5)

Since the platform’s objective has a component that is proportional to W UA, any finite-cost policy

will require that µ/κ < γ. As a result, the system will naturally be constrained by the amount of

incoming jobs while under-utilizing the workers.

4.6. Platform’s Optimization Problem Under the UA Policy

With the non-uniformity and customer dissatisfaction costs in hand, we are ready to formulate the

optimization problem (P) for UA policies. Before we do that, we note that τ̄ is decreasing in λ

and ET̂ is independent of λ and hence we confirm that the equilibrium equation (1) has a unique

solution in λ and the inverse price is given by

p(λ,κ) = r− κ
µ

T +W UA(κ)

T − τ̄(λ,κ)
F−1
ξ

(
λ

Λ

)
.

Putting all the above together, in particular, equations (4) and (5), the platform optimization

problem under UA policies is given by

max
κ>µ/γ,λ

{
λ
µ

κ

(
p(λ,κ)− c

γ (1− ν(κ))

)
(T − τ̄(λ,κ))−λ b

κ

(
µ (T − τ̄(λ,κ)) +µ2 σ2

τ (λ,κ)
)1/2

}
.

(PUA)

Another way to write problem (PUA) is to introduce N as an additional decision variable in the

objective function. This formulation emphasizes the indirect control that the platform has on the

expected number of jobs delivered to the worker during T . With some abuse of notations with

respect to Π(·) and p(·), we write that

Π(λ,κ,N) = λN

(
p(λ,κ,N)− c

γ (1− ν(κ))

)
−λb

(
N

κ
+
µ2

κ2
σ2
τ (λ,κ)

)1/2

,

so that the optimization problem becomes

max
λ,κ>µ/γ,N

Π(λ,κ,N)

τ̄(λ,κ) = T −Nκ/µ≥ 0 (PUA

N )

p(λ,κ,N) = r− T +W UA(κ)

N
F−1
ξ

(
λ

Λ

)
≥ 0.
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From the fulfillment constraint and the expression of the engagement delay, we conclude that:

T − N κ

µ
= τ̄ =E

[
T −

κ∑
i=1

vi

]+

≥ T − κ
λ
.

If we denote by ρ, λN/µ, the previous inequality implies that ρ≤ 1. This inequality reflects the

fact that the platform cannot process jobs at a rate higher than the incoming job rate µ. We call

ρ the platform’s utilization, i.e., the fraction of incoming jobs that the platform is processing in

steady state. A job is not processed either because no worker is available on the platform at the

time of arrival or that the job is allocated to an empty slot (see, Remark 6). Hence, 1− ρ, is the

fraction of jobs that is dropped.

The platform utilization is distinct from the average worker utilization. We denote by u the

worker’s utilization which is given by u=N/(Tγ). From Remark 5 we observe that u≤ ρ always

holds. The platform can process most incoming jobs while the worker’s utilization remains lower (in

fact, this is often the case in practice). Given that there is always a probability that the platform

is empty (i.e. no workers are available) then ρ will be strictly less than one. Although this is not

directly stated in the objective function, many platforms also strive to meet all jobs and, hence,

work at a utilization close to one. Interestingly, this is the regime that we show will be optimal for

the platform. We finally note that, under a UA policy with reallocation (see, Remark 6) all jobs

will be processed (except when no workers are available on the platform). In this case, the effective

utilization of the platform is almost one.

Although problems (PUA) or (PUA

N ) have more structure than the original one, (P), they are still

“very” nonlinear optimization problems that are difficult to solve even numerically. For example, in

the expression of the engagement delay τ̄ , κ appears in the limit of a sum. Moreover, the objective

is also non-linear in λ, which is the result of a fixed-point expression. We can use a simulation-based

optimization to find the optimal values of κ and λ, but a numerical approach does not give us

much insight into the dynamics of the platform.

4.7. The Fluid Problem

In order to gain insights into the structure of the solution of problem (PUA

N ) and highlight the

natural selection of uniform allocation policies, we examine the case in which the uncertainty in

jobs and worker arrivals are disregarded, i.e., workers and jobs approach the platform sequentially

in a deterministic and predictable manner and each worker spends exactly an engagement time T

on the platform. However, we still assume that jobs processing times are random and follow an

exponential distribution with rate γ. We call this setting the fluid problem.

For such fluid problem, and given some N that the platform wants the worker to receive on

average during an engagement time T , we set the number of slots on the wheel to be κ0(N) = µT
N

.
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We also denote by λ0(N) the corresponding equilibrium arrival rate. The number of slots κ0 ensures

that there will be no engagement delay. Indeed, from the platform’s utilization inequality, it must

be that λ0N ≤ µ, equivalently, λ0 T ≤ µT/N = κ0(N). Since, by Little’s law, λ0 T is the exact

number of workers at any time in the platform (whether passive or active), hence, there will be no

engagement delay and the cost of non-uniformity is zero.

As for the cost of customer dissatisfaction, we recall that the worker is modeled as a single server

queue that receives jobs sequentially in a deterministic manner at a rate of µ/κ0. Thus, the worker’s

queue is a D/M/1 queueing system and, as long as µ/κ0(N) < γ or, equivalently, N/T < γ, the

system is stable. Following the same steps as Lemma 2, the next lemma gives the expression of the

average sojourn time of a job for such queue.

Lemma 3 As long as N < γ T , the expected sojourn time in the fluid problem, under a uniform

allocation policy with κ0(N) = µT/N , is given by

W UA,0(N) =
1

γ
Γ−1

(
Tγ

N

)
, (6)

where Γ(x) =−x log
(
x−1
x

)
is a decreasing convex function on (1,∞).

The platform’s objective function can now be written as a function of λ and N as follows,

Π0(λ,κ0(N),N) = λN
(
p(λ,κ0(N),N)− cW UA,0(N)

)
.

with p(λ,κ0(N),N) = r− T+WUA,0(N)

N
F−1
ξ

(
λ
Λ

)
≥ 0, and W UA,0(N) given by equation (6).

The fluid version of (PUA

N ) is denoted by (F). Its optimal solution is denoted by (λ0,N 0). We

also let (λ̄, N̄) be the unconstrained maximizers of Π0. At optimality, it must be that N 0/T ≤ γ or

else the job sojourn time is not finite. We assume that γ satisfies this assumption. We present the

solution for problem (F) below.

Proposition 2 Consider the fluid problem described above where the interarrival of workers (jobs)

is exactly equal to 1/λ (1/µ). Assume that Fξ is such that xF−1
ξ (x) is convex. Then, the optimal

UA policy that solves (F) has parameters

κ0 =
µT

N 0
, λ0(N 0) = min(µ/N0, λ̄),

where

N 0 =

{
N̄ , if λ̄ N̄ ≤ µ,
arg maxΠ0(λ0(N), κ0(N),N), otherwise.
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The above requires that p0(λ0,N 0)≥ 0 which we assume is satisfied throughout. For the rest of

the analysis we only focus on the more involved and interesting case where λ̄ N̄ ≥ µ. We call this

case the demand constrained setting6.

Remark 8 If the market is supply constrained (with a large µ), then it is technically possible

to have µ > λ̄ N̄ and in this case the optimal solution for the platform is to implement the fluid

solution even in the stochastic setting. However, under such a supply-constrained market, customers

are likely price sensitive and µ would vary with r. Given the above profit formulation (F), the

platform would then start charging a higher fee r which would drop the value of µ(r), without

affecting the proportion of customers that are being served. This process chould continue until at

least the constraint λ̄N̄ ≤ µ(r) becomes binding. Another explanation for this binding constraint is

that, in a supply constrained market, 1− ρ= 1− λ̄N̄/µ is the rate at which jobs are being rejected

or dropped. Eventually, even though the demand is there, this proportion of the market will stop

seeking service. The previous analysis is inline with our early assumption that the fee r and the

price p are decoupled - a tactic used recently by some online platforms, e.g., Uber, see Garg and

Nazerzadeh (2019). However, one could also consider a system where the price charged to workers

is proportional to the fare charged to the customers and that the customers are price sensitive. The

latter is an interesting avenue to consider but is beyond the scope of this paper.

The above assumption and Proposition 2 imply that it is optimal for the platform (in a demand-

constrained fluid setting) to work at full utilization (ρ= 1), and satisfy all incoming jobs. As for

the utilization of the worker, it also reaches a maximum value of u0 =N 0/(γ T )< 1.

