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1 Introduction

The terms of loans o�ered by banks determine borrowers’ access to credit and �nancial institu-
tions’ exposure to credit risk, making them crucial for the economy and �nancial stability. They
make up rich contracts which typically consist of prices (interest rates), quantity limits (e.g., col-
lateral), and other non-price terms (e.g., covenants, maturity), whose variations across borrowers
and over time have attracted considerable attention. Recently, non-price terms have come un-
der renewed scrutiny for households during the housing cycle (e.g., Acharya et al. 2020) and for
corporate borrowers during the Covid-19 recession (e.g., Chodorow-Reich et al. 2021).

However, it is still largely unclear how loan terms are set in the cross-section of borrowers
and how they are a�ected by the �nancial health of the very lenders which o�er them. Especially
puzzling is that, while credit supply tends to go hand in hand with bank health (e.g., Chodorow-
Reich and Falato 2021), credit contractions and expansions often a�ect various types of borrowers
di�erently and through various loan terms. The early 2000s o�er a striking illustration, when
thriving U.S. banks expanded credit to risky borrowers in the mortgage market (Mian and Su�
2009), but to safe borrowers in the credit card market (Agarwal et al. 2018). While the mortgage
expansion hinged on both relaxed leverage constraints and lower rates, the increase in credit card
debt was mostly driven by heightened credit limits. Despite the outsized role of credit conditions
in macro-�nance (e.g., Stiglitz and Weiss 1981, Holmstrom and Tirole 1997, Bernanke et al. 1999),
what is missing is a model that can jointly explain how shocks to banks are transmitted to the
loan terms faced by di�erent groups of borrowers.

We �ll this gap in an equilibrium model of multidimensional loan contracting between het-
erogeneous risky borrowers and �nancial intermediaries with limited lending capacity. Interme-
diaries’ capacity constraints and costs of funds are subject to shocks which arise from changes
in asset prices or �nancial regulation and monetary policy. We show that two su�cient statis-
tics, the interest rate elasticities of borrowers’ loan demand and default probability, can explain
several features of credit markets: (i) Banks simultaneously use interest rates and quantity limits
or other non-price terms to control the supply of credit. (ii) The pass-through of bank shocks to
loan terms varies across markets (e.g., mortgages vs. credit cards), borrowers within a market
(e.g., safe vs. risky), and bank health (e.g., well vs. poorly capitalized). (iii) The responses of the
di�erent loan terms govern the persistence of credit contractions and expansions. We empha-
size the role of intermediaries’ balance sheets for credit supply in specialized asset markets as
in intermediary asset pricing (He and Krishnamurthy 2013, Brunnermeier and Sannikov 2014).
But we highlight a speci�city of credit markets: banks use non-price terms to control borrowers’
default probabilities when the latter are endogenous due to informational frictions.

We motivate our analysis by documenting heterogeneity in loan terms and the pass-through
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of shocks for the main classes of bank loans. First, loan growth is strongly negatively associated
with bank charge-o� rates at the aggregate level across mortgage, credit card, and commercial
and industrial (C&I) loans since 1995. The more losses on their assets banks make, the less they
lend. Second, interest rates and non-price terms act as substitute channels through which mort-
gage expansions and contractions take place, but as complement channels for credit card and C&I
loans. While loan to value (LTV) and debt to income (DTI) constraints tend to be relaxed when
mortgage spreads increase, the percentage of banks tightening credit standards tends to increase
with credit card and C&I spreads. Third, the pass-through of bank shocks resulting from changes
in asset prices or regulation and monetary policy to various borrowers di�ers across markets.
Mortgage sizes grew for both high-risk and low-risk borrowers in the 2000s, but then fell deeply
and persistently for high-risk ones despite similar changes in interest rates. In contrast, credit
card expansions and contractions tend to be mostly transmitted to low-risk borrowers. Similarly,
C&I loan sizes are more volatile for low-risk �rms. Despite widespread interest in these mar-
kets taken in isolation, there is a limited understanding of what explains their di�erences and
commonalities.

We set up and solve a model of multidimensional loan contracting. We make three contri-
butions. Our �rst contribution is to jointly endogenize the price and non-price terms of loan
contracts. While common in the data, they have been studied separately in theoretical settings
so far: either in stylized economies with endogenous credit rationing but �xed loan rates (e.g.,
Stiglitz and Weiss 1981); or in Walrasian economies where rates adjust to clear credit markets
but borrowing constraints are exogenous (e.g., Holmstrom and Tirole 1997).1 In our model, re-
alistic price and non-price terms of loans are the optimal outcomes of a contracting problem
between heterogeneous borrowers and banks. Banks compete for borrowers subject to capacity
constraints on lending. Therefore their balance sheets a�ect loan prices in a way similar to inter-
mediary asset pricing. We add two features which distinguish loan markets from generic asset
markets (such as stock markets). First, asset payo�s are endogenous to asset prices. Interest rates
a�ect default probabilities and losses given default because of microeconomic frictions which in-
duce borrowers to default when the loan repayment value is too high – our model accommodates
moral hazard, adverse selection, and a “double trigger” default motive. The interest rate elastic-
ity of borrowers’ repayment probability 𝜖1−𝜇 captures this channel. Second, we depart from a
Walrasian framework where the loan repayment value is linear in a single interest rate clearing
credit markets. Instead, banks can o�er non-linear and multidimensional contracts with quan-
tity limits and other non-price terms which capture lender screening and monitoring. Non-price

1Borrowing constraints and their variations play a crucial role for household, �rm, and asset prices dynamics
in most of the recent macro-�nance literature. However, they are usually assumed to be exogenous, leaving unclear
the ultimate drivers of these �uctuations. Examples include Bernanke et al. (1999), Jermann and Quadrini (2012),
Favilukis et al. (2017), and Guerrieri and Lorenzoni (2017).
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terms arise from the feedback between loan prices and loan payo�s for banks. Quantity limits
and screening or monitoring allow banks to manage borrowers’ default risk while holding rates
�xed. The interest rate on a given loan compensates banks for their cost of funds (risk-free rate),
the borrower credit risk (credit risk premium), and their capacity constraint tightness (excess loan
premium). This problem generates a multidimensional contract curve, which relates both bor-
rower and lender characteristics to loan terms in a similar way to reduced-form credit surfaces
which focus on borrowers (e.g., Geanakoplos 2010). The contract curve provides a comprehensive
measure of credit tightness based on all the terms of loan contracts. It is described by its interest
rate elasticity 𝜖ℓ , which captures how demand changes in response to rates when borrowers are
endogenously constrained by multiple loan terms. In turn, 𝜖ℓ depends on two objects. The �rst
is the unconstrained interest rate elasticity of loan demand 𝜖𝑢ℓ when borrowers borrow as much
as they want at the going interest rate, which depends on preferences and technology. The sec-
ond is the elasticity of borrowers’ repayment probability 𝜖1−𝜇 , which determines whether banks
adjust interest rates or non-price terms to control borrowers’ default probability and depends on
preferences, technology, and microeconomic frictions.

We use our framework to understand how shocks to banks’ lending capacity and cost of funds
a�ect the price and non-price terms of loan in equilibrium. When banks’ balance sheets deterio-
rate, they trade o� tightening the various terms. Our second contribution is a set of pass-through
formulas which highlight the role of the interest rate elasticities of borrowers’ loan demand and
repayment probabilities, 𝜖ℓ and 𝜖1−𝜇 , as two su�cient statistics which determine how bank shocks
are transmitted to the cross-section of loan terms. Our approach has the bene�t of relying on two
objects which are identi�ed in borrower- and loan-level data.

We begin by studying the impact of credit supply shocks, modeled as changes in banks’ lend-
ing capacity. Our results explain why credit contractions and expansions a�ect safe and risky
borrowers di�erently and through various loan terms across markets (e.g., credit cards vs. mort-
gages). The higher the elasticity of borrowers’ loan demands 𝜖ℓ on a given market, the more their
loan sizes vary in response to a given interest rate change. Positive credit supply shocks lower in-
terest rates across markets, but markets with more elastic borrowers see larger increases in sizes
and smaller decreases in rates. As a result, loan repayment values increase (decreases) in markets
with more (less) elastic borrowers. The repayment elasticity 𝜖1−𝜇 determines how credit risk re-
acts to these changes. On more (less) elastic markets, the increase (decrease) in loan repayment
values generates a small increase (decrease) in credit risk for safe borrowers, but a large increase
(decrease) for risky ones. To maximize their total pro�ts, banks adjust loan terms to equate the
returns from lending to safe and risky borrowers – if it were not the case, they could increase
their total pro�ts by lending more to borrowers with a higher return. This leads them to lending
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more to safe borrowers on markets with more elastic borrowers (e.g., credit cards), and more to
risky borrowers on markets with less elastic borrowers (e.g., mortgages).2

We next study how shocks to banks’ cost of funds which arise from monetary policy shocks
transmit to the cross-section of loan terms. Our results explain why the transmission of mon-
etary policy is weakened when bank balance sheets are impaired, and why the strength of the
bank lending channel is heterogeneous across loan markets. The pass-through of the policy rate
to loan rates and sizes depends on the elasticity 𝜖ℓ and on banks’ lending capacity. Unconstrained
banks transmit changes in the policy rate more than one-for-one to low-elasticity borrowers (e.g.,
mortgages), but this transmission is dampened for higher-elasticity ones, resulting in stickier
rates (e.g., credit cards). When banks are capacity-constrained but lending capacity is not sen-
sitive to the policy rate, the transmission of monetary policy is further dampened. This feature
tends to insulate borrowers from the negative e�ects on credit supply of a policy rate hike, but
also from the positive e�ects of a rate cut.

We explore the implications for the credit risk of the entire portfolio of bank loans. A mon-
etary policy shock has two e�ects. First, a change in both price and non-price terms within a
given pool of borrowers; second, a reallocation of bank loans towards speci�c borrowers. We
�nd that policy rate cuts tend to increase the credit risk of borrowers with a high loan demand
elasticity 𝜖ℓ and to decrease it for others. If high-elasticity borrowers are also riskier (high 𝜖1−𝜇),
then policy rate cuts increase credit risk for the entire portfolio of bank loans. We also show how
a low policy rate environment gives rise to covenant-lite lending for low elasticity borrowers but
to tighter covenants for high elasticity ones, a novel �nding in line with the data.

We conclude by showing that the two elasticities 𝜖ℓ and 𝜖1−𝜇 also drive the dynamics of bank-
ing and credit supply crises. We build a dynamic version of the model where bank shocks and
borrower credit risk a�ect loan spreads which feed back into bank capital, which a�ects the
tightness of lending capacity constraints over time. Our third contribution is to show that the
adjustment of non-price terms in response to bank shocks increase the persistence of �nancial
crises – a �ndingwhich speaks to the post-2008 experience. Negative bank shocks result in higher
spreads and tighter non-price terms. The more they are tightened, the less spreads need to in-
crease to control credit risk. The lesser increase in spreads in turn lowers excess returns earned
by constrained banks. It slows down their recapitalization and makes the credit crunch more
persistent.

We illustrate the quantitative implications of our results in a version of the model calibrated
to the post-2008 U.S. mortgage market. The model matches empirical estimates for 𝜖ℓ and 𝜖1−𝜇 .

2Estimates for the interest rate elasticity of mortgage debt tend to be lower than one and range between 0.07 and
0.5 (e.g., Best et al. 2019, Fuster and Zafar 2021, Benetton 2021), with the exception of DeFusco and Paciorek (2017).
In contrast, estimates for the elasticity of credit card debt tend to be greater than one (e.g., Gross and Souleles 2002
estimate an elasticity of 1.3).
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In response to a contraction in bank lending capacity, the excess loan premium on mortgages
increases, re�ecting the tightness of banks’ constraints. Loan sizes fall and mortgage spreads
increase for all households, lowering LTV ratios. As in the data, the responses of loan terms
di�er across borrowers. Loan size falls twice more for borrowers with high 𝜖ℓ and 𝜖1−𝜇 while
their mortgage spread increases by less. As a result, credit risk falls sharply for high-elasticity
borrowers and increases for low-elasticity ones. Two complementary policies partly mitigate the
credit crunch. First, direct household debt relief reduces default risk by making them e�ectively
richer, and allows relatively more borrowing during the credit crunch, mitigating the decrease
in LTV ratios. Second, a recapitalization of banks relaxes their lending capacity constraint, and
achieves similar results by increasing the total volume of credit available.

Related literature Our results contribute to the microeconomic literature on credit markets
and to the macro-�nance literature on the dynamics of credit crises.

First, our model helps explain the transmission mechanism from losses in banks’ portfolios
to reductions in credit documented in empirical analyses (e.g., Peek and Rosengren 1997, Mur�n
2012, Chodorow-Reich 2014, Huber 2018, Greenstone et al. 2020). Reductions in new credit take
the form of tighter lending standards and higher loan spreads. We endogenize thismechanism and
study its implications. Our model explains why banks use non-price terms to control the volume
of credit for a given rate, such as debt covenants for �rms (Chodorow-Reich and Falato 2021)
and credit card limits for households (Agarwal et al. 2018). It generates heterogeneous responses
of loan terms in the cross-section of borrowers and credit markets, as in the data when banks’
balance sheets change (Khwaja and Mian 2008, Chakraborty et al. 2018, Ivashina et al. 2020) and
when their cost of fund changes because of monetary policy (Jimenez et al. 2012, Chakraborty
et al. 2020) or access to external �nance (Paravisini 2008, Ivashina and Scharfstein 2010). We
trace these di�erences back to two su�cient statistics with well-identi�ed empirical estimates:
the interest rate elasticities of borrowers’ loan demand and repayment probability. Estimates
for these elasticities come from survey data (Fuster and Zafar 2021), regression discontinuity
analyses (Best et al. 2019, Fuster and Willen 2017), and structural models (Buchak et al. 2020,
Benetton 2021, Robles-Garcia 2020). We show how they depend on structural parameters in our
model which a�ect borrowers’ loan demand and default. Their variation across markets may
arise from moral hazard, adverse selection, or borrowers’ liquidity constraints (Adams, Einav
and Levin 2009, Einav, Jenkins and Levin 2012).

