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Introduction 

In this brief Point of View article, I offer some thoughts on how we may conceptualize 

collaborative decision-making between humans and AI algorithms as a problem in organization 

design.  

While there are many possible forms of interaction between humans and AI algorithms, the 

arguments here are most relevant to knowledge work in which humans and AI algorithms 

through some form of collaboration, together produce a decision that is implemented by a third 

party (for instance stock picking, investment, sentencing, screening candidates). I refer to these 

as situations of “Human-AI Collaborative Decision Making” (or HACD). The arguments may 

also apply to situations which involve a human training an AI algorithm (e.g. self-driving cars 

that learn from observing humans drive) or vice versa (e.g. chatbot based language learning 

applications), or the use of algorithms to improve matches between humans (e.g. friend 

suggestions on social media platforms) but will require additional considerations that I do not 

address here.  

In what follows, I use the terms “AI” and “algorithm” interchangeably with “machine learning” 

(ML). I am aware that not all algorithms are AI, and not all AI is machine learning (Broussard, 

2018; Raj & Seamans, 2019), but my usage avoids tedium. My focus is on machine learning 

algorithms because this form of AI has a distinctive feature. Human–ML collaboration for 

decision making is different from other forms of human interaction with/adoption of 

technology because of the potential for mutual adjustment: both humans and AI based on 

machine learning algorithms are adaptive systems that change how they make decisions over 

time through learning from experience (i.e. past data). Organizational scientists understand the 

dynamics of mutual adaptation and know them to be distinctive from one sided-adaptation or 

static collaboration (Knudsen & Srikanth, 2014; Lave & March, 1993; Lounamaa & March, 

1987; Puranam & Swamy, 2016). 

I make two main points in this article. First, I note that from the perspective of organization 

design, there are multiple possible configurations of division of labor in HACD besides the one 

that is most intuitive and currently dominates popular discourse, namely one based on 

specialization (human and AI each do different sub-tasks they are relatively best at). Second, 

organization design research also suggests that there are multiple learning configurations to 

consider in which humans and AI may “learn together”. I express these possibilities in terms 

of simple typologies. Together they describe a “design space” which may not yet be completely 



or densely populated, but which may serve to guide our explorations in terms of both practice 

and theory.  

 

How HACD can be valuable  

Taking an organization design perspective on the problem of Human-AI Collaborative 

Decision Making (henceforth HACD) requires us to view the combination of the human and 

the algorithm as an organization- i.e. a multi-agent, goal-oriented system. The goal of an 

HACD organization is to produce a decision. The design of the organization constitutes the 

choices about division of labor (task division and task allocation) and integration of effort 

(information and reward provision, exception handling) that characterize the organization 

(Puranam, 2018).    

Why should an organization that involves HACD ever be superior to an organization 

comprising only humans or only algorithms? A first cut at the problem is shown in Figure 1.   

Insert Figure 1 here 

At any point in time, given the prevailing state of technology, we can speak of three types of 

tasks: Type A tasks are those in which algorithms equal or outperform humans (e.g. today that 

would include image or handwriting recognition). Type B tasks are the ones that humans 

outperform algorithms on (e.g. evaluating a job applicant’s integrity remains a Type B task, 

even though reading the CV might be a Type A task) and must remain in the hands of humans. 

However, by appropriate division of labor- including breaking up aggregate tasks into smaller 

ones which can be differentiated into Type A and Type B1 - the human and algorithm each can 

do what they are better at. This unlocks gains from specialization (net cost of coordination 

between agents) through HACD. This logic lies at the heart of a lot of contemporary workflow 

and process automation. It is not fundamentally different from the calculus of outsourcing or 

offshoring or gains from trade as set out by Adam Smith and David Ricardo; and it applies to 

tasks in general, not only decisions.  