Our starting point for the stochastic analysis is a setting where, in the fluid case, the platform

would want to work at full utilization. The convexity assumption of xF−1
ξ (x) is done for tractability

reasons and many distributions do follow this assumption (e.g., uniform and exponential). However,

the analysis in the next section should hold beyond that assumption.

Corollary 1 We denote by ΠUA∗,Π∗,Π0∗ the optimal profits for problems P, PUA and (F). We

have that

ΠUA∗ ≤Π∗ ≤Π0∗.

This result shows that the fluid optimal profit is an upper bound on the optimal profit under

any static policy and not only UA policies (refer to, Remark 1). Such bound applies also to policies

6 Microwork platforms, due to their global labor pool, are usually demand constrained. Berg et al. (2018) conducted
a survey of microworkers across multiple platforms and found that a low availability of jobs is a primary concern
for more than half of surveyed workers. Recently, Gray and Suri (2019) present an in-depth study of the day-to-day
routine microworkers, and both low revenue per job and low job availability emerge as major issues for workers.
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that could delay a job before assigning it to a worker as long as it is static and stationary. The

proof is straightforward and results from the fact that in the fluid case the cost of non-uniformity

is zero and the cost of dissatisfaction is minimal for a given N as long as the arrival process to the

worker’s queue is deterministic. Finally, N is chosen to maximize the profit at full utilization.

The above result also shows that, at least in the fluid setting, UA policies are optimal among all

static policies and motivates the choice of such allocation in a general setting.

Remark 9 The fluid solution for moderate markets. Although the platform’s objective in the

fluid problem is an upper bound on the optimal objective in the stochastic case, we cannot expect the

“fluid solution”, (λ0, κ0,N 0), to behave very well. Indeed, the fluid solution is constructed in a way

that the allocation spreads jobs evenly while balancing incoming jobs and workers on the platform.

Hence, this policy does not leave any room for “error” in the presence of uncertainty. Our objective

is then to carefully adjust the fluid solution in order to keep both the cost of non-uniformity and

customer dissatisfaction low.

5. Asymptotic Analysis

In this section, we present an asymptotic analysis of the optimization problem PUA

N set in a regime

where the arrival rate of jobs and workers are scaled up. We leverage this analysis to simultaneously

obtain the asymptotically optimal pricing as well as the design of the UA policy. Next, we define the

sequence of scaled problems (Pn
N). Problem (Pn

N) is a scaled version of problem (PUA

N ) parameterized

by an integer n≥ 1, that is obtained by setting the primitives, Λn = nΛ and µn = nµ. An important

feature of our scaling is that the engagement time is not scaled: with T n = T for all n.

Given that µ is scaled, both the costs of non-uniformity and dissatisfaction as well as the engage-

ment delay τ will be scaled accordingly. In particular, the objective function of problem (Pn
N)

is

Πn(λn, κn,N) = λn p(λn, κn,N)N −λnΣUA
n

(λn, κn,N)−λnCUA
n

(κn,N).

The fulfillment constraint is τ̄n(λn, κ) = T −Nκ/µn and the platform’s utilization is ρn = λnN
µn
≤

1. We also introduce a new metric, the congestion factor, %, which quantifies the load on the

platform under the UA policy. The congestion factor is defined as % = λT/κ, and is the ratio

between the average number of workers that are in the system at any point (whether active or

passive), and the maximum possible number of active workers κ. As opposed to ρ, % depends on

both λ and κ. In a typical multi-server queuing system, % would be exactly equal to the utilization.

However, from the fulfillment constraint, in this context ρ≤ %. Moreover, % can either be smaller or

larger than one. In the fluid case, %= 1, but in the general case, it measures whether the platforms

balance is leaning toward more workers waiting (%> 1) or jobs being dropped or reallocated (%< 1).
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Furthermore, we define the functions Ψ(x) = φ(x)− xΦ̄(x) and χ(x) = Φ̄(x)−Ψ(x) (x+ Ψ(x))

on R where φ and Φ are, respectively, the standard Normal pdf and cdf. 7

The next result sets the appropriate regime for our asymptotic analysis. Interestingly, this regime

forces the parameters of the UA policy (κ and λ) to be in a particular form: a corrected fluid

solution. Moreover, the solution is given as a function of the target N of jobs a worker should

expect to achieve during T . In practice, the platform might be driven by a target N to offer the

worker; thus the rest of the solution is responsible for implementing such offer in a way to maximize

the congestion factor.

Proposition 3 Suppose that the demand and supply processes are as described above and that the

platform is following a UA allocation policy. Also, suppose that both demand and supply rates are

scaled as suggested above. Then, for any target of jobs N that the platform could offer, if

√
n (1− %n)→− η

T
, as n→∞, for some real η, (C)

it follows that:

i.) λn(N) = λ0(N)(n− τ̄(N)−η
T

√
n) + o(

√
n),

ii.) κn(N) = κ0(N)(n− τ̄(N)

T

√
n+ o(

√
n),

iii.) ρn(N) = 1− τ̄(N)−η
T
√
n

+ o(1/
√
n),

iv.) τ̄n(N) = τ̄(N)√
n

+ o(1/
√
n),

as n→∞, where τ̄(N) = σ(N)Ψ(−η/σ(N)) and σ(N) =
√
κ0(N)/λ0(N), with κ0(·) and λ0(·)

defined in the fluid setting.

The next proposition shows that under the asymptotic regime when condition (C) holds, the

cost of customers dissatisfaction is proportional to the engagement delay.

Proposition 4 Following the same setting than that of Proposition 3, we have the following:

i.) the customer dissatisfaction cost is given by

CUAn(N)−C0,UA(N) = cβ(N)
τ̄√
n

+ o(1/
√
n)

as n→∞, where β(N) = Γ−1′(Tγ
N

).

ii.) the cost of workers non-uniformity is given by

ΣUA
n

(λn, κn) =
bN

T

στ√
n

+ o(1/
√
n),

as n→∞, where σ2
τ = σ2χ(−η/σ).

7 We use hereafter the notation o(·) for two real functions f and g where g(x) = o(f(x)) for all x in a neighborhood
of x0 if g(x)/f(x)→ 0 as x→ x0.
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The first result confirms that (at least under such regime) there is a perfect alignment between

improving the performance of the customers (i.e., reducing jobs waiting time) and reducing the

delay function of the workers. Moreover, the second result shows that income variability (equiva-

lently, in the allocation process) is also proportional to the variability in the workers’ delay function.

In order to state the main theorem, we introduce some notations. We denote by e0 the elasticity

coefficient of the demand function around λ0, with e0 = λ0′ p0/λ0, where λ0′ is the derivative of λ

with respect to price taken at p0 = λ−1(λ0,N 0). We set c0 = (β(N)N/T ) c, and assume in the next

result that p0 < r and |e0|> 1, i.e., the fluid demand is elastic8. Finally, we denote by CUA,0 the

constant cW UA,0(N 0) with W UA,0(N) given in equation (6).

Theorem 1 Suppose that the demand and supply processes for a single type of engagement are as

described above and that the platform is following a UA allocation policy. Also, suppose that both

demand and supply rates are scaled as suggested above. Denote by Π0,n the scaled profit obtained

in the fluid setting. Then, at optimality N =N 0 and condition (C) holds so that the optimal profit

is given by
Πn(N 0)

Π0,n(N 0)
= 1− p0µ

p0µ−λ0CUA,0

ξ∗(η)

T
√
n

+ o(1/
√
n),

as n→∞, where ξ∗(η) = (1+1/e0 +c0/p0) τ̄(η)+b/p0 στ (η)−η(1+1/e0), with τ̄(η) = σ0 Ψ(−η/σ0),

στ (η) = σ0
√
χ(−η/σ0) with η being the minimizer of ξ∗(·) and σ0 =

√
κ0(N 0)/λ0(N 0).

This result reveals that it is optimal for the platform to deliver to the workers a number of jobs

equal to the ones it would have delivered in the fluid case. Asymptotically, the uncertainty is not

affecting the expected number of jobs delivered and as a result the utilization of the worker is

maximized at teh fluid limit u0. Moreover, Condition (C) must hold at optimality and thus the

corrected fluid solution given in Proposition 3 is asymptotically optimal. Note that both the average

income for the worker and the average profit for the platform will be both lower in the stochastic

setting compared to the fluid setting. These losses define the cost of uncertainty that the value of

η is minimizing. The impact of the jobs processing time uncertainty is present through both CUA,0

and β(N). Moreover, this corrected fluid solution ensures a decreasing gap in profits (in the order

of 1/
√
n) with respect to the fluid setting.