Second, we add to canonical macro-�nance models by introducing multidimensional credit
contracts with both price and non-price terms. We build on the theoretical literature on credit
rationing (Stiglitz and Weiss 1981, Ja�ee and Russell 1976) surveyed in Ja�ee and Stiglitz (1990),
and focus on rationing at the intensive margin: risky borrowers face tighter non-price terms
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rather than being excluded from credit markets. Our analysis complements models of the credit
surface (e.g., Geanakoplos 2010) where an increase in borrower credit risk in bad times leads more
pessimistic lenders to requiring more collateral, and heterogeneous household models where the
price of unsecured consumer loans depends on borrower characteristics (e.g., Chatterjee et al.
2007, Livshits et al. 2007). We show how lenders’ �nancial conditions also a�ect the terms of
lending, as in recent work by Diamond and Landvoigt (2021). We extend the intermediary asset
pricing framework (He and Krishnamurthy 2013, Brunnermeier and Sannikov 2014) to credit
markets by modeling the joint e�ect of banks’ capacity constraints and borrower default risk
on interest rates, quantity limits, and other non-price terms of loans. Endogenizing these terms
generates the excess bond premium found in the data (Gilchrist and Zakrajsek 2012). It also
generates a new transmission mechanism of shocks as non-price adjustments a�ect the dynamics
of credit crises. As in canonical macro-�nance models (e.g., Gertler and Kiyotaki 2010, Rampini
and Viswanathan 2019), credit crises occur when banks’ net worth falls. However, bank losses
need not generate a sharp increase in spreads which would quickly recapitalize banks and make
the credit crunch short-lived. Instead, the endogenous tightening of non-price terms by banks
results in spreads increasing by less, which slows down banks’ recapitalization and makes the
credit crisis more persistent. This �nding helps explain the persistence of the post-2008 U.S.
mortgage crisis (e.g., Justiniano et al. 2019).

The rest of the paper is organized as follows. Section 2 documents stylized facts on het-
erogeneity in loan terms. Section 3 describes our model of multidimensional loan contracting
and the credit market equilibrium. Section 4 studies the transmission of credit supply shocks
and monetary policy shocks to the cross-section of loan terms. Section 5 analyzes the dynamics
of credit crises, which depends on the interaction between the cross-section of loan terms and
banks’ balance sheets. We illustrate our �ndings in a version of the model calibrated to the U.S.
mortgage market, where we compare the e�ectiveness of debt relief and bank recapitalization
policies. Section 6 concludes.

2 Evidence on Heterogeneity in Loan Terms

This section documents motivating facts on heterogeneity in loan terms and the pass-through of
shocks for the main classes of bank loans: mortgages, credit cards, and C&I loans.

Data sources. We combine data on bank losses and the volume and characteristics of mortage,
credit card, and commercial and industrial (C&I) loans.

Data on charge-o� rates comes from the Consolidated Reports of Condition and Income of
the Federal Financial Institutions Examination Council at the U.S. Federal Reserve Board.
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For mortgages, data on loan sizes, loan rates, and maximum LTV and DTI ratios comes from
Fannie Mae and Freddie Mac. For credit cards and C&I loans, data on the net percentage of banks
tightening lending standards and spreads comes from the Senior Loan O�cer Opinion Survey
(SLOOS) of the U.S. Federal Reserve Board.

2.1 Bank Health and Loan Growth

The more losses on their assets banks make, the less they lend. The upper panel of Appendix
Figure 12 plots year-to-year percentage changes in the quantity of mortgage (solid line, left axis)
and the associated charge-o� rates by banks (dashed line, right axis). There is a strongly negative
relationship at the aggregate level between loan growth and bank charge-o� rates. As the upper
panels of Appendix Figures 13 and 14 show, this relationship holds for credit card and C&I loans
too.

2.2 Interest Rates and Non-Price Terms

Interest rates and non-price terms act as substitute channels through which mortgage expansions
and contractions take place, but as complement channels for credit card and C&I loans. The lower
panel of Appendix Figure 12 plots the maximum LTV ratios on mortgages issued by banks (blue
line, left axis), which re�ects the looseness of borrowing constraints, and the associated interest
rate spread over the Federal Funds Rate (red line, right axis). The lower panels of Appendix Fig-
ures 13 and 14 respectively plot the net percentages of banks tightening credit standards on credit
card and C&I loans (blue line, left axis), which re�ects the tightness of borrowing constraints, and
the associated interest rate spreads (red line, right axis). While LTV constraints tend to decrease
in lockstep with mortgage spreads, the percentage of banks tightening credit standards tends to
increase with credit card and C&I spreads.

2.3 Pass-Through of Bank Shocks

The pass-through of bank shocks resulting from changes in asset prices or monetary policy to
various borrower types di�ers across markets. The upper left panel of Appendix Figure 15 plots
the average loan sizes in dollars of high-FICO score, low-risk mortgage borrowers (blue line) and
low-FICO score, high-risk mortgage borrowers (red line). The upper right panel plots the associ-
ated loan rates, the lower left panel the associated maximumDTI ratios, and the lower right panel
the associated maximum LTV ratios. Mortgage sizes grew quickly for both high-risk and low-risk
borrowers in the 2000s, but fell more deeply and persistently for high-risk ones despite similar
interest rate changes. This �nding is consistent with narratives of the Great Recession which
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attribute a prominent role to the relaxation and subsequent tightening of mortgage standards to
subprime, high-risk borrowers (Mian and Su� 2009, Justiniano et al. 2019).

In contrast, credit card expansions and contractions tend to be mostly transmitted to low-
risk borrowers. Appendix Figure 16, from Agarwal et al. 2018, plots changes in borrower credit
card limits by FICO score bins in response to a decrease in banks’ cost of funds. It shows that
credit supply expansions are mostly transmitted to low-risk borrowers. High-risk consumers
with a higher marginal propensity to borrow do not face large changes in these limits. Comparing
Appendix Figure 12 and Appendix Figure 13 also suggests that interest rates on credit cards are
stickier than on mortgages, and therefore that credit card expansions and contractions mostly
happen through changes in credit limits.

Finally, Appendix Figure 17 plots the average sizes in dollars of C&I loans (blue line, left axis)
and the corresponding interest rates (red line, right axis), for low-risk �rms in the left panel and
high-risk �rms in the right panel. Similar to credit cards, C&I loan sizes are more volatile for
low-risk borrowers, despite similar changes in interest rates across risk categories. This �nding
is consistent with a recent literature which suggests that much of the adjustment in the volume
of corporate loans happens through non-price terms. For instance, covenants are stricter after
banks su�er defaults (Mur�n, 2012), while easy liquidity spurs covenant-lite lending (Diamond,
Hu and Rajan, 2020).

3 A Model of Multidimensional Loan Contracting

This section presents a general model of multidimensional loan contracting with �nancial fric-
tions a�ecting lenders. We add two features to the intermediary asset pricing framework. First,
a distinctive feature of credit markets is that asset prices, i.e., loan interest rates, a�ect default
probabilities and losses given default. Thus asset payo�s are endogenous to asset prices. Sec-
ond, we depart from the standard Walrasian framework in that endogenous credit risk makes it
optimal for banks to impose quantity limits to borrowers, i.e. to o�er non-linear contracts.

3.1 Environment

We consider a unit continuum of identical lenders indexed by 𝑏, “banks”, and a unit mass of
heterogeneous borrowers indexed by 𝑖 .

Banks. Banks have a funding cost 𝑅 𝑓 . The expected pro�t on a loan contract to borrower 𝑖 ,
which consists of an interest rate 𝑅𝑖 (price term), a loan amount 𝑙𝑖 (quantity limit), and a vector
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of non-price terms z𝑖 =
(
𝑧𝑖
𝑘

)
𝑘
, is

𝜋 𝑖
(
𝑅𝑖, 𝑙𝑖, z𝑖

)
=

(
𝑅𝑖 − 𝑅 𝑓

)
𝑙𝑖 − 𝜆𝑖

(
𝑅𝑖𝑙𝑖, z𝑖

)
− 𝑐 (𝑧𝑖) . (1)

Absent default, bank pro�ts would be
(
𝑅𝑖 − 𝑅 𝑓

)
𝑙𝑖 . 𝜆𝑖 captures the expected loss, and can be

thought of as a put option in the Merton model (Merton 1974). In most settings, 𝑅 and 𝑙 only
a�ect the expected loss through face value of the debt 𝑅𝑙 , as is implicit in (1). We discuss below
in which cases 𝑅 and 𝑙 matter independently and how to extend our framework to this case.
𝑐 (𝑧𝑖) is the cost of control for lenders due to monitoring and screening e�orts when borrowers
can default. 𝑐 (·) is an increasing and convex function of the non-price terms 𝑧𝑖 ≥ 0 such that
𝑐 (0) = 0.

The bene�t of this reduced-form formulation is to nest rich environments with ex-ante or
ex-post asymmetric information which makes the expected loss endogenous to the terms of the
contract through the default probability, the loss given default, or both. The particular setting de-
termines how to measure the dependence of 𝜆 in 𝑅𝑙 . In Appendix B, we detail several examples to
show how to map microeconomic frictions to 𝜆: strategic default, liquidity default, collateralized
loans, and adverse selection.

Our results derive from the fact that we can always write an isomorphic model with zero
recovery rate and an “e�ective default probability” 𝜇 de�ned as

De�nition 1. 𝜇𝑖 (𝑅𝑙, z) = 𝜆𝑖 (𝑅𝑙,z)
𝑅𝑙

is the e�ective default probability.

Expected pro�t can then be written as 𝜋 =
[
𝑅
(
1 − 𝜇𝑖

)
− 𝑅 𝑓

]
𝑙 . With a positive recovery rate,

𝜇 will be higher than the actual default probability. We work with 𝜇 as a primitive, and de�ne the
elasticity of the repayment rate, one of the two su�cient statistics from which our results derive.

De�nition 2. The elasticity of the loan repayment probability 1 − 𝜇 to its face value 𝑅𝑙 is

𝜖1−𝜇 (𝑅𝑙, 𝑧) =
𝑅𝑙𝜇′ (𝑅𝑙, 𝑧)
1 − 𝜇 (𝑅𝑙, 𝑧)

We make the following assumption.

Assumption 1. The elasticity of the repayment probability satis�es 0 ≤ 𝜖1−𝜇 < 1 everywhere.

Assumption 1 ensures that the zero pro�t curve 𝜋 (𝑅, 𝑙, 𝑧) = 0, or more generally iso-return
curves (de�ned as constant 𝜋 (𝑅,𝑙,𝑧)

𝑙
), are always upward sloping, since they have a slope 𝑑𝑅/𝑅

𝑑𝑙/𝑙 =
𝜖1−𝜇

1−𝜖1−𝜇 . Therefore we rule out standard credit rationing of the type studied by Williamson (1987),
which takes placewhen borrowers’ loan demand curve is always above lenders’ backward-bending
supply curve. Since the implications of this “pure credit rationing” are well-known, we restrict
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our attention to settings where borrowers have access to credit, albeit at a smaller scale than they
would like, because banks use binding non-price terms to limit their credit risk.

To study the propagation of credit supply shocks, we study banks with a capacity constraint
on lending ∫

𝜌𝑖𝑙𝑖𝑑𝑖 ≤ 𝐿 (2)

where 𝑙𝑖 is the dollar amount lent to borrower 𝑖 and 𝜌𝑖 ∈ [0, 1] is a risk-weight that measures
how much balance sheet space a loan to borrower 𝑖 requires. Heterogeneity in 𝜌 can arise from
regulatory risk weights. It can also arise from banks’ ability to securitize a given loan and take it
o� their balance sheets. An example is conforming mortgages with a low weight 𝜌 , versus non-
conforming mortgages with a high weight 𝜌 , which can further depend on liquidity conditions
in the private label securitization market.

Constraint (2) can arise from regulatory constraints (e.g., Basel regulation) or market-based
constraints imposed by bank creditors due to informational issues such as those a�ecting the
bank-borrower relationship. A large literature (e.g., Holmstrom and Tirole 1997, Gertler and
Kiyotaki 2010) provides microfoundations for the moral hazard or limited commitment problems
that lead banks themselves to be credit constrained. Our focus is on the transmission of such a
constraint on bank lending to di�erent types of borrowers through the multiple terms of loans.

Borrowers. Borrowers are characterized by their indirect utility over loan contracts𝑉 𝑖 (𝑙, 𝑅, 𝑧).
We make the following standard assumption:

Assumption 2. For each 𝑖 , 𝑉 𝑖
𝑅
< 0, and the marginal utility of additional borrowing is lower at

higher interest rates: 𝑉 𝑖
𝑙𝑅

< 0.

Assumption 2 holds in most settings, such as those described in Appendix B. The second part
of the assumption implies that the unconstrained loan demand curve, de�ned as the solution 𝑙 to
𝑉 𝑖
𝑙
(𝑙, 𝑅, 𝑧) = 0, is decreasing in the interest rate 𝑅.
The second su�cient statistics from which our results derive, the interest rate elasticity of

borrowers’ loan demand in the constrained problem, depends on the unconstrained elasticity of
loan demand. We de�ne the latter as follows.

