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Competitive bundling may lead to such different outcomes as preempting entry, intensifying price competi-

tion, or softening it. These different outcomes have been shown to emerge under different industry structures

when firms have restricted ranges of action. But how general are these results? In this paper, we investigate

whether they still hold under the most generic model of competition, namely: Two symmetric firms compet-

ing on price with regard to two homogeneous zero-cost components, without restrictions on their product

offering. We show that all three outcomes emerge in equilibrium, respectively as a full mixed-bundling

monopoly, a full mixed-bundling competitive duopoly, and a pure or partial-mixed bundling differentiated

duopoly. Furthermore, we establish that there are first-mover advantages to bundling and that, unlike in

a monopoly, firms may be better off limiting their product offering. Our stylized approach highlights the

importance of market operating rules for equilibrium selection: Bundling is not anticompetitive per se, unless

firms attempt to coordinate or preempt entry by fully covering the market.

Key words : industrial organization, bundling, Bertrand competition, non-cooperative game theory

“There are only two ways to make money in business: One is to bundle; the other is

unbundle.” —Jim Barksdale, former CEO of Netscape

1. Introduction

Bundling is a fundamental business decision that affects not only pricing and revenue man-

agement, but also product design and horizontal expansion. Since bundling opportunities

are greater with lower marginal costs (Bakos and Brynjolfsson 1999), bundling is especially

prevalent on online platforms, which leverage economies of scope (driven by digital conver-

gence) to laterally expand across verticals. For example, Netflix’s subscription gives access

to a bundle of movies, second-run shows, independent shows, purchased shows, produced

shows, and—soon—games; Amazon Prime membership gives access to no less than 28 ser-

vices (e.g., delivery, music, movies, video games, books, magazines, and cloud services);

and Apple, as part of its strategy shifts toward services, recently launched the Apple One

bundle (covering Apple Music, Apple TV+, Apple Arcade, and iCloud storage).

This increased bundling practice tends to comfort large online platforms (e.g., Google,

Apple, Facebook, Amazon, and Microsoft—the GAFAM) in their dominant position
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and raises numerous antitrust concerns. A classical case study was the charge against

Microsoft’s bundling of its Internet Explorer browser with its Windows operating sys-

tem. In a curious repeat of history, Slack, a team communication software, recently filed

a lawsuit against Microsoft for its bundling of Teams communication software with its

Office 365 (now Microsoft 365) suite of office productivity applications.1 Is bundling always

anticompetitive?

In a departure from its historical focus on monopoly settings, which “is obviously very

restrictive to understand bundling as used in practice” (Jeuland 1984, p. S234), the aca-

demic literature on bundling has more recently studied competitive settings. It has estab-

lished that bundling could lead to different outcomes such as (i) preempting entry, (ii)

intensifying price competition, or (iii) softening price competition. The divergence in out-

comes stems from differences in market structures (duopoly vs. oligopoly), type of firm

differentiation (horizontal vs. vertical), levels of differentiation, firm asymmetry (leader

vs. follower), distribution of customer valuations, and set of feasible actions (pure vs.

partial-mixed vs. full-mixed bundling). Are these three outcomes specific to these industry

structures or more general?

In order to assess the generalizability of these results, we consider the most generic model

of competition: Two symmetric firms competing on price with regard to two homogeneous

zero-cost components, without restrictions on their product offering. Thus, firms can offer

any combination of the single-component products and the bundle. A firm adopts a pure

component strategy if it offers only both single-component products; a pure bundling strat-

egy if it offers only the bundle; a partial-mixed bundling strategy if it offers the bundle and

a single-component product; and a full-mixed bundling strategy if it offers all products.

We model the firms’ bundling and pricing decisions as a two-stage non-cooperative game:

First, firms choose their product offering and then, they compete on price in a Bertrand-

Nash pricing game. Consistent with our motivation of shedding light on online platforms’

bundling practices, we consider zero costs of production and distribution, as is common for

many information goods. Also, we consider uncapacitated Bertrand competition, which is

the most prevalent form of competition in online channels of information goods. Although

firms are ex-ante identical, they may choose to differentiate in equilibrium; thus, firm

1 https://stratechery.com/2020/the-slack-social-network/, accessed on August 6, 2021.
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differentiation is an integral part of the model and not assumed exogenously. We focus on

the duopoly case, which appears to be the dominant market structure in practice (e.g.,

Microsoft and Amazon in public cloud, Microsoft and Sony in gaming, Amazon and Google

in shopping searches, Google and Facebook in digital advertising). We also consider a

generic (symmetric) distribution of customer valuations. Within that setting, we investigate

the following research questions:

• Are the three aforementioned competitive bundling equilibrium outcomes idiosyncratic

to specific market conditions? Or can they emerge in a symmetric market with unrestricted

action sets?

• How should a firm’s bundling (or unbundling) strategy change depending on whether

it operates in a monopoly or in a duopoly? In particular, does it always pay off to offer

more products even if there is no direct competition?

• Can competition alone explain the online platforms’ urges to quickly expand their

offering horizontally?

We obtain the following results:

• Three outcomes always emerge in equilibrium, namely: (i) a full-mixed bundling

monopoly, thus preempting entry from competitors; (ii) a full-mixed bundling competitive

duopoly, leading to a price war in which, at most, one firm (namely, the bundler if it is

the only one) can earn positive profit; and (iii) a pure or partial-mixed bundling differ-

entiated duopoly, in which both firms earn positive profits. Hence, the three equilibrium

outcomes identified in the literature under specific market conditions still emerge in the

most generic form of competition. In almost all outcomes, all products are offered and

firms have differentiated offerings.

What determines the equilibrium that will be played are the equilibrium selection—or

market operating—rules. Firms might coordinate to avoid the payoff-dominated outcome

of competitive duopoly. With sequential entry and (infinitesimal) fixed costs of product

offering, a first-mover firm will always attempt to expand its product offering as quickly as

possible to preempt entry. In such cases, bundling is anticompetitive. However, if firms are

unsure about their competitors’ decisions, any outcome that involves full-mixed bundling

is trembling-hand imperfect, and the differentiated and competitive duopoly outcomes

become more plausible—thereby benefiting customers.
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• Unlike in a monopoly, firms are not necessarily better off when they offer more prod-

ucts even if there is no direct competition. Specifically, a firm that competes against a (pure

or partial-mixed) bundler is always better off when it offers only one single-component

product to differentiate its offering from the bundler and avoid head-to-head price compe-

tition. Conversely, a bundler competing against a single-component product firm may not

benefit from offering anything else; this happens, in particular, when customer valuations

are perfectly correlated. In fact, the bundler may see its profit drop by adding the other

single-component product to its offering: Even though the new product may enable the

bundler to capture unserved market segments, it might redirect the bundle towards com-

peting head-to-head against the competitor’s single-component product, thereby leading

to a price war and loss of value.

• Across all three equilibrium outcomes, the firm that offers the bundle—if it is the only

one—always earns more profit than its competitor. Thus, there are first-mover advantages

to bundling. The online platforms’ urges to expand their offerings horizontally can therefore

be simply explained on purely competitive grounds.

2. Literature Review

The economics and management literature has explored the numerous benefits and pitfalls

of bundling—first, from a monopolist’s perspective and, more recently, in oligopolistic

settings. For surveys of the literature, see Stremersch and Tellis (2002), Kobayashi (2005),

and Venkatesh and Mahajan (2009).

For a monopolist, bundling offers several benefits in terms of product performance

(Ulrich and Eppinger 2003), in case of component complementarity (Venkatesh and

Kamakura 2003), and economies of scope in production, distribution, and promotional

activities (Eppen et al. 1991, Evans and Salinger 2005). More subtly, bundling is a form of

price discrimination: A monopolist can extract more surplus from its customers by offering

a bundle, for which there is little heterogeneity in valuations, than by offering the compo-

nents separately (Stigler 1963, Adams and Yellen 1976, Schmalensee 1984, McAfee et al.

1989, Salinger 1995). This opportunity is greater for goods that have lower marginal costs,

such as information goods (Bakos and Brynjolfsson 1999, Raghunathan and Sarkar 2016).

Pure bundling may or may not dominate a pure component strategy, depending on the

distribution of valuations, the number of components, and their marginal costs (Fang and
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Norman 2006, Ibragimov and Walden 2010). When firms are free to choose any product

offering, as we consider here, full-mixed bundling is a dominant strategy for a monopo-

list (Bhargava 2013). So, the comparison between the pure bundling and pure component

strategies is irrelevant, and this enables us to consider general distributions of valuations.

Bundling also gives a monopolist leverage in other markets. Thus, a firm that is a monop-

olist on one component, but competes with other firms on another component, can leverage

its monopolist position by bundling the two components together and foreclosing rivals’

sales, thereby increasing its market power in a competitive market (Whinston 1990). In

fact, bundling can even pre-empt the entry of potential competitors or force the exit of

current ones (Carlton and Waldman 2002, Nalebuff 2004, Peitz 2008). Bakos and Brynjolf-

sson (2000) find that bundling allows large bundlers of information goods to outbid smaller

ones in securing upstream content and discourages competitors’ entries in the bundler’s

market while favoring entry of the bundler in adjacent markets.

In oligopoly markets, the effect of bundling is ambiguous. On the one hand, bundling

can intensify competition because a pure component firm that competes against a bundler

finds it “doubly profitable” to lower the price of one of its products: By doing so, it

increases the sales of its two products as customers defect from the bundle (Zhou 2021).

See Matutes and Regibeau (1988, 1992), Economides et al. (1989), Anderson and Leruth

(1993), Nalebuff (2004), Reisinger (2004), Thanassoulis (2007), Armstrong and Vickers

(2010), Ahn and Yoon (2012), and Zhou (2021). On the other hand, bundling can soften

competition because it provides an opportunity for firms to differentiate their offerings and

price less aggressively. See Carbajo et al. (1990), Chen (1997), Nalebuff (2004), Zhou et al.