The asymptotic solution presented above is made of the fluid component and a correction term

characterized by η, which is uniquely defined by the behavior of the congestion factor.

The observation %n = ρn
(

1− τ̄
T
√
n

+ o(1/
√
n)
)−1

, as n→∞, implies that such regime can only

be achieved under heavy traffic (ρ≈ 1). Specifically, as the system scales, it optimally moves toward

8 A similar assumption was also imposed by Maglaras and Zeevi (2003). We refer the reader to that paper for a brief
discussion and illustrative examples of price-demand elasticity.
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Table 1 Comparison between Πn/Π0,n and the ratio from Theorem 1. We assume µ= 20 jobs/hour, Λ = 10

workers/hour, γ = 3.5 jobs/hour, T = 4 hours, b= c= 0.2, r= $1 and ξ is Exponential with mean 0.8.

n Πn Π0,n (1−Πn/Π0,n)
√
n p0µ

p0µ−λ0CUA,0
ξ∗(η)

T
Error (%)

1 12.26 15.7 0.219 0.202 7.96
10 146.4 157 0.213 0.202 5.13
100 1537 1570 0.209 0.202 3.37
1000 15590 15700 0.207 0.202 2.52

a balanced load at a rate of η/T . Similarly, the utilization gets close to one (
√
n(1− ρn)→ τ̄−η

T
),

while the engagement delay approaches zero making the delivery uniformly spread.

Another important aspect of this result is that the “balanced loading”-type behavior (ρ≈ 1) (as

well as the rate at which it is reached) is obtained as a result of the optimization and despite the

non-linear behavior of the costs of non-uniformity and dissatisfaction. This behavior occurs because

as the rate of supply µn becomes large, the expected number of jobs, N , becomes much smaller

than workload of the platform, µn T , received in T . In such regime, by regulating the allocation

process, the platform is able to not only keep satisfying the fulfillment constraint, but also take

advantage of a risk pooling effect (by increasing the maximum number of active slots available

on the wheel (κn), simultaneously enabiling it to attract an increasing number of workers (λn),

without affecting their performance (τ̄n, σnτ ).

Such behavior has been highlighted previously in a queuing context starting with Whitt (1992)

and made explicit through economic considerations in Maglaras and Zeevi (2003) and Maglaras

and Zeevi (2005). The analysis in these papers is based on a multi-server queuing system in heavy

traffic obtained through the Halfin-Whitt regime (see Halfin and Whitt 1981), i.e., by holding

constant the probability of delay.

Simpy put, Theorem 1 also implies that using a concept of rotating slots is quite effective in

reducing the implied uncertainty and generating maximum revenues. In order to illustrate Theorem

1, we consider a numerical example where we scale the system making µn = nµ and Λn = nΛ. We

then solve problems (PUA) and (F) for each value of n and compare the ratio Πn/Π0,n with the ratio

we obtain from Theorem 1 ignoring the o(1/
√
n) term. To make the comparison scale independent,

we compare (1 − Πn/Π0,n)
√
n with p0µ

p0µ−λ0CUA,0
ξ∗(η)

T
. The results are displayed in Table 1. For

moderate values of n the ratio from Theorem 1 is close to the ratio obtained numerically by

explicitly solving (PUA) and (F) and, as the system scales, these ratios converge.

To summarize, for systems where the capacity µ is large relative to N , say µ= n, computing the

fluid solution together with setting the optimal congestion factor % through the computation of η

allows one to solve for the optimal price and the allocation frequency. It also allows one to measure
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the system’s performance through the utilization (ρ≈ 1− τ̄−η
T
√
µ
), the irregularity (τ̄ ≈ τ̄√

µ
), and the

profit (Π ≈ Π0(1− ξ∗/√µ)). This asymptotic analysis leads to approximations that numerically

(see Table 5 are valid for reasonable values of n, making these results valuable in practice.

Together, the results in this subsection demonstrate that, despite its simple structure, a UA

policy can achieve the three goals of the platform manager described in the introduction. For

adequate policy parameters, as the platform scales the UA policy converges to the fluid profit while

simultaneously minimizing job wait times and minimizing variability in worker profits.

6. Extensions

In this section, we propose natural extensions to our model. We do not handle these in full details.

For some, we defer the analysis to the appendix. For the rest, we discuss the main approach on

how to tackle them.

6.1. Jobs Allocated to Empty Slots

We tackle in this section the different approaches to handle the situation where jobs are allocated

to empty slots (see, Remark 6).

6.1.1. Dropout Cost. The first approach is the one where the platform incurs a penalty each

time a job is dropped. We denote the unit dropout cost by s. The total dropout cost is an additional

cost that the platform incurs as a result of implementing a UA policy. The average total cost rate

is given by ΓUA = s (µ−λN) = sµ (1−ρ). Indeed, for a given unit of time, the total number of jobs

received is µ while λN is the number of jobs allocated to workers during that time. The difference

are the jobs dropped. From Proposition 3 we conclude that

ΓUAn = sµ (
τ̄ − η
T

)
√
n+ o(

√
n),

as n→∞. The previous term will be added to the profit and the corresponding asymptotic analysis

will lead to a similar form of solution where the penalty cost s will be integrated to the value of

η. The steps of the proof would remain exactly the same than for Theorem 1. The result takes

advantage of the fact that the penalty cost is zero in the fluid setting.

6.1.2. Random Reallocation Policy. The other more interesting approach discussed in

Remark 6, is the one where the platform implements a uniform allocation policy with random

reallocation. Specifically, each time the UA policy allocates a job to an empty slot, the platform

can reallocate it randomly (and uniformly) to another slot. It iterates this process until the job

finds an active worker. By doing so, the platform ensures that the jobs is not lost (unless no workers

are available on the platform when the job is received). By applying this to all jobs the platform

is guaranteed to work at full utilization.
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As a result of such adjusted policy, the workers will receive two streams of jobs the one driven by

the uniform allocation and the one resulting from the reallocation policy. The latter stream of jobs

can be shown to be a Poisson process. We denote its rate by µ0. Indeed, every job arriving to the

platform has 1−ρ probability of finding an empty slot. The reallocation process is a deleted Poisson

with a geometric rate equal to µ0 = µ (1 − ρ)/κ
∑∞

i=1(1 − ρ)i−1(1 − 1/κ)i−1. Simple calculations

show that asymptotically,

µn0 ∼ µn (1− ρn)/κn
1

ρn
,

as n→∞. We will not attempt to obtain the adjusted formulation of the corresponding asymptotic

analysis. Instead, we argue below why the results obtained with a reallocation policy leads to the

same form of corrected fluid solution. First, observe that the revenue rate is similar to the one

before, except that N is now the aggregate number of jobs allocated during T − τ , from both

streams, at a rate (µn+µn0 )/κn. This new rate has marginally increased. Adding this new stream of

jobs will also impact the variability with respect to the number of jobs received by a worker. Given

that the new stream is a Poisson process independent of the initial UA allocation process, the

variance of the jobs allocated increases by a term equal to (1−ρ)µ/κ(T − τ̄). Finally, the expected

sojourn time of a job will also increase due to this reallocation stream. Measuring the exact impact

of the additional stream is complex because the allocation process is non-Poisson. However, this

increase in the expected sojourn time should be smaller than if the (primary) allocation process is

a Poisson process with the same rate (i.e., the worker’s queue was an M/M/1. We do not prove

this claim that can be confirmed numerically. It is not hard to show that if we replace the G/M/1

queue by an M/M/1, then the impact of the new stream on the expected sojourn time is in the

order of 1− ρ and would represent an upper bound on the real system. The resulting profit rate

will be of the same form than Π and the asymptotic analysis would then follow the same way.

6.2. Random engagement time, T

In this section, we consider the case in which the worker has a random exogenous engagement time

T with distribution FT . We define T̄ = ET. We use the same notation of the constant T case. We

add a subscript T when the quantity is defined conditional on the value of T . For instance, we define

NT (λ,π) = E[Θ(λ,π)|T ] and obtain that N(λ,π) = ETNT (λ,π). We still denote the engagement

delay by τ . For random T , the expression of τ obtained in Proposition 1 is no longer valid. The

value of τ is independent of a realization of T , depending only on the distribution of T .