De�nition 3. The elasticity of the unconstrained loan demand to the interest rate 𝑅 is

𝜖𝑢ℓ = −𝑅
𝑙

𝑑𝑙

𝑑𝑅

���
𝑉𝑙=0

Finally, tighter non-price terms 𝑧𝑖 ≥ 0 leading borrowers to renouncing control is costly for
them, i.e. 𝑉 𝑖

𝑧 ≤ 0.
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3.2 Equilibrium: Bertrand-Nash with Capacity Constraints

Banks are perfectly competitive and subject to capacity constraints on lending. Banks post con-
tracts C𝑖 =

(
𝑙𝑖, 𝑅𝑖, 𝑧𝑖

)
with commitment, and borrowers optimally choose which bank they apply

to. We assume exclusive contracts, i.e. borrowers cannot borrow from multiple banks. A bank
with lending capacity 𝐿 choose contracts and a number 𝑥𝑖

𝑏
of loans to borrowers 𝑖 to solve

max
{𝑥𝑖 ,𝑅𝑖 ,𝑙𝑖 ,z𝑖 }

∫
𝑥𝑖𝜋 𝑖

(
𝑙𝑖, 𝑅𝑖, z𝑖

)
𝑑𝑖

s.t.
∫

𝑥𝑖𝜌𝑖𝑙𝑖𝑑𝑖 ≤ 𝐿

𝑉 𝑖
(
𝑙𝑖, 𝑅𝑖, z𝑖

)
≥ 𝑉

𝑖

where 𝜋 𝑖
(
𝑙𝑖, 𝑅𝑖, z𝑖

)
is the pro�t per loan and banks are subject to a participation constraint from

borrowers.

De�nition 4. An equilibrium is an optimal strategy 𝑖 ↦→
{
𝑥𝑖
𝑏
, C𝑖

𝑏

}
for each bank such that borrowers

optimize:
𝑉
𝑖
= max

𝑏 ′
𝑉 𝑖

(
C𝑖
𝑏 ′
)

and markets clear:
1 =

∫
argmax𝑏′ 𝑉 𝑖

(
C𝑖
𝑏′
) 𝑥𝑖𝑏𝑑𝑏.

With symmetric banks, we focus on symmetric equilibria such that all banks o�er the same
contract and choose 𝑥𝑖 = 1 for all borrowers.

Proposition 1. In a symmetric equilibrium,

i. 𝑙𝑖 , 𝑅𝑖 , and 𝑧𝑖 satisfy for each 𝑖

𝜏𝑖
(
𝑙𝑖, 𝑅𝑖, z𝑖

)
=

𝜖𝑖1−𝜇
(
𝑅𝑖𝑙𝑖, z𝑖

)
1 − 𝜖𝑖1−𝜇 (𝑅𝑖𝑙𝑖, z𝑖)

(3)

where 𝜏𝑖 (𝑙, 𝑅, z) = − 𝑙𝑉 𝑖
𝑙
(𝑙,𝑅,z)

𝑅𝑉 𝑖
𝑅
(𝑙,𝑅,z) .

ii. Banks make the same pro�t per risk-weighted dollar for each borrower, i.e.,

𝜋 𝑖
(
𝑙𝑖, 𝑅𝑖, z𝑖

)
𝜌𝑖𝑙𝑖

=
𝜋 𝑗

(
𝑙 𝑗 , 𝑅 𝑗 , z 𝑗

)
𝜌 𝑗𝑙 𝑗

≡ 𝜈 (4)
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iii. The marginal cost of tightening non-price terms for banks is weakly lower than their marginal
bene�t, i.e.,

𝜕𝑐

𝜕𝑧𝑘

(
z𝑖
)
= −𝑅𝑖𝑙𝑖 𝜕𝜇

𝑖

𝜕𝑧𝑘
−
𝑉 𝑖
𝑧𝑘

𝑉 𝑖
𝑅

𝑙𝑖
(
1 − 𝜇𝑖

) (
1 − 𝜖𝑖1−𝜇

)
(5)

Proof. See Appendix C.1. �

We show below that 𝜏 can be interpreted as an intertemporal wedge measuring how con-
strained borrowers are. If 𝜏𝑖 = 0, then borrowers 𝑖 are on their unconstrained demand curve
𝑉 𝑖
𝑙
= 0.
Part (i) of Proposition 1 states that banks will optimally constrain borrowers according to the

elasticity of their repayment rate to debt 𝜖1−𝜇 . The riskier borrowers are, i.e. the more likely they
are to default when the face value of their debt increases, the more banks will restrict the size of
their loans for a given interest rate.

Part (ii) describes the optimal capital allocation across di�erent classes of borrowers. Banks
use both price (𝑅) and non-price terms (𝑙 and 𝑧) to equalize the pro�t per risk-weighted dollar 𝜈
across borrowers. If it were not the case, banks could increse pro�ts by lendingmore to borrowers
with a higher pro�t per dollar.

Part (iii) describes how banks set non-price terms 𝑧. If borrowers have no preferences over 𝑧,
i.e., 𝑉 𝑖

𝑧 = 0, then banks equalize the marginal cost of non-price terms to their marginal bene�t.
This de�nes an optimal tightness 𝑧𝑖 , where 𝑅𝑖 and 𝑙𝑖 are endogenously determined by (3) and (4).
In general, non-price terms are costly for borrowers due to for instance a loss of control rights
(𝑉 𝑖

𝑧 < 0); this lowers the marginal bene�t from tightening 𝑧 because banks need to keep attracting
borrowers, hence banks optimally relax non-price terms to 𝑧𝑖 < 𝑧𝑖 .

Unconstrained vs. constrained banks. For each 𝑖 and taking z𝑖 as given for now, the un-
constrained loan quantity 𝑙𝑖,

∗ is de�ned as solving (3) together with the zero-pro�t conditions
𝜋 𝑖

(
𝑙𝑖, 𝑅𝑖, z𝑖

)
= 0. Banks are said to be unconstrained if given unconstrained loan quantities

{
𝑙𝑖

∗},
their constraint (2) is satis�ed, that is ∫

𝜌𝑖𝑙𝑖
∗ ≤ 𝐿.

Otherwise, banks are constrained, and must make a positive pro�t per dollar 𝜈 > 0.

3.3 Implications

Our framework has three implications which a�ect the pass-through of credit supply and mon-
etary shocks in the cross-section of borrowers. To illustrate them, we assume that borrower
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income is i.i.d. and follows a Pareto distribution with shape parameter 𝛼 , where a higher value
corresponds to a riskier distribution of income. The cumulative distribution function of income
𝑦 is 𝐹𝑦 (𝑦) = 1 − (𝑦𝑚𝑖𝑛

𝑦
)𝛼 if 𝑦𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥 and 𝐹𝑦 (𝑦) = 0 if 𝑦 < 𝑦𝑚𝑖𝑛 or 𝑦 > 𝑦𝑚𝑎𝑥 , where

𝛼,𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 > 0. The remainder of the paper presents our results for a generic income process
that satis�es our main assumptions, but for simplicity we maintain the assumption of Pareto
income risk in all examples and �gures.

Excess loan premium. To �rst-order, equilibrium interest rates satisfy

log𝑅𝑖 = log
(
𝑅 𝑓 + 𝜌𝑖𝜈

)
− log (1 − 𝜇𝑖)

⇔ 𝑟 𝑖 ≈ 𝑟 𝑓 + 𝜇𝑖 + 𝜌𝑖𝜈

Suppose for simplicity that 𝜌𝑖 = 1 for all 𝑖 . Then interest rates net of the common premium 𝑟 𝑖 −𝜈

are actuarially fair. Importantly, this can only be achieved thanks to the endogenous non-price
terms 𝑙𝑖 , which give banks another instrument to control credit (repayment) risk and thereby
o�set the common increase in interest rates that arises from credit supply shocks or monetary
shocks. Banks optimally tighten 𝑙𝑖 by more for riskier borrowers 𝑖 , as measured by their repay-
ment elasticity 𝜖𝑖1−𝜇 .

When do banks constrain borrowers? Equation (3) implies that banks only impose a binding
borrowing constraint when credit risk is endogenous:

Corollary 1. Suppose that 𝜇𝑖 is independent of C𝑖 . Then borrower 𝑖’s allocation can be implemented
with a price-posting mechanism where banks only quote an interest rate 𝑅𝑖 and borrowers borrow as
much as they want given 𝑅𝑖 .

In the constant 𝜇 case, a credit supply shock translates into a higher rate, as in other asset
markets. It is enough for banks to charge a higher rate to compensate for higher default risk.
Menus of loan contracts or non-price terms like covenants, two empirical features of credit mar-
kets, are not needed for banks to allocate the supply of credit. Loans can still have time-varying
risk through changes in the e�ective default probability 𝜇 (similar to equity with risky dividends).
But there is no feedback loop between asset prices and asset payo�s. Such feedback is absent from
most asset markets but it is a central feature of credit markets.

Interest rates do not fully capture credit conditions. In particular, the measured equilib-
rium loan rate is a non-monotonic function of the borrower’s income risk. Riskier borrowers
may be charged a lower interest rate and still be more credit-constrained than safer borrowers,
because banks tighten their quantity limits by more. On Figure 1, the black curve depicts the
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contractual rate charged to borrowers by banks, the red curve depicts the shadow rate, which
accounts for the credit rationing wedge. The contractual rate is increasing for low risk levels,
and then becomes decreasing at the point where an increase in the rate would decrease bank’s
expected pro�ts (because it would increase the borrower’s default probability). At that point, the
associated loan size decreases more to compensate for the lesser increase, or decrease in the rate.
It translates into a shadow loan rate that is increasing in borrower’s risk, because it accounts for
the wedge 𝜏 . The wedge acts like a tax imposed by banks on borrowers, such that those borrow
less for a given rate.

0.0 0.2 0.4 0.6 0.8
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1.1
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4
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R (1 + τ)

Figure 1: Equilibrium interest rate as a function of borrower risk𝛼 , where𝛼 is the shape parameter
of a Pareto distribution (a higher 𝛼 corresponds to a riskier distribution). The black curve depicts
the contractual rate charged to borrowers by banks. The red curve depicts the shadow rate, which
accounts for the rationing wedge.

3.4 Properties of the Contract Curve ℓ

The main determinant of loan terms is the shape of the multidimensional loan contract curve
de�ned by (3). We show below that it helps explain the variation of loan terms in the cross-
section of borrowers and their response to bank shocks.

De�nition 5. The contract curve ℓ𝑖
(
𝑅𝑖, z𝑖

)
is the solution to (3).

De�nition 6. The interest rate elasticity of the contract curve is

𝜖ℓ = −𝑅
ℓ

𝑑ℓ

𝑑𝑅
,

where ℓ satis�es (3) and (4).

The elasticity of the contract curve ℓ𝑖 depends on the unconstrained loan demand elasticity
𝜖𝑢ℓ which re�ects borrower preferences 𝑉 𝑖 , and on the repayment elasticity 𝜖𝑖1−𝜇 which captures
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the strength of microeconomic frictions a�ecting repayment risk. The elasticity of ℓ can be de-
composed as shown in the following proposition (we omit the superscript 𝑖 for clarity).

Proposition 2. The interest rate elasticity of the contract curve can be decomposed as

𝜖ℓ =

−𝑅𝜏𝑅 +
𝑅𝑙𝜖 ′1−𝜇

(1−𝜖1−𝜇)2

−𝑙𝜏𝑙 +
𝑅𝑙𝜖 ′1−𝜇

(1−𝜖1−𝜇)2
(6)

If 𝜖′1−𝜇 > 0 then

𝜖ℓ >
𝑅𝜏𝑅

𝑙𝜏𝑙
⇔ 𝑅𝜏𝑅

𝑙𝜏𝑙
< 1

Hence if 𝜏𝑅
𝜏𝑙

= 𝑙
𝑅
then 𝜖ℓ = 1 and the equilibrium e�ective default probability 𝜇 is constant.

Proof. See Appendix C.1.
�

In response to a small deviation 𝑑𝑥 =
𝑅𝑙𝜖 ′1−𝜇

(1−𝜖1−𝜇)2 , 𝜖ℓ varies according to

𝑑

𝑑𝑥

(
−𝑅𝜏𝑅 + 𝑥

−𝑙𝜏𝑙 + 𝑥

)
=

𝑅𝜏𝑅 − 𝑙𝜏𝑙

(𝑙𝜏𝑙 + 𝑥)2

All else equal, an increase in
𝑅𝑙𝜖 ′1−𝜇

(1−𝜖1−𝜇)2 makes the contract curve more elastic than the uncon-

strained demand if the unconstrained elasticity 𝑅𝜏𝑅
𝑙𝜏𝑙

is lower than 1. That is, the quantity limits of

riskier borrowers (with high
𝑅𝑙𝜖 ′1−𝜇

(1−𝜖1−𝜇)2 ) vary more on loan markets where borrowers’ demand for

credit is less sensitive to changes in interest rates (𝑅𝜏𝑅
𝑙𝜏𝑙

< 1).
The intuition for this result is as follows. Suppose that banks did not impose binding borrow-

ing constraints. Then, for a given reduction in loan size 𝑙 (e.g. due to a negative credit supply
shock or a monetary contraction), the interest rate faced by less elastic borrowers would have to
increase by more than one-for-one to induce them to reduce their loan demand. This would result
in an increase in the total face value of the loan 𝑅𝑙 . Hence it would increase default risk 𝜇 and
lower bank’s expected pro�ts. Instead, the optimal response of banks when quantity limits are
endogenous, is to o�er a contract with a lower interest rate but with a binding borrowing con-
straint. Because the latter forces borrowers to adjust the loan quantity demanded, this eventually
translates into a more elastic contract curve.