(2020), Zhou (2017), and Hurkens et al. (2019).

Most of the literature on competitive bundling assumes some form of horizontal differ-

entiation using spatial models (Matutes and Regibeau 1988, 1992, Economides et al. 1989,

Nalebuff 2000, Ghosh and Balachander 2007, Thanassoulis 2007, Armstrong and Vickers

2010, Vamosiu 2018), and more recently—and with great progress—random utility models

(Anderson and Leruth 1993, Zhou 2017, 2021). Yet, the most generic model of competition

assumes firm symmetry (Bertrand 1883). One might argue that there is no meaningful

scope for bundling when firms are identical (Zhou 2017), but this turns out to be not nec-

essarily true since differentiation may emerge as an equilibrium outcome. While modeling
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horizontal differentiation is useful to capture the reality of many settings, it is thus not

necessary to describe the different outcomes of competitive bundling.

In sum, competitive bundling has been shown to (i) help a monopolist preempt entry or

force exit, (ii) intensify price competition, or (iii) soften price competition. The divergence

in outcomes depends on the market structure (monopoly vs. duopoly vs. oligopoly), the dis-

tribution of customer valuations, the firms’ degrees of differentiation (horizontal, vertical),

asymmetry (leader vs. follower, presence in different markets), and ability to practice pure

vs. mixed bundling. In contrast to most of the literature, which makes specific assumptions

regarding these different dimensions to identify particular outcomes, we show that all three

outcomes emerge in equilibrium within the same model, for any distribution of valuations

and when firms are free to choose any product offering. Our model is parsimonious and yet,

comprehensive. It takes a stylized approach to demonstrate the robustness of the outcomes

derived in different settings in the literature

3. Model

Two identical firms, indexed by i ∈ {1,2}, compete in the market of an information good

(or service) that consists of two homogenous components (e.g., a suite of office productivity

applications and a team collaboration software). Each firm can offer any combination of the

following three products, indexed by k ∈ {1,2, b}: stand-alone component 1; stand-alone

component 2; and bundle b of both components.

There is no firm-specific component differentiation and no capacity constraints; accord-

ingly, firms compete on price à la Bertrand. As is typical of many information goods, we

assume zero marginal production and distribution costs. We also assume that any product

can be included in a firm’s offering at no cost. Usually, once a firm decides on a prod-

uct offering, it must remain committed to that decision for a substantial amount of time

(Stremersch and Tellis 2002). We accordingly model competition in two stages: a bundling

game and a pricing game.

Bundling Game. In the first stage, firms choose their product offering (or bundling) strat-

egy to maximize their individual payoffs. For any i ∈ {1,2}, let zi = (zik)k=1,2,b be firm i’s

offering decision; here zik = 1 if firm i offers product k and zik = 0 otherwise. Let z = (z1,z2).

In contrast to the extant literature, we assume that firms can offer any subset of products.

Accordingly, the set of feasible offerings is defined as Z = {0,1} × {0,1} × {0,1}. In par-

ticular, firm i adopts a pure component strategy if zi = (1,1,0), a pure bundling strategy
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if zi = (0,0,1), a partial-mixed bundling strategy if either zi = (1,0,1) or zi = (0,1,1), and

a full-mixed bundling strategy if zi = (1,1,1). We assume that a firm that is indifferent

between offering a bundle or not will opt to offer it. Let πi(zi;z−i) be firm i’s profit when

it offers zi, and its competitor offer z−i. (Throughout, we denote with −i .= 3− i the firm

other than firm i, for any i∈ {1,2}.)

When firms choose their offerings simultaneously, a pure-strategy Nash equilibrium of

the bundling game is the solution to:

z∗i ∈ arg max
zi∈Z

πi(zi;z
∗
−i) i∈ {1,2}. (1)

The bundling game turns out to always have a pure-strategy Nash equilibrium in the cases

we consider (and so we ignore any mixed-strategy equilibria). Yet it might have multiple

pure-strategy equilibria, in which case we employ the following selection rules:

• Equilibrium z∗ is payoff-dominant if πi(z
∗
i ;z
∗
−i)≥ πi(zi;z−i) for all i= 1,2 for all z. If

the inequality is reversed for all z, z∗ is payoff-dominated.

• Equilibrium z∗ survives sequential entry with infinitesimal fixed costs of product

offering if for some small γ > 0 and some i ∈ {1,2}, z∗i = arg maxzi∈Z πi(zi;z
∗
−i(zi)) −

γ
∑

k∈{1,2,b} zik, in which z∗−i(zi) = arg maxz−i∈Z π−i(z−i;zi)− γ
∑

k∈{1,2,b} z−i,k.

• Equilibrium z∗ is trembling-hand perfect if, for i= 1,2, there exists a sequence of proba-

bilities λn−i(z−i)> 0 for all z−i ∈Z with λn−i(z
∗
−i)→ 1 such that

∑
z−i∈Z λ

n
−i(z−i)πi(z

∗
i ;z−i)≥∑

z−i∈Z λ
n
−i(z−i)πi(zi;z−i) for any zi ∈ Z (Selten 1975). If the inequality fails to hold for

all sequences of probabilities, z∗ is trembling-hand imperfect.

Pricing Game. In the second stage, firms choose their pricing decisions simultaneously

and non-cooperatively. Customers have heterogeneous valuations for each component v =

(v1, v2). Let F (v) denote the joint cumulative distribution function of customer valuations.

Since the components are homogenous, F (v) is assumed to be symmetric, i.e., F (v1, v2) =

F (v2, v1) for any v1, v2. We also assume that valuations are positive and finite, i.e., F (0, v) =

0 for any v and F (v, v) = 1 for some v <∞.

The components may have complementary value, which is unleashed through bundling.

This happens, in particular, when bundling components is associated with a higher-

performing integral design, whereas their separate purchase is associated with a lower-

performing modular design (Ulrich and Eppinger 2003). Accordingly, customer valuations

for the bundle may be higher than the sum of their valuations for the individual components
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(Venkatesh and Kamakura 2003). We assume that this complementarity effect is additive

and independent of the valuations; accordingly, a customer who values the components at

v will value the bundle at v1 + v2 + ∆, with ∆≥ 0.

Let pi = (pik)k=1,2,b denote firm i’s vector of pricing decisions. Since the component

valuations are positive and bounded from above, the firms’ prices can be restricted to the

nonempty compact sets: pik ∈ [0, vk] with vk = v for k ∈ {1,2} and vb = 2v + ∆. For any

i∈ {1,2} and k ∈ {1,2, b}, if firm i does not offer product k, we set the corresponding price

to its upper bound, i.e., zik = 0⇒ pik = vk.

Customers always purchase a product at its lowest available price; accordingly, pk, the

market price of product k ∈ {1,2, b}, is equal to mini∈{1,2} pik. Customers optimize their

purchasing decision to maximize their net surplus with ties being broken in favor of the

bundle. For any k ∈ {1,2, b}, let ζk(v,p)∈ {0,1} indicate whether a customer with compo-

nent valuations v buys product k given market prices p = (pk)k∈{1,2,b}. Therefore,

ζb(v,p) = 1⇔ pb ≤min{v1, p1}+ min{v2, p2}+ ∆ (2)

for k ∈ {1,2} : ζk(v,p) = 1⇔ vk ≥ pk and pb >min{v1, p1}+ min{v2, p2}+ ∆. (3)

We consider a unit market size and assume that customers buy, at most, one unit of each

of component, i.e., that there is full satiation in consumption. Resale by customers is unfea-

sible. Accordingly, the demand for product k at price p equals Dk(p) =
∫
ζk(v,p)dF (v).

For any i ∈ {1,2} and k ∈ {1,2, b}, let xik(pik;p−i,k) denote firm i’s market share on

product k when firm i’s price is pik, and its competitor’s price is p−i,k. We assume that in

the case of a tie, both firms generate sales. Without loss of generality, we consider an even

market share split. Accordingly, firm i’s market share on product k is equal to

xik(pik;p−i,k) = 1[pik<p−i,k] +
1

2
1[pik=p−i,k]; (4)

here, 1[y>0] is the indicator function, i.e., 1[y>0]
.
= 1 if y > 0 and 0 if y≤ 0. Accordingly, firm

i’s profit given its prices pi and offering zi, and its competitor’s prices p−i and offering z−i

equals:

πi(pi;p−i,zi,z−i) =
∑

k∈{1,2,b}

pikxik(pik;p−i,k)Dk(min{pi,p−i}).

We consider pricing mixed strategies. Even if πi(pi;p−i,zi,z−i) is discontinuous when-

ever a probability mass of customers is indifferent between two options (e.g., buying the
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bundle or buying the two single-component products), their sum turns out to be upper

semicontinuous. Moreover, as is typical in Bertrand games, a firm that lowers the price of

one of its products may see its profit drop only slightly, as long as the other firm’s mixed

strategy does not change dramatically; hence, the extension of the game to mixed strate-

gies is payoff-secure. As a result, for any z, there exists a mixed-strategy Nash equilibrium

in the pricing game (Reny 1999, Corollary 5.2).

Let Φi(pi) be firm i’s price distribution restricted to belong to F(zi), the set of (Borel)

probability measures on [0,1] with support on [0,v] such that, if zik = 0, Φi(p) = 0 for all

p such that pik < vk. The pair (Φ∗1(p1),Φ
∗
1(p2)) is a mixed-strategy Nash equilibrium if

Φ∗i (pi)∈ arg max
Φi∈F(zi)

∫
πi(pi;p−i,zi,z−i)dΦ∗−i(p−i)dΦi(pi) i∈ {1,2}. (5)

For any i∈ {1,2}, let πi(zi;z−i) =
∫
πi(pi;p−i,zi,z−i)dΦ∗−i(p−i)dΦ∗i (pi) denote the equilib-

rium profit in the pricing game, which will be an input into the bundling game (1).