6.2.1. The Different Ingredients of the Profit Rate. Recall that the equilibrium equa-

tion (1) was obtained for a random T . Hence, the revenue rate generated for a given λ and π

maintains the same formulation: λp(λ,π)N(λ,π). Also, note that the worker remains active during
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T − τ , the fulfillment constraint holds for each worker, and for a given T : NT (λ,π) = (T − τ̄)µ
κ
. By

taking the expected value with respect to T , we recover the same fulfillment constraint as before.

It is not difficult to show that the expected sojourn time remains the same under a random T

and that is due to the stationarity assumption9. The formulation of the cost in Lemma 2 remains

valid. As for the cost of non-uniformity incurred by the platform it is measured as the expected

value of the conditional standard deviation Var(ΘT (λ,κ))1/2. Hence,

ΣUA(λ,κ) = bET
(
µ

κ2
(T − τ̄(λ,κ)) +

µ2

κ2
σ2
τ (λ,κ)

)1/2

.

6.2.2. Approximating the Profit. The difficulty in the setting where T is random is the

lack of an expression for τ . In order to circumvent this, we suggest a bound τ̂ on τ obtained

following a more stringent model. For that, assume that workers are pre-assigned to specific slots

independently of the state of the system. Such approximated system will be less efficient and does

not take advantage of risk pooling effect from a centralized queue. However for this system, we can

prove that the delay function of the workers is given by a formulation similar to the deterministic

case with τ̂ = [T −V ]+, where T is random and V is the sum of κ exponentials. The new engagement

delay should be stochastically larger than τ . Then, the following inequality must hold

Π̂(λ,κ)≤ΠT (λ,κ)≤Π0(λ,κ),

where Π0 (Π̂, ΠT ) is the profit in the fluid setting (corresponding to τ̂ , τ). For an asymptotic

analysis, we have to scale T by defining a sequence T n, that converges to a positive constant T̄ as

n→∞. As a result, one can obtain a corrected fluid solution that is asymptotically optimal with

Π̂n/Π0→ 1 as n→∞. This implies that this same solution will be asymptotically optimal for ΠT .

6.3. Engagements driven by a target number of jobs

A natural variant of our model is one where the worker engages with the platform until she reaches

a target N that is exogenously set. As a result the engagement time in this case is endogenous

corresponding to the time it takes to reach N . We call this setting an N-engagement. The worker

only joins in this case if the expected utility is positive. Similarly to the case with an exogenous T ,

under an N-engagement setting, the utility takes into account the engagement time, the number

of jobs targeted and an outside opportunity cost. We write that λ = ΛP
(

(r− p)N − ξET̂ > 0
)
,

with T̂ = τ +
∑N

i=1

∑κ

j=1 ui,j +W UA(κ), where ui,j’s are i.i.d. and represent the interarrival times

between jobs. The first term is the engagement delay, the second term measures the (active) time

9 One might force the value of T to be larger than some T0 > 0 so that the stationarity assumption remains sensible.
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it takes to allocate the N jobs, and finally, the third term is the time (beyond the active time) it

takes to complete all remaining allocated jobs. Hence,

p(λ,κ) = r−F−1
ξ

(
λ

Λ

) (
κ

µ
+
τ +W UA(κ)

N

)
.

In this more elaborate setting, we obtain again an expression of τ and an asymptotic solution

similar to that of Proposition 3 and Theorem 1. These results and their proofs are in Appendix B.

7. Discrete Event Simulation and Numerical Experiments

In this section, we examine the performance of the UA policy through a discrete event simulation.

Our discrete event simulator was built in the Julia programming language (Bezanson et al. 2017)

and simulates each worker and job arrival to the platform, job queues and processing times, and

also worker departures. All our code is available at [link redacted for peer review]. For the UA

policy, we assume that if a job arrives to a slot without a worker it is randomly reallocated to other

slots until a worker is found, as discussed in Section 6.1.2. In all policies considered, we assume

that if no workers are on the platform, the job is lost.

7.1. Comparison with the Random Allocation and Shortest Queue policies

We benchmark the UA policy against the Random Allocation and the Shortest Queue (SQ) policies

for different worker arrival rates. In the Random Allocation policy, incoming jobs are randomly

assigned to a worker in the platform. In the SQ policy, incoming workers immediately enter the

pool of active workers. Conversely, incoming jobs are immediately allocated to the worker with

the shortest job queue (hence, the policy dynamically responds to worker loads). The platform

manager’s decision is only the fee p. A complete analytical characterization of the platform’s

objective under the SQ policy is challenging because the arrival rate of jobs to a worker’s queue is

a function of the queue-length of all workers on the platform.

The results are depicted in Figure 2. The standard deviation of the number of jobs per worker,

which we take as a measure of worker welfare, is much smaller in the UA policy than in both the

Random Allocation and SQ policies, as shown in Figure 2a, which highlights the main practical

feature of the UA policy: it is designed to minimize the variability in the number of jobs allocated

to each worker. All three policies allocate the same average number of jobs per worker as displayed

in Figure 2b.In our simulations, average worker utilization ranged from about 0.9 to about 0.3.

Furthermore, Figure 2c indicates that, while the Coefficient of Variation (CV) of the Random

Assignment and of the SQ policy are increasing functions of the worker arrival rate, the CV of the

UA policy is a decreasing function of the worker arrival rate. Together, Figures 2c and 2d depict

another key advantage of the UA policy: the CV of the number of jobs per worker and the job wait

times are aligned in the sense that they are both decreasing functions of the worker arrival rate.
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Figure 2 Comparison between the UA policy, the Random Allocation policy, and the SQ policy for various levels

of λ. We assume µ= 100 jobs/hour, γ = 3.5 jobs/hour, and T = 4 hours. We vary λ between 8 and 20

workers/hour and for each value of λ we simulate the system for 100,000 arrivals of jobs and workers.

For the UA policy, we scale the number of slots on the wheel proportionally to the fluid wheel size

κ0 = λT . We simulate three scalings: 0.8κ0, 0.9κ0, and κ0.

Finally, as expected, in all policies the job wait times decreases as the worker arrival rate

increases, as show in Figure 2d. Also, the wait time UA policy is lower and decreases faster with λ

than in the random allocation policy. Since the SQ policy minimizes job wait times by allocating

incoming jobs to the SQ, the job waiting time in the SQ policy is significantly lower than in the

UA policy.

7.2. Validity of the optimization problem (PUA)

We turn our attention to the optimization problem (PUA). Two main advantages of the UA policy

are the analytical expressions for job wait times and for the variability of worker revenues, allowing

(PUA) to be solved analytically in a tractable manner. However, (PUA) has a few assumptions, such

as the steady state of workers queue. In order to evaluate the validity of our theoretical model, we
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Figure 3 Platform’s theoretical and simulated objective for different values of λ and κ. We assume µ = 100

jobs/hour, Λ = 15 workers/hour, γ = 4 jobs/hour, and T = 4 hours, r = $1, ξ Exponential with mean

0.8r. We simulate the system for 300,000 arrivals of jobs and workers.

compare the platform’s objective function obtained through discrete event simulation and obtained

theoretically around the values of λ and κ that maximize (PUA).

The result of this simulation is displayed in Figure (3). For the parameters used in the simulation,

the optimal κ and λ that solve (PUA) are κ= 33 slots and λ= 7.3 workers/hour. In the first figure,

we set λ = 7.3 and vary κ while in the second figure we set κ = 33 and vary λ. Although, as

expected, the optimal values of κ and λ that maximize the objective in the discrete event simulation

the are not the exact maximizers of (PUA), the optimal simulated system parameters are close

to the theoretical ones. In fact, a broader numerical search indicates the values of λ and κ that

maximize the objective in the discrete event simulation are both within 7% of the values obtained

theoretically. More importantly, if we use the values of κ and λ in obtained through (PUA) in

the simulated system, the reduction in the platform’s objective will be less than 5%. Hence, the

theoretical model, despite its assumptions, produces policy parameters with near-optimal practical

performance.

7.3. Sensitivity analysis with respect to γ

As we increase the job processing rate γ, the average job waiting time decreases. However, the

effect of increasing γ on the variability of jobs that workers receive is less clear. We investigate this

effect through a discrete event simulation and the results are displayed in Table 2. Increasing γ

increases the standard deviation of jobs per worker (and the non-uniformity cost) and the average

number of jobs per worker. The net effect is a small increase in the coefficient of variability of the

jobs workers receive. Conversely, the effect on job wait times is dramatic, leading to an order of

magnitude reduction in job wait times.