Conversely, an increase in
𝑅𝑙𝜖 ′1−𝜇

(1−𝜖1−𝜇)2 makes the contract curve less elastic if the unconstrained

elasticity 𝑅𝜏𝑅
𝑙𝜏𝑙

is higher than 1. Hence a positive term
𝑅𝑙𝜖 ′1−𝜇

(1−𝜖1−𝜇)2 serves as an “elasticity dampener”,
bringing back �nal elasticities towards 1.
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Elasticity and default rate 𝜇. The elasticity of borrowers’ demand for credit to changes in
interest rates determines how changes in total loan volume a�ect the default risk borne by banks.
When credit supply 𝐿 falls, loan rates increase because of the higher excess loan premium 𝜈

associated with tighter capacity constraints for banks. However, despite the decrease in loan
volume, the resulting change in default risk 𝜇 if ambiguous. The higher loan rate 𝑅 leads to more
default holding loan size �xed, but the reduction in loan size also reduces the likelihood of default.
The balance between these two forces depends once again on the elasticity 𝜖ℓ , since

𝑑

𝑑𝐿
𝜇 (𝑅 (𝑙) 𝑙) = 𝑅𝜇′

(
1 − 1

𝜖ℓ

)
Thus a reduction in total lending due to a credit supply shock increases default risk 𝜇 if and only
if the elasticity 𝜖ℓ is below 1. Following our earlier discussion, this is the case if and only if the
unconstrained loan demand elasticity 𝑅𝜏𝑅

𝑙𝜏𝑙
is itself lower than 1.

Determinants of the contract curve elasticity 𝜖ℓ . Figure 2 studies the determinants of 𝜖ℓ in
our workhorse model. In particular, the model generates key features of mortgage data. First, the
contract curve elasticity increases in the elasticity of intertemporal substitution, but it increases
less for riskier borrower types (Best, Cloyne, Ilzetzki and Kleven 2019). Second, 𝜖ℓ increases in
borrowers’ cash-on-hand, and increases by less at higher levels. Third, 𝜖ℓ increases with borrower
income. These last two results are in line with Buchak, Matvos, Piskorski and Seru 2020, who
structurally estimate elasticities for di�erent groups of households.
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Figure 2: Sensitivity of the interest rate-elasticity of the contract curve curve to borrowers’ elas-
ticity of intertemporal substitution and initial endowment 𝑦0.

3.5 Interpretation: State-Dependent Credit Surface

Credit surfaces map loan sizes and borrower characteristics to equilibrium interest rates. They
can be estimated using loan- and borrower-level data in multiple settings, including household
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portfolio choice, mortgage pricing, and sovereign default. We now show that loan contracts with
multiple dimensions, including non-price terms, can be interpreted as a credit surface. Instead
of the traditional nonparametric estimations of credit surfaces, our settings relies on su�cient
statistics based on borrowers’ loan and repayment elasticities.

Borrowers are constrained at 𝑅 in that that they would like to borrow more at the prevailing
interest rate if

𝑉𝑙 (ℓ (𝑅) , 𝑅) > 0.

This may be the case even if ℓ (𝑅) = 𝐿∗, that is, lenders are unconstrained. Our equilibrium
condition (3) implies that borrowers are unconstrained only if 𝜖1−𝜇 (ℓ (𝑅) 𝑅) = 0. If𝑉 is separable,
𝑉 (𝑙, 𝑅) = 𝑢 (𝑙) −𝑤 (𝑅𝑙), then we can interpret the unconstrained condition 𝑉𝑙 = 0 as a standard
Euler equation

𝑢′ (𝑙)
𝑤 ′ (𝑅𝑙) = 𝑅

When borrowers are constrained, our equilibrium with endogenous borrowing constraints—
which arises from the optimal contract between banks and borrowers—can also be implemented
as a competitive equilibrium in which borrowers choose 𝑙 subject to a non-linear interest rate
schedule 𝑅

(
𝑙 |𝐿

)
, as in Livshits, MacGee and Tertilt 2007 and Chatterjee, Corbae, Nakajima and

Rios-Rull 2007. The collection of schedules faced by di�erent borrower types corresponds to
the credit surface described by Geanakoplos 2010. Bank lending capacity 𝐿 then acts as a credit
supply shifter of this surface.3

Given the function 𝑅
(
·|𝐿

)
associated with her type, a borrower solves

max
𝑙

𝑢 (𝑙) −𝑤
(
𝑅
(
𝑙 |𝐿

)
𝑙
)

hence

𝑢′ (𝑙)
𝑤 ′ (𝑅 (

𝑙 |𝐿
)
𝑙
) = 𝑅

(
𝑙 |𝐿

) [
1 +

𝑙𝑅′ (𝑙 |𝐿)
𝑅
(
𝑙 |𝐿

) ]
Combining with (3), the function 𝑅

(
𝑙 |𝐿

)
solves the di�erential equation (for each type)

𝑑 log𝑅
(
𝑙 |𝐿

)
𝑑 log 𝑙

=
𝜖1−𝜇

(
𝑙𝑅

(
𝑙 |𝐿

) )
1 − 𝜖1−𝜇

(
𝑙𝑅

(
𝑙 |𝐿

) ) (7)

Equivalently, 𝑅
(
𝑙 |𝐿

)
gives rise to the locus 𝑅 (1 − 𝜇 (𝑅𝑙)) = 𝑅 𝑓 + 𝜈

(
𝐿
)
where 𝜈

(
𝐿
)
is the excess

loan premium. Note that the function 𝑙 ↦→ 𝑅
(
𝑙 |𝐿

)
is conceptually di�erent from the contract

curve or inverse contract curve that we have described earlier, which is the equilibrium outcome
3We only make the dependence on 𝐿 explicit below, but other shocks can also shift the credit surface (e.g.,

changes in 𝑅 𝑓 and to the distribution of default risk).
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as we vary 𝐿 instead. To pin down the exact level of 𝑅
(
𝑙 |𝐿

)
, we use as boundary condition the

fact that 𝑅
(
𝑙 |𝐿

)
must go through the actual equilibrium contract

(
𝑅, 𝐿

)
.

The interest rate schedules capture the supply side of credit. Borrower preferences 𝑉 then
determine which contract pair is chosen. Figure 3 shows the interest rate schedules for two types
of households indexed by the Pareto parameter 𝛼 of their income process. 𝛼 determines the
repayment elasticity 𝜖1−𝜇 , with our measure of credit risk being increasing in 𝛼 . We �nd that a
shock to total lending capacity 𝐿 corresponding to an excess loan premium of 𝜈 = 5% shifts the
interest rate schedule upwards for both borrowers.
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Figure 3: Each borrower𝛼 faces an increasing interest rate schedule𝑅𝛼 (𝑙) (black lines). Borrowers
choose the point at which their indi�erence curve (blue lines) is tangent to the rate schedule. The
red line is the contract curve ℓ𝛼 (𝑅) obtained by varying total lending capacity 𝐿 or equivalently
the excess loan premium 𝜈 .

Example. In the case of a constant repayment elasticity 𝜖1−𝜇 , we can solve the di�erential
equation (7) in closed form:

𝑅 (𝑙) = 𝑅 ×
(
𝑙

𝐿

) 𝜖1−𝜇
1−𝜖1−𝜇

(8)

where 𝑅 is the equilibrium rate given lending capacity 𝐿, that is ℓ
(
𝑅
)
= 𝐿. With several borrower

types (e.g. indexed by their FICO score in the case of households, or by their credit rating in the
case of �rms), we obtain one curve (8) per borrower. These curves together give rise to a credit
surface as in Geanakoplos and Rappoport 2019.

The e�ect of various shocks on the credit surface is captured by the su�cient statistics
𝑅𝑖

ℓ𝑖 (𝑅𝑖)
𝜖𝑖1−𝜇

1−𝜖𝑖1−𝜇

𝑖
,
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where {𝑅𝑖}𝑖 are the equilibrium loan rates. In particular, a shock to total lending capacity 𝐿

induces a general upward shift in the credit surface. The interest rate schedules faced by both
more elastic borrowers (for whom 𝑅𝑖 is sticky while ℓ𝑖 (𝑅𝑖) drops) and less elastic ones (for whom
𝑅𝑖 jumps while ℓ𝑖 (𝑅𝑖) is less responsive) increase. However, the shift is heterogeneous across
types. Di�erences in 𝜖𝑖1−𝜇 determine which parts of the surface increase by more, according to
our formulas from section 4.

After analyzing the determinants of the cross-section of loan terms, we turn to their responses
to bank shocks. We start with credit supply shocks, then turn to monetary policy. The next two
sections analyze the steady state response of the cross-section of loan terms to these shocks, and
the last section studies the full dynamics of a multidimensional credit crisis.

4 Transmission of Shocks to Loan Terms

This section studies how credit supply shocks, which a�ect banks’ lending capacity, andmonetary
policy shocks, which a�ect banks’ funding costs, transmit to the cross-section of loan terms. We
start by focusing on two terms: loan rates and quantities, holding other non-price terms 𝑧 �xed.
In Section 4.3 we incorporate the endogenous response of other non-price terms 𝑧.

4.1 Credit Supply Shocks

There is important heterogeneity in the data in how di�erent borrowers are a�ected by credit
supply shocks on di�erent loan markets. In particular, in the credit card market credit supply
expansions bene�t low-risk (high FICO score) borrowers, but are not passed through to higher
risk borrowers who would be the ones with a higher propensity to borrow (Agarwal et al. 2018).
E�ects are more ambiguous in mortgage markets: the leading post-crisis narrative was that the
credit boom of the early 2000s mostly bene�tted subprime borrowers ((Mian and Su�, 2009)),
while there is also evidence that the bulk of new credit was directed towards households in the
top half of the income and wealth distribution (Adelino, Schoar and Severino 2016).

Our main result is a formula which governs how loan quantities and interest rates vary across
borrowers in response to a shock to bank lending capacity 𝐿.

De�nition 7. Let the risk-adjusted elasticity of loan demand be

𝜖𝑖ℓ =
𝜖𝑖ℓ(

1 − 𝜖𝑖1−𝜇

)
+ 𝜖𝑖

ℓ
𝜖𝑖1−𝜇

,

which lies between 1 and 𝜖𝑖ℓ .
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The next proposition shows that the risk-adjusted elasticity of loan demand governs the re-
sponses of loan terms to changes in bank lending capacity. This elasticity depends on two su�-
cient statistics, the repayment elasticity and the elasticity of loan demand.

Proposition 3. Denote the risk-weighted loan share of borrower 𝑖 as 𝜔𝑖 =
𝜌𝑖 ℓ𝑖 (𝑅𝑖)∑
𝜌𝑖 ℓ𝑖 (𝑅𝑖 ) .

A change in 𝐿 a�ect borrowers 𝑖’s loan quantities and rates as follows:

𝑑 log 𝑙𝑖

𝑑 log𝐿
=

𝜖𝑖ℓ
𝜌𝑖

𝑅𝑖 (1−𝜇𝑖 )∑
𝜔 𝑗𝜖

𝑗

ℓ

𝜌 𝑗

𝑅 𝑗 (1−𝜇 𝑗 )

≈
𝜖𝑖ℓ𝜌

𝑖∑
𝜔 𝑗𝜖

𝑗

ℓ
𝜌 𝑗

𝑑 log𝑅𝑖

𝑑 log𝐿
= − 1

𝜖𝑖
ℓ

× 𝑑 log 𝑙𝑖

𝑑 log𝐿
≈ − 1(

1 − 𝜖𝑖1−𝜇

)
+ 𝜖𝑖

ℓ
𝜖𝑖1−𝜇

× 𝜌𝑖∑
𝜔 𝑗𝜖

𝑗

ℓ
𝜌 𝑗

Proof. See Appendix C.1. �

Proposition 3 provides closed-form formulas for the endogenous contractual response across
the full spectrum of borrowers, in terms of simple su�cient statistics. The risk-adjusted elastic-
ities 𝜖𝑖ℓ can be constructed from contract curve elasticities 𝜖𝑖ℓ and repayment elasticities 𝜖𝑖1−𝜇 . 𝜖

𝑖
ℓ

are in turn obtained from 𝜖𝑖1−𝜇 and unconstrained loan demand elasticities 𝜖𝑢,𝑖
ℓ
, using equation

(6). All else equal, the pass-through to the loan quantity of borrower 𝑖 is high if the risk-weight
𝜌𝑖 or the elasticity 𝜖𝑖ℓ is high. However, there is an important asymmetry. Loan contracts with
low risk-weights are insulated from credit supply shocks on both the quantity margin 𝑑 log 𝑙𝑖

𝑑 log𝐿
and

interest rate margin 𝑑 log𝑅𝑖

𝑑 log𝐿
. On the other hand, while inelastic borrowers are also insulated on

the quantity margin, they can experience a sharp increase in their interest rate 𝑅𝑖 .

The e�ect of risk. A central question is whether interest rates rise more or less for riskier
borrowers in response to the shock. To illustrate our results, consider a simpli�ed economy with
two types 𝑎 and 𝑏, in equal mass, where type 𝑏 borrowers are riskier. Both types of borrowers
have the same preferences or technology, and only di�er in their risk. Then:

• In an elastic market, such as corporate loans, riskier borrowers are less elastic (1 < 𝜖𝑏ℓ < 𝜖𝑎ℓ ),
hence their loan quantity contracts by less and their loan rate rises by more in response to
an aggregate tightening Δ𝐿 < 0, as depicted in Figure 4.