We solve the game by backward induction, by first solving the pricing game (5) in §4,

and then solving the bundling game (1) in §5.

4. Price Equilibria

In this section, we characterize the Nash equilibria of the pricing game for each of the

23× 23 = 64 possible combination of offerings (since Z = {0,1}3). We start with two stan-

dard results. First, we show that, in the context of our three-product Bertrand market, if

two firms offer the same product, they engage in a price war, which drives the product’s

equilibrium price to zero. (All proofs appear in an electronic companion.)

Lemma 1 (Bertrand Price Collapse). For any k ∈ {1,2, b}, if z1k = z2k = 1 and

Dk(p
∗)> 0, then p∗k = 0.

Second, we show that, similar to a monopolist, a competitive bundler is always weakly

better off generating sales from its bundle, in the same vein as Anderson and Leruth (1993).

Lemma 2 (Selling Bundle Always Pays Off). For any i∈ {1,2}, suppose that zib =

1. Then firm i is always (weakly) better-off selling the bundle; that is xi(p
∗
ib, p

∗
−i,b)Db(p

∗)>

0.

Next, we consider two specific industry structures involving a firm that pursues a pure

component strategy and a firm that adopts either a partial-mixed or a pure bundling

strategy. In both cases, the prices of both individual components are driven to zero, the

price of the bundle settles to ∆, and the bundling firm is better off than its competitor.
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Lemma 3 (Partial-Mixed Bundling vs. Pure Components). For any i ∈ {1,2},

suppose that zi = (1,0,1) or (0,1,1) and z−i = (1,1,0). Then, πi(p
∗
i ;p

∗
−i) = ∆ and

π−i(p
∗
−i;p

∗
i ) = 0.

Lemma 4 (Pure Bundling vs. Pure Components). For any i ∈ {1,2}, suppose

that zi = (0,0,1) and z−i = (1,1,0). Then, πi(p
∗
i ;p

∗
−i) = ∆ and π−i(p

∗
−i;p

∗
i ) = 0.

The proof of Lemma 3 is straightforward. By Lemma 1, the price of the common single-

component product is driven down to zero. As a result, the other single-component product

competes directly against the bundle, leading to a price war on these two products.

In contrast, the proof of Lemma 4 is more subtle. While the existence of a perfectly

competitive equilibrium is easy to establish, showing that it is unique is nontrivial. When

facing a bundle price pb with no complementarity effect (∆ = 0), the profit of the firm that

adopts a pure component strategy when the price of each of its products p lies between

pb/2 and pb, is equal to 2p
∫∞
p

∫ pb−p
0

dF (v). When valuations are independent and uniformly

distributed, p∗ = pb/2; hence, the single-component product prices add up exactly to the

bundle price, leading to a price war. Although this might seem specific to uniform distri-

butions (since in general the maximizer of 2p
∫∞
p

∫ pb−p
0

dF (v) is not half the bundle price),

the price war turns out to hold, in general.

Combining these results leads to the following characterization of the equilibrium profits

when both firms pursue either a pure component strategy or a (pure, partial-mixed, full-

mixed) bundling strategy. In all cases, perfect competition follows, either leading both

firms to earn zero profit or, in cases where only one firm offers the bundle, conferring the

bundler an advantage due to the component complementarity.

Corollary 1. Suppose that zi ∈ {(1,1,0), (0,0,1), (1,0,1), (0,1,1), (1,1,1)} for i= 1,2.

Then πi(zi;z−i) = ∆ if zib = 1 and z−i,b = 0 and πi(zi;z−i) = 0 otherwise.

Besides these competitive equilibria, it is also straightforward to characterize the equi-

libria where one or both firms operate as monopolists. Let π1:∅, πb:∅, π1b:∅, π12b:∅ denote a

monopolist’s profit when it offers, respectively, only product 1, only the bundle, the bundle

and product 1, and all three products. When zi = (1,0,0) and z−i = (0,1,0), both firms

operate as local monopolists on their respective single-component products, yielding each

of them a profit of π1:∅. When zi = (1,1,0) and z−i = (0,0,0), firm i is a monopolist on

both single-component products and earns 2π1:∅.
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Table 1 Firms’ Equilibrium Payoffs

(zi,z−i) (0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)

(0,0,0) 0,0 0, π1:∅ 0, π1:∅ 0,2π1:∅ 0, πb:∅ 0, π1b:∅ 0, π1b:∅ 0, π12b:∅

(1,0,0) π1:∅,0 0,0 π1:∅, π1:∅ 0, π1:∅ π1:b, πb:1 0, π∆
1:∅ π1:2b, π2b:1 0, π∆

1:∅
(0,1,0) π1:∅,0 π1:∅, π1:∅ 0,0 0, π1:∅ π1:b, πb:1 π1:2b, π2b:1 0, π∆

1:∅ 0, π∆
1:∅

(1,1,0) 2π1:∅,0 π1:∅,0 π1:∅,0 0,0 0,∆ 0,∆ 0,∆ 0,∆
(0,0,1) πb:∅,0 πb:1, π1:b πb:1, π1:b ∆,0 0,0 0,0 0,0 0,0
(1,0,1) π1b:∅,0 π∆

1:∅,0 π2b:1, π1:2b ∆,0 0,0 0,0 0,0 0,0
(0,1,1) π1b:∅,0 π2b:1, π1:2b π∆

1:∅,0 ∆,0 0,0 0,0 0,0 0,0
(1,1,1) π12b:∅,0 π∆

1:∅,0 π∆
1:∅,0 ∆,0 0,0 0,0 0,0 0,0

Note. The shaded cells correspond to the potential set of weakly-dominating bundling Nash equilibria under
simultaneous choices of offering. Whether the outcomes in the lighter gray cells are equilibria depends on whether

πb:1 ≥ π2b:1.

The most interesting situation—which has received the most attention in the literature

(Carbajo et al. 1990, Nalebuff 2004)—occurs when one firm offers only a single-component

product and the other firm offers at least the bundle. If the bundler also offers the same

single-component product as its competitor, the price of that product is driven down

to zero by Lemma 1 and the bundler operates as a local monopoly on the other single

component. Because of the complementarity effect associated with the bundle, a customer

with valuation v who is offered single-component product 2 for free will value the bundle

at v1 + ∆. In that case, the bundler’s profit is the same as that of a monopolist that offers

product 1 when the marginal distribution of valuations is shifted positively by ∆, which

we denote by π∆
1:∅

.
= maxp pP[v1 + ∆≥ p]. Obviously, π∆

1:∅ ≥ π1:∅.

In case the bundling firm does not offer the same single-component product as its com-

petitor because it offers nothing other than the bundle (resp., because it offers a single-

component product different from the one offered by its competitor), the bundling firm’s

profit is denoted as πb:1 (resp., π2b:1) and its competitor’s as π1:b (resp., π1:2b). Using these

notations and combining the above results leads to the following proposition.

Proposition 1 (Price Equilibrium Profits). For any combination of offerings

(zi,z−i), the equilibrium profits in the pricing game (5) are as given in Table 1.

To illustrate Proposition 1, Table 2 shows the profit values corresponding to no comple-

mentarity effects, i.e., ∆ = 0, and independent uniform valuations over the unit interval,

i.e., F (v) = v1v2 for any vk ∈ [0,1].2

2 When zi = (0,0,1) and z−i = (1,0,0), Nalebuff (2004, p.180) argues that the solution should be (p∗1, p
∗
b) ≈ (0.24,0.59)

yielding profits π∗i ≈ 0.366 and π∗−i ≈ 0.064, but that conclusion is based on an erroneous statement of the first-order
conditions, which should read instead p∗1 = (1 + pb− p2

b/2)/2.
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Table 2 Firms’ Equilibrium Payoffs under No Complementarity Effects and Independent Uniform Valuations

(zi,z−i) (0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)

(0,0,0) 0, 0 0, 0.25 0, 0.25 0, 0.5 0, 0.544 0, 0.546 0, 0.546 0, 0.549
(1,0,0) 0.25, 0 0, 0 0.25, 0.25 0, 0.25 0.067, 0.369 0, 0.25 0.067, 0.369 0, 0.25
(0,1,0) 0.25, 0 0.25, 0.25 0, 0 0, 0.25 0.067, 0.369 0.067, 0.369 0, 0.25 0, 0.25
(1,1,0) 0.5, 0 0.25, 0 0.25, 0 0, 0 0, 0 0, 0 0, 0 0, 0
(0,0,1) 0.544, 0 0.369, 0.067 0.369, 0.067 0, 0 0, 0 0, 0 0, 0 0, 0
(1,0,1) 0.546, 0 0.25, 0 0.369, 0.067 0, 0 0, 0 0, 0 0, 0 0, 0
(0,1,1) 0.546, 0 0.369, 0.067 0.25, 0 0, 0 0, 0 0, 0 0, 0 0, 0
(1,1,1) 0.549, 0 0.25, 0 0.25, 0 0, 0 0, 0 0, 0 0, 0 0, 0

Note. The shaded cells correspond to bundling Nash equilibria under simultaneous choices of offering.

5. Bundling Equilibria

In this section, we identify the equilibrium strategies in the bundling game (1) while

incorporating the equilibrium outcomes of the pricing subgames. To do so, we need to

compare profits across conditions. First, a monopolist is trivially better off when it offers

more products, i.e., 2π1:∅ ≤ π12b:∅ and πb:∅ ≤ π1b:∅ ≤ π12b:∅. In contrast, in a duopoly involving

a firm that offers only a single-component product, its bundling competitor is better off

not offering the same single-component product because, as we show next, it would only

earn π∆
1:∅. (This latter result relies on the assumption of zero marginal costs.)

Lemma 5 (‘Are More Products Better?’: Monopoly vs. Duopoly). 2π1:∅ ≤
π12b:∅, πb:∅ ≤ π1b:∅ ≤ π12b:∅, and π∆

1:∅ ≤min{πb:1, π2b:1}.