In addition, as γ increases, the reduction in job wait times outweighs the increase in the variability

of jobs workers receive. The net effect is that, at optimality, the platform uses less workers. Hence,

p increases and the platform revenues increase, while the average worker revenue decreases.
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Table 2 Sensitivity of simulation for different values of γ. We assume µ= 80 jobs/hour, Λ = 20 workers/hour,

T = 4 hours, r= $1, ξ Exponential with mean 0.8, b= 2, and c= 0.2. We obtain λ, κ, and p by solving (PUA). We

simulate 500,000 arrivals of workers and jobs for each γ.

γ
Avg. jobs
per worker

Std. dev. of
jobs per worker

CV of jobs
per worker

Avg. job
wait time

λ p
Avg. worker rev.
per engagement

3.5 8.72 1.69 0.19 0.17 9.14 0.74 2.29
4.31 9.67 1.97 0.2 0.13 8.28 0.8 1.92
5.12 10.5 2.25 0.21 0.097 7.61 0.84 1.68
5.94 10.8 2.36 0.22 0.064 7.39 0.85 1.58
6.75 11.3 2.52 0.22 0.047 7.15 0.87 1.51
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Figure 4 Comparison between the UA policy and the SQ policy for random T . We assume that the distribution

of T is uniform with support [4−∆T,4 + ∆T ]. We assume µ = 100 jobs/hour, γ = 4 jobs/hour, and

λ= 10 jobs/hour. We simulate the system for 100,000 total arrivals of jobs and workers.

7.4. The effect of random engagement time T

In most of our previous analysis we assumed that workers’ engagement time T was deterministic.

We now explore the effect of random T in the performance of the UA policy. When T is random,

incoming workers no longer receive the same amount of jobs. Thus, we measure the cost of non-

uniformity as the standard deviation of the rate at which workers receive jobs. More specifically,

recall from Section 6.3 that NT (λ,π) is the random amount of jobs a worker receives for an engage-

ment time T . Then, non-uniformity of the job allocation rate is EVar
(

Θ(λ,π)

T
|T
)

, where Θ(λ,π)

T
is the

(random) rate at which a worker receives jobs. For this simulation, we assume that T is a uniform

random variable with mean 4 hours and support [4−∆T,4 + ∆T ]. The results for different values

of ∆T are depicted in Figure 4 for both the UA policy and the SQ policy.

Figure 4a shows that, as expected, the average job allocation rate is constant in the UA policy,

even when T has a high variance. This is due to the UA policy’s wheel structure that effectively

decouples job allocation from worker arrivals. The average job allocation rate under the SQ policy
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has a slightly decreasing trend. Furthermore, Figure 4b depicts that the standard deviation of

the job allocation rate in the UA policy is significantly lower than in the UA policy. Although in

both policies the standard deviation of the allocation rate is increasing with the variance of T , the

standard deviation of the UA policy is significantly lower than the SQ policy.

8. Conclusions

We developed a novel modeling framework for the operations of an online labor platform that faces

both supply and demand uncertainty and balances profits, worker welfare and customer satisfaction.

We suggest a class of analytically-tractable allocation policies called Uniform Allocation (UA),

that guarantees near-predictable worker profits. Policies in this class allocate jobs to workers in a

rotating manner and allow us to explicitly describe the relationship between platform profits, job

wait times and variability of worker revenues.

Through a large-capacity system analysis of UA policies, we obtain the optimal values for the

fees the platform charges workers and the job delivery control parameters. These values correspond

to the solution of the fluid/deterministic problem corrected by square root terms, proving that the

corrected fluid values together with the uniform allocation mechanism are asymptotically optimal.

We validate the performance of the UA policy and compare it with a state-dependent policy

through a discrete event simulation.

Our work opens multiple promising research avenues. First, a transient analysis of the workers’

queue in the platform could lead to a more precise understanding of job wait times. Extending

our results to non-homogeneous jobs is both relevant and interesting and would widen the appli-

cability of our model. We assume that traffic follows a stationary Poisson process, which is a valid

assumption at an aggregated level. However, exploring time non-homogeneous processes is more

realistic and would lead to insight into platforms where supply and demand vary throughout the

day. Finally, empirical research on workers, in particular on understanding what are the drivers of

their engagement time, as well as customer behavior on online labor platforms could lead to more

realistic models of worker welfare and customer satisfaction.
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APPENDIX A: Main Proofs

A1. Proof of Proposition 1. The key feature of this setting is the constant engagement period

T , required by all workers. Despite the uncertainty in the arrival of jobs, the fact that workers

spend all T in the system, workers will leave the platform in the order they arrived. We rank

the slots from 1 to κ and, when multiple slots are free, we assign workers to the lowest ranking

slot. Because of that, we can ex ante assign all the workers that will be approaching the platform

to a specific slot. Basically, if we rank workers arriving to the platform 1,2, .... and consider the

sequence of workers (i+mκ :m≥ 0), with 1≤ i≤ κ, then this sequence of workers will be assigned

to slot i. We can then tell, on arrival, to which slot (among the κ) the worker will be allocated to.

Therefore, the system can be collapsed to κ single server queues where each queue has the special

feature, where a worker will spend exactly T in the system, whether being passive or active. We

focus on one queue. Note that the inter-arrival time between two workers sharing the same slot

is Vj+1 =
∑j+κ

l=j+1 vl
D
=
∑κ

l=1 vl. Lindley’s recursion that tracks waiting time in a single server queue

implies that the delay at one slot of worker n+ 1 is given with respect to the delay of the worker

ahead of her on that same slot, τn+1 = [τn +Un− Vn+1]+, where Un is the time the nth worker on

that slot spent being active. We conclude that τn+1 = [T − Vn+1]+. By letting n go to infinity we

obtain the result.

Finally, note that τn+1 ≤ T and hence, each worker will spend almost surely a positive amount of

time being active. Note that this result takes advantage of the fact that T is constant for all workers.

If T is random then this is not necessarily true and in this case, there is a positive probability that

a worker will leave the system before becoming active.

Finally, we prove ii.). We clearly have that [T − v1]+ ≤ [T −
∑κ

j=1 vi]
+ a.s.. Moreover, by the

Strong Law of Large Numbers (SLLN),
∑κ

j=1 vi→+∞ a.s., which implies that τ(κ)→ 0 a.s. �

One can also obtain a closed form expression of the delay function, τ̄ .

Corollary 2 Under a UA mechanism, we have that

τ̄(λ,κ) = Te−λT
∞∑
j=κ

(
1− κ

j+ 1

)
(λT )j

j!
. (a1)

A2. Proof of Corollary 2. We let N(T ) = max{j : Aj ≤ T}, where Aj is the time of the jth

arrival of a worker. Observe that N(T ) is a Poisson random variable with rate λT . Hence, for the

values of N(T ) below κ, [T −Aκ]+ = 0 and so,

τ̄(κ) =
∞∑
j=0

E
[
[T −Aκ]+|N(T ) = j

]
P(N(T ) = j) =

∞∑
j=κ

E
[
(T −Aκ)|N(T ) = j

]
P(N(T ) = j).
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Furthermore, we recall that conditioned on N(T ) = j, the random variables, {A1,A2, ...,Aj}

are distributed as j i.i.d. uniformly distributed random variables on (0, T ) and so Aκ is the κ

order statistics which is known to be beta distributed with parameters (κ, j + 1 − κ). Hence,

EAκ = T/(j+ 1) ·κ, which proves the result. �

A3. Proof of Lemma 1

Var(Θ(T − τ)) =EVar(Θ(T − τ)|τ) + VarE[Θ(T − τ)|τ ]

=E [
µ (T − τ)

κ2
+ Var[

µ (T − τ)

κ
]

=
µ

κ2
(T − τ̄) +

µ2

κ2
Var(τ)

=
µ

κ2
(Nκ/µ) +

µ2

κ2
Var(τ)

=
N

κ
+
µ2

κ2
Var(τ)

A4. Proof of Lemma 2, Lemma 3 and Proposition 4 i.). We recall that each worker is

represented as a single server queue that is assumed to reach stationarity instantly. Moreover, we

know that the processing time is exponentially distributed with rate γ while the arrival is a renewal

process with inter-arrival times that are the sum of κ r.v.’s that are i.i.d. with an exponential

distribution with rate µ. Hence, the worker’s single server queue is a G/M/1 system with this

special arrival process. The utilization of this system is equal to µ/(κγ) which is assumed to be

strictly less than one.