• In an inelastic market, such as mortgages, riskier borrowers are more elastic (𝜖𝑎ℓ < 𝜖𝑏ℓ < 1),
hence their loan quantity contracts by more and their loan rate rises by less in response to
an aggregate tightening Δ𝐿 < 0, as depicted in Figure 5.
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Figure 4: Firms with high 𝛾 = 0.9, log-log scale. Left: safer borrowers (low 𝛼), right: riskier
borrowers (high 𝛼). The vertical red segment has length 𝜈 ≈ 7%: the bank equalizes 𝜈 across
types, which tells us how quantities and rates react for each type. Both types have the same
actual loan demand elasticity (the orange line with slope − (1 − 𝛾)) but the contract curve is less
elastic for riskier borrowers (1 < 𝜖𝑏ℓ < 𝜖𝑎ℓ ) hence credit contracts more for safer borrowers.
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Figure 5: Households with low EIS 𝜎 = 0.2, log-log scale. Left: safe borrowers (𝛼 = 0), right: risky
borrowers (high 𝛼). The vertical red segment has length 𝜈 ≈ 7%: the bank equalizes 𝜈 across
types, which tells us how quantities and rates react for each type. The contract curve is more
elastic for risky borrowers (𝜖𝑎ℓ < 𝜖𝑏ℓ < 1) hence credit contracts more for them.

4.2 Monetary Policy Shocks

This section studies the transmission ofmonetary policy shocks, which a�ect banks’ cost of funds,
to the cross-section of loan terms. The transmission of monetary policy is weakened when bank
balance sheets are impaired (e.g., Jimenez et al. 2012, Acharya et al. 2019). Furthermore, there is
signi�cant variation in the extent to which changes in the policy rate are passed through to bor-
rowers. In particular, interest rates on new loans are sticky for credit cards, but vary signi�cantly
over time for mortgages. In this section, we explain why the bank lending channel is borrower-
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and product-dependent. The transmission of policy rates to loan terms depends on borrowers’
elasticities of loan demand and repayment probability to loan rates. These elasticities depend on
borrower characteristics that a�ect credit risk, as we have shown in section 3.4. They depend
on loan types because di�erent borrowers select into di�erent loans, and because the features of
loans themselves a�ect the credit risk of a given borrower.

4.2.1 Pass-Through Formulas

The pass-through of shocks to banks’ funding cost 𝑅 𝑓 into loan rates and quantities for di�erent
borrowers depends on whether total bank lending capacity is binding or not.

Unconstrained banks. If banks’ loan supply 𝐿 is high enough (i.e. if it is larger than the
aggregate unconstrained loan demand 𝐿∗), then the interest rate pass-through works through
banks’ zero pro�t condition for each borrower 𝑅𝑖 (1 − 𝜇𝑖) = 𝑅 𝑓 . This is true even if banks exert
deposit market power. Total pass-through after accounting for changes in loan quantities is

𝑑 log𝑅𝑖
𝑑 log𝑅 𝑓

=
1

1 − 𝜖𝑖1−𝜇 + 𝜖𝑖1−𝜇𝜖
𝑖
ℓ

Pass-through to borrower type 𝑖 is imperfect – the risky loan rate 𝑅𝑖 increases less than one for
one with banks’ funding cost 𝑅 𝑓 – if and only if 𝜖𝑖1−𝜇

(
𝜖𝑖ℓ − 1

)
> 0. Therefore, pass-through can

be weak for some borrowers (with high elasticity 𝜖𝑖ℓ ) and strong for others.

Constrained banks. The reaction of credit markets depends on how lending capacity reacts
to monetary policy shocks, − 𝑑 log𝐿

𝑑 log𝑅 𝑓 . If 𝐿 does not react to 𝑅 𝑓 , then steady state loan rates and
quantities do not change and 𝑅 𝑓 only a�ects banks’ static pro�t per dollar. As we show in the
next section, there can still be a dynamic e�ect of monetary policy on 𝐿𝑡 . We interpret 𝐿 as
stemming from a �nancial constraint; then, monetary shocks a�ect 𝐿 in a way that depends on
the duration of equity. Another possibility is that 𝐿 is determined by banks’ market power on
deposits, together with constraints on wholesale funding. While our loan market is perfectly
competitive, we can interpret the “deposit channel of monetary policy” of Drechsler, Savov and
Schnabl 2017 as an e�ect of 𝑅 𝑓 on banks’ total loan supply 𝐿, inclusive of how banks use their
market power on deposits.

Therefore (assuming no risk-weights for simplicity), we obtain the following proposition.

Proposition 4. Suppose 𝜌𝑖 = 1. The pass-through of banks’ funding cost 𝑅 𝑓 to loan rate 𝑅𝑖 is
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• When banks are unconstrained:

𝑑 log𝑅𝑖

𝑑 log𝑅 𝑓
=

1
1 − 𝜖𝑖1−𝜇 + 𝜖𝑖1−𝜇𝜖

𝑖
ℓ

=
𝜖𝑖ℓ

𝜖𝑖
ℓ

𝑑 log 𝑙𝑖

𝑑 log𝑅 𝑓
= −𝜖𝑖ℓ

• When banks are constrained

𝑑 log𝑅𝑖

𝑑 log𝑅 𝑓
= − 1

𝜖𝑖
ℓ

×
𝜖𝑖ℓ

𝜖ℓ

𝑑 log𝐿
𝑑 log𝑅 𝑓

,

𝑑 log 𝑙𝑖

𝑑 log𝑅 𝑓
= −𝜖𝑖ℓ ×

(
− 1
𝜖ℓ

𝑑 log𝐿
𝑑 log𝑅 𝑓

)
If 𝑑 log𝐿

𝑑 log𝑅 𝑓 = −𝜖ℓ , monetary policy transmission to loan terms does not depend on the bank’s capacity
constraint.

Proof. See Appendix C.1. �

In a model with deposit market power from a monopolist bank and no wholesale funding,
− 𝑑 log𝐿
𝑑 log𝑅 𝑓 is the deposit demand elasticity. In a model with equity constraints, − 𝑑 log𝐿

𝑑 log𝑅 𝑓 depends on
the duration of equity (either its book or market value, depending on which one determines bank
lending capacity).

Figure 6 describes the percentage changes in loan rates and sizes in response to changes in
deposit rates, as a function of borrowers’ elasticity of loan demand and banks’ capacity constraint.
When faced with a tightening of monetary policy, unconstrained banks (left panels) pass through
the increase in the policy rate more than one-for-one to low elasticity borrowers, while the pass-
through to high-elasticity is dampened. However, the latter face a steeper decrease in loan size,
therefore they are eventually relatively more credit-rationed. When banks are constrained but
their capacity constraints are somewhat inelastic to policy rates (middle panels), the transmission
of monetary policy is further dampened. Loan terms are largely determined by bank’s lending
capacity, so the relative insensitivity of the latter to the policy rate partly insulates borrowers from
a credit tightening. Conversely, an insensitive bank lending capacity reduces the transmission
of policy cuts to the cross-section of loan terms. Finally, a high sensitivity of banks’ capacity
constraints to policy rates (right panels) ampli�es the transmission of monetary policy to loan
terms, as rates reacting more than one-for-one for all types of borrowers.
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Figure 6: Percentage changes in loan rates and sizes as a function of banks’ funding cost. Changes
are plotted in cases where banks are unconstrained (left panels), constrained with inelastic lend-
ing capacity (middle panels), and constrained with elastic lending capacity (right). For each case,
they are plotted for borrowers with a low (blue) vs. high (red) elasticity of loan demand.

4.2.2 Elasticity and Pass-Through

Proposition 4 implies that the main two household loan classes, credit cards and mortgages, react
di�erently to monetary policy shocks. Their responses depend on the elasticity of borrowers’
loan demand to loan rates.

Elastic market: credit cards. On the credit card market, banks do not pass-through lower
funding costs to borrowers who would like to borrow (Agarwal et al. 2018). In our model, the
optimal contract leads banks to pass-through 𝑅 𝑓 shocks to heterogeneous borrowers according
to their elasticity 𝜖𝑖ℓ . As we saw earlier, the comovement of 𝜖𝑖ℓ with risk is subtle, and depends
on the unconstrained loan demand elasticity 𝜖

𝑢,𝑖
ℓ
. In the case of a unit elasticity, 𝜖𝑖ℓ is constant

across borrowers and equal to 1. Credit card rates display little variation; suppose this re�ects a
highly elastic loan demand.4 Then 𝜖𝑖ℓ is lower for high risk borrowers, and so is 𝜖𝑖ℓ . Consider a
market with 𝑅𝜏𝑅

𝑙𝜏𝑙
> 1 for all types, and the repayment elasticity is non-decreasing 𝜖′1−𝜇 ≥ 0. Then

𝜖𝑖ℓ is lower for high-risk borrowers, hence banks pass through reductions in 𝑅 𝑓 relatively more to
low-risk borrowers, both when they are constrained and unconstrained.

Inelastic market: mortgages. Policy rates a�ect mortgage terms through several channels,
including adjustable-rate mortgage payments, rates on newly originated �xed-rate mortgages,

4This may be an equilibrium outcome or due to regulation.
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Figure 7: E�ect of the risk-free rate on individual default probabilities for borrowers with low vs.
high loan demand elasticity (left panel), and on the total default probability of the bank’s loan
portfolio (right panel).

payment-to-income constraints, and re�nancing rates. Appendix B shows how monetary policy
a�ects all the dimensions of mortgage contracts, including non-price terms. We extend our base-
line model to include mortgages, and compute the loan-to-value (LTV) and payment-to-income
ratios associated with a given loan. Figure 18 depicts their response to changes in banks’ cost of
fund. They are characterized by two main features. First, borrowers with a high interest rate-
elasticity of loan demand have higher LTV and PTI ratios than borrowers with a high elasticity.
Second, while their LTV decreases more than for low elasticity borrowers when banks’ cost of
funds increases, their PTI increases less. For a given change in loan rates, they adjust their optimal
loan size by more than low elasticity borrowers, resulting in strongly heterogeneous responses
in loan term changes across borrower types. Finally, as implied by Proposition 4, these changes
are ampli�ed by a greater sensitivity of bank lending capacity to their cost of fund.

4.2.3 Banks’ Portfolio Risk: Intensive vs. Extensive Margin

After having studied how changes in banks’ cost of fund a�ect loan terms, we now analyze how
banks’ portfolio risk react to a decrease in 𝑅 𝑓 . The total e�ect can be decomposed into two
components: �rst, a change in both price and non-price loan terms for a given pool of borrowers;
second, a reallocation of banks’ loans towards speci�c borrowers.

Within borrower (for a given borrower type), lower rates lead to lower risk for inelastic loan
products and higher risk for the elastic ones. In addition, a composition e�ect towards high 𝜖ℓ

products and borrowers arises. Suppose as an illustration that default risk 𝜇 is positively corre-
lated with 𝜖ℓ . Then, within relatively inelastic products such as mortgages, riskier borrowers are
more elastic. Hence a relaxation of credit supply will increase the weight of risky mortgages in
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banks’ portfolios. The opposite holds within relatively elastic categories such as credit cards. The
total e�ect is

𝑑 log
(
E
[
1 − 𝜇𝑖

] )
≈ Cov

(
𝜇𝑖, 𝜖𝑖ℓ

)
𝑑 log𝑅 𝑓 −

E
[
𝑑𝜇𝑖

]
E [1 − 𝜇𝑖]

Figure 7 shows how individual default probabilities react to changes in banks’ cost of fund,
and the resulting change in the total default risk of the bank’s portfolio of loans. First, as shown
earlier, the increase in banks’ cost of fund results in a smaller increase in the loan rate of high
elasticity borrowers, who face a larger decrease in loan size. As a result, their credit risk falls
signi�cantly when rates increase. In contrast, low elasticity borrowers’ credit risk increases, even
though their interest rate increases more than one-for-one with banks’ cost of fund. Therefore,
the fact that payo�s are endogenous to interest rates on credit markets leads to opposite results
for borrowers with di�erent elasticities. Second, even though borrowers have identical weights
in bank’s loan portfolio, the total e�ect is a decrease in total credit risk. Quantitatively, most of it
comes from changes in loan terms, which induce a stark decrease in credit risk for high elasticity
borrowers. However, the lower the banks’ cost of fund is, the stronger the composition e�ect is,
by which banks reallocate lending towards high elasticity, safer borrowers.
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4.3 Other non-price terms

Figure 8: Equilibrium loan terms as a function of the tightness of banks’ lending capacity con-
straint. Change relative to the unconstrained case. “Control” stands for the non-price terms 𝑧. In
the top panels, income follows a Pareto distribution with parameter 𝛼 = 1.5, 𝑦𝑚𝑖𝑛 = 0.05, 𝑦𝑚𝑎𝑥 =

0.25, and the cost of non-price terms for lender is zero. In the middle panels, income follows a
Pareto distribution with parameter 𝛼 = 1.5, 𝑦𝑚𝑖𝑛 = 0.05, 𝑦𝑚𝑎𝑥 = 10, and the cost of non-price
terms for lender is zero. In the bottom panels, income follows a Pareto distribution with param-
eter 𝛼 = 1.5, 𝑦𝑚𝑖𝑛 = 0.05, 𝑦𝑚𝑎𝑥 = 10, and the cost of non-price terms for lender is linear and
additively separable such that 𝑉𝑧 = −0.5.

Reaching for yield: covenant-lite loans at low interest rates. The rising issuance of loans
with weak covenants has been linked to the historically low risk-free rates (e.g., Roberts and
Schwert 2020). We conclude this section by describing how lenders trade o� price and non-
price terms as interest rates fall. As Figure 9 illustrates, this trade o� depends on the elasticity
𝜖ℓ . Low interest rates are associated with looser covenants 𝑧∗ for low elasticity borrowers, whose
default risk falls when rates are low. However, they are associated with tighter covenants for high
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elasticity borrowers, whose default risk increases because their loan size increases relativelymore
than their interest rate.
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Figure 9: Covenant-lite loans: e�ect of bank’s cost of fund on loan terms starting from a baseline
log𝑅 𝑓 = 5%, contrasting low elasticity (blue) and high elasticity (red) borrowers.