The more interesting case is Type C, where despite no clear superiority of either human or 

algorithm, the combination through aggregation may outperform either alone. This is perhaps 

unique to tasks that are decisions. A distinctive feature of decisions is that their accuracy can 

                                                            
1 I see the situations where algorithms handle routine cases (Type A) and humans the exceptions (Type B) also 

as an instance where a task can be partitioned into sub-tasks that fall into Type A or Type B categories.  



sometimes be improved through pooling and error cancellation (Larrick & Soll, 2006; Rokach, 

2010; Surowiecki, 2004). Having a human and an algorithm (or indeed several algorithms- as 

is the case with ensemble learning models) make the same decision and then aggregating their 

outputs can produce improved quality in terms of greater decision accuracy (this is not possible 

usually with physical products). For decisions that involve predicting a continuous variable 

(e.g. quality), the “wisdom of crowds” provides the intuition. For decisions that involve 

predicting a discrete category (e.g. hire or reject), Condorcet’s jury theorem provides a 

foundation, which illustrates how increasing the size of a jury of identically and modestly 

accurate members can increase the jury’s aggregate accuracy.  

Possible divisions of labor between Humans and AI in collaborative decision making  

Building on this intuition of the differences between types of tasks, and by drawing on basic 

ideas in organization design we can give a more comprehensive picture of the possible 

divisions of labor in HACD. Figure 2 illustrates the arguments below by giving hypothetical 

divisions of labor between humans and AI in the context of HACD for stock picking, such that 

an equity analyst and an algorithm might jointly make a recommendation on whether to buy a 

stock.   

Insert Figure 2 here 

A division of labor involves a) decomposition of the goal (the final decision) into tasks 

(decisions) that aggregate into the final decision and b) allocating sub-clusters of these tasks 

across the organization’s members. The resulting allocation of tasks to agents – a division of 

labor- can be described in two ways.  

First, there will exist a structure of interdependence between tasks (and therefore between 

clusters of tasks allocated to different agents). Two tasks are interdependent if the value created 

when both tasks are performed is different from the sum of values created by performing each 

task alone. For instance, this could be because they draw on common rivalrous inputs, the value 

of outputs is super or sub-additive, or one is an input to another (Burton & Obel, 1984; Milgrom 

& Roberts, 1990; Thompson, 1967). Since decision tasks do not usually consume tangible 

inputs, the relevant forms of interdependence between two decisions are the cases where one 

is a sequential input to the other (perhaps repeatedly, as in reciprocal interdependence)2, or the 

                                                            
2 Note that the notion of decision rights (which agent can choose to accept/reject output of other) can be treated 

the same as who is last in a sequence. 



value of their joint, parallelly produced outputs is super- (or sub) additive (also see 

(Christansen & Knudsen, 2013).  

Second, the allocated tasks to agents may vary in the extent of heterogeneity of knowledge or 

skills needed in these tasks ((Marlo. Raveendran, Silvestri, & Gulati, 2020). Two workers who 

must produce dining tables may both produce a table each – a case of non-specialized task 

allocation- or focus differently and respectively on making legs and tops (an object-based 

division of labour) or in cutting and fixing wood (an activity based division of labour).  It is by 

no means obvious which of these arrangements is superior, as it depends on the gains from 

specialization (by each worker focusing on a narrow set of tasks they are distinctively good at) 

vs. the gains from customization (i.e. managing the dependencies between dissimilar task), as 

well as the cost of coordination among agents (M. Raveendran, Puranam, & Warglien, 2015). 

The difference between craft and industrial production of furniture illustrates this point.  

The gains from specialization in parts of a decision (i.e. splitting into Types A and B), whether 

in sequence or in parallel, thus constitute but one form of HACD. The gains from ensembling 

i.e. allowing multiple agents to make the identical decision, may apply to Type C tasks. Of 

course, tasks might change from one Type to another over time as technology advances, 

perhaps inevitably in the direction of Type A by depleting Types B and C- but it is enough for 

my arguments that each Type exists at any point in time.  

In sum, the division of labour in HACD can be described along two dimensions: the nature of 

interdependence - whether the decisions of the human and algorithm are related sequentially 

(only one of their outputs matters directly for final output) or can occur in parallel (human and 

algorithm outputs both directly matter for final output), and the nature of specialization - 

whether they engage in different or identical decision tasks.  

From static to dynamic considerations: Learning configurations within HACD  

So far, we have considered a rather static picture of the division of labour between humans and 

AI for decision making- which simply assumes differences in what they are good at. As Adam 

Smith pointed out division of labor not only exploits existing differences in skill in allocating 

different components of labor to different actors, but the different allocations themselves 

produce difference in skill over time (also see (Mintzberg, 1983) for an elaboration of this point 

in the context of organization design). Further, the distinctive feature of HACD, as opposed to 

                                                            
 



other forms of technology adoption or even automation, is the potential for mutual adjustment: 

both humans and algorithms not only learn on their tasks from feedback, they also learn to 

adjust to each other and from each other.  

Learning refers to a change in beliefs or behaviour as a consequence of experience (Argote, 

2013). Learning in the context of decision making implies that given the same input at two 

different points in time, a decision maker (either human or algorithm) may produce different 

outputs (i.e. take different decisions), because of changes to how the inputs are processed that 

occurred in the intervening period. These changes are the result of feedback conditional on the 

output, which is itself conditional on inputs. For an isolated human decision maker, the data 

needed to learn how to make decisions should therefore necessarily include 

feedback/evaluation of past decisions conditional on the output (the actual decision they made) 

as well as the inputs they based their decision on, and possibly the process they used to arrive 

at a decision (the last may not be necessary given sub-conscious decision making and 

associative learning).  

Therefore, to understand how members of a HACD organization learn, it is useful to ask what 

might be different about the data available to them in terms of feedback conditional on inputs, 

outputs and process, compared to the case where they acted as isolated decision makers. I use 

the term learning configurations to characterize situations that vary in terms of the nature of 

information available for learning. The organization design literature suggests two dimensions 

(Table 1) on which learning configurations might vary in situations of multi-agent learning.  

Insert Table 1 here 

The first is interdependence between the decision makers. Organization designers recognize 

the important distinction between interdependence between tasks (in this case, decisions- 

which we have described in terms of parallel or sequential) vs interdependence between agents 

(Puranam, Raveendran, & Knudsen, 2012). Given two tasks undertaken by agents A and B, 

(symmetric) interdependence between agents exists when the value of A’s actions to A depend 

on B’s actions and vice versa (Emerson, 1962; Kelley & Thibaut, 1978; Pfeffer & Salancik, 

1978; von Neumann & Morgenstern, 2007).We can observe interdependence between agents 

even when there is none between the task they perform or vice versa. In HACD, if the feedback 

to A on A’s decisions depends on B’s decisions and vice versa, then they are interdependent- 

and their learning will be coupled (Lave and March, 1993; Lounama and March, 1987; 

Knudsen and Srikanth, 2014; Puranam and Swamy, 2016).  



For instance, in a HACD organization of one human and one algorithm that together produce 

an equity research report, we might provide feedback separately on the components of the 

report that the human and the algorithm contributed or on the report as a whole (was it good or 

bad). In the second situation, the human and algorithm are coupled in their learning, because 

the feedback they receive is on the aggregate output but not in the first (though the decisions 

they make are interdependent in both cases). This is akin to the distinction between carpenters 

who receive feedback on the whole table they produce (“how much did the customer pay?”) or 

on the parts they contributed (“beautiful finish on the surface! rickety legs though”).    

Second, situations vary in the ease with which agents can communicate- exchange information 

on the inputs and process they use to decide, as well as the decision themselves. This is not 

necessarily a matter of all or nothing. Communication is particularly difficult even among 

human decision makers who specialize in different tasks (Dougherty, 2001). Between humans 

and algorithms, it may be difficult because the sheer volume of information overloads human 

capacities - for instance when the algorithm is used as a screening device, making it difficult 

for the human to process even the inputs and outputs that algorithm produced. It may also be 

hard to exchange information on the processes used to decide as highlighted by the literature 

on the challenges of building explainability into AI (Samek, Wiegand, and Müller, 2017). 