It is known (see, Asmussen (2003)) that for a G/M/1 queue the number of customers in the

system follows a geometric distribution and hence, the so-called sojourn time (waiting time plus

the service time) is exponentially distributed. It can be shown that the rate of this distribution is

equal to 1
γ (1−ν)

, where ν is solution to the equation:

ν =EX exp(−γ(1− ν)X), (a2)

where X is the interarrival times: X =
∑κ

i=1 ui and ui ∼ exp(µ). Hence,

W UA =
1

γ(1− ν)
.

It can also be shown that the equation defining ν admits a unique solution in (0,1) if and only

if the utilization of the queueing system is strictly less than one, which is the case here.
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Recalling that the mgf of an exponential r.v. is given by E exp(θ u1) = µ
µ−θ . We then write that

log (EX exp(−γ(1− ν)X)) = log

(
E exp

( κ∑
i=1

(−γ(1− ν)ui)
))

= log Πκ
i=1E exp

(
− γ(1− ν)u1

)
= κ log

( µ

µ+ γ(1− ν)

)
= κ log µ−κ log

(
µ(1 + γ(1− ν)/µ)

)
=−κ log(1 + γ(1− ν)/µ

)
.

As we scale the system, we have that for each element of the sequence of problems, νn is solution

to

log νn =−κn
( γ
µn

(1− νn) +O(
1

µn2
)
)
,

as n→∞. In the above, we took advantage of the fact that at the limit the utilization is strictly

less than one and hence νn→ ν0 ∈ (0,1) as n→∞, with ν0 solution to

log ν

1− ν
=−κ

0

µ
γ =−Tγ

N
.

Equivalently, we can write that

log νn

1− νn
=−κ

n

µn
γ+O(1/n) =−Tγ

N
(1− τ̄

T
√
n

) +O(
1

n
),

as n→∞.
A similar analysis applies in the fluid case where the interarrivals are constant equal to κ0/µ, so

that if κ0 = µT/N then ν0 will be the solution to

log ν

1− ν
=−κ0 γ

µ
=−Tγ

N
.

We denote by Γ(x) =−x log
(
x−1
x

)
is a decreasing function on (1,∞) that admits an inverse Γ−1

that is also decreasing on (1,∞). Note that Γ( 1
1−ν ) =− log ν

1−ν . We then write that

1

1− ν0
− 1

1− νn
= Γ−1(

Tγ

N
)−Γ−1

(
Tγ

N
(1− τ̄

T
√
n

) +O(
1

n
)

)
=

γτ̄

N
√
n

Γ−1′(
Tγ

N
) +O(1/n)

as n→∞. We let β =−Γ−1′(Tγ
N

)> 0. Recalling the formulation of the waiting time of such ·/M/1,

we conclude from the above that:

CUA,n−C0 = cN(W UA,n−W 0)

= cN

(
1

γ(1− νn)
− 1

γ(1− ν0)

)
= cN

(
− τ̄

N
√
n

Γ−1′(
Tγ

N
) +O(1/n)

)
= cβ(N)

τ̄√
n

+O(1/n)
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as n→∞. �

A5. Proof of Proposition 2.

We start by showing that the fluid profit is unimodal as long as H(x) := xF−1
ξ (x) is convex.

We rewrite the fluid profit as follows:

Π0(λ,N) = r λN −W (N)H(λ)− cW (N)−T H(λ)

We focus on the function

G(λ,N) = rλN −W (N)H(λ).

Assume that N1 and λ1 define a stationary point for G so that the two partial derivatives at that

point equal zero:

rN1−W (N1)H ′(λ1) = 0 and rλ1−W ′(N1)H(λ1) = 0.

Consider any perturbation around (λ1,N1). For instance, suppose δ and δ′ are positive and

consider the difference

G(λ1 + δ′,N1 + δ)−G(λ1,N1)

= r(λ1 + δ′) (N1 + δ)−W (N1 + δ)H(λ+ δ′)−G(λ1,N1)

= r(δ′N1 + δ λ1)− δ′W (N1)H ′(λ1)− δW ′(N1)H(λ1) +A

= δ′(rN1−W (N1)H ′(λ1)) + δ(rλ1−W ′(N1)H(λ1)) +A

=A,

where

A= rδδ′− δ2W ′′(N1)H(λ)− δ′2W (N1)H ′′(λ)

We could have considered any perturbation of (λ1,N1) and we would obtain the same sign of the

inequality. This shows that the stationary point must be a local maximum and hence by continuity

the stationary point is unique.

Given that the function is unimodal and if its unconstrained maximizer is such that λ̄ N̄/µ > 1,

then it must be that the optimizer of Π0 under the constraint ρ≤ 1 is such that ρ is exactly one.

�

A6. Proof of Theorem 1 and Proposition 3

We will prove Theorem 1 and Proposition 3 at the same time. We start with a lemma.
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Lemma 4 Let X be a normal random variable with mean η and standard deviation σ. The expected

value of the truncated normal is given by E[X]+ = σΨ(−η/σ), where the function Ψ is defined for

all x, as Ψ(x) = φ(x)−xΦ̄(x) (see Section 5). Furthermore, Ψ is decreasing on R and for all x∈R,

Ψ(−x)>x with Ψ(−x)/x→ 1, as x→+∞.

By definition Ψ(x) = φ(x)−xΦ̄(x)≥−x. Ψ(x)/x= φ(x)/x− Φ̄(x)→−1 as x→−∞.

We move to the proof of Proposition 3.

• We recall here an important result that is a consequence of Bolzano-Weierstrass theorem: if

a bounded sequence of reals has the property that every subsequence that is convergent has the

same limit, then the whole sequence is itself convergent to that same limit.

• Let µn = nµ, and Λn = nΛ, while T n = T . We fix a value of N that the platform is targeting.

For a given (λn, κn,N) there exists a price pn that solves the equilibrium equation. Most of the

analysis will be done for any feasible pn but eventually the objective is to maximize the profit and

the optimal price will be denoted by pn∗ .

• We start by noting that both sequences: (κ
n

n
: n≥ 0) and (λ

n

n
: n≥ 0) are bounded from above.

Indeed, notice that any solution to the fulfillment constraint requires that T − Nκn

nµ
≥ 0 and hence,

we conclude that κn

n
≤ µT

N
. Furthermore, we only consider prices such that the utilization will be

bounded by one which requires that λn

n
≤ µ

N
. Finally, we will restrict ourselves without loss of

generality to pricing sequences such that λn/n are bounded from below. From the equilibrium

equation we can see that this holds as long as supn≥n0 p
n < r for some n0. This will be easily

checked at the end of the proof.

• We want to show that
√
n (
∑κn

1 vi− κn

λn
)⇒ Y

d
= σ0Z as m→∞, where Z is a standard normal

random variable and σ0 > 0. For that we consider the log-moment generating function of the

quantity
∑κn

i=1 vi−
κn

λn
. As long as λn/n is bounded away from zero, we take advantage of the fact

that vj is an i.i.d. sequence of exponential r.v.’s’, and by a simple Taylor expansion we write

logE expθ(
κn∑
i=1

vi−
κn

λn
) = θ2 κn

2λn2 + o(n−2), (a3)

as n→∞.

• Consider any converging subsequence of κn/n and another converging subsequence of λn/n.

Let m = (mn : n ≥ 0) be a common subsequence. Form the bounded subsequence mnκ
mn/λmn2 ;

it must converge. We denote by lm its finite limit. For clarity of exposition we index from now on

the subsequence by m instead of mn, i.e., mκm/λm2→ lm as m→∞. Recalling the expression of

the log-moment generating function, we conclude that
√
m (
∑κm

1 vi− κm

λm
)⇒ Y

d
= σ0

mZ as m→∞,

where σ0
m =
√
lm.
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• From Proposition 1, the fulfillment constraint can be written as follows:

τ̄m =E[T −
κm∑
i=1

vi]
+ = T − Nκ

m

mµ
.

Hence,

√
m (T − Nκ

m

mµ
) =
√
mE

[
T − κ

m

λm
−

(
κm∑
i=1

vi−
κm

λm

)]+

=E
[√
m (T − κ

m

λm
) +Y + εm

]+
, (a4)

where εm→ 0 as m→∞. Equivalently, we have,

0 =Emax
{√

m(
Nκm

mµ
− κ

m

λm
) +Y + εm,−

√
m(T − Nκ

m

mµ
)
}
.