5 Dynamics of Credit Crises: Impact vs. Persistence

After analyzing how the cross-section of loan terms reacts to changes in credit supply and mone-
tary policy in the steady state of the model, we turn to the transition dynamics of credit crises and
the associated policy responses. We �rst study the impact and the persistence of a deterioration
in banks’ balance sheets. Then we apply our results to a calibrated model of the U.S. mortgage
market. We conclude by discussing how policy interventions can improve the slow recovery from
a credit crisis.

5.1 Dynamic Model

For simplicity, we start by assuming that there is a single type of borrower. Starting from an
unconstrained steady state loan demand 𝑙∗ with 𝜈∗ = 0, we consider a credit supply shock that
lowers banks’ capacity constraint 𝐿 to 𝐿0 such that an excess loan premium 𝜈0 > 0 arises. Aggre-
gate loan supply evolves according to

𝑙𝑡+1 = (1 + 𝜙𝜈𝑡 ) 𝑙𝑡

where 𝜙 captures the earnings retention ratio times the leverage.
At each date, we have

(1 + 𝜙𝜈𝑡 ) ℓ (𝑅 (𝑙 (𝜈𝑡 ) , 𝜈𝑡 )) = ℓ (𝑅 (𝑙 (𝜈𝑡+1) , 𝜈𝑡+1)) ,

where as earlier 𝑅 (𝑙, 𝜈) solves (holding 𝑅 𝑓 and 𝑧 �xed) 𝑅 (1 − 𝜇 (𝑅𝑙)) = 𝑅 𝑓 + 𝜈 , and where 𝑙 (𝜈)
solves the static loan market clearing condition 𝑙 = ℓ (𝑅 (𝑙, 𝜈)). Linearizing around the steady
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state 𝑙∗ and using our previous expressions for 𝜕𝑅
𝜕𝜈
, 𝜕𝑅
𝜕𝑙
, we obtain the law of motion for the excess

loan premium 𝜈𝑡 :

𝜈𝑡+1 =

(
1 − 𝜙𝑅 𝑓

𝜖ℓ

)
𝜈𝑡

where as earlier 𝜖ℓ = 1
(1−𝜖1−𝜇) 1

𝜖ℓ
+𝜖1−𝜇

. The initial jump is 𝜈0 = 𝑅 𝑓

𝜖ℓ
× 𝑙∗−𝐿0

𝑙∗ . Therefore:

Proposition 5. Let 𝜑 =
𝜙𝑅 𝑓

𝜖ℓ
. To �rst-order in the size of the initial credit supply shock 𝛿 =

𝑙∗−𝐿0
𝑙∗ ,

the excess loan premium 𝜈𝑡 and bank lending 𝐿𝑡 follow

𝜈𝑡 =
𝑅 𝑓

𝜖ℓ
𝛿 (1 − 𝜑)𝑡 , (9)

𝑙𝑡 = 𝑙∗
[
1 − 𝛿 (1 − 𝜑)𝑡

]
. (10)

We can measure the persistence of the crisis through the half-life of 𝜈 , de�ned as the time 𝑇
such that the excess loan premium has reverted to half its initial value 𝜈𝑇 = 𝜈0/2:

𝑇 =
log 2

− log (1 − 𝜑) .

A special case of Proposition 5 holds in standard macro-�nance models (e.g. Kiyotaki and Moore
1997, Gertler and Kiyotaki 2010): credit risk 𝜇 is exogenous, hence 𝜖ℓ and 𝜖ℓ are both equal to
the unconstrained elasticity 𝜖𝑢ℓ . Accounting for non-linear contracts and endogenous default risk
brings the elasticity 𝜖ℓ closer to 1, hence the half-life gets closer to log 2

− log(1−𝜙𝑅 𝑓 ) , relative to the
exogenous default (constant 𝜇) case. In particular, in the limit of in�nitely elastic unconstrained
loan demand, the half-life increases without bounds when 𝜇 is constant, while it remains bounded
as long as 𝜖1−𝜇 > 0. This is because, as shown earlier, default risk decreases endogenously during
credit crises if 𝜖ℓ > 1. In very elastic markets, interest rates do not decrease to o�set the lower
default risk. As a result, banks earn excess returns 𝜈𝑡 that recapitalize them back to the steady
state in �nite time.

Impact vs. persistence: the role of elasticities. For a given initial shock, the crisis is more
persistent if loan demand is very elastic since the loan rate 𝑅 and hence pro�ts cannot jump
enough. How are borrowers’ loan payments a�ected? At a higher elasticity 𝜖𝑙 , the initial jump 𝜈0
is also smaller. Overall, this gives rise to an intertemporal trade-o� between borrowers. Present
borrowers are hurt more (as measured by the spread 𝜈 they face) with a lower elasticity 𝜖ℓ , as the
crisis is sharp and short-lived. Future borrowers are hurt more with a higher elasticity 𝜖ℓ .

Accounting for non-linear contracts and endogenous credit risk slows down or speeds up bank
recapitalization relative to the benchmark with linear contracts, depending on the elasticity:
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• if 𝜖𝑙 < 1, then log 2

− log
(
1−𝜙𝑅𝑓

𝜖𝑙

) ≤ 𝑇 ≤ log 2
− log(1−𝜙𝑅 𝑓 ) : crises are milder on impact, but more

prolonged;

• if 𝜖𝑙 > 1, then log 2
− log(1−𝜙𝑅 𝑓 ) ≤ 𝑇 ≤ log 2

− log
(
1−𝜙𝑅𝑓

𝜖𝑙

) : crises are sharper on impact, but shorter-

lived.

We �nd that impact and persistence balance each other exactly in the following sense:

Proposition 6. For an initial credit supply shock 𝛿 =
𝑙∗−𝐿0
𝑙∗ , the cumulative excess loan premium is

given by
∞∑︁
𝑡=0

𝜈𝑡 =
𝛿

𝜙

and is therefore independent of 𝜖ℓ .

This result highlights the bene�ts from using su�cient statistics in our analysis. In the rela-
tively wide range of settings that we consider, the cumulative impact of the shock, as measured
by the cumulative excess loan premium, does not depend on the details of the environment, such
as borrower preferences, information asymmetries that a�ect 𝜖1−𝜇 , and the feasible contract space
(linear vs. non-linear contracts). Proposition 6 provides a testable prediction for di�erent crises
across time and space: as long as the parameter 𝜙 remains the same (or can be controlled for),
the cumulative spread relative to the percent impact e�ect on quantities 𝛿 should be unchanged.

Dynamics with heterogeneous borrowers. We can combine our dynamic results with our
previous results on the incidence of credit supply shocks in the cross-section of borrowers. As-
sume equal risk-weights 𝜌𝑖 = 1 for simplicity. To �rst order in each period, aggregate loan supply∑︁

𝑖

𝑙𝑖𝑡+1 (𝜈𝑡+1) = (1 + 𝜙𝜈𝑡 )
∑︁
𝑖

𝑙𝑖𝑡 (𝜈𝑡 )

= (1 + 𝜙𝜈𝑡 )
∑︁
𝑖

𝑙𝑖,∗
(
1 − 𝜖𝑖ℓ𝜈𝑡

)
hence the excess loan premium𝜈𝑡 follows the same dynamics (9) as with homogeneous borrowers,
except that 𝜖ℓ =

∑
𝜔𝑖𝜖𝑖ℓ is now a weighted average of individual elasticities with weights equal to

the steady state loan shares 𝜔𝑖 = 𝑙𝑖,∗∑
𝑙𝑖,∗ . Thus the speed of recapitalization is now governed by the

average (risk-adjusted) elasticity: credit crunches will be more persistent if banks lend to more
elastic borrowers.

How are di�erent borrowers a�ected over time? Each loan quantity evolves as

𝑙𝑖𝑡 = 𝑙𝑖,∗ − 𝜖𝑖ℓ𝜈𝑡
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All loan quantities recover at the same speed, since they all depend on the common excess loan
premium 𝜈𝑡 . High 𝜖𝑖ℓ borrowers su�er a larger initial tightening, and for two types 𝑖, 𝑗 the relative
tightening is constant over time:

𝑙 𝑗,∗ − 𝑙
𝑗
𝑡

𝑙𝑖,∗ − 𝑙𝑖𝑡
=
𝜖
𝑗

ℓ

𝜖𝑖
ℓ

∀𝑡

Finally, the bank earns expected pro�ts 𝜈𝑡𝑙𝑖𝑡 from type 𝑖 borrowers, and pro�t per dollar 𝜈𝑡 is
common to all borrowers. As a result, inelastic borrowers are hurt less by the credit crunch in
terms of credit growth, but they are also the ones paying for the bank recapitalization.

5.2 Example: Mortgage Market Crisis

To illustrate our �ndings, we conclude by analyzing a credit crisis in a simple calibrated model of
the U.S. mortgage market, where loan contracts with many price and non-price terms are traded.
We study the transition dynamics of mortgage markets in response to a contraction of banks’
balance sheets. We introduce overlapping generations of households in the two-period model of
Appendix B, and let banks allocate credit to multiple borrowers with di�erent loan supply elas-
ticities. We calibrate the model to recent U.S. data and discuss estimates for our two su�cient
statistics: the interest-rate elasticities of loan supply, and of borrowers’ repayment probability.
We then present impulse response functions, and study two policy interventions to mitigate the
shortgage of credit: direct household debt relief and bank recapitalization. In addition to mort-
gage spreads, we focus on two non-price dimensions of loans: maximum loan-to-value (LTV) and
payment-to-income (PTI) ratios, which limit mortgage sizes for a given interest rate.

5.2.1 Calibration

There are two equal measures of types of borrowers, with respectively high and low elasticities
of loan demand. We calibrate the model pre-crisis steady state to match six key moments for the
U.S. mortgage market in 2000-2007, shown in the table below.

We target a low interval for the interest rate-elasticity of borrowers’ loan demand, which
re�ects the range of estimates available in the literature. We obtain 0.6 for low-elasticity (low
EIS) borrowers, and 1.4 for high-elasticity (high EIS) borrowers. In survey data, Fuster and Zafar
2021 estimate an elasticity of 0.11. Relying on the discontinuity of interest rates at various loan
sizes, Best et al. 2019 estimate the elasticity of LTV to be 0.5 for the U.K. nortgage market. In a
structural model of the U.S. banking system, Benetton 2021 estimates an elasticity of 0.07.5

5The interest rate elasticity of mortgage demand can be decomposed into a within-loan elasticity for households
who borrow using the same loan, and a between-loan elasticity for households who switch between loan products
altogether. those who change loan altogether. We focus on the within-loan elasticity because our model does not
feature a discrete loan product choice.
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To calibrate the interest-rate elasticity of borrowers’ repayment probability, we compute the
elasticity of the complement event: the elasticity of borrowers’ default probability, which can be
more easily estimated. We also target an interval which re�ects the range of estimates available
in the literature. We obtain a default rate elasticity of 1.45. Fuster and Willen 2017 estimate that
the elasticity of mortgage default to monthly payment size is 1.1, and Di Maggio et al. 2017 that
it is 2.

Finally, we target values for mortgage rates, maximum LTV and PTI ratios to re�ect averages
for those variables over the period 2000-2007. We obtain an average mortgage rate of 15%, a LTV
ratio of 0.82, and a PTI ratio of 0.15, with the �rst two moments in the corresponding intervals of
[3%, 18%] and [0.8, 1] for new originated mortgages (source: Black Knight, eMBS, HMDA, SIFMA,
CoreLogic and Urban Institute), and the third moment below the [0.3, 0.5] interval.

Variable Description Value Target Source

𝜖𝑙 Int. rate elasticity of loan demand 0.6, 1.4 [0.11, 5] See text
𝜖𝜇 Int. rate elasticity of default prob. 1.45 [0.15, 2] See text
𝑅 Mortgage rate 1.15 [1.03, 1.18] Primary Mortgage Survey (30-Year FRM)
LTV Max. loan-to-value 0.82 [0.8, 1] Urban Institute
PTI Max. payment-to-income 0.15 [0.3, 0.5] Urban Institute

5.2.2 Results

Figure 10 describes the dynamics of a credit crisis with multidimensional mortgage contracts. At
𝑡 = 0, the mortgage market is in steady state. At 𝑡 = 0+, banks’ lending capacity 𝐿 unexpectedly
contracts, resulting in an increase in the excess loan premium 𝜈, which re�ects the tightness of
the banks’ constraint (black line). Loan sizes fall and mortgage spreads increase for both types
of households, as a result of the negative shock to credit supply. Because the dynamics of house
prices remains unchanged, LTV ratios fall in response to the decrease in loan sizes. Interestingly,
the response of PTI ratios depends on the relative changes in interest rates and loan sizes. Because
the increase in rates dominates the decrease in loan sizes, PTI ratios increase for both borrower
types.

The responses of loan terms are heterogeneous when disaggregated across borrowers. Loan
size falls twice as much for high elasticity borrowers as for low elasticity ones, while themortgage
spread increases by less. As a result, default risk falls sharply for high elasticity borrowers, while
it increases by about the same amount for low elasticity ones.
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Figure 10: Dynamics of the cross-section of loans terms in the U.S. mortgage market in response
to a tightening in banks’ lending capacity. Impulse response functions for loan sizes, loan-to-
value and payment-to-income ratios, excess loan premium, mortgage spreads, and default risk
are plotted for low (blue lines) and high interest-rate elasticity borrowers (red lines).

5.2.3 Credit-Ameliorating Policies: Debt Relief and Bank Recapitalization

We conclude by studying the e�ectiveness of two policies designed to ameliorate the shortgage of
credit in response to a credit supply shock. Direct borrower debt relief is modeled as a lump-sum
transfer when households initially borrow from banks, which e�ectively reduces their indebted-
ness level. Bank recapitalization is modeled as a relaxation of banks’ lending constraints, which
can be implemented by direct equity injections. Both policies have been advocated during the
U.S. mortgage market crisis, yet without clear guidance on the best way to direct credit to the
borrowers who need it most.

Figure 11 illustrates how these policies work. Thick lines show laissez-faire outcomes under
the same credit crisis as Figure 10, and dotted lines show the equilibrium path under the two
policies, for the two types of borrowers. In our calibration, the two policies have very similar
e�ects in mitigating the fall in LTV ratios due to a decrease in loan sizes. In the case of debt
relief, households internalize that they are e�ectively richer when the loan is originated, and can
borrow relatively more without excessively increasing their credit risk. In the case of bank recap-
italization, banks’ lending capacity does not fall as much, and therefore more credit is available
to households, who decide to use it because they are credit-constrained. While the two policies
have similar e�ects across borrowers, debt relief increases the speed at which loan size recovers
for high elasticity borrowers slightly more than bank recapitalization.
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Figure 11: Impulse responses under two credit-ameliorating policies: debt relief and bank recap-
italization. Thick lines show laissez-faire outcomes, and dotted lines show the equilibrium path
under the two policies. Red (resp. blue): high (resp. low) elasticity borrowers.

6 Conclusion

We propose a model of multidimensional contracting between heterogeneous borrowers and in-
termediaries with limited lending capacity. We show that two su�cient statistics, the interest
rate elasticities of borrowers’ loan demand and default rates, predict how the cross-section of
loan terms and banks’ portfolio risk react to changes in bank capital and funding costs. Our re-
sults help explain key and puzzling features of loan markets: in particular, the heterogeneous
pass-through of shocks across across borrowers and loan products, and the rise of covenant-lite
lending in low risk-free rate environments. They also have normative implications. Our su�-
cient statistics drive the dynamic incidence of credit crises through the combination of impact
and persistence. They provide guidance on how policies can best direct credit to borrowers who
need it the most during downturns.
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Appendix

A Figures

Figure 12: Bank balance sheets and mortgage loans. Sources: Federal Reserve Board, Fannie Mae,
Freddie Mac.

Figure 13: Bank balance sheets and credit card loans. Sources: Federal Reserve Board, SLOOS.
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Figure 14: Bank balance sheets and commercial and industrial loans. Sources: Federal Reserve
Board, SLOOS.
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Figure 15: Conforming mortgage loan terms for low-risk (FICO above 750) and high-risk (FICO
below 650) borrowers. Sources: Fannie Mac, Freddie Mae.
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DO BANKS PASS THROUGH CREDIT EXPANSIONS? 181

FIGURE X

Marginal Propensity to Lend (MPL)

Figure shows the implied effect of a one percentage point reduction in the cost
of funds on optimal credit limits by FICO score group. Estimates are produced
using equation (8), and are shown on a log scale. For each FICO score group,
we show the implied increase in credit limits when measuring both the slope of
cumulative marginal profits and cumulative marginal borrowing over the first 12,
24, 36, 48, and 60 months following origination (left to right). Vertical bars show
95% confidence intervals, constructed by bootstrapping across quasi-experiments.
FICO score groups are determined by FICO score at account origination. The
corresponding estimates are shown in Table VIII.

data on cumulative profits and ADB over time horizons of 12, 24,
36, 48, and 60 months after origination. The capped vertical lines
show 95% confidence intervals constructed by bootstrapping over
quasi-experiments.37

higher for low FICO score borrowers. More importantly, policies such as the stress
tests might have differentially increased the cost of lending to the low FICO score
borrowers. Our framework allows us to account for this type of heterogeneity by
rescaling our estimates of the MPL by each FICO score group’s specific change in
the cost of funds.

37. In particular, we draw 500 sets of quasi-experiments with replacement,
and calculate MPL = − MP B

MP′(CL) using this bootstrap sample. This procedure effec-
tively allows the standard errors of the numerator and denominator to be corre-
lated.

Downloaded from https://academic.oup.com/qje/article-abstract/133/1/129/3950284
by New York University user
on 11 January 2018

Figure 16: Source: Agarwal et al. 2018.
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Figure 17: Loan size and loan rates for low and high risk short-term commercial and industrial
loans. Source: Board of Governors of the Federal Reserve System (US).
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Figure 18: E�ect of the bank deposit rate on mortgage terms, for low (blue) and high (red) elas-
ticity borrowers, and as a function of the elasticity of banks’ lending capacity to banks’ cost of
fund (low in upper panels, high in lower panels).

44



B Examples of E�ective Default Probabilities 𝜇

Strategic or liquidity default. A higher repayment 𝑅𝑙 makes it harder to repay, hence

𝜆 = 𝜇 (𝑅𝑙, 𝑧) × 𝑅𝑙

where 𝜇 (·) is increasing. For instance, suppose that borrowers have stochastic income 𝑦 at the
date of repayment and default if and only if 𝑅𝑙 ≥ 𝑦 (liquidity default): then 𝜇 (𝑅𝑙) = P (𝑦 ≤ 𝑅𝑙).
More generally, many of our examples will feature a standard debt contract such that the bank
recovers 𝜌 (𝑦, 𝑧) in case of default, which happens when𝑦 falls below a threshold𝑦 (𝑅𝑙, 𝑧). In that
case,

𝜇 (𝑅𝑙, 𝑧)︸   ︷︷   ︸
e�ective default prob.

= 𝐹 (𝑦 (𝑅𝑙, 𝑧))︸        ︷︷        ︸
actual default prob.

(
1 − E

[
𝜌 (𝑦, 𝑧)
𝑅𝑙

|𝑦 ≤ 𝑦 (𝑅𝑙, 𝑧)
] )

Collateralized loans. We describe a simple way to capture mortgages within our framework.
Households can buy a house worth 𝑃0 by borrowing 𝑙 from the bank and contributing a down-
payment 𝑑 such that 𝑃0 = 𝑑 + 𝑙 . They then consume

𝑐0 = 𝑦0 − 𝑑 = 𝑦0 − 𝑃0 + 𝑙

At date-1, income 𝑦1 and house price 𝑃1 are realized and households have utility
𝑢 (𝑦1 − 𝑅𝑙 + 𝜒𝑃1) if they repay the mortgage

𝑢
(
𝜅𝑦1 + 𝑐

)
if they default

(1 − 𝜅) 𝑦1 captures the disutility of renting aswell as the costs of exclusion from�nancial markets.
𝜒𝑃1 captures the pecuniary value of owning. Hence households default if and only if

𝑧1 ≡ 𝑦1 +
𝜒

1 − 𝜅
𝑃1 ≤

𝑐 + 𝑅𝑙

1 − 𝜅

We can thus de�ne

𝑉 (𝑙, 𝑅) = 𝑢 (𝑦0 − 𝑃0 + 𝑙) + 𝛽

[∫
𝑧1≤

𝑐+𝑅𝑙
1−𝜅

𝑢
(
𝜅𝑦1 + 𝑐

)
𝑑𝐹 (𝑦1, 𝑃1) +

∫
𝑧1>

𝑐+𝑅𝑙
1−𝜅

𝑢 (𝑦1 − 𝑅𝑙 + 𝜒𝑃1) 𝑑𝐹 (𝑦1, 𝑃1)
]

If upon default the bank recovers 𝜁𝑃1, we have

𝜇 (𝑅𝑙) =
∫ ∫

𝑧1≤ 𝑐+𝑅𝑙
1−𝜅

(
1 − 𝜁𝑃1

𝑅𝑙

)
𝑑𝐹 (𝑦1, 𝑃1)
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The loan-to-value ratio (LTV) is then LTV = 𝑙
𝑃0

or just 𝑙 if we normalize 𝑃0 to 1. The debt to
income ratio is 𝑙/𝑦0 while the payment to income ratio is (𝑅 − 1)𝑙/𝑦0.

Models of mortgage markets typically assume exogenous LTV (𝑘) and PTI (𝜃 ) constraints,
such that households maximize 𝑉 (𝑙, 𝑅) subject to

𝑙 ≤ min
{
𝑘𝑃0,

𝜃𝑦0

𝑅 − 1

}
Given a mortgage rate 𝑅, de�ne ℓ𝑢 (𝑅) as solving𝑉𝑙 (ℓ𝑢 (𝑅) , 𝑅) = 0. The actual amount borrowed
by the household is then

𝑙 = min
{
𝑘𝑃0,

𝜃𝑦0

𝑅 − 1
, ℓ𝑢 (𝑅)

}
(11)

Once we allow for endogenous constraints, the implementation of the contractual loan amount
is indeterminate in the case of a single borrower type, assuming we are in the case 𝑉𝑙 (𝑙, 𝑅) > 0
hence 𝑙 < 𝑙𝑢 (𝑅), there are two unknowns (𝑘, 𝜃 ) for a single equation (11). Given the contractual
rate 𝑅, the equilibrium loan amount 𝑙 could arise from a binding LTV constraint with

𝑘 =
𝑙

𝑃0

coupled with any PTI constraint with 𝜃 >
𝑙 (𝑅−1)
𝑦0

; or alternatively from a binding PTI constraint
with

𝜃 =
𝑙 (𝑅 − 1)

𝑦0

together with any LTV constraint with 𝑘 > 𝑙
𝑃0
.

Once we have several borrower types, say 𝑖 = 𝑎, 𝑏, with di�erent incomes 𝑦𝑖0 and house prices
𝑃 𝑖0, we can, under plausible conditions, interpret the equilibrium contracts

(
𝑙𝑖, 𝑅𝑖

)
by requiring

that both borrowers face the same LTV and PTI constraints. Denote 𝑟 𝑖 = 𝑅𝑖 − 1.

Proposition 7. Suppose (without loss of generality) that 𝑃𝑎0
𝑃𝑏0

<
𝑦𝑎0/𝑟𝑎

𝑦𝑏0/𝑟𝑏
and

𝑃𝑎0

𝑃𝑏0
<
𝑙𝑎

𝑙𝑏
<
𝑦𝑎0/𝑟𝑎

𝑦𝑏0/𝑟𝑏
(12)

Then we can implement the contracts
(
𝑙𝑖, 𝑅𝑖

)
with common LTV and PTI constraints

𝑘 =
𝑙𝑎

𝑃𝑎0
, 𝜃 =

𝑟𝑏𝑙𝑏

𝑦𝑏0

LTV binds for 𝑎 and PTI binds for 𝑏.

If (12) fails, the equilibrium cannot arise from common constraints, hence we need type-
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speci�c constraints
(
𝑘𝑖, 𝜃 𝑖

)
.6 For each type, we are then back in the indeterminate case described

earlier.

Adverse selection. A higher repayment 𝑅𝑙 deters good borrowers, hence the average default
probability goes up:

𝜆 = 𝜇 (𝑅𝑙, 𝑧) × 𝑅𝑙

where 𝜇 (·) is increasing. For instance, suppose borrowers have an unobservable propensity to
default 𝑢𝑖 as well as an unobservable component in the utility from loans 𝑣𝑖 . Holding rates �xed,
if Cov (𝑢𝑖, 𝑣𝑖) > 0 then borrowers who demand a higher loan size (e.g., LTV) are more likely to
default.

6We can still allow for a common LTV constraint 𝑘 and type-speci�c PTI constraints 𝜃 𝑖 , or conversely a single
PTI constraint 𝜃 and type-speci�c LTV constraints 𝑘𝑖 .
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C Proofs and derivations

C.1 Main Propositions

Proof of Proposition 1. Each bank solves

max
{𝑥𝑖 ,𝑅𝑖 ,𝑙𝑖 ,z𝑖 }

∫
𝑥𝑖𝜋 𝑖

(
𝑙𝑖, 𝑅𝑖, z𝑖

)
𝑑𝑖

s.t.
∫

𝑥𝑖𝜌𝑖𝑙𝑖𝑑𝑖 ≤ 𝐿 (13)

𝑉 𝑖
(
𝑙𝑖, 𝑅𝑖, z𝑖

)
≥ 𝑉

𝑖 (14)

Denote 𝜈 the multiplier on the bank lending constraint (13) and 𝜆𝑖 the one on borrower 𝑖’s par-
ticipation constraint (14). The �rst-order conditions with respect to 𝑙𝑖 , 𝑅𝑖 and 𝑥𝑖 are respectively

𝑥𝑖𝜋 𝑖
𝑅 + 𝜆𝑖𝑉

𝑖
𝑅 = 0

𝑥𝑖𝜋 𝑖
𝑙
+ 𝜆𝑖𝑉

𝑖
𝑙
− 𝜈𝜌𝑖 = 0

𝜋 𝑖 − 𝜈𝜌𝑖𝑙𝑖 = 0

Therefore banks must equalize the pro�t per risk-weighted dollar across loans

𝜋 𝑖

𝜌𝑖𝑙𝑖
= 𝜈

Note that this nests the case in which the lending constraint is not binding and thus 𝜈 = 0 and
banks make zero pro�ts.

In a symmetric equilibriumwith 𝑥𝑖 = 1 for all 𝑖 , the price and quantity of each loan must solve

−
𝑉 𝑖
𝑙

𝑉 𝑖
𝑅

=

𝜋𝑖

𝑙𝑖
− 𝜋 𝑖

𝑙

𝜋 𝑖
𝑅

.

Using
𝜋 𝑖 =

[
𝑅𝑖

(
1 − 𝜇𝑖

)
− 𝑅𝑑

]
𝑙𝑖

we have

𝜋𝑖

𝑙𝑖
− 𝜋 𝑖

𝑙

𝜋 𝑖
𝑅

=
𝑅𝑖

𝑙𝑖

𝑙𝑖𝜇𝑖
𝑙
/
(
1 − 𝜇𝑖

)
1 − 𝑅𝑖𝜇𝑖

𝑅
/(1 − 𝜇𝑖)

=
𝑅𝑖

𝑙𝑖

𝜖𝑖1−𝜇

1 − 𝜖𝑖1−𝜇

where the second line uses 𝜇𝑖 = 𝜇𝑖
(
𝑅𝑖𝑙𝑖, z𝑖

)
.
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Proof of Proposition 2. We �x one borrower type 𝑖 and omit the superscripts 𝑖 . Di�erentiat-
ing (3) yields

−𝑙𝜏𝑙
𝜏

𝑑𝑙

𝑙
− 𝑅𝜏𝑅

𝜏

𝑑𝑅

𝑅
= 𝜃

(
𝑑𝑙

𝑙
+ 𝑑𝑅

𝑅

)
(1 + 𝜏)

where 𝜃 =
𝑅𝑙𝜖 ′1−𝜇
𝜖1−𝜇

. Using 1 + 𝜏 = 1
𝜖1−𝜇−1 hence 𝜏 (1 + 𝜏) =

−𝜖1−𝜇
(1−𝜖1−𝜇)2 we get

𝜖𝑙 =

−𝑅𝜏𝑅 +
𝑅𝑙𝜖 ′1−𝜇

(1−𝜖1−𝜇)2

−𝑙𝜏𝑙 +
𝑅𝑙𝜖 ′1−𝜇

(1−𝜖1−𝜇)2
.

Letting 𝑥 =
𝑅𝑙𝜖 ′1−𝜇

(1−𝜖1−𝜇)2 , we have
𝑑
𝑑𝑥

(
−𝑅𝜏𝑅+𝑥
−𝑙𝜏𝑙+𝑥

)
=

𝑙𝜏𝑙−𝑅𝜏𝑅
(𝑏+𝑥)2 hence if 𝜃 > 0 then 𝜖𝑙 >

𝑅𝜏𝑅
𝑙𝜏𝑙

if and only if

𝑙𝜏𝑙 − 𝑅𝜏𝑅 > 0.

Proof of Proposition 3 and Proposition 4. We detail the case where 𝑅 𝑓 is �xed and 𝐿 is
shocked; the converse case follows exactly the same steps. First, the bank lending constraint
implies ∑︁

𝑖

𝑑𝑙𝑖 = 𝑑𝐿

−
∑︁
𝑖

𝑙𝑖

𝐿
𝜖𝑖
𝑙
𝑑 log𝑅𝑖 = 𝑑 log𝐿

To obtain 𝑑 log𝑅𝑖 , rewrite (4) as

𝑅𝑖
[
1 − 𝜇𝑖

(
𝑅𝑖ℓ𝑖

(
𝑅𝑖
)
, z𝑖

) ]
− 𝑅 𝑓

𝜌𝑖
= 𝜈

and di�erentiate to get for 𝑖, 𝑗

𝑑 log𝑅𝑖

𝜌𝑖
𝑅𝑖

(
1 − 𝜇𝑖

) [
1 − 𝜖𝑖1−𝜇

(
1 − 𝜖𝑖

𝑙

) ]
=
𝑑 log𝑅 𝑗

𝜌 𝑗
𝑅 𝑗

(
1 − 𝜇 𝑗

) [
1 − 𝜖

𝑗

1−𝜇

(
1 − 𝜖

𝑗

𝑙

)]
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Therefore

−1 =
∑︁
𝑖

𝑙𝑖

𝐿
𝜖𝑖
𝑙

𝑑 log𝑅𝑖

𝑑 log𝐿

=
𝑙𝑖

𝐿
𝜖𝑖
𝑙

𝑑 log𝑅𝑖

𝑑 log𝐿
+
∑︁
𝑗≠𝑖

𝑙 𝑗

𝐿
𝜖
𝑗

𝑙

𝑑 log𝑅 𝑗

𝑑 log𝐿

=
𝑑 log𝑅𝑖

𝑑 log𝐿

𝑅𝑖
(
1 − 𝜇𝑖

) [
1 − 𝜖𝑖1−𝜇

(
1 − 𝜖𝑖

𝑙

)]
𝜌𝑖

{∑︁
𝑗

𝜔 𝑗𝜖
𝑗

𝑙

𝜌 𝑗

𝑅 𝑗 (1 − 𝜇 𝑗 )

}
where𝜔 𝑗 = 𝑙 𝑗

𝐿
are loan weights and 𝜖 𝑗

𝑙
=

𝜖
𝑗

𝑙

1−𝜖 𝑗1−𝜇
(
1−𝜖 𝑗

𝑙

) = 𝜖
𝑗

𝑙(
1−𝜖 𝑗1−𝜇

)
+𝜖 𝑗

𝑙
𝜖
𝑗

1−𝜇
is the risk-adjusted elasticity.

This rewrites
𝑑 log𝑅𝑖

𝑑 log𝐿
= − 𝜌𝑖

𝑅𝑖 (1 − 𝜇𝑖)
𝜖𝑖ℓ

𝜖𝑖
𝑙

× 1∑
𝑗 𝜔

𝑗𝜖
𝑗

𝑙

𝜌 𝑗

𝑅 𝑗 (1−𝜇 𝑗 )

which implies

𝑑 log 𝑙𝑖

𝑑 log𝐿
= −𝜖𝑖

𝑙

𝑑 log𝑅𝑖

𝑑 log𝐿

=

𝜌𝑖

𝑅𝑖 (1−𝜇𝑖 )𝜖
𝑖
ℓ∑

𝑗 𝜔
𝑗𝜖

𝑗

𝑙

𝜌 𝑗

𝑅 𝑗 (1−𝜇 𝑗 )

and 𝑑 log𝑅𝑖

𝑑 log𝐿
= − 1

𝜖𝑖
𝑙

𝑑 log 𝑙𝑖

𝑑 log𝐿
.

Since 𝑅𝑖
(
1 − 𝜇𝑖

)
= 𝑅 𝑓 + 𝜌𝑖𝜈 , for small

(
𝜌𝑖 − 𝜌 𝑗

)
𝜈 we have 𝑅𝑖

(
1 − 𝜇𝑖

)
≈ 𝑅 𝑗

(
1 − 𝜇 𝑗

)
hence

𝑑 log 𝑙𝑖

𝑑 log𝐿
≈

𝜌𝑖𝜖𝑖ℓ∑
𝑗 𝜔

𝑗𝜌 𝑗𝜖
𝑗

𝑙

.

C.2 Other Calculations

The e�ective default probability is lower than the actual one thanks to the positive recovery rate.
Then

𝜇′ (𝑅𝑙) = 𝜅𝑓 (𝑦 (𝑅𝑙)) + 1 − 𝜅

(𝑅𝑙)2
∫ 𝑦 (𝑅𝑙)

𝑦min

𝑦𝑑𝐹 (𝑦)

while

𝜖1−𝜇 (𝑅𝑙) =
𝑅𝑙𝜇′ (𝑅𝑙)
1 − 𝜇 (𝑅𝑙)

=
𝑅𝑙𝜅

𝑓 (𝑅𝑙)
𝐹 (𝑅𝑙) + (1 − 𝜅) E

[ 𝑦
𝑅𝑙
|𝑦 ≤ 𝑅𝑙

]
1−𝐹 (𝑅𝑙)
𝐹 (𝑅𝑙) + (1 − 𝜅) E

[ 𝑦
𝑅𝑙
|𝑦 ≤ 𝑅𝑙

]
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If 𝜅 = 0 then 𝜖1−𝜇 ∈ [0, 1].

Pareto distribution.

• Suppose 𝜅 = 0 and

𝐹 (𝑦) = 1 −
(
𝑦min

𝑦

)𝛼
for 𝛼 > 0 and 𝑦 > 𝑦min,, then 𝑓 (𝑦) = 𝛼

1−𝐹 (𝑦)
𝑦

and

𝜖1−𝜇 (𝑅𝑙) = 𝛼 ×
1 −

(𝑦min
𝑅𝑙

)1−𝛼
1 − 𝛼

(𝑦min
𝑅𝑙

)1−𝛼 ∈ [0, 1]

When 𝑦min is very small this is approximately 𝛼 . When 𝛼 = 1 this is 0. More generally if
𝜅 ≤ 1

𝛼
then 𝜖1−𝜇 ∈ [0, 1]. The general formula is

𝜖1−𝜇 = 𝛼 ×
1 − 𝛼𝜅 − (1 − 𝜅)

(𝑦min
𝑅𝑙

)1−𝛼
1 − 𝛼𝜅 − 𝛼 (1 − 𝜅)

(𝑦min
𝑅𝑙

)1−𝛼
𝜖′1−𝜇 =

(1 − 𝛼)2 𝛼 (1 − 𝜅)𝑦min(1 − 𝛼𝜅)
(𝑦min
𝑅𝑙

)𝛼(
𝛼 (1 − 𝜅)𝑦min − 𝑅𝑙 (1 − 𝛼𝜅)

(𝑦min
𝑅𝑙

)𝛼 )2
𝜃1−𝜇 =

(1 − 𝛼)2 (1 − 𝜅) 𝑦min(
𝛼 1−𝜅
1−𝛼𝜅

(𝑦min
𝑅𝑙

)1−𝛼 − 1
) (

1−𝜅
1−𝛼𝜅

(𝑦min
𝑅𝑙

)1−𝛼 − 1
)

• With the power law example,

𝜃1−𝜇 =
(1 − 𝛼)2 𝑅𝑙𝑦min

(𝑦min
𝑅𝑙

)𝛼(
𝑦min − 𝑅𝑙

(𝑦min
𝑅𝑙

)𝛼 ) (
𝛼𝑦min − 𝑅𝑙

(𝑦min
𝑅𝑙

)𝛼 )
is always positive. If 𝛼 > 1 the denominator is the product of two positive terms. If 𝛼 < 1
it’s the product of two negative terms.

Examples of borrower utility 𝑉 (𝑙, 𝑅).

• Starting with no risk hence no default:

– Households
𝑉 (𝑙, 𝑅) = 𝑢 (𝑦0 + 𝑙) + 𝛽𝑢 (𝑦1 − 𝑅𝑙)

we see that
𝜏 (𝑙, 𝑅) = 𝑢′ (𝑦0 + 𝑙)

𝛽𝑅𝑢′ (𝑦1 − 𝑅𝑙) − 1
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Consistent with the intertemporal wedge interpretation, 𝜏 ≥ 0 measures how con-
strained the household ends up since 𝑢′0 = 𝛽𝑅 (1 + 𝜏) 𝑢′1. Suppose CRRA utility with
EIS 𝜎 , 𝑢 (𝑐) = 𝑐1−1/𝜎 . Then

𝑅𝜏𝑅

𝑙𝜏𝑙
=

(𝑦0 + 𝑙) (𝜎 (𝑦1 − 𝑅𝑙) + 𝑅𝑙)
𝑙 (𝑅𝑦0 + 𝑦1)

If 𝑦0 = 0 then this simpli�es to

𝑅𝜏𝑅

𝑙𝜏𝑙
= 𝜎 ×

(
1 − 𝑅𝑙

𝑦1

)
+ 1 × 𝑅𝑙

𝑦1

This is a weighted average of 𝜎 and 1, so it’s above 1 if and only if 𝜎 ≥ 1.

– Firms
𝑉 (𝑙, 𝑅) = 𝑓 (𝑘0 + 𝑙) − 𝑅𝑙

then
𝜏 (𝑙, 𝑅) = 𝑓 ′ (𝑘0 + 𝑙)

𝑅
− 1

we have the same wedge interpretation: 𝑓 ′ (𝑘0 + 𝑙) = (1 + 𝜏) 𝑅. Then

𝑅𝜏𝑅

𝑙𝜏𝑙
=

𝑓 ′ (𝑘0 + 𝑙)
−𝑙 𝑓 ′′ (𝑘0 + 𝑙)

the inverse curvature of the production function. So for 𝑓 (𝑘) = 𝐴𝑘𝛾 we have 𝑅𝜏𝑅
𝑙𝜏𝑙

=
(𝑘0+𝑙)
𝑙 (1−𝛾) . With 𝑘0 = 0,

𝑅𝜏𝑅

𝑙𝜏𝑙
=

1
1 − 𝛾

≥ 1

A higher 𝛾 leads to a higher interest rate elasticity of the unconstrained loan demand.

• Once we add risk and default we need to compute 𝑉 numerically:

– Households with income shocks 𝑦1:

𝑉 (𝑙, 𝑅) = 𝑢 (𝑦0 + 𝑙) + 𝛽

[∫ ∞

𝑅𝑙

𝑢 (𝑦1 − 𝑅𝑙) 𝑑𝐹 (𝑦1) +
∫ 𝑅𝑙

0
𝑢 (𝜅𝑦1) 𝑑𝐹 (𝑦1)

]
– Firms with stochastic TFP shocks𝐴, so that �rm repays if and only if𝐴𝑓 (𝑘0 + 𝑙) ≥ 𝑅𝑙 :

𝑉 (𝑙, 𝑅) =
∫ ∞

𝑅𝑙

(𝑦0+𝑙)𝛾
[𝐴 (𝑦0 + 𝑙)𝛾 − 𝑅𝑙] 𝑑𝐹 (𝐴) + 𝜅 (𝑦0 + 𝑙)𝛾

∫ 𝑅𝑙

(𝑦0+𝑙)𝛾

0
𝐴𝑑𝐹 (𝐴)
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