Hence, the optimal bundling strategies in a duopoly may differ from those in a monopoly.

Even if firms may freely add products to their offering, they should not necessarily do so in

a duopoly, as it might limit their ability to differentiate. To provide insight into the second

result, consider a firm that offers only the bundle and its competitor that offers only product

1. The bundling firm can always set its price equal to pM2 = arg maxp pP[v2 + ∆≥ p]—the

price of a monopolistic firm that would only offer product 2 and face a demand shifted

by ∆. Because the demand for the bundle at pM2 is higher than the demand for product

2 at pM2 , the bundling firm setting its price at pM2 faces larger sales than if it offered only

product 2 at the same price. Hence, πb:1 ≥ π∆
1:∅.

In the same vein, Table 2 suggests, in the particular case of independent uniform valu-

ations, no real advantage for a pure bundler (zi = (0,0,1)) that competes against a single-

component product firm (e.g., z−i = (1,0,0)) to offer the other single-component product

(i.e., zi = (0,1,1)) since the bundler’s profit remains equal to 0.369. Is that specific to inde-

pendent uniform distributions or more general? The next lemma shows that independence
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is not the driving factor. Specifically, for perfectly correlated valuations, adding the other

single-component product to the bundler’s offering provides no benefit.

Lemma 6 (Partial-Mixed Bundling May Be the Same as Pure Bundling).

Suppose that the distributions of valuations are perfectly (negatively or positively)

correlated. Then, π2b:1 = πb:1.

However, it is easy to construct instances where the bundler strictly benefits from adding

the single-component product to its offering, as shown in the next example.

Example 1. Consider a discrete distribution of valuations where v equals (1/2,1/2)

with probability 3/4, (2/3,0) with probability 1/8, and (0,2/3) with probability 1/8. Sup-

pose ∆ = 0. When z1 = (0,0,1) and z2 = (1,0,0), the price equilibrium is (p∗1, p
∗
b) = (2/3,1),

yielding π1(p
∗
b ;p
∗
1) = 3/4 and π2(p

∗
1;p
∗
b) = 1/12. When z1 = (0,1,1) and z2 = (1,0,0), the

price equilibrium is (p∗1, p
∗
2, p
∗
b) = (2/3,2/3,1) yielding π1(p

∗
2, p
∗
b ;p
∗
1) = 5/6 and π2(p

∗
1;p
∗
2, p
∗
b) =

1/12. Hence, π2b:1 >πb:1. �

In fact, this benefit tends to materialize for most (continuous) distributions when valua-

tions are independent, as shown in the next lemma. The lemma requires that the distribu-

tion has an increasing failure rate, which is a common assumption in pricing and revenue

management (Zhou 2017), but also that it has a decreasing reverse hazard rate. Although

this assumption is less common in the literature, it is satisfied by most common distri-

butions, such as Gaussian, uniform, exponential, gamma, logistic, Gumbel, Weibull, and

unimodal beta (Chechile 2011). Hence, unlike the specific case of uniform distributions,

one might expect, in general, that π2b:1 ≥ πb:1 under independent valuations.

Lemma 7 (Partial-Mixed Bundling May Weakly Dominate Pure Bundling).

Suppose that the distributions of valuations for the two components are independent,

absolutely continuous, and their marginal distribution F (x) is such that (i) its failure rate,

f(x)

F̄ (x)
, is increasing, with f(x)

.
= F ′(x) and F̄ (x)

.
= 1 − F (x), and (ii) its reverse hazard

rate, f(x)
F (x)

, is decreasing. Then, π2b:1 ≥ πb:1.

The intuition behind this result is that, for these distributions of valuations, the game,

when zi = (0,1,1) and z−i = (1,0,0), is supermodular in (p1,−p2, pb) within the region of

interest with positive sales of the three products. Introducing product 2 in the bundler’s

offering is equivalent to dropping product 2’s price, which then leads to an increase in both
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the price of the bundle and the price of product 1. Because the price of product 1 increases,

the bundler effectively faces softer price competition and is thus able to increase its profit.

Still, supermodularity is not guaranteed and it is possible that the introduction of the

single-component product into the bundler’s offering initiates a price war on the other

single component, potentially resulting in lower profits for both firms, as shown in the next

example.

Example 2. Consider a uniform discrete distribution of valuations where v equals (0,1),

(0,1/2), (3/5,2/5), and (3/5,0) with equal probability 1/4. Suppose ∆ = 0. When z1 =

(0,0,1) and z2 = (1,0,0), a price equilibrium is (p∗1, p
∗
b) = (3/5,1), yielding π1(p

∗
b ;p
∗
1) =

1/2 and π2(p
∗
1;p
∗
b) = 3/20. (There exists other price equilibria with p∗b = 1/2, yielding

π1(p
∗
b ;p
∗
1) = 1/2 and π2(p

∗
1;p
∗
b) = 0.) When z1 = (0,1,1) and z2 = (1,0,0), there exists no

pure-strategy price equilibrium. The following distributions constitute a mixed-strategy

price equilibrium:

Φ∗1(p2, pb) =


0 if pb <

2
5
,

1[p2≥1/2]

(
1− 2

5pb

)
if 2

5
≤ p1 <

3
5
,

1[p2≥1] if 3
5
≤ pb;

and Φ∗2(p1) =


0 if p1 <

2
5
,

4− 8
5p1

if 2
5
≤ p1 <

1
2
,

2− 3
5p1

if 1
2
≤ p1 <

3
5
,

1 if 3
5
≤ p1.

It can be checked that π1(Φ
∗
1(p2, pb); Φ∗2(p1)) = 2/5 and π2(Φ

∗
2(p1); Φ∗1(p2, pb)) = 1/10. Hence,

π2b:1 <πb:1. �

Unlike in a monopoly, a bundler may not always benefit—and at times, may be hurt—

from adding a single-component product to its offering, even if there is no direct compe-

tition on that product. On the one hand, adding a single-component product may enable

the bundler to capture unserved customers. On the other hand, it may lead to a price

war between the bundle and the competitor’s single-component product for the following

reason: In addition to catering to unserved customers, the new single-component product

might also make some customers switch from the bundle to the new product. Since the

bundle is no longer needed to capture these customers, it can be used to capture other

customers—such as those targeted by the single-product competitor. A price war might

ensue, destroying value for potentially both firms.

Using Lemma 5 leads to the identification of the bundling equilibria, highlighted in the

shaded cells of Tables 1 and 2. (Note that Table 2 shows one more equilibrium, namely zi =
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z−i = (1,1,0), which arises because ∆ = 0, but is weakly dominated otherwise.) Although

there are numerous product offering combinations that result in bundling equilibria, we

note that (i) by firm symmetry, only half of them needs to be considered and (ii) several

combinations are payoff-equivalent, really leading to three types of equilibria.

Theorem 1 (Bundling Equilibria). In the bundling game (1), the weakly-

dominating bundling equilibria are:

• Full-Mixed Bundling Monopoly: One firm offers all three products, i.e., zi = (1,1,1),

and the other firm offers nothing, i.e., z−i = (0,0,0);

• Full-Mixed Bundling Competitive Duopoly: Both firms offer both components and at

least one firm offers the bundle, i.e., either zi = (1,1,0) or zi = (1,1,1) for i = 1,2 with

zib + z−i,b ≥ 1.

• Pure or Partial-Mixed Bundling Differentiated Duopoly:

— If πb:1 ≥ π2b:1, one firm offers only the bundle, i.e., zi = (0,0,1), and the other firm

offers a single component, i.e., either z−i = (1,0,0) or z−i = (0,1,0);

— If πb:1 ≤ π2b:1, one firm offers the bundle and a single-component product, i.e., either

zi = (1,0,1) or zi = (0,1,1), and the other offers a distinct single-component product, i.e.,

either z−i = (0,1,0) or z−i = (1,0,0), respectively;

As reviewed in §2, the literature on competitive bundling has demonstrated, using various

models, that bundling could (i) preempt entry from a potential competitor or force exit of

an existing one, (ii) intensify price competition, or (iii) soften price competition. Theorem

1 shows that all three outcomes are indeed possible equilibria within the same model.

Moreover, the models in the literature typically assume some form of firm asymmetry

or differentiation and some specific distribution of valuations and restrict firms’ offering

decisions. In contrast, our model makes no such assumption or restriction. Hence, the

competitive bundling equilibrium outcomes identified in the literature are robust, in the

sense that they still emerge under the most generic form of competition.

Since the bundle and at least one-single component product are offered in equilibrium,

there is no room for potential entry. Hence, in a market with more than two competitors,

at most, one of them is making profit; and if there is one, it is a firm that offers the bundle.

The restriction to a duopoly is without loss of generality (in our two-component market).

With more that two components, we expect multiple forms of the differentiated duopoly
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equilibrium outcome, reflecting the numerous ways a partial bundle can be created, and

potential profitability for more than two competitors (e.g., with n components, n−1 firms

can offer a single-component product and the nth can could offer the bundle).

Even though games with multiple equilibria lack predictability, it is actually reassuring

in this context (given the generic nature of the Bertrand competition model) to see that

different outcomes—all plausible—emerge in equilibrium; otherwise, the model lacks valid-

ity. To resolve the indeterminacy, one might consider different equilibrium selection rules.

In contrast to the literature, which associates different outcomes with different market con-

ditions (e.g., the number of competitors, the distribution of valuations, and whether firms

are able to practice mixed or pure bundling), here, the different outcomes are associated

with different market operating rules, such as the firms’ ability to coordinate their actions,

to move sequentially, or to anticipate their competitor’s decisions with some degree of

certainty. It turns out that different selection rules lead to different predictions. Specifically,

• Equilibria z = ((1,1,1), (1,1,1)) and z = ((1,1,0), (1,1,1)) are Pareto-dominated by

z = ((0,0,0), (1,1,1)) since π12b:∅ ≥∆≥ 0;

• Equilibrium z = ((0,0,0), (1,1,1)) is the only one that survives sequential entry in the

presence of infinitesimal fixed costs of product offering, since π12b:∅ ≥max{πb:1, π2b:1}.

• Equilibria z = ((0,0,0), (1,1,1)) and z = ((1,1,0), (1,1,1)) are trembling-hand imper-

fect since strategies (0,0,0) and (1,1,0) are weakly-dominated by (1,1,1).

The payoff-dominance and sequential entry equilibrium selection rules lead to anticom-

petitive behavior. If firms can coordinate, they will always avoid perfect competition.

Worse, with sequential entry, the first mover will preempt entry from any competitor,

resulting in low customer welfare. Bundling is, indeed, a terrible “competitive weapon”

(Nalebuff 2000), as exemplified by the urge of large online platforms to horizontally expand

across industries as an attempt to lock in customers. It has indeed been argued that the

extensive benefits covered by the Amazon Prime membership enable Amazon to prevent

customer churn. Similarly, Apple’s strategy to offer the Apple One bundle has been argued

to be a way to extract greater customer surplus.3

Fortunately for customers, both the full-mixed bundling competitive duopoly and the

pure and partial-mixed bundling differentiated duopoly are trembling-hand perfect, so

3 https://stratechery.com/2020/2020-bundles/, accessed July 16, 2021.
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these equilibria tend to be robust to mistakes. If entry is stimulated and coordination

banned, some form of competition will ensue, benefiting customers. Customers benefit the

most in the competitive duopoly outcome, but this obviously requires that both firms

develop both components, which, in practice, may not always be feasible. For instance,

customers would certainly benefit from having Slack develop an office suite of productivity

software applications to compete with Microsoft 365, but Slack may have little incentive

to do so given the high fixed development cost and prospects of intense competition.

A more likely duopoly outcome might be the differentiated one, in which one firm offers

a bundle and the other one offers a single-component product. Even though firms are ex-

ante symmetric, they choose to differentiate in equilibrium. In this industry structure, the

firm that offers the bundle earns the most profit (since min{πb:1, π2b:1} ≥ π1:0 for otherwise

a best response to zi = (1,0,0) would be z−i = (0,1,0)). Nalebuff (2004) shows that with

independent uniform valuations, the bundling benefit may be substantial.

In fact, there are first-mover advantages to bundling across all three types of equilibria:

Whenever one firm bundles and the other does not, the bundler always earns more than

its competitor. This explains the drive of some online content platforms to expand their

content within their bundle to differentiate themselves from competitors. For instance,

Netflix started producing its own content (with such shows as “House of Cards” and

“The Crown”) to differentiate its content from that available on other movie streaming

platforms (e.g., Amazon Prime, Hulu), and it is now expanding its entertainment offering

into games. Similarly, Spotify is expanding its offering to podcasts, since its music library

is undifferentiated from other music streaming platforms (e.g., Deezer).

6. Conclusions

Although bundling is a fundamental product design decision (every product is a bundle of

attributes), it has grown in importance in services with its extensive use by large online

platforms (e.g., GAFAM). Because of digitalization, these platforms operate across numer-

ous verticals (e.g., movies, music, news, shopping) and sometimes overlap, which provides

an opportunity to package different bundles and compete through bundling.

To test the robustness of the different outcomes that have been shown to emerge under

different market conditions (e.g., industry structure, distribution of valuations, firms’ asym-

metry, differentiation, range of offering), we consider a stylized model of competitive
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bundling in a symmetric Bertrand duopoly. Even though firms are ex-ante identical, they

can choose to differentiate in equilibrium.

Our model is comprehensive in the sense that it leads to the three equilibrium outcomes

identified in the literature, namely: (i) a full-mixed bundling monopoly, preempting compe-

tition, (ii) a full-mixed bundling competitive duopoly, leading to intense price competition,

and (iii) a pure or partial-mixed bundling differentiated duopoly, leading to softer price

competition. These outcomes are robust, since they emerge in the most generic form of

competition.

In contrast to a monopoly, offering more products may not always be beneficial. In

particular, a bundler that is competing against a single-component product competitor

may be better off if it offers only the bundle to avoid any form of (direct or indirect)

competition on the single component offered by its competitor. Still, the firm that offers

the bundle—if it is the only one to do so—earns greater profit, suggesting a first-mover

advantage to bundling, and providing a rationale for the online platforms’ urges to quickly

expand the scope of their bundle.

The multiplicity of equilibrium outcomes draws attention to the sensitivity of the com-

petitive nature of bundling to market operating rules (as opposed to the market conditions).

In particular, to enhance customer welfare, firms should be banned from coordinating

escape from price competition or from preempting entry through full-mixed bundling.

Our model is more stylized than most in the literature, but this is on purpose: to

demonstrate the robustness of these outcomes. The literature has already pursued sev-

eral extensions, bringing greater realism, such as oligopolistic competition (Zhou 2021),

different marginal costs (Carbajo et al. 1990), asymmetric valuations (Bhargava 2013),

and externalities (Prasad et al. 2010). To better understand online platforms’ bundling

strategies, one might further investigate the effect of goods with negative valuation (e.g.,

advertising), supply chain intermediaries (e.g., app stores), externalities on other product

markets (e.g., Disney’s flywheel effect, Microsoft’s Xbox), partially overlapping compo-

nent sets (e.g., Netflix and Disney+), and user base effects (e.g., Netflix). Operationally,

bundling information goods presents many challenges such as pricing (Letham et al. 2014,

Abdallah et al. 2021) and digital piracy (Wu et al. 2020). As online platforms keep expand-

ing their offering across different verticals, more research is needed to identify the strategic

and operational implications of competitive bundling.
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Appendix: Proofs and Supplementary Results
Proof of Lemma 1. To obtain a contradiction, suppose that there exists an equilibrium p∗ such that

Dk(p
∗)> 0 and p∗k > 0. We consider three cases:

1. p∗ik > p∗−i,k = p∗k for some i ∈ {1,2}. In that case, firm i could lower its price pik to p∗−i,k without

changing anything to D(p∗) and increase its profit by p∗kDk(p
∗)/2> 0 by (4), a contradiction.

2. p∗1k = p∗2k = p∗k and, for any κ ∈ {1,2, b} \ {k}, Dκ(p) is either decreasing or left-continuous in

pk at p∗. In that case, for any i∈ {1,2}, firm i could strictly increase its sales of product k by at least

Dk(p
∗)/2 by setting pik infinitesimally below p∗−i,k, which is feasible given that p∗k > 0. Its sales of any

other products κ ∈ {1,2, b} \ {k} might decrease, but only infinitesimally by left-continuity of Dκ(p)

and by (4). Hence, firm i’s profit could strictly increase, a contradiction.

3. p∗1k = p∗2k = p∗k and, for some κ ∈ {1,2, b} \ {k}, Dκ(p) is increasing and right-continuous in pk

at p∗. This may happen only when k ∈ {1,2}, p∗1 + p∗2 = p∗b −∆, and P[v1 ≥ p∗1, v2 ≥ p∗2]> 0 since, by

(2)-(3) and by denoting −k .
= 3−k the single-component product other than single-component product

k,

for k ∈ {1,2} : Dk(p) =

∫ ∞
pk

∫ min{p−k,pb−∆−pk}

0

dF (v) +

∫ ∞
p1

∫ ∞
p2

dF (v)1[pb−∆>p1+p2]

Db(p) =

∫ p1

0

∫ p2

max{0,pb−∆−v1}
dF (v) +

∫ p1

max{0,pb−∆−p2}

∫ ∞
p2

dF (v)

+

∫ ∞
p1

∫ p2

max{0,pb−∆−p1}
dF (v) +

∫ ∞
p1

∫ ∞
p2

dF (v)1[pb−∆≤p1+p2].

Thus, D(p) is left-continuous in pb, and the only point where D(p) is right-continuous in pk, k ∈ {1,2},

is when p1 + p2 = pb−∆, and P[v1 ≥ p1, v2 ≥ p2]> 0. Without loss of generality, assume that zib = 0 for

some firm i. In that case, firm i could drop its price pik infinitesimally below p∗k, increase its sales of

product k by P[v1 ≥ p∗1, v2 ≥ p∗2]> 0, and strictly increase its profit, a contradiction. �

Proof of Lemma 2. Fix i and suppose that zib = 1. We consider two cases:

1. Db(p
∗)> 0. If z−i,b = 0, then xi(p

∗) = 1 by (4), which establishes the result. Henceforth, we consider

the case where zib = z−i,b = 1. By Lemma 1 since Db(p
∗) > 0, p∗b = 0. Then, by (3), Dk(p

∗) = 0 for

k = 1,2. Hence, πι(p
∗) = 0 for ι= 1,2. If p∗ib > p∗b , πi(p

∗) = 0 and firm i might as well set pib equal to

p∗−i,b. Then, p∗ib = p∗−i,b and xi(p
∗
ib, p

∗
−i,b)> 0 by (4) and therefore, xi(p

∗
ib, p

∗
−i,b)Db(p

∗)> 0.