• Consider a first regime made of subsequences of m (we use now the index j) for which
√
j(T −

Nκj

jµ
) is divergent.

— For such subsequences, and for the fulfillment constraint to hold, the first term in the above

maximum must go to zero in expected value as j gets large:

√
j(
Nκj

jµ
− κ

j

λj
)→ 0,

as j→∞.

— In particular, Nκj

jµ
− κj

λj
= κj

λj
(ρj−1)→ 0 as j→∞. This convergence implies that ρj→ 1 i.e.

λj/j→ λ0 = µ
N

and in turn κj/j→ λ02
l0. From the fulfillment constraint we conclude that

τ̄ j = T − N κj

j µ
→ T − Nλ

02
l0

µ
≥ 0.

• The other possible regime is made of all subsequences for which
√
m(T − Nκm

µm
) are bounded.

— Consider in such regime any converging subsequence(indexed by j):

√
j(T − Nκ

j

jµ
)→ τ̄ ,

for some non-negative finite τ̄ . For that to occur, and as we recall equation a4, we must have

√
j (T − κ

j

λj
)→ η

for some finite η.

— From the first limit, we conclude that
√
j τ j → τ̄ , as j →∞, so that T − Nκj

jµ
→ 0. We

conclude that κj/j→ κ0 = µT/N . From the second limit we conclude: λj/j→ κ0/T = µ
N

.
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— Based on Lemma 4 (stated above) we have that

√
j τ̄ j =E

[√
j (T − κ

j

λj
) +Y + εj

]+→ σ0Ψ(−η/σ0),

as j→∞, where σ02
= κ0/λ02

. Note that (for now) η depends on the subsequence nj. We conclude

from the fulfillment constraint (at the limit) that σ0Ψ(−η/σ0) = τ̄ . We just showed that,

√
j τ̄ j = τ̄ + o(1),

as j→∞.

• From both possible regimes, we conclude that all converging subsequences of λn/n converge

respectively to λ0 as n→∞.

• Hence, in both regimes, the revenue side of the profit is maximized at the limit (with λn→ λ0

or equivalently ρn→ 1 as n→∞). However, in the first regime:
√
j τ j→∞, while for the second

regime this limit is finite. We thus conclude that the second regime always outperforms the first

one i.e. no matter the subsequence, as j gets larger the solution to the profit maximization will

satisfy the condition of the the second regime.

• We now inject in the fulfillment constraint, the formulation of τ̄ j and solve for κj. We obtain

that κj = (T − τ̄√
j

+ o(1/
√
j))nµ

N
= κ0j− µ τ̄

N

√
j+ o(

√
j).

• In turns, we inject the expression of κj in the term (
√
j(T −κj/λj) and get that

√
j (T −κj/λj) =

√
j

(
T −

µT/N j− µ τ̄
N

√
j+ o(

√
j)

λj

)
(a5)

=
√
j T (1− (ρj)−1) + (ρj)−1 τ̄ + o(1) (a6)

=
√
j T (ρj − 1)/ρj +

τ̄

ρj
+ o(1) (a7)

as j→∞. Given that ρj→ 1 as j→∞, this implies that
√
j (1− ρj)→ d, for some d≥ 0 so that

η=−dT + τ̄ .

• We write λj = λ0j − lj. From the limiting result of the utilization, we imply that

(ljN)/(
√
jµ)→ d, from which we conclude that λj = λ0 j− µd

N

√
j+ o(

√
j).

• Note that if d= 0, then η= τ̄ = σΨ(−η/σ) and that equation does not have any solution in η

(Lemma 1). Hence, d= (τ̄ − η)/T > 0, and, λj = λ0 j−λ0/T (τ̄ − η)
√
j+ o(

√
j).

• The pricing policy that guarantees this arrival can be implied from a Taylor expansion of

λj(·) in the neighborhood of p0 := λ−1(λ0) = r − T+WUA,0(N)

N
F−1
ξ (λ

0

Λ
). We write λj(pj) = λ0j +

(pj − p0)λ′0j + o((pj − p0)j), where λ0′ = λ′(p0), the first derivative of λ at p0, so that λ0′ =

− ΛN
T+WUA,0(N)

fξ

(
(r− p) N

T+WUA,0(N)

)
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• By comparing the two expressions of λj as j is large, we conclude that

pj = p0− λ
0 (τ̄ − η)

λ0′ T

1√
j

+ o(1/
√
j).

Recall that p0 < r and hence, for j large enough pj < r.

• The entire policy is constructed at this point. We still have a free parameter η to determine

(which for now depends on the subsequence indexed by j). We recall that the profit obtained in

the deterministic setting is Π0,j = λ0N 0 j(p0 −CUA,0j ) which is an upper bound of the the profit

rate in the stochastic case. The parameter η will be selected in order to maximize that ratio for

large j. We recall that CUA,0j =O(1) and set c0 = T
N
β(N) c. We write that

Πj(λj, κj,N) = λj pj(λj, κj,N)N −λj ΣUA
j

(λj, κ,N)−λj CUA
j

(κ,N)

= λj
(
pjN − bN/T στ√

j
+ o(1/

√
j)−CUA,0j − cβ(N)

τ̄√
j

+ o(1/
√
j)

)
=
(
λ0j−λ0/T (τ̄ − η)

√
j+ o(

√
j)
)
·
((
p0− λ

0 (τ̄ − η)

λ0′ T

1√
j

+ o(1/
√
j)
)
N −CUA,0j

)
−N/T

(
λ0j−λ0/T (τ̄ − η)

√
j+ o(

√
n)
)
(c0 τ̄ /

√
j+ bστ/

√
j+ o(1/

√
j))

= λ0 j
(
p0N −CUA,0

)
− p0λ0N (τ̄ − η)/T

√
j− λ

02
(τ̄ − η)N

λ0′ T

√
j− c0N/Tλ0τ̄

√
j

− bN/Tλ0 στ
√
j+O(1)

= λ0 j
(
p0N −CUA,0

)
−λ0p0N/T

[
τ̄ (1 +λ0/(λ0′p0) + c0/(p0)) + b/p0 στ − η(1 +λ0/(λ0′p0))

]√
j

+O(1)

= λ0 j
(
p0N −CUA,0

)
−λ0p0N/T

[
τ̄ (1 + 1/e0 + c0/p0) + b/p0 στ − η(1 + 1/e0)

]√
j+O(1).

Hence, at N =N 0, we have that

Πj

Π0,j
= 1− µp0

µp0−λ0CUA,0

ξ(η)

T
√
j

+ o(1/
√
j),

where

ξ(η) =
[
τ̄ (1 + 1/e0 + c0/p0) + b/p0 στ − η(1 + 1/e0)

]
.

We pick η, so as to minimize ξ(η). The function ξ(·) is convex. We take the derivative of ξ with

respect to η and recall that τ̄ ′(η) = Φ̄(−η/σ) and στ (η) = σ2χ(−η/σ). We show that there exists a

unique η∗ that minimizes ξ(·). If b= 0, then η∗c =−σΦ̄−1
((

1 + c0

p0(1+1/e0)

)−1
)

as long as e0 <−1.

• The above also proves that the constant η is unique independent of the subsequence, which

also means that all the subsequences of λn and κn are asymptotically the same, proving the result.

�
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A7. Proof of Proposition 4 ii.).

Recall from Lemma 1 that

Var(Θ̂(T − τ)) =
µ

κ2

(
Var(τ) + (T − τ̄)2

)
+
µ2

κ2
Var(τ)

By scaling the above equality and recalling from the proof of Theorem 1 that
√
nτn⇒X+ where

X ∼N (η,σ), we obtain that the first term must go to zero, while the second is of the form

(µn)2

n (κn)2
Var(
√
nτn)→ µ2

(κ0(N))2
σ2
τ

as n→∞ �
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APPENDIX B: Additional Proofs for Target-N Engagements

B1. N-Engagements

We denote by N-Engagement the setting where the engagement of a worker is driven by a target

of N jobs. We introduce two results related to N-Engagements.

Proposition 5

i.) Under an N-Engagement, the delay is given by

τ̄(λ,κ) =Emax
n≥0

n∑
i=1

Xi(λ,κ),

where the sequence (X1,X2, ...) is i.i.d. with X1
d
=
∑Nκ

i=1 ui −
∑κ

i=1 vi, and ui’s and vi’s are the

interarrival times of the jobs and the workers, respectively.

ii.) Moreover,

for all κ≥ 1, τ̄(κ)≤ τ̄(1) and τ̄(κ)→ 0, as κ→∞.

Proof. The key feature of this setting is the constant number of jobs, N , required by all workers.

Despite the uncertainty in the arrival of jobs, such uncertainty does not alter the order of the

workers leaving the system (after having their met their fulfillment constraint). This order is the

same than the one they had when they initially approached the publisher. We rank the slots from

1 to κ and, when multiple slots are free, we assign workers to the lowest ranking slot. We can then

tell, at arrival, on which slot (among the κ available) the ad will be displayed. Therefore, the slots

dynamics can be decoupled each having its arrival process.

Let Ui be the time spent by ith worker active. The sequence U = (Ui : i≥ 1) is stationary. Every

κ jobs is directed to the same worker, and every worker is requesting N jobs. Thus, U1
D
=
∑Nκ

j=1 uj

where the uj’s are the interarrival times between jobs. Similarly, let Vj+1 =
∑j+κ

l=j+1 vl
D
=
∑κ

l=1 vl,

where, vl’s are the interarrival times between workers. Similarly to the dynamics of a single server

queue, we can track the delay of each worker. Assume that the nth was assigned a certain slot

(among the κ) then the next worker that will be assigned the same slot is the (n+ κ)th worker

received. The arrival time between two consecutive workers sharing the same slot is
∑n+κ

l=n+1 vl =

Vn+1. The formulation of the engagement delay of a worker follows a Lindley’s type recursion

Wn+κ = [Wn + Un − Vn+1]+. Notice here that Wn is independent of Un and Vn+1. Unfolding this

recurrent equation leads to Wn
D
= max0≤m≤nSm(κ) with Sm(κ) =

∑m

j=1Xj and Xj =Uj−κ−Vj−κ+1.

Observe that X1 is the difference between two gamma distributed random variable (and not the

difference between two exponentially distributed r.v.). This Lindley relationship implies that the

stationary distribution of the delay exists and is finite almost surely. Furthermore, it is equal in
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distribution to an infinite horizon maximum of a random walk Wn ⇒M(κ) = maxn≥0Sn(κ), as

n→∞. Of course, Wsn+1,Wsn+2, ..Wsn+ are dependent random variables as their associated worker

is fulfilled with (at least partially) the same jobs. However, all these variables converge weakly to

the same random variable M and hence, Wn as well. This single server queue type-relationship

implies that when both ui’s and vi’s are exponentially distributed, then the delay function is equal

in distribution to the waiting of a single server queue with interarrival times and service times

distributed respectively as gamma random variables.

As for ii.) In this case, τ(κ) = maxm≥0Sm(κ)
d
= maxmκ≥0Sm(1)≤maxm≥0Sm(1)

d
= τ(1). By the

SLLN, Sm(κ)→−∞ a.s. and hence, τ(κ)→ 0 a.s.. �

Proposition 6 Consider the setting of an N-engagement. Suppose that the input stream of adver-

tisers follows a Poisson process and both demand and supply are scaled as suggested in Section

5. Assume that λ0 ≤ λ̄ and λ0′ exists and is finite such that e0 > 1. Then, the solution of the

optimization problem (λn, κn) is such that

i.) λn = λ0 n−λ0 η
N

T

√
n+ o(

√
n)

ii.) κn = κ0 n−κ0 τ̄N

T

√
n+ o(

√
n)

iii.) ρn = 1− ηN/(T
√
n) + o(1/

√
n)

iv.) τ̄N,n(λn, κn) = τ̄N/
√
n+ o(1/

√
n)

v.) If the profit obtained in the deterministic setting is Π0,n then, the ratio Πn/Π0,n is of the

form Πn

Π0,n = 1−β(η)/
√
n+ o(1/

√
n),

where, τ̄N = Emaxr≥0Sr, and (Sr : r ≥ 0) is a random walk with normally distributed increments

with mean ηN and standard deviation σ= (κ
0N

µ02
+ κ0

λ02
)1/2; ηN is selected so that β(η) is minimized.

We do have approximations of τ̄N . One of them, τ̄N ≈ σ2

2ηN
is given by Kingman (1965). In teh

case where b ≡ 0, if we replace τ̄N by this approximation, the optimal value of β is given by

β∗ = ηN/T (1 + 1/e0) + c0N/T/(p0N)σ2/(2ηN), and ηN = σ
√

c
2p0(1+1/e0)

, when again e0 <−1. The

proof follows the same approach as the proof of the T -engagement model. We will only describe

the parts that are different

Proof. For the sake of the proof, we drop the index N . We recall that

W n d
= max

r≥0
Snr (κn),

where Snr (κn) =
∑r

i=1 Y
n
i where, Y n

i

d
= Y n

1

d
=
∑Nκn

j=1 u
n
j −
∑1κn

j=1 v
n
j with EY n

1 = κn (N/µn−1/λn)≤ 0.

The sequence (λn, κn) is formed, for every n ≥ 1, as the solution to the optimization problem

(P n). From the fulfillment constraint we have that T −Nκn/µn ≥ 0 and hence the sequence κn/n≤
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κ0 := µT/N . Moreover, the utilization being smaller than one implies that the sequence λn/n ≤

λ0 := 1µ/N . Finally, the sequence κn/λn is also bounded as λn is assumed to be away from zero.

Consider any subsequence κm/m that converges to l <∞. The finiteness of such limit l implies

that κm(N/µm2 + 1/λm2)→ 0 as m→∞. The inter-arrivals of workers and jobs are both exponen-

tially distributed, we conclude that the log-moment generating function of the random variable Y n
1

is given by

logE expθY n
1 = θκn (N/µn− 1/λn) + θ2κn(N/µn2 + 1/λn2) +O(n−2). (a1)

The first term κm (N/µm − 1/λm) = κms/λm (ρm − 1)≤ 0 and all other terms go to zero with m.

We infer that lim supm→∞ Y
m ≤ 0 a.s. The same holds for Smr for all r. Therefore, their maximum,

Wm⇒ 0 as m→∞. By bounded convergence, EWm =$m→ 0, as m→∞. From the the equality

constraint we conclude that $m→ T −Nl/µ as m→∞. This imposes that l = κ0 := µT/N and

hence the entire sequence κn/n converges to κ0 as n→∞.

Similarly, consider a subsequence λm/m that converges to some finite limit l′ as m→∞. Con-

sider the log-moment generating function with θ replaced by θ
√
m. The quantity, mκm(N/µm2 +

1/λm2)→Nκ0/µ
2 +κ0/l

′2 as m→∞; While limsupm→∞
√
mκm (N/µm− 1/λm) = η ≤ 0 and pos-

sibly infinite. Assume that η <∞, in this case κm (N/µm−1/λm)→ 0 and thus Nκ0/µ−κ0/l
′ = 0,

equivalently l′ = λ0 and so all subsequences, that lead to some η finite have that λm/m→ λ0. Any

subsequence that lead to an η infinite will still have to satisfy λm/m→ 0; otherwise, it will generate

lower profits at the limit. In the finite case, limm→∞
√
mY m = Y where Y is a normal random vari-

able with mean η and standard deviation σ0 = (Nκ0/µ
2 +κ0/λ

2
0)1/2. As for the delay, we claim that

√
mWN,m⇒maxr≥0Sr, where Sr =

∑r

i=1 Yi with Yi’s i.i.d. with Y1
d
= Y . To prove it, we rely on

Theorem 6.1 on page 285 of Asmussen (2003) which only require uniform integrability of
√
mY m

i ,

which is guarantied by the fact that EmY m
1

2→ σ2
0 as m→∞. We denote by $N = Emaxr≥0Sr

and $m =$N/
√
m+ o(1/

√
m) as m→∞. The rest of the proof follows the exact same steps as

in the T-engagement case. The parameter η is uniquely selected by maximizing the ratio of the

profit in the stochastic setting with that in the fluid setting. If the subsequence indexed by m was

selected so that η is infinite, in this case, $N = 0 and
√
m(T −Nκm/µm)→ 0 as m→∞ and thus

κm = κ0 +o(1/
√
m), which implies by injecting κm in

√
mκm (N/µm−1/λm) and recalling that the

latter converge to −∞ that λm/m= λ0 + lm where
√
mlm→−∞. Hence, the demand rate grows

at a slower rate than the subsequences corresponding to a finite η. �


