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Abstract

Important business, public policy, and personal decisions typically involve multiple objectives,
which in turn can be represented by multiple attributes, and uncertainty. Assessing both multi-
attribute utility and multivariate distributions for the attributes can be challenging. Moreover,
big decisions are often made by boards or committees with members holding divergent views and
preferences and facing pressures from different stakeholders. Thus, a full-blown traditional decision
analysis that leads to the computation of expected utility is very difficult at best and often not
possible. We develop sufficient conditions for multivariate almost stochastic dominance (MASD)
based on marginal distributions of the attributes or just on their means and variances. To apply
MASD, one only needs to assess bounds on marginal utilities. Alternatively, preferences can be
explained and elicited via transfers. Realistic examples illustrate our results, which provide tools
for “fast and frugal” screening and evaluation of the available options, while properly accounting
for tradeoffs and riskiness. Such tools, consistent with normative decision analysis, are useful when
making important decisions in today’s fast-moving and often complex world.

Subject classifications: Decision analysis: stochastic dominance, utility, risk. Probability: distribu-
tion comparisons.
Keywords: multivariate almost stochastic dominance, transfers, sufficient conditions for dominance,
choice between lotteries, mean and variance

1 Introduction

When faced with an important choice, decision makers are typically interested in more than just one
attribute. For example, a company choosing between two risky projects, A and B, might be interested
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in the net present value (NPV) of profits for the first five years and the market share (MS) at the end
of the fifth year. Traditional decision analysis would suggest: a) assessing the bivariate distribution of
NPV and MS for each project and b) eliciting the two-attribute utility function of the company. Our
approach partially bypasses these steps.

The following scenarios illustrate the type of situations in which our approach can be helpful. We
will return to these examples as we present our results.

(a) Alice, the company’s chairman of the board, knows her utility function for the company. However,
assessments of joint distributions of NPV and MS for either project A or B are not available.
Our results will sometimes allow Alice to make a choice even if the only information she has
consists of the marginal distributions of NPV and MS under projects A and B, but not their
joint distribution, or just the means and variances of these distributions.

(b) The board makes decisions together. Some board members have their own assessed utility func-
tions for the company, and these assessments are not identical. Other board members are not sure
about their risk preferences and tradeoffs among the attributes, but they can agree about some
constraints on them and about the marginal distributions or at least the means and variances.
We provide conditions under which the board can unanimously rank risky projects A and B.

(c) A data analytics startup develops inventory and allocation solutions, with the objective of max-
imizing profit (P) and net promotion score (NPS), as well as some other attributes if requested
by a client. Their current approach is to maximize the expected weighted sum (e.g., P+wNPS,
where w represents the NPS/P tradeoff). However, often a client is not satisfied with this solu-
tion, arguing that this approach does not consider the risks associated with different options or
the client’s attitude toward these risks. At the same time, the members of the startup team feel
that they cannot apply a full-blown decision analysis approach, which would require assessing
a multiattribute utility function and the joint distribution of the attributes under each option.
As part of their analysis, they have estimates of means and variances of different options. Using
our results, they can narrow down the choice to a few non-dominated options and see how the
optimal strategies vary with different parameters.

Because important decisions usually involve multiple attributes, extensions of stochastic dominance
(SD) to the multivariate case have received some attention. Such extensions are tricky, as there are
many multivariate stochastic orders (see, e.g., Müller and Stoyan, 2002, Shaked and Shanthikumar,
2007). Studies of multivariate stochastic dominance (MSD) include Levy and Paroush (1974), Levhari
et al. (1975), Mosler (1984), Scarsini (1988), and Baccelli and Makowski (1989). Denuit et al. (2013)
develop MSD, using a stochastic order that is a natural extension of the standard order typically used
for univariate SD. The theory of SD has a counterpart in the literature about inequality measurement.
Recent multivariate analyses of it can be found in Faure and Gravel (2021) and Mosler (2021).

The SD order provides a partial ranking of distributions that can be helpful when only partial
information is known about a decision maker’s utility function. There is a big jump from first-degree
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stochastic dominance (FSD) (with increasing utility) to second-degree stochastic dominance (SSD)
(with increasing and concave utility). Many decision makers are mostly risk averse but cannot assert
that they would dislike any risk, an indication of convex segments in their utility functions. The almost
stochastic dominance (ASD) relation can provide a continuum of SD rules covering preferences from
FSD to SSD (Leshno and Levy, 2002, Müller et al., 2017, Huang et al., 2020, Mao and Wang, 2020).
The importance of MASD is due to the fact that it allows us to rank multivariate distributions when
utility does not satisfy multivariate SSD but is “close” to doing so. Tsetlin and Winkler (2018) develop
MASD, considering both concave and convex versions. When multiple decision makers are involved, it
helps us rank distributions “by most decision makers” in the multivariate context.

Often only partial information is known about the distributions that we want to rank for decision-
making purposes. For example, we might know the means and variances of the distributions but not
their shapes. The seminal paper by Markowitz (1952) inspired a strong focus on the mean and variance
for decision making in finance. Müller et al. (2021) provide a ranking in the single-attribute case when
only means and variances are known by bounding how much marginal utility can change.

Even if the distributions we want to rank are known, integral conditions for MSD and MASD do
not exist in most situations. In such cases sufficient conditions, which are easy to check, are helpful.
The sufficient conditions that we develop in this paper are especially practical, as they require knowing
only the marginal distributions of the attributes, or just their means and variances.

In Section 2 we provide definitions for limiting how much marginal utilities can change, for domi-
nance based on these limitations, and we develop the corresponding transfers. In Section 3 we develop
sufficient conditions for the case where the full marginal distributions are known and for the more
common case where we only know their means and variances. We also provide bounds on multiat-
tribute utilities that are additive across the multiple attributes, which is important because it allows
us to develop sufficient conditions for MASD involving only marginal distributions of the multivariate
random variables associated with the alternatives. In Section 4 we develop a path to a complete order
and the corresponding transfers. Throughout we provide examples to illustrate our results. Conclud-
ing comments are given in Section 5. Appendix A shows a generalization of some characterizations to
distributions with nonfinite support. The proofs of our results can be found in Appendix B.

2 Defining γ-multivariate almost stochastic dominance

We consider a decision maker whose utility function u depends on N attributes x = (x1, . . . , xN ). The
function u : RN → R is assumed to be differentiable, and u′i denotes its partial derivative with respect
to its i-th argument:

u′i(x) :=
∂u(x)

∂xi
.

We now define γ-multivariate almost stochastic dominance (γ-MASD) for N -variate random vec-
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tors. In general, given a class U of utility functions, we say that X ≤U Y if

E[u(X)] ≤ E[u(Y )] for all u ∈ U .

Definition 1. For a given vector γ := (γ1, . . . , γN ) ∈ [0, 1]N , the symbol Uγ denotes the set of utility
functions such that, for all i ∈ {1, . . . , N}, we have

0 < γiu
′
i(y) ≤ u′i(x) for all x,y ∈ RN . (2.1)

Notice that the condition in inequality (2.1) is equivalent to

inf u′i(x)

supu′i(x)
≥ γi. (2.2)

For γ ∈ [0, 1]N , the random vectorX is dominated by the random vector Y in the sense of γ-MASD
if X ≤Uγ Y . For the sake of simplicity, we will write X ≤γ Y instead of X ≤Uγ Y .

Definition 1 corresponds to MASD, as defined by Tsetlin and Winkler (2018), with γi = ε1/(1−ε1)
for all i ∈ {1, . . . , N}. In the univariate case (N = 1), it corresponds to almost first-degree stochastic
dominance (AFSD), as defined by Leshno and Levy (2002).

Notice that, if γ ≤ λ componentwise, then Uλ ⊂ Uγ . Therefore

X ≤γ Y =⇒ X ≤λ Y .

Example 2. (a) A company evaluates a project by focusing on two attributes x1 and x2, where x1 is
the NPV of profits for the next five years and x2 is the MS in percentage at the end of the period.
The relevant ranges for these quantities are −100 ≤ x1 ≤ 500 and 10 ≤ x2 ≤ 50. Brandon, the
CEO of the company, is risk seeking with respect to NPV, risk averse with respect to MS, and
correlation neutral. His utility function is

u(x1, x2) = exp(x1/600) + w(1− exp(−x2/40)),

and he is unsure about the value of w, which reflects the relative importance of x2 versus x1.
Since

inf u′1(x)

supu′1(x)
= exp((−100− 500)/600) ≈ 0.37,

inf u′2(x)

supu′2(x)
= exp((10− 50)/40) ≈ 0.37,

we have that u ∈ U(0.37,0.37) for every positive w.

(b) Alice’s utility function is given by

u(x1, x2) = (x1 + 200)0.7 + 4x1.12 + 0.04(x1 + 200)0.7x1.12 .
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Alice is risk averse with respect to NPV, risk seeking with respect to MS, and correlation loving.
In this case

inf u′1(x)

supu′1(x)
=

0.7× 700−0.3(1 + 0.04× 101.1)

0.7× 100−0.3(1 + 0.04× 501.1)
≈ 0.21,

inf u′2(x)

supu′2(x)
=

1.1× 100.1(4 + 0.04× 1000.7)

1.1× 500.1 (4 + 0.04× 7000.7)
≈ 0.53,

and u ∈ U(0.21,0.53).

(c) Note that U(0.37,0.37) ⊂ U(0.21,0.37) and U(0.21,0.53) ⊂ U(0.21,0.37). Therefore, if two projects can be
ranked as X ≤(0.21,0.37) Y , then both Brandon and Alice will prefer Y to X.

We have defined an SD rule by a set of utility functions with bounded marginal utilities, and illus-
trated how one can check that a particular utility belongs to this set. The corresponding preferences can
be also characterized via transfers, which might be easier to explain and use for elicitation of decision
makers’ preferences. The idea of using transfers to characterize SD can be traced back to the seminal
paper Rothschild and Stiglitz (1970), who have shown that increasing risk can be decomposed into
a sequence of mean-preserving spreads. The name transfer for such operations like mean-preserving
spreads was originally more common in the related literature on inequality measurement, where these
transfers have the meaning of real transfers of income or wealth; see Atkinson (1970), a famous com-
panion paper to Rothschild and Stiglitz (1970). It can be shown for many types of SD that, in the case
of distributions assuming only a finite number of values, the dominance rule holds if and only if one
distribution can be obtained from the other by a sequence of simple transfers. For multivariate FSD
Østerdal (2010) shows that this holds for increasing transfers, i.e., transfers that shift some probability
mass from some point x to some point y > x, meaning that we have a good transfer to a better situ-
ation. For first-degree or second-degree ASD one typically also allows for decreasing transfers shifting
some probability mass from some point x to some point y < x as long as this is compensated or
overcompensated by corresponding inreasing transfers. See, e.g., Müller et al. (2017) for the univariate
case or Müller and Scarsini (2012) for the multivariate case of inframodular transfers. We will show
now that similar characterizations hold for the multivariate versions of SD considered in this paper.
The proofs will be based on Müller (2013), where a general theory of such transfers and their relation
to SD rules induced by classes of utility functions is developed.

Given two vectors x,y ∈ RN we use the notation x < y to indicate

xi ≤ yi, for i = 1, . . . , N, and x 6= y.

The symbol ei denotes the i-th vector of the canonical basis.

Definition 3. Consider two discrete cumulative distribution functions F and G with respective mass
functions f and g.
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(a) We say that G is obtained from F via an increasing transfer if there exist x1 < x2 and η > 0

such that

g(x1) = f(x1)− η,

g(x2) = f(x2) + η,

g(z) = f(z) for all other values z.

(b) We say that G is obtained from F via a γi-transfer along dimension i if there exist x1,x2,x3,x4 ∈
RN , h, η1, η2 > 0 such that

x2 = x1 + hei, η2(x4 − x3) = γiη1(x2 − x1), (2.3)

and

g(x1) = f(x1)− η1,

g(x2) = f(x2) + η1,

g(x3) = f(x3) + η2,

g(x4) = f(x4)− η2,

g(z) = f(z) for all other values z.

We say that G is obtained from F via a γ-transfer if G is obtained from F via a γi-transfer along some
dimension i ∈ {1, . . . , N}.

Fig. 1 gives an example of γ1-transfer with N = 2, γ1 = 2/3, η1 = η2. This multivariate transfer
is the natural generalization of the univariate (convex or concave) γ-transfer (or equivalently the
univariate AFSD transfer (Müller et al., 2017)). It simply consists of a decreasing transfer from x4 to
x3 which is compensated by an increasing transfer from x1 to x2 concerning the same component i.
It leads to a univariate γ-transfer of the i-th marginal as described in Müller et al. (2017)) and does
not affect any of the other marginals.

We now characterize the order ≤γ in terms of probability transfers.

Theorem 4. Let the random vectors X and Y assume only a finite number of values. Then X ≤γ Y
if and only if the distribution of Y can be obtained from the distribution of X by a finite number of
increasing transfers and γ-transfers.

Theorem 4 illustrates that preferences consistent with γ-MASD can be thought of as preferences
for multivariate γ-transfers. Later we state a similar result in Theorem 19 and discuss a generalization
to distributions with nonfinite support in Theorem 24.
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Figure 1: Example of γ-transfer with γ1 = 2/3, η1 = η2 = η.

3 Sufficient dominance conditions

The random vectors X,Y are assumed to have components with finite means and variances:

µXi
:= E[Xi], µYi := E[Yi], σ2Xi

:= V[Xi], σ2Yi := V[Yi], (3.1)

and the marginal distributions will be denoted by

Fi(t) := P(Xi ≤ t), Gi(t) := P(Yi ≤ t),

for all i ∈ {1, . . . , N}.

3.1 Conditions for γ-dominance

We now provide various sufficient conditions for X ≤γ Y .

Theorem 5. Assume that the marginal distributions of the components of X and Y are known and
that µXi ≤ µYi for all i = 1, . . . , N . Let δi := inf{x : Fi(x) +Gi(x) ≥ 1} and let

γi :=
E[(δi − Yi)+] + E[(Xi − δi)+]

E[(Yi − δi)+] + E[(δi −Xi)+]
, (3.2)

for i = 1, . . . , N . Then X ≤γ Y .
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The proof of the above theorem is based on the following lemma, which establishes upper and lower
bounds for utility functions u ∈ Uγ that are additive. This allows us to develop sufficient conditions
for MASD involving only marginal distributions of random vectors instead of having to deal with the
full joint distribution of these variables. For example, we do not need to know anything about the
dependence among the variables.

Lemma 6. Let

vU (x; γ) :=

γx if x ≤ 0,

x if x > 0,

vL(x; γ) :=

x if x ≤ 0,

γx if x > 0.

For any u ∈ Uγ , let bi := supx∈RN u′i(x) and fix some z ∈ RN . Then, for any x ∈ RN , we have

N∑
i=1

bivL(xi − zi; γi) ≤ u(x)− u(z) ≤
N∑
i=1

bivU (xi − zi; γi). (3.3)

If the marginal distributions are symmetric and location-scale, such as normal, then the sufficient
bounds in Theorem 5 are easier to compute, as shown in Proposition 7. A univariate distribution
function F is said to belong to the symmetric location-scale H-family if

F (x) = H

(
x− µ
σ

)
, with H(x) = 1−H(−x).

In other words, H is the distribution function of a random variable Z as well as of −Z, and F is the
distribution function of µ+ σZ.

Proposition 7. Let Fi and Gi belong to the same symmetric location-scale H-family and let

η(t) :=
E[(t− Z)+]

E[(Z − t)+]
,

where Z has distribution function H. If

τi =
µXi − µYi
σXi + σYi

,

then, in (3.2), we have γi = η(τi).

We now consider the case where the marginal distributions of the random vectors X and Y are
not completely specified, but only the means and variances are known.
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Define
ζ(t) :=

1

1 + 2t
(
t+
√
t2 + 1

) . (3.4)

Theorem 8. Let the two random vectors X and Y have finite means and variances. Moreover, for
all i = 1, . . . , N , let µXi ≤ µYi and let

τi =
µYi − µXi

σXi + σYi
.

If γi = ζ(τi), i = 1, . . . , N, then X ≤γ Y .

0

0.1
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

γ (normal)

γ (if only mean and variance are known)

𝜇௒೔ − 𝜇௑೔
𝜎௑೔ + 𝜎௒೔

Figure 2: γi as a function of (µYi
− µXi

)/(σXi
+ σYi

).

Fig. 2 shows the values of γi as functions of (µYi − µXi)/(σXi + σYi) when the distributions of Xi

and Yi are normal (according to Proposition 7) and when only their means and variances are known
(Theorem 8). Fig. 2 extends Figure 3 in Müller et al. (2021), which deals with the univariate case
when the dominated distribution is degenerate.

Example 9. To continue Example 2(c), let X denote the return from project A and Y the return
from project B, and recall that Alice and Brandon’s utility functions belong to U(0.21,0.37). According
to Theorem 8, X ≤(0.21,0.37) Y if

µY1 − µX1

σX1 + σY1
≥ 0.87 and

µY2 − µX2

σX2 + σY2
≥ 0.52.
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In this case they both can make the decision knowing only the projects’ means and variances. Fur-
thermore, if other board members feel that the utility class U(0.21,0.37) includes their preferences, then
the choice of project B over A is unanimous. If, in addition to the means and variances, it is known
that the marginal distributions are normal, then by Proposition 7 project B is preferred if

µY1 − µX1

σX1 + σY1
≥ 0.62 and

µY2 − µX2

σX2 + σY2
≥ 0.4.

If one of the alternatives is characterized by a degenerate distribution (i.e., a sure payoff vector),
then the sufficient conditions simplify further, as illustrated in Propositions 10 and 11.

Proposition 10. Assume that the marginal distributions of the components of X are known and that
c is a sure payoff vector.

(a) Let ci ≤ µXi for all i = 1, . . . , N . If

γi =
E[(ci −Xi)+]

E[(Xi − ci)+]
, i = 1, . . . , N, (3.5)

then c ≤γ X.

(b) Let µXi ≤ ci for all i = 1, . . . , N . If

γi =
E[(Xi − ci)+]

E[(ci −Xi)+]
, i = 1, . . . , N, (3.6)

then X ≤γ c.

Proof. If a random vector Y is degenerate in c, then for each i ∈ {1, . . . , N}, we have E[(Yi − ci)+] =

E[(ci − Yi)+] = 0. Therefore the results follow directly from Theorem 5.

Proposition 11. Assume that the random vector X has finite means and variances and that c is a
sure payoff. Define

ti =
µXi − ci
σXi

. (3.7)

(a) Let ci ≤ µXi for all i = 1, . . . , N . If γi = ζ(ti), as defined in Eq. (3.4), then c ≤γ X.

(b) Let µXi ≤ ci for all i = 1, . . . , N . If γi = ζ(−ti), as defined in Eq. (3.4), then X ≤γ c.

Proof. The result is an immediate corollary of Theorem 8.

Remark 12. Notice that in Eq. (3.6) the right hand side is equal to the Omega ratio ΩXi(ci), as
defined in Shadwick and Keating (2002), whereas in Eq. (3.5) the right hand side is 1/ΩXi(ci). Note
that the right hand side of Eq. (3.7) can be interpreted as the Sharpe ratio. The connection between
univariate ASD, the Omega ratio, and the Sharpe ratio is discussed in Müller et al. (2021).
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In this subsection we established sufficient conditions for γ-MASD. These conditions are based
on marginal distributions, which make them especially easy to implement. In the next subsection
we discuss a bit more how powerful this is and the corresponding intuition, given that usually the
comparison of marginal distributions provides only necessary conditions for MSD.

3.2 Joint and marginal dominance relations

Given that the proof of Theorem 5 is based on Lemma 6, which provides separable bounds for the utility
functions in Uγ , one may suspect that checking whether X ≤γ Y holds is equivalent to separately
checking whether Xi ≤γi Yi for each i ∈ {1, . . . N}. The following counterexample shows that this is
not the case.

Example 13. Let N = 2 and γ = (1/2, 1/2). Consider the binary random vectors X,X ′,Y ,Y ′

having the following distributions:

P(X = (0, 0)) = P(X = (5, 2)) =
1

2
, P(X ′ = (0, 2)) = P(X ′ = (5, 0)) =

1

2
,

P(Y = (2, 0)) = P(Y = (4, 2)) =
1

2
, P(Y ′ = (2, 2)) = P(Y ′ = (4, 0)) =

1

2
.

ThenX andX ′ have the same marginal distributions as well as Y and Y ′. With the characterizations
via transfers one can easily see that

X ≤γ Y and X ′ ≤γ Y ′,

but
X 6≤γ Y ′.

For a proof of the last statement consider the following utility function u:

u(x1, x2) = x1 + x2 + max{x1 + x2 − 4, 0}.

All partial derivatives of this function u are bounded between 1 and 2, so we have u ∈ Uγ , but

E[u(X)] = 10 > 8 = E
[
u(Y ′)

]
.

This shows that the ordering ≤γ depends not only on the marginal distributions, but on the whole
joint distributions of the random vectors.

Remark 14. There exist various necessary conditions for SD based on moments both in the univariate
and the multivariate case (see, e.g., Fishburn, 1980, O’Brien, 1984, O’Brien and Scarsini, 1991). The
perspective we take here is completely different, since we provide sufficient conditions.

11



4 From partial to complete ordering

In the univariate case, when γ = 1, we have

X ≤γ Y ⇐⇒ E[X] ≤ E[Y ].

This means that, in this case, there exists a complete order on the set of random variables with finite
expectation. In the multivariate case the situation is more complicated, due to the fact that RN is not
completely ordered, so there is no natural way to order random vectors by their expectations. One
possible way would be to consider weighted expectations E

[∑N
i=1wiXi

]
, as in portfolio analysis. The

case where dominance holds for any possible choice of positive weights has been studied by Muliere
and Scarsini (1989).

4.1 Defining Uγ,β-dominance

To achieve a complete order of random vectors, we consider a new class of utility functions defined in
terms of two parameters: a scalar γ and a vector β. Then we define the corresponding SD relation,
(γ,β)-multivariate almost stochastic dominance ((γ,β)-MASD).

Definition 15. For γ ∈ [0, 1] and β ∈ RN+ , let Uγ,β be the class of utility functions u : RN → R such
that

0 < γβi ≤ u′i(x) ≤ βi for all i ∈ {1, . . . , N}. (4.1)

The random vector X is dominated by the random vector Y in the sense of (γ,β)-MASD (X ≤γ,β Y )
if

E[u(X)] ≤ E[u(Y )], for all u ∈ Uγ,β.

Notice that, for any α > 0, we have X ≤γ,β Y iff X ≤γ,αβ Y . This is coherent with the fact that
two utility functions represent the same preferences if one is obtained from the other via a positive
affine transformation.

4.2 Characterization via Uγ,β-transfers

We now consider the class Uγ,β of utility functions defined in Definition 15. Notice that βi is a scale
factor that depends on the units that are used. Indeed, if ũ : RN → R is a function such that

0 < γ ≤ ũ′i(x) ≤ 1 for all i ∈ {1, . . . , N}, (4.2)

then the function
u(x1, . . . , xN ) := ũ(β1x1, . . . , βNxN )

fulfills (4.1). Thus, by changing units we can assume without loss of generality that u is a function
with the property (4.2), i.e., with the property that all marginal utilities are bounded between γ and 1.
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A function u that satisfies (4.2) also satisfies

γu′i(x) ≤ u′j(y) for all x,y and for all i, j. (4.3)

Vice versa, if a function satisfies (4.3), we can define

β := sup
i,x

u′i(x)

and then
γβ ≤ u′j(y) ≤ β for all y and for all j;

thus u/β satisfies (4.2). Hence the functions satisfying (4.3) build the convex cone generated by the
functions satisfying (4.2) and therefore define the same SD rule.

Similarly, the convex cone generated by the functions in Uγ,β is given by the functions satisfying

γβju
′
i(x) ≤ βiu′j(y) for all x,y and for all i, j ∈ {1, . . . , N}.

In the following discussion of transfers we will first restrict our attention to the class Uγ,1, i.e., the
functions that satisfy property (4.2). In contrast to the γ-transfer we will now allow that the decreasing
transfer from x4 to x3 concerning component i can also be compensated by an increasing transfer from
x1 to x2 concerning some other component j.

Definition 16. Consider two discrete cumulative distribution functions F and G with respective mass
functions f and g. We say that G is obtained from F via a (γ,1)-transfer (along dimensions i, j) if
there exist x1,x2,x3,x4, ε1, ε2 > 0 and η1, η2 > 0 such that, for some i, j ∈ {1, . . . , N},

x2 = x1 + ε1ei, x4 = x3 + ε2ej , η2ε2 = γη1ε1,

and

g(x1) = f(x1)− η1,

g(x2) = f(x2) + η1,

g(x3) = f(x3) + η2,

g(x4) = f(x4)− η2,

g(z) = f(z) for all other values z.

Fig. 3 shows an example of a (γ,1)-transfer with N = 2, ε1 = 1.5, ε2 = 1, γ = 2/3, η1 = η2 = η.
With a proof similar to the proof of Theorem 4, we get the following result.

Theorem 17. Let the random vectors X and Y assume a finite number of values. Then X ≤γ,1 Y
if and only if the distribution of Y can be obtained from the distribution of X by a finite number of

13



x4−η

x3+η

x1

−η

x2

+η

Figure 3: Example of (γ,1)-transfer with ε1 = 1.5, ε2 = 1, γ = 2/3, η1 = η2 = η.

increasing transfers and (γ,1)-transfers.

Notice that
E[u(X)] ≤ E[u(Y )] for all u ∈ U(γ,β)

is equivalent to

E[ũ(β1X1, . . . , βNXN )] ≤ E[ũ(β1X1, . . . , βNXN )] for all ũ ∈ U(γ,1).

From this equivalence we get the general (γ,β)-transfers as follows.

Definition 18. Consider two discrete cumulative distribution functions F and G with respective mass
functions f and g. We say that G is obtained from F via a (γ,β)-transfer if there are i, j ∈ {1, . . . , N}
and exist x1,x2,x3,x4 ∈ RN , ε1, ε2, η1, η2 > 0 such that, for some i, j ∈ {1, . . . , N},

x2 = x1 + ε1ei, x4 = x3 + ε2ej , η2ε2βj = γη1ε1βi,

14



and

g(x1) = f(x1)− η1,

g(x2) = f(x2) + η1,

g(x3) = f(x3) + η2,

g(x4) = f(x4)− η2,

g(z) = f(z) for all other values z.

Theorem 19. Let the random vectors X and Y assume a finite number of values. Then X ≤γ,β Y
if and only if the distribution of Y can be obtained from the distribution of X by a finite number of
increasing transfers and (γ,β)-transfers.

4.3 Sufficient conditions for (γ,β)-dominance

Theorem 20. Assume that the marginal distributions of the components of X and Y are known. Let
δi := inf{x : Fi(x) +Gi(x) ≥ 1} and let

γ :=

∑N
i=1 βi(E[(δi − Yi)+] + E[(Xi − δi)+])∑N
i=1 βi(E[(Yi − δi)+] + E[(δi = Xi)+])

.

If
N∑
i=1

βiµXi ≤
N∑
i=1

βiµYi , (4.4)

then X ≤γ,β Y .

We next address the case where only means and variances are known.

Theorem 21. Let the two random vectors X and Y have finite means and variances. Let

γ =

∑N
i=1 βi

(√
(σXi + σYi)

2 + (µYi − µXi)
2 − (µYi − µXi)

)
∑N

i=1 βi

(√
(σXi + σYi)

2 + (µYi − µXi)
2 + (µYi − µXi)

) .
If (4.4) holds, then X ≤γ,β Y .

Example 22. Returning to the setting of Example 2, suppose the board has to decide whether project
Y (with N = 2, Y1 being NPV and Y2 being MS) is worth undertaking, thus comparing Y to the
status quo 0. It is hard to assess the joint distribution of Y , but estimates of the means and variances
are available:

µY1 = −5, σY1 = 4, µY2 = 2, σY2 = 1.

In expectation, this risky project will decrease NPV by $5 million and increase MS by 2%. To apply
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Theorem 21 we choose the parameters β1, β2 as the sup of the partial derivatives of the utility function:

β2
β1

=
sup(u′2(x))

sup(u′1(x))
.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2.5 5 7.5 10 12.5 15 17.5 20

ଶ

ଵ

0 

Figure 4: γ as a function of β2/β1.

Fig. 4 plots γ from Theorem 21 as a function of β2/β1. As we can see, for β2/β1 < 2.5, it is better
not to undertake the project. For Alice (Example 2(b)),

β2
β1

=
1.1× 500.1

(
4 + 0.04× 7000.7

)
0.7× 100−0.3(1 + 0.04× 501.1)

≈ 18 ($ million per 1% of MS).

For Brandon (Example 2(a))

β2
β1

= w
(1/40)× exp (−10/40)

(1/600)× exp (500/600)
≈ 5w.

Brandon thinks that the parameter w is at least 4, which gives β2/β1 ≥ 20. Other board members agree
that 1% of MS is worth at least $20 million of NPV. Therefore, for all board members, β2/β1 ≥ 18.
From Fig. 4, if β2/β1 = 18, then γ = 0.2, which implies that Y dominates 0 with respect to the utility
class U0.2,β with β2/β1 ≥ 18. If, as in Example 9, all board members agree that U(0.21,0.37) includes
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their preferences, then the support for the project is unanimous, and further information on the joint
distribution of the components of Y is not needed.

Example 23. Returning to the data analytics startup from the scenario (c) in the Introduction, the
current approach is to maximize E

[∑N
i=1wiXi

]
, as mentioned at the beginning of Section 4. At the

same time, some bounds on variances might be available (Arlotto et al., 2014). To take into account
the riskiness of different solutions, the startup team can apply Theorem 21 for βi = wi, i = 1, . . . , N .
For any two contending solutions that will give γ; by varying γ, they can identify dominated and
dominating sets of the available alternatives, and see how these sets change as β varies. Then these
results can be discussed with a client.

5 Conclusions

SD is a useful concept, especially in a multivariate context, where assessing multiattribute utility is
challenging and different stakeholders might have divergent views. However, applying multivariate SD
is difficult for two reasons: First, often distributions cannot be ranked (e.g., by FSD); this can be
overcome by using γ-MASD. Second, integral conditions for multivariate SD do not exist; to overcome
this challenge, we develop sufficient conditions for γ-MASD that are based on marginal distributions
of the compared alternatives or just on their means and variances. This makes our conditions very
practical, as full assessments of joint multivariate distributions are usually difficult. In the framework of
portfolio analysis, Arvanitis et al. (2021) studied stochastic bounding of a portfolio by another, i.e., they
look at conditions under which a set of portfolios contains one portfolio that stochastically dominates
all portfolios in another set. When these conditions are not satisfied, they look for approximate bounds,
in the spirit of ASD.

Another distinction of the multivariate case, compared to the univariate case, is that a real coor-
dinate space is not completely ordered. To attain a path to a complete order, we need to constrain
maximal marginal utilities for different attributes. Section 4 presents the corresponding definition
of (γ,β)-MASD, its characterization via transfers, and sufficient conditions for comparing two risky
alternatives.

Within the expected utility framework, γ-MASD and (γ,β)-MASD translate into bounds on
marginal utilities (Definitions 1 and 15). Alternatively, these preferences can be characterized via
transfers (Definitions 3 and 18 and Theorems 4 and 19). Such transfers might be easier to explain to
decision makers and use for elicitation of γ and β.

Examples 2, 9 and 22 illustrate our approach in a classical decision-making setting, where one needs
to choose between two alternatives. We also discuss broader potential applications (Example 23) for
screening of the most promising solutions in (potentially large-scale) optimization problems.

There is always a tension between a careful comparison and evaluation of available alternatives and
a search for new solutions. With multiple attributes, the former is difficult and laborious. Our results
provide tools for “fast and frugal” screening and evaluation, while properly accounting for tradeoffs and
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riskiness. As the world moves toward decisions with multiple objectives (e.g., many environmental,
social and governance (ESG) criteria in addition to the financial performance of a company), such
tools, consistent with normative decision analysis, should become even more in demand.

A Note on general distribution functions

The following theorem shows how the previous results on transfers can be adapted to the case of
random variables that are not finite.

Theorem 24. Let B ⊂ RN be bounded and let U be a class of continuous increasing functions u :

B → R. Let the random vectors X,Y take values in B. Then X ≤U Y if and only if there exist two
sequences (Xn)n∈N and (Y n)n∈N such that

Xn →X a.s., Y n → Y a.s., and Xn ≤U Y n for all n ∈ N.

Proof. For bounded univariate random variables X,Y we can construct sequences (Xn), (Yn) with
Xn ≤ X, Yn ≥ Y , and Xn → X,Yn → Y a.s.. A concrete construction is given in the proof of
Theorem 2.8 in Müller et al. (2017). We can apply this procedure componentwise to bounded random
vectors X and Y . Thus we get sequences such that, almost surely, Xn ≤X, Y n ≥ Y , Xn →X, and
Y n → Y . Since X ≤ Y a.s. implies X ≤U Y we thus get sequences with

Xn ≤U X ≤U Y ≤U Y n.

This shows the only-if-part. The if-part follows from the fact that any SD relation ≤U is closed under
convergence in distribution if U consists only of bounded continuous functions, see, e.g., Müller (1997,
Theorem 4.2).

B Proofs

Proofs of Section 2

The proof of Theorem 4 requires the following lemma.

Lemma 25. Let u : RN → R be continuously differentiable. Then u ∈ Uγ if and only if

η2(u(x4)− u(x3)) ≤ η1(u(x2)− u(x1)) (B.1)

for all x1,x2,x3,x4 satisfying (2.3) for some i and γi.

Proof. If part: Assume that u fulfills (B.1) for some i and γi. Then

η2(x4 − x3) = γiη1(x2 − x1) =⇒ x3 = x4 − γiη1ei
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and so (B.1) implies

γi
∂

∂xi
u(x4) = γi lim

η1→0

u(x4)− u(x3)

γiη1
≤ lim

η2→0

u(x2)− u(x1)

η2
=

∂

∂xi
u(x1).

As this holds for arbitrary x1,x4 and the derivatives are assumed to be continuous, by (2.1), we get
u ∈ Uγ .

Only if part: Now assume that u ∈ Uγ is continuously differentiable. Let h := x2 − x1. For
x1,x2,x3,x4 satisfying (2.3) for some i and γi, from η2(x4 − x3) = γiη1(x2 − x1), we get that

x4 − x3 =
γiη1
η2

(x2 − x1).

Thus, from (B.1) we can deduce

η1(u(x2)− u(x1)) =

∫ 1

0

∂

∂xi
u(x1 + th)dt

≥ η1γi
∫ 1

0

∂

∂xi
u

(
x3 + t

γiη1
η2
h

)
dt

= η2
γiη1
η2

∫ 1

0

∂

∂xi
u

(
x3 + t

γiη1
η2
h

)
dt

= η2(u(x4)− u(x3)).

Proof of Theorem 4. The proof follows from Müller (2013, Theorem 2.4.1), when applied to the class
of functions generated by the transfers, i.e., the functions defined in Eq. (B.1).

Proofs of Section 3

Proof of Lemma 6. Note that u′i(x) ≤ sup(u′i(x)) = bi and that by inequality (2.2) we have u′i(x) ≥
γibi. By a multivariate first-order Taylor expansion, u(x) − u(z) =

∑N
i=1 u

′
i(y)(xi − zi), where yi is

between xi and zi. Then, using u′i(y) ≤ bi if xi > zi and u′i(y) ≥ γibi if xi < zi provides an upper
bound, while using u′i(y) ≥ γibi if xi > zi and u′i(y) ≤ bi if xi < zi provides a lower bound.

Proof of Theorem 5. Given u ∈ Uγ , let bi = sup(u′i(x)), and without loss of generality, assume u(δ) =

0. By Lemma 6 we have

N∑
i=1

bivL(xi − δi; γi) ≤ u(x) ≤
N∑
i=1

bivU (xi − δi; γi).

First, we show that, for i = 1, . . . , N , for any δi we have

E[vL(Yi − δi; γi)] = E[vU (Xi − δi; γi)]
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for γi defined as in Eq. (3.2). This follows from

E[vL(Yi − δi; γi)] = −E[(δi − Yi)+] + γi E[(Yi − δi)+)],

E[vU (Xi − δi; γi)] = −γi E[(δi −Xi)+] + E[(Xi − δi)+],

and the definition of γi.
Therefore, from inequality (3.3) it follows that

E[u(Y )] ≥
N∑
i=1

bi E[vL(Yi − δi; γi)] =

N∑
i=1

bi E[vU (Xi − δi; γi)] ≥ E[u(X)]

holds for arbitrary δi. We want to choose δi such that γi is as small as possible. As

γi =
E
[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

]
E
[
(Yi − δi)+

]
+ E

[
(δi −Xi)+

] =
E
[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

]
µYi − δi + E

[
(δi − Yi)+

]
+ δi − µXi + E

[
(Xi − δi)+

] ,
we have to minimize E

[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

]
with respect to δi. The right derivative is

∂+

∂δi

(
E
[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

])
= E

[
1[δi−Yi≥0]

]
− E

[
1[Xi−δi≥0]

]
= Gi(δi)− 1 + Fi(δi).

Therefore, δi is minimized for δi = inf{x : Fi(x) +Gi(x) ≥ 1}.

Proof of Proposition 7. In this case we can solve for δi from Theorem 5:

Fi(δi) +Gi(δi) = 1 ⇐⇒ H

(
δi − µXi

σXi

)
+H

(
δi − µYi
σYi

)
= 1

⇐⇒ H

(
δi − µXi

σXi

)
= H

(
µYi − δi
σYi

)
⇐⇒ δi − µXi

σXi

=
µYi − δi
σYi

⇐⇒ δi =
µXiσYi + µYiσXi

σXi + σYi
.

Hence

γi =
E
[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

]
E
[
(Yi − δi)+

]
+ E

[
(δi −Xi)+

] =
σYi E

[
(τi − Z)+

]
+ σXi E

[
(τi − Z)+

]
σYi E

[
(Z − τi)+

]
+ σXi E

[
(Z − τi)+

] = η(τi).

Proof of Theorem 8. The proof is similar to the proof of Theorem 3 in Müller et al. (2021). Fix
arbitrary δ, consider u ∈ Uγ , and let bi = sup (u′i(x)). Without loss of generality assume u (δ) = 0.
By Lemma 6,

N∑
i=1

bivL(xi − δi; γi) ≤ u (x) ≤
N∑
i=1

bivU (xi − δi; γi).
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We need to show that, for some δi, E[vL(Yi − δi; γi)] ≥ E[vU (Xi − δi; γi)] for i = 1, . . . , N . As estab-
lished in the proof of Theorem 3 in Müller et al. (2021), this holds for

δi =
µXiσYi + µYiσXi

σXi + σYi
.

Proofs of Section 4

Proof of Theorem 20. As in Lemma 6, we get for Uγ,β

N∑
i=1

βivL(xi − δi; γ) ≤ u(x)− u(δ) ≤
N∑
i=1

βivU (xi − δi; γ).

Therefore we can derive as in Theorem 5 that a sufficient condition for E[u (Y )] ≥ E[u (X)] is

N∑
i=1

βi E[vL(Yi − δi; γ)] ≥
N∑
i=1

βi E[vU (Xi − δi; γ)],

which is equivalent to

γ ≥
∑N

i=1 βi
(
E
[
(Xi − δi)+

]
+ E

[
(δi − Yi)+

])∑N
i=1 βi

(
E
[
(δi −Xi)+

]
+ E

[
(Yi − δi)+

]) .
Proof of Theorem 21. Assume that (4.4) holds. Fix arbitrary δ, consider u ∈ Uγ,β, and without loss
of generality set u (δ) = 0. As in Lemma 6, it follows that

N∑
i=1

βivL(xi − δi; γ) ≤ u (x) ≤
N∑
i=1

βivU (xi − δi; γ).

It is sufficient to show that for some δ we have

N∑
i=1

βi E[vL(Yi − δi; γ)] ≥
N∑
i=1

βi E[vU (Xi − δi; γ)]

for any X and Y such that (3.1) holds. As in the proof of Theorem 3 in Müller et al. (2021), we get

E[vL(Yi − δi; γ)] ≥ γ (µYi − δi)− (1− γ)
1

2

(
δi − µYi +

√
σ2Yi + (µYi − δi)

2

)
and

E[vU (Xi − δi; γ)] ≤ γ (µXi − δi) + (1− γ)
1

2

(
µXi − δi +

√
σ2Xi

+ (µXi − δi)
2

)
.
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Thus, we need to find some γ such that

N∑
i=1

βi

(
γ (µYi − δi)− (1− γ)

1

2

(
δi − µYi +

√
σ2Yi + (µYi − δi)

2

))

≥
N∑
i=1

βi

(
γ (µXi − δi) + (1− γ)

1

2

(
µXi − δi +

√
σ2Xi

+ (µXi − δi)
2

))

for some δ. Following Müller et al. (2021, Theorem 3), we choose

δi =
µXiσYi + µYiσXi

σYi + σXi

,

so that
µYi − δi
σYi

= ti and
µXi − δi
σXi

= −ti, where ti =
µYi − µXi

σXi + σYi
.

Then the equation for γ becomes

N∑
i=1

βi

(
γσYiti − (1− γ)

1

2

(
−σYiti + σYi

√
1 + t2i

))

=
N∑
i=1

βi

(
γ (−σXiti) + (1− γ)

1

2

(
−σXiti + σXi

√
1 + t2i

))
,

which is equivalent to

γ
N∑
i=1

βiti (σYi + σXi) = (1− γ)
1

2

N∑
i=1

βi

(
−σXiti − σYiti + (σXi + σYi)

√
1 + t2i

)
.

Define

∆ =
N∑
i=1

βiti (σYi + σXi) =
N∑
i=1

βi(µYi − µXi).

Then (
γ + (1− γ)

1

2

)
∆ = (1− γ)

1

2

N∑
i=1

βi (σXi + σYi)
√

1 + t2i ,

or equivalently,

(1 + γ) ∆ = (1− γ)

N∑
i=1

βi (σXi + σYi)
√

1 + t2i .

This yields

γ =

∑N
i=1 βi (σXi + σYi)

√
1 + t2i −∆

∆ +
∑N

i=1 βi (σXi + σYi)
√

1 + t2i

.
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Alternatively, we can express γ as

γ =

∑N
i=1 βi

(√
(σXi + σYi)

2 + (µYi − µXi)
2 − (µYi − µXi)

)
∑N

i=1 βi

(√
(σXi + σYi)

2 + (µYi − µXi)
2 + (µYi − µXi)

) .
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