2. Db(p
∗) = 0. Without loss of generality, we set p∗b = vb. Denote with −k .

= 3− k the single-component

product other than single-component product k (k ∈ {1,2}). Then,

πi(p
∗
i ;p

∗
−i) =

2∑
k=1

p∗kxk(p
∗
ik, p

∗
−i,k)Dk(p

∗)

=

2∑
k=1

xk(p
∗
ik, p

∗
−i,k)p

∗
k

∫
1[vk≥p∗k,v−k<p

∗
−k]dF (v)

+
(
p∗1x1(p∗i1, p

∗
−i,1) + p∗2x2(p∗i2, p

∗
−i,2)

)∫
1[v1≥p∗1 ,v2≥p∗2]dF (v)
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=

2∑
k=1

xk(p
∗
ik, p

∗
−i,k)p

∗
k

∫
1[vk≥p∗k,p∗k+min{v−k,p

∗
−k
}<p∗1+p∗2−∆]dF (v)

+
(
p∗1x1(p∗i1, p

∗
−i,1) + p∗2x2(p∗i2, p

∗
−i,2)

)∫
1[min{v1,p

∗
1}+min{v2,p

∗
2}≥p

∗
1+p∗2−∆]dF (v)

≤
2∑

k=1

xk(p
∗
ik, p

∗
−i,k)p

∗
k

∫
1[vk≥p∗k,p∗k+min{v−k,p

∗
−k
}<p∗1+p∗2−∆]dF (v)

+(p∗1 + p∗2)

∫
1[min{v1,p

∗
1}+min{v2,p

∗
2}≥p

∗
1+p∗2−∆]dF (v)

≤ max
pb

2∑
k=1

xk(p
∗
ik, p

∗
−i,k)p

∗
k

∫
1[vk≥p∗k,p∗k+min{v−k,p

∗
−k
}<pb−∆]dF (v)

+pb

∫
1[min{v1,p

∗
1}+min{v2,p

∗
2}≥pb−∆]dF (v)

= max
pib

πi(p
∗
i1, p

∗
i2, pib;p

∗
−i).

Here the second equality is by (3), the first inequality is because xk(p) ≤ 1 by (4), and the second

inequality is because setting pb = p∗1 + p∗2 is a feasible solution. Hence, firm i is always (weakly) better

off setting its bundle price pb < vb, i.e., generating sales from the bundle. �

Proof of Lemma 3. Let k ∈ {1,2} such that z1k = z2k = 1 and let −k .
= 3 − k the index of the single-

component product other than single-component product k. By Lemma 1, either Dk(p
∗) = 0 or p∗k = 0. Then,

since zi,−k = 0, πi(p
∗
i ;p

∗
−i) = p∗bDb(p

∗). Since Db(p) = 1 for all pb ∈ [0,∆] by (2), firm i can earn at least ∆

by setting pb equal to ∆; hence, πi(p
∗
i ;p

∗
−i)≥∆ and Db(p

∗)> 0. The rest of the proof is by contradiction

and proceeds in two steps.

1. Suppose that π−i(p
∗
−i;p

∗
i ) > 0. Then, p∗−kD−k(p

∗) > 0 since p∗k = 0 and z−i,b = 0. This implies, by

(3), that p∗b > p∗−k + ∆. However, this would yield that Db(p
∗) = 0 by (2), a contradiction. Thus,

π−i(p
∗
−i;p

∗
i ) = 0.

2. Suppose that πi(p
∗
i ;p

∗
−i)>∆. Then, p∗b >∆ and, by (2), P[v−k ≥ p∗b −∆]> 0. However, this cannot

be an equilibrium since firm −i could set its price p−k to p∗b −∆− ε for some small ε > 0 (given that

p∗b >∆) and earn a positive profit (p∗b −∆− ε)P[v−k ≥ p∗b −∆− ε]> 0. Thus, πi(p
∗
i ;p

∗
−i)>∆. �

Proof of Lemma 4. Because F (v) is symmetric, p∗1 = p∗2 = p∗.

First, we show that p∗ = (0,0,∆) is an equilibrium. When pb = ∆, Dk(p) = 0 for k = 1,2 for all (p1, p2)

by (3), so setting pk = 0, k ∈ {1,2}, is a best response to p∗b = ∆. When p1 = p2 = 0, Db(p) = 1 if pb ≤∆ and

zero otherwise by (2), so setting pb = ∆ is the best response to p∗1 = p∗2 = 0.

Next, we show that there exists no other equilibrium that generates different payoffs. On the one hand,

no equilibrium exists, such that πi(p
∗
i ;p

∗
−i)<∆, since firm i can always capture the entire market by setting

pb equal to ∆. On the other hand, we show that there exists an equilibrium such that πi(p
∗
i ;p

∗
−i)>∆. The

proof proceeds in four steps.
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Step 1: (p∗b −∆)/2≤ p∗ < p∗b −∆. When πi(p
∗
i ;p

∗
−i)>∆, p∗b >∆ and, by (2), 2p∗ ≥ p∗b −∆. Thus,

p∗ ≥ 1

2
(p∗b −∆). (EC.1)

Since firm −i can set p slightly below to (p∗b −∆)/2, which is feasible since p∗b > ∆, and capture market∫∞
p∗
b
−∆

2

∫∞
0
dF (v) for each product by (3),

π−i(p
∗
−i;p

∗
i )≥ (p∗b −∆)

∫ ∞
p∗
b
−∆

2

∫ ∞
0

dF (v). (EC.2)

In particular, π−i(p
∗
−i;p

∗
i )> 0, since p∗b >∆. Thus, p∗ > 0 and Dk(p

∗)> 0 for k= 1,2. By (3),

p∗ < p∗b −∆. (EC.3)

Combining (EC.1) and (EC.3), we obtain that (p∗b −∆)/2 ≤ p∗ < p∗b −∆. Hence, both firms sell their

products and

πi(p
∗
i ;p

∗
−i) = p∗b

∫ ∞
p∗
b
−∆−p∗

∫ ∞
p∗
b
−∆−min{v1,p∗}

dF (v) and (EC.4)

π−i(p
∗
−i;p

∗
i ) = 2p∗

∫ ∞
p∗

∫ p∗b−∆−p∗

0

dF (v). (EC.5)

Step 2: Lower bound on πi(p
∗
i ;p

∗
−i). Because firm i can set pb = p∗ + ∆ and capture market 1 −∫ p∗

0

∫ p∗−v1

0
dF (v) by (2) Moreover,

πi(p
∗
i ;p

∗
−i) ≥ (p∗+ ∆)

(
1−

∫ p∗

0

∫ p∗−v1

0

dF (v)

)
.

Moreover, 1−
∫ p∗

0

∫ p∗−v1

0
dF (v)≥ 2

∫∞
p∗

∫ p∗
0
dF (v). Hence,

πi(p
∗
i ;p

∗
−i) ≥ 2p∗

∫ ∞
p∗

∫ p∗

0

dF (v) + ∆

(
1−

∫ p∗

0

∫ p∗−v1

0

dF (v)

)

≥ 2p∗
∫ ∞
p∗

∫ p∗b−∆−p∗

0

dF (v) + ∆

(
1−

∫ p∗

0

∫ p∗−v1

0

dF (v)

)
; (EC.6)

where the third inequality is by (EC.1).

Step 3: Lower bound on
∫∞
p∗
b
−∆

2

∫ p∗b−∆

2

p∗
b
−∆−min{v1,p∗}

dF (v). Using Steps 1 and 2 above, we obtain:

p∗b

∫ ∞
p∗
b
−∆−p∗

∫ ∞
p∗
b
−∆−min{v1,p∗}

dF (v)

= πi(p
∗
i ;p

∗
−i) by (EC.4)

≥ 2p∗
∫ ∞
p∗

∫ p∗b−∆−p∗

0

dF (v) + ∆

(
1−

∫ p∗

0

∫ p∗−v1

0

dF (v)

)
by (EC.6)

= π−i(p
∗
−i;p

∗
i ) + ∆

(
1−

∫ p∗

0

∫ p∗−v1

0

dF (v)

)
by (EC.5)

≥ (p∗b −∆)

∫ ∞
p∗
b
−∆

2

∫ ∞
0

dF (v) + ∆

(
1−

∫ p∗

0

∫ p∗−v1

0

dF (v)

)
by (EC.2).
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Equivalently, after dividing both sides by p∗b and rearranging the terms, we obtain∫ p∗b−∆

2

p∗
b
−∆−p∗

∫ ∞
p∗
b
−∆−v1

dF (v) (EC.7)

≥
∫ ∞

p∗
b
−∆

2

∫ p∗b−∆−min{v1,p
∗}

0

dF (v) +
∆

p∗b

∫ p∗b−∆

2

0

∫ ∞
p∗−v1

dF (v)−
∫ p∗

p∗
b
−∆

2

∫ p∗−v1

0

dF (v)

 . (EC.8)

Since F (v) is symmetric,∫ p∗b−∆

2

p∗
b
−∆−p∗

∫ ∞
p∗
b
−∆−v1

dF (v) =

∫ ∞
p∗
b
−∆

2

∫ p∗b−∆

2

p∗
b
−∆−min{v1,p∗}

dF (v). (EC.9)

Therefore, plugging (EC.9) into (EC.8) yields∫ ∞
p∗
b
−∆

2

∫ p∗b−∆

2

p∗
b
−∆−min{v1,p∗}

dF (v)

≥
∫ ∞

p∗
b
−∆

2

∫ p∗b−∆−min{v1,p
∗}

0

dF (v) +
∆

p∗b

∫ p∗b−∆

2

0

∫ ∞
p∗−v1

dF (v)−
∫ p∗

p∗
b
−∆

2

∫ p∗−v1

0

dF (v)

 . (EC.10)

Step 4: p∗ is not a best response to p∗b . As a result,

π−i

(
p∗b −∆

2
,
p∗b −∆

2
;p∗b

)

= (p∗b −∆)

∫ ∞
p∗
b
−∆

2

∫ p∗b−∆

2

0

dF (v) by (EC.5)

= (p∗b −∆)

∫ ∞
p∗
b
−∆

2

∫ p∗b−∆−min{v1,p
∗}

0

dF (v) +

∫ ∞
p∗
b
−∆

2

∫ p∗b−∆

2

p∗
b
−∆−min{v1,p∗}

dF (v)


≥ 2(p∗b −∆)

∫ ∞
p∗
b
−∆

2

∫ p∗b−∆−min{v1,p
∗}

0

dF (v)

+ (p∗b −∆)
∆

p∗b

∫ p∗b−∆

2

0

∫ ∞
p∗−v1

dF (v)−
∫ p∗

p∗
b
−∆

2

∫ p∗−v1

0

dF (v)

 by (EC.10)

> 2p∗
∫ ∞
p∗

∫ p∗b−∆−p∗

0

dF (v) + 2(p∗b −∆)

∫ p∗

p∗
b
−∆

2

∫ p∗b−∆−v1

0

dF (v)

+ (p∗b −∆)
∆

p∗b

∫ p∗b−∆

2

0

∫ ∞
p∗−v1

dF (v)−
∫ p∗

p∗
b
−∆

2

∫ p∗−v1

0

dF (v)

 by (EC.3)

> 2p∗
∫ ∞
p∗

∫ p∗b−∆−p∗

0

dF (v)

+ (p∗b −∆)
∆

p∗b

2

∫ p∗

p∗
b
−∆

2

∫ p∗b−∆−v1

0

dF (v) +

∫ p∗b−∆

2

0

∫ ∞
p∗−v1

dF (v)−
∫ p∗

p∗
b
−∆

2

∫ p∗−v1

0

dF (v)

 by p∗b >∆

= 2p∗
∫ ∞
p∗

∫ p∗b−∆−p∗

0

dF (v)

+ (p∗b −∆)
∆

p∗b

∫ p∗

p∗
b
−∆

2

∫ p∗b−∆−v1

0

dF (v) +

∫ p∗b−∆

2

0

∫ ∞
p∗−v1

dF (v) +

∫ p∗

p∗
b
−∆

2

∫ p∗b−∆−v1

p∗−v1

dF (v)


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> 2p∗
∫ ∞
p∗

∫ p∗b−∆−p∗

0

dF (v) by p∗b >∆

= π−i(p
∗, p∗;p∗b) by (EC.5).

Hence, p∗ is not a best response to p∗b and no equilibrium exists, such that πi(p
∗
i ;p

∗
−i)>∆. �

Proof of Corollary 1. We consider the following cases:

1. z−i = (1,1,0). If zi = (1,1,0), the result follows by Lemma 1. If zi = (0,0,1), the result follows by

Lemma 4. If zi = (1,0,1) or (0,1,1), the result follows by Lemma 3. If zi = (1,1,1), then by Lemma 1,

p∗1 = p∗2 = 0, and, therefore, Db(p
∗) = 1 if pb ≤∆ and zero otherwise; hence, p∗b = ∆.

2. z−i = (0,0,1). If zi = (0,0,1), (1,0,1), (0,1,1), or (1,1,1), p∗b = 0 by Lemma 1 and Dk(p
∗) = 0 for

k ∈ {1,2}.

3. z−i = (1,0,1) or (0,1,1). If zi = (1,0,1), (0,1,1), or (1,1,1), p∗b = 0 by Lemma 1 and Dk(p
∗) = 0 for

k ∈ {1,2}.

4. z−i = (1,1,1). If zi = (1,1,1), p∗b = 0 by Lemma 1 and Dk(p
∗) = 0 for k ∈ {1,2}. �

Proof of Proposition 1. We establish the equilibrium profits by considering the following cases:

• When z1 = z2, the result follows by Lemma 1.

• When z1,z2 ∈ {(1,1,0), (0,0,1), (1,0,1), (0,1,1), (1,1,1)}, the result follows by Corollary 1.

• When z1,z2 ∈ {(0,0,0), (1,0,0), (0,1,0), (1,1,0)}, either firms are directly competing head to head with

the same product, in which case their profit from that product is zero by Lemma 1, or they have a monopoly,

in which case their profit from that product—given that valuations are symmetric—is equal to π{1}:∅.

• When for any k ∈ {1,2}, zik = 1, zib = 1, z−i,k = 1, and z−i,−k = z−i,b = 0 with −k .
= 3−k, then p∗k = 0 by

Lemma 1. Firm i’s equilibrium profit simplifies to maxpib,pi,−k
pibDb(0, pi,−k, pib)+pi,−kzi,−kD−k(0, pi,−k, pib).

If zi,−k = 1, it is optimal for firm i to set pi,−k =∞ because product −k is directly competing with the

bundle by (2)-(3): either Db(0, p−k, pb)> 0, in which case pb ≤ p−k + ∆ or D−k(0, p−k, pb)> 0, in which case

pb > p−k + ∆. By Lemma 2, firm i prefers to sell the bundle. Therefore, firm i’s equilibrium profit simplifies

to maxpib pibDb(0,∞, pib) = maxpib pib
∫
1[pib≤v−k+∆]dF (v) = π∆

{1}:∅. �

Proof of Lemma 5. • The inequalities 2π1:∅ ≤ π12b:∅ and πb:∅ ≤ π1b:∅ ≤ π12b:∅ follow from the fact that,

with more products, a monopolist can only do better as it can always price the incremental product to

infinity.

• To show that πb:1 ≥ π∆
1:∅, consider the pricing game associated with (zi,z−i) = ((0,0,1), (1,0,0)). Denote

by (Φ∗i (pb),Φ
∗
−i(p1)) the corresponding mixed-strategy price equilibrium solving (5) and by pM2 the optimal

price of a monopolist facing a shifted demand D∆
2 (v1, p2, vb), i.e., pM2 = arg maxp2

p2D
∆
2 (v1, p2, vb), which

exists by Weierstrass theorem because the monopolist’s action set can be constrained to belong to [0, v2] and

its profit is upper semi-continuous. For any p and p1, we have

Db(p1, v2, p) =

∫
1[min{v1,p1}+v2≥p−∆]dF (v)≥

∫
1[v2+∆≥p2]dF (v)

.
=D∆

2 (p1, p, vb). (EC.11)
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Then,

πb:1

=

∫
pbDb(p1, v2, pb)dΦ∗−i(p1)dΦ∗i (pb)

≥ pM2
∫
Db(p1, v2, p

M
2 )dΦ∗−i(p1) because setting pM2 with probability 1 is feasible

≥ pM2
∫
D∆

2 (p1, p
M
2 , vb)dΦ∗−i(p1) by (EC.11)

= pM2 D
∆
2 (v1, p

M
2 , vb) because D∆

2 (p1, p2, vb) is independent of p1

= π∆
1:∅.

• To show π2b:1 ≥ π∆
1:∅, consider the pricing game associated with (zi,z−i) = ((0,1,1), (1,0,0)) and

denote by (Φ∗i (p2, pb),Φ
∗
−i(p1)) the corresponding mixed-strategy price equilibrium solving (5). Let pM2 =

arg maxp2
p2D

∆
2 (v1, p2, vb). Accordingly,

π2b:1

=

∫
(p2D2(p1, p2, pb) + pibDb(p1, p2, pb))dΦ∗−i(p1)dΦ∗i (p2, pb)

≥ pM2
∫
Db(p1, v2, p

M
2 )dΦ∗−i(p1) as setting (p2, pb) = (v2, p

M
2 ) w.p. 1 is feasible

≥ pM2
∫
D∆

2 (p1, p
M
2 , vb)dΦ∗−i(p1) by (EC.11)

= pM2 D
∆
2 (v1, p

M
2 , vb) because D∆

2 (p1, p2, vb) is independent of p1

= π∆
1:∅.

�

Proof of Lemma 6. Suppose that zi = (0,1,1) and z−i = (1,0,0). We separately consider the cases of

negatively and positively correlated valuations.

Perfectly negatively correlated valuations. Let V be customers’ (identical) valuations for both products;

i.e., V
.
= min{v1|F (v1,0) = 1}. Suppose, to obtain a contradiction, that all three products are sold in equilib-

rium. By (2), customers with valuation v purchase the bundle if pb ≤min{v1, p1}+min{V −v1, p2}+∆≤ p1 +

p2 + ∆. By (3), customers with valuation v purchase product 2 if v2 ≥ p2 and pb > p2 + min{V − v2, p1}+ ∆.

When pb ≤ p1 + p2 + ∆, the latter condition implies that p1 > min{V − v2, p1}, i.e., p1 > V − v2. Thus,

pb > p2 + min{V − v2, p1} + ∆ is equivalent to pb > p2 + V − v2 + ∆, i.e., v2 > p2 + V − pb + ∆. Using a

symmetric argument, customers with valuation v purchase product 1 if v1 > p1 + V − pb + ∆, i.e., given

that v1 + v2 = V , if v2 < pb −∆− p1. Defining F (v2) the marginal distribution of v2, firm i’s profit can be

expressed as p2F̄ (p2 +V − pb + ∆) + pb (F (p2 +V − pb + ∆)−F (pb−∆− p1)). Because pb ≥ p2 + ∆, firm i’s

is increasing in p2; it is optimal for firm i to set p2 as large as possible until D2(p) = 0, a contradiction.
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Perfectly positively correlated valuations. Here, F (v) = F (min{v1, v2},min{v1, v2}). Suppose, to obtain

a contradiction, that in equilibrium, D2(p∗)> 0 and Db(p
∗)> 0. If D1(p∗) = 0, firm −i could increase its

profit by setting p∗1 = p∗2, a contradiction, so we also have that D1(p∗) > 0. For any k ∈ {1,2} and −k .
=

3− k, suppose that p∗k ≥ p∗−k. By (3), for any customer v who buys product k, vk ≥ p∗k. Because v1 = v2,

v−k ≥ p∗k, which implies, since p∗k ≥ p∗−k, that v−k ≥ p∗−k. Moreover, (3) yields that, for such customer v,

p∗b > min{v1, p
∗
1}+ min{v2, p

∗
2}+ ∆ ≥ p∗1 + p∗2 + ∆. By (2), for any customer v who purchases the bundle,

p∗b ≤ min{v1, p
∗
1} + min{v2, p

∗
2} + ∆ ≤ p∗1 + p∗2 + ∆. Since these two conditions are exclusive, we obtain a

contradiction. �

Lemma EC.1. Suppose that the distributions of valuations for the two components are independent, abso-

lutely continuous, and their marginal distribution F (x) is such that its failure rate, f(x)

F̄ (x)
, is increasing, with

f(x)
.
= F ′(x) and F̄ (x)

.
= 1−F (x). For any p1, p2, p

b
, and pb with p

b
< pb, let G(p1)

.
= pbF̄ (pb −∆− p1)−

p
b
F̄ (p

b
−∆− p1). Then, G(p1)≥ 0⇒G′(p1)> 0.