However, to keep the exposition simple, I consider all cases where some communication 

between human and algorithm is possible as instances of vicarious learning: one agent learns 

from the experience of another, where experience may be any combination of past inputs, 

process, outputs and feedback (Bandura, 1977; Cyert & March, 1963). For instance in a HACD 

team of one human and one algorithm that produce a recommendation on an equity, the human 

may have access to the inputs (data) and outputs (results) produced by the algorithm and vice 

versa, or not; the latter represents a situation of communication constraints (these need not be 

symmetric of course). In our example of physical good production, the carpenters might see 

the feedback each receives as well as the inputs and raw materials each uses (or not).   

Learning configurations in HACD can therefore range from isolated learning (independent 

feedback, no communication with other members) to situations involving both coupled and 

vicarious learning (interdependent feedback, with communication between members), or either 

alone. However, it is important to highlight that in all cases, the decisions themselves could be 

interdependent. Further, in all cases (including isolated learning), mutual adjustment between 

human and algorithm could be taking place, if the division of labor between humans and 

algorithms affects what data are available to each. For instance, two bank officers who decide 



on mortgage applications and learn from individual feedback on past cases with no 

communication between them, may still be tacitly adjusting to each other when placed in a 

serial division of labor, because the learning opportunities of the downstream agent depend on 

the actions of the upstream agent (Christensen and Knudsen, 2020).    

Combining Division of Labor and Learning Configurations: the design space for HACD 

Considering HACD organizations with a joint emphasis on the nature of division of labor and 

the learning configuration can help us understand and design them better, both in terms of 

expanding the space of possibilities, as well as the precision with which we characterize 

particular points within them.   

Some models already exist in the organization design literature for each of the types of possible 

division of labour in HACD in at least some of the possible learning configurations. These 

models typically use adaptive reinforcement learning algorithms to simulate human decision 

makers- but that should not prevent us from re-interpreting them as models of HACD, 

particularly once heterogeneity between agents is added to the picture.  

For instance, when the division of labour in decision making involves specialization, feedback 

is often on group level output. Models of coupled learning have highlighted that the key design 

challenge in such situations is to avoid superstitious learning from false negatives and false 

positives (Lave and March, 1993; Lounama and March, 1983). Common priors and vicarious 

learning in the case of parallel specialized decisions (Puranam and Swamy, 2016 and Knudsen 

and Srikanth, 2014; Aggarwal, Posen, & Workiewicz, 2017), and the stability of personnel in 

the case of sequential specialized decisions (Denrell, Fang, & Levinthal, 2004) have been 

argued to mitigate the challenge. Coupled learning might also arise without specialization. 

Piezunka, Aggarwal and Posen (2020) study learning by participation, in which parallel 

unspecialized decision makers receive feedback only on their aggregate decisions derived from 

voting. They point out that the quality of decisions over time depend on how the contrarians – 

those whose beliefs did not align with the majority vote at a point in time- influence future 

decisions. We also know that serial and parallel architectures lead to different learning 

dynamics even with isolated learners, because the inputs and therefore opportunities for 

learning are censored in serial architectures (Christensen & Knudsen, 2013; 2020).  

However, these hardly exhaust the combinatorial space obtained by crossing possible divisions 

of labor with learning configurations. There is much to do in terms of completing our 

conceptual understanding of these possibilities, and even more to do in confronting the models 



with data.  A partnership between organization design researchers and practitioners interested 

in HACD seems ripe with opportunity.     



 

 

 

Figure 1: Gains from Human-Algorithm Collaborative Decision Making (HACD) 

 

 

 

Figure 2: Possible Divisions of Labor for Stock picking with HACD   

 

 



 

 

 Communication 

constraints 

Communication is feasible on 

inputs/process/outputs/feedback 

Independent feedback Isolated learning 

 

 

Vicarious learning 

Interdependent feedback 

 

Coupled learning Coupled + Vicarious learning 

 

Table 1: Learning configurations in Human AI Collaborative Decision making (HACD)   
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