Proof. Suppose that G(p1)≥ 0. Then,

G′(p1)
∣∣∣
G(p1)≥0

=
(
pbf(pb−∆− p1)− p

b
f(p

b
−∆− p1)

)
G(p1)≥0

≥ p
b

(
f(pb−∆− p1)

F̄ (p
b
−∆− p1)

F̄ (pb−∆− p1)
− f(p

b
−∆− p1)

)
> 0,

in which the second inequality follows because f(x)

F̄ (x)
is increasing and pb > pb. �

Lemma EC.2. Suppose that the distributions of valuations for the two components are independent, abso-

lutely continuous, and their marginal distribution F (x) is such that (i) its failure rate, f(x)

F̄ (x)
, is increasing, with

f(x)
.
= F ′(x) and F̄ (x)

.
= 1−F (x), and (ii) its reverse hazard rate, f(x)

F (x)
, is decreasing. If zi = (0,1,1) and

z−i = (1,0,0), πi(p2, pb;p1,z) and π−i(p1;p2, pb,z) are supermodular in (p1,−p2, pb) when p1, p2 ≤ pb −∆≤

p1 + p2.

Proof. When p1, p2 ≤ pb−∆≤ p1 + p2,

πi(p2, pb;p1) = pb

∫ ∞
pb−∆−p2

∫ ∞
pb−∆−min{v1,p1}

dF (v) + p2

∫ pb−∆−p2

0

∫ ∞
p2

dF (v) (EC.12)

π−i(p1;p2, pb) = p1

∫ ∞
p1

∫ pb−∆−p1

0

dF (v). (EC.13)

We consider in turn firm −i’s and firm i’s profits.
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Firm −i’s profit. For any p
1
, p1, p2, and p

b
, such that p

1
< p1 and p1, p2 ≤ pb−∆≤ p

1
+p2, suppose that

π−i(p1;p2, pb)≥ π−i(p1
;p2, pb). Given that valuations are independent, π−i(p1;p2, pb) = p1F̄ (p1)F (pb−∆−p1)

by (EC.13). Therefore,

p1F̄ (p1)

p
1
F̄ (p

1
)
≥
F (p

b
−∆− p

1
)

F (p
b
−∆− p1)

.

Since f(x)/F (x) is decreasing and p
1
< p1, for any pb ≥∆ + p1,

f(pb−∆−p
1
)

F (pb−∆−p
1
)
≤ f(pb−∆−p1)

F (pb−∆−p1)
, i.e.,

F (pb−∆−p
1
)

F (pb−∆−p1)
is

decreasing in pb. As a result, for any pb ≥ pb, such that pb−∆≤ p
1

+ p2

p1F̄ (p1)

p
1
F̄ (p

1
)
≥
F (pb−∆− p

1
)

F (pb−∆− p1)
,

i.e., π−i(p1;p2, pb) ≥ π−i(p1
;p2, pb). Moreover, π−i(p1;p2, pb) is independent of p2 when p1, p2 ≤ pb − ∆ ≤

p1 + p2. Thus, π−i(p1;p2, pb) is supermodular in (p1,−p2, pb) when p1, p2 < pb−∆≤ p1 + p2.

Firm i’s profit. For any p1, p
2
, p2, and pb, such that p

2
< p2 and p1, p2 ≤ pb −∆≤ p1 + p

2
, suppose

that πi(p2, pb;p1)≥ πi(p2
, pb;p1), i.e., using (EC.12),

pb

∫ pb−∆−p
2

pb−∆−p2

∫ ∞
pb−∆−v1

dF (v) + p2

∫ pb−∆−p2

0

∫ ∞
p2

dF (v)− p
2

∫ pb−∆−p
2

0

∫ ∞
p
2

dF (v)≥ 0.

Since the left-hand side does not depend on p
1
, the same inequality must also hold at any p

1
< p1, such that

p
1
, p2 ≤ pb−∆≤ p

1
+ p

2
. Hence, πi(p2, pb;p1

)≥ πi(p2
, pb;p1

).

For any p
1
, p2, p

b
, and pb, such that p

b
< pb and p

1
, p2 ≤ p

b
− ∆ < pb − ∆ ≤ p

1
+ p2, suppose that

πi(p2, pb;p1
)≥ πi(p2, pb;p1

). Using (EC.12) and given that valuations are independent, this is equivalent to:

pb

∫ ∞
pb−∆−p2

F̄ (pb−∆−min{v1, p1
})f(v1)dv1− pb

∫ ∞
p
b
−∆−p2

F̄ (p
b
−∆−min{v1, p1

})f(v1)dv1

≥ −p2F̄ (p2)

∫ pb−∆−p2

p
b
−∆−p2

f(v1)dv1

⇔
∫ ∞
pb−∆−p2

(
pbF̄ (pb−∆−min{v1, p1

})− p
b

∫ ∞
p
b
−∆−p2

F̄ (p
b
−∆−min{v1, p1

})

)
f(v1)dv1

≥
∫ pb−∆−p2

p
b
−∆−p2

(
p
b
F̄ (p

b
−∆−min{v1, p1

})− p2F̄ (p2)
)
f(v1)dv1. (EC.14)

When v1 ≥ pb−∆−p2 and p
b
−∆≤ p

1
+p2, p

b
−∆−min{v1, p1

} ≤ p2, i.e., F̄ (p
b
−∆−min{v1, p1

})≥ F̄ (p2).

Therefore, the right-hand side of (EC.14) is nonnegative. Thus (EC.14) implies that:∫ ∞
pb−∆−p2

(
pbF̄ (pb−∆−min{v1, p1

})− p
b

∫ ∞
p
b
−∆−p2

F̄ (p
b
−∆−min{v1, p1

})

)
f(v1)dv1 ≥ 0. (EC.15)

Next, we show when (EC.15) holds, pbf(pb −∆− p1) ≥ p
b
f(p

b
−∆− p1) for all p1 ≥ p1

. The proof is by

contradiction. To obtain a contradiction, suppose the contrary, i.e., there exists some p̃1 ≥ p1
such that

pbf(pb−∆− p̃1)< p
b
f(p

b
−∆− p̃1). By Lemma EC.1, this implies that pbF̄ (pb−∆− p1)< p

b
F̄ (p

b
−∆− p1)

for all p1 ≤ p̃1. Therefore, pbF̄ (pb −∆−min{v1, p1
}) < p

b
F̄ (p

b
−∆−min{v1, p1

}) for all v1, contradicting

(EC.15).
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Since pbf(pb−∆−p1)≥ p
b
f(p

b
−∆−p1) for all p1 ≥ p1

, pbF̄ (pb−∆−p1)−p
b
F̄ (p

b
−∆−p1) is increasing

in p1 for all p1 ≥ p1
. Therefore,

pb

∫ ∞
pb−∆−p2

F̄ (pb−∆−min{v1, p1})f(v1)dv1− pb

∫ ∞
p
b
−∆−p2

F̄ (p
b
−∆−min{v1, p1})f(v1)dv1

≥ pb

∫ ∞
pb−∆−p2

F̄ (pb−∆−min{v1, p1
})f(v1)dv1− pb

∫ ∞
p
b
−∆−p2

F̄ (p
b
−∆−min{v1, p1

})f(v1)dv1.

Combining this last inequality with (EC.14), we obtain that

pb

∫ ∞
pb−∆−p2

F̄ (pb−∆−min{v1, p1})f(v1)dv1− pb

∫ ∞
p
b
−∆−p2

F̄ (p
b
−∆−min{v1, p1})f(v1)dv1

≥
∫ pb−∆−p2

p
b
−∆−p2

(
p
b
F̄ (p

b
−∆−min{v1, p1

})− p2F̄ (p2)
)
f(v1)dv1,

i.e., πi(p2, pb;p1)≥ πi(p2, pb;p1). �

Proof of Lemma 7. Suppose that zi = (0,1,1) and z−i = (1,0,0). By Lemma 2, Db(p)> 0 in equilibrium.

Hence, in equilibrium, pb ≤ p1 + p2 + ∆ by (2). Without loss of generality, we can constrain p2 to be smaller

than pb−∆, since when p2 ≥ pb−∆,D2(p) = 0 by (3). Similarly, we can constrain p1 to be smaller than pb−∆.

Hence in equilibrium, p1, p2 ≤ pb−∆≤ p1 +p2. By Lemma EC.2, the firms’ profit functions, πi(p2, pb;p1) and

π−i(p1;p2, pb), are supermodular in (p1,−p2, pb), and they can be checked to be upper semicontinuous, so

there exists a Nash equilibrium in pure strategies (Vives 1999, Theorem 4.2). Let p̂ be one such equilibrium

and suppose that D2(p̂) > 0 for otherwise π{2,b}:{1} = π{b}:{1}. Consider a game where firm i chooses only

pb; p2 is an external parameter, which we set sufficiently large that D2(p) = 0. Again, there exists a pure-

strategy Nash equilibrium in that game, denoted by p̌. Without loss of generality, we assume that p̌2 ≥

max{p̂b, p̌b} −∆. Hence, p̂2 ≤ p̌2. Because πi(p2, pb;p1) and π−i(p1;p2, pb) are supermodular in (p1,−p2, pb)

when p1, p2 ≤ pb−∆≤ p1 +p2, p̂1 ≥ p̌1 by (Vives 1999, Theorem 3.1). Therefore, πi(p̂2, p̂b; p̂1)≥ πi(p̌2, p̌b; p̂1)≥

πi(p̌2, p̌b; p̌1), i.e., π{2,b}:{1} ≥ π{b}:{1}. �

Proof of Theorem 1. The equilibria follow from Table 2. �


