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Abstract

Important business, public policy, and personal decisions typically involve multiple objectives,
which in turn can be represented by multiple attributes, and uncertainty. Assessing both multi-
attribute utility and multivariate distributions for the attributes can be challenging. Moreover,
big decisions are often made by boards or committees with members holding divergent views and
preferences and facing pressures from different stakeholders. Thus, a full-blown traditional decision
analysis that leads to the computation of expected utility is very difficult at best and often not
possible. We develop sufficient conditions for multivariate almost stochastic dominance (MASD)
based on marginal distributions of the attributes or just on their means and variances. To apply
MASD, one only needs to assess bounds on marginal utilities. Alternatively, preferences can be
explained and elicited via transfers. Realistic examples and a case study using real data illustrate
our results, which provide tools for “fast and frugal” screening and evaluation of the available op-
tions, while properly accounting for tradeoffs and riskiness. Such tools, consistent with normative
decision analysis, are useful when making important decisions in today’s fast-moving and often
complex world.

Subject classifications: Decision analysis: stochastic dominance, utility, risk. Probability: distribu-
tion comparisons.
Keywords: multivariate almost stochastic dominance, transfers, sufficient conditions for dominance,
choice between lotteries, mean and variance.

1 Introduction

When faced with an important choice, decision makers are typically interested in more than just one
attribute. For example, a company choosing between two risky projects, A and B, might be interested
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in the net present value (NPV) of profits for the first five years and the market share (MS) at the end
of the fifth year. Traditional decision analysis would suggest: a) assessing the bivariate distribution of
NPV and MS for each project and b) eliciting the two-attribute utility function of the company. Our
approach partially bypasses both of these steps.

The following scenarios illustrate the type of situations in which our approach can be helpful. We
will return to these examples as we present our results.

(a) The board of a company makes decisions together. Some board members may have their own
assessed utility functions for the company, but these assessments are not identical. Other board
members are not sure about their risk preferences, but they can agree about some constraints on
tradeoffs among the attributes or bounds on the marginal utilities. Moreover, we assume that
they can agree about the marginal distributions or at least the means and variances. We provide
conditions under which the board can unanimously rank risky projects A and B.

(b) A data analytics startup develops inventory and allocation solutions, with the objective of max-
imizing profit (P) and net promotion score (NPS), as well as some other attributes if requested
by a client. Their current approach is to maximize the expected weighted sum (e.g., P+wNPS,
where w represents the NPS/P tradeoff). However, often a client is not satisfied with this solu-
tion, arguing that this approach does not consider the risks associated with different options or
the client’s attitude toward these risks. At the same time, the members of the startup team feel
that they cannot apply a full-blown decision analysis approach, which would require assessing
a multiattribute utility function and the joint distribution of the attributes under each option.
As part of their analysis, they have estimates of means and variances of different options. Using
our results, they can narrow down the choice to a few non-dominated options and see how the
optimal strategies vary with different parameters.

(c) A company has the possibility of an investment in a photovoltaic solar power system and wants
to evaluate possible different locations. The value of such a PV system is a difficult function of
the solar irradiance at the location, but there are natural bounds for marginal utilities caused by
the prices for buying and selling electricity. Partial knowledge of the multivariate distribution
of solar irradiance over the course of a day is available from historical weather observations. We
will consider this problem in a case study at the end of this paper.

The assumption of having only partial knowledge of the utility function of a decision maker or
of more general preferences is the classical topic of stochastic dominance (SD). This is a very well
established topic in the univariate case, but extensions of SD to the multivariate case have also received
some attention. Such extensions are tricky, as there are many multivariate stochastic orders (see,
e.g., Müller and Stoyan, 2002, Shaked and Shanthikumar, 2007). Studies of multivariate stochastic
dominance (MSD) include Levy and Paroush (1974), Levhari et al. (1975), Mosler (1984), Scarsini
(1988a), and Baccelli and Makowski (1989). Denuit et al. (2013) develop MSD, using a stochastic
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order that is a natural extension of the standard order typically used for univariate SD. The theory of
SD has a counterpart in the literature about inequality measurement. Recent multivariate analyses of
it can be found in Faure and Gravel (2021) and Mosler (2021).

The SD order provides a partial ranking of distributions that can be helpful when only partial
information is known about a decision maker’s utility function. There is a big jump from first-degree
stochastic dominance (FSD) (with increasing utility) to second-degree stochastic dominance (SSD)
(with increasing and concave utility). Many decision makers are mostly risk averse but cannot assert
that they would dislike any risk, an indication of convex segments in their utility functions. The almost
stochastic dominance (ASD) relation can provide a continuum of SD rules covering preferences from
FSD to SSD (Leshno and Levy, 2002, Müller et al., 2017, Huang et al., 2020, Mao and Wang, 2020).
The importance of MASD is due to the fact that it allows us to rank multivariate distributions when
utility does not satisfy multivariate SSD but is “close” to doing so. Tsetlin and Winkler (2018) develop
MASD, considering both concave and convex versions. When multiple decision makers are involved, it
helps us rank distributions “by most decision makers” in the multivariate context.

Often only partial information is known about the distributions that we want to rank for decision-
making purposes. For example, we might know the means and variances of the distributions but not
their shapes. The seminal paper by Markowitz (1952) inspired a strong focus on the mean and variance
for decision making in finance. Müller et al. (2021) provide a ranking in the single-attribute case when
only means and variances are known by bounding how much marginal utility can change.

Even if the distributions we want to rank are known, we usually do not have easy conditions to
check for MSD and MASD. In such cases sufficient conditions, which are easy to check, are helpful.
The sufficient conditions that we develop in this paper are especially practical, as they require knowing
only the marginal distributions of the attributes, or just their means and variances.

In Section 2 we present a review of multivariate first-order stochastic dominance and the difficulties
to assess it; this section also motivates our sufficient conditions based on marginal distributions. In
Section 3 we provide definitions for limiting how much marginal utilities can change, for dominance
based on these limitations, and we develop the corresponding transfers. In Section 4 we develop
sufficient conditions for the case where the full marginal distributions are known and for the more
common case where we only know their means and variances. We also provide bounds on multiattribute
utilities that are additive across the multiple attributes, which is important because it allows us to
develop sufficient conditions for MASD involving only marginal distributions of the multivariate random
variables associated with the alternatives. In Section 5 we develop a path to a complete order and the
corresponding transfers. Throughout we provide examples to illustrate our results, and in Section 6 we
present a case study that involves a decision on investing in photovoltaic power systems and analyzes
real data using the concepts developed in the paper. Concluding comments are given in Section 7.
Appendix A shows a generalization of some characterizations to distributions with nonfinite support.
The proofs of our results can be found in Appendix B.
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2 A review of multivariate first order stochastic dominance

The concept of multivariate stochastic dominance was first studied in the statistics literature by
Lehmann (1955) and then introduced in the economic literature by Levhari et al. (1975). In gen-
eral, given a class U of utility functions u : RN → R and two random vectors X and Y , we say that
X ≤U Y if

E[u(X)] ≤ E[u(Y )] for all u ∈ U . (2.1)

If U consists of all componentwise increasing functions, the we speak of first order stochastic dominance
(FSD). Using the notation of Müller and Stoyan (2002) and Shaked and Shanthikumar (2007), this
relation is denoted by X ≤st Y .

The following notation for cumulative distribution functions (CDFs) will be used throughout the
paper:

F (t1, . . . , tN ) := P(X1 ≤ t1, . . . , XN ≤ tN ), G(t1, . . . , tN ) := P(Y1 ≤ t1, . . . , YN ≤ tN ), (2.2)

with the corresponding notation for the marginal distributions:

Fi(ti) := P(Xi ≤ ti), Gi(ti) := P(Yi ≤ ti). (2.3)

In the univariate case the condition in Eq. (2.1) is equivalent to pointwise ordering of the corresponding
CDFs, which is typically easy to check:

X ≤st Y ⇐⇒ F (t) ≥ G(t) for all t ∈ R. (2.4)

Unfortunately, in the multivariate case the situation is much more complex. In this case, the condition
FX(t) ≥ FY (t) for all t ∈ RN is only necessary forX ≤st Y . Moreover, even this condition is typically
not easy to verify. The characterization of FSD corresponding to (2.4) becomes

X ≤st Y ⇐⇒ P(X ∈ A) ≤ P(X ∈ A) for every upper set A ⊂ RN , (2.5)

where a set A ⊂ RN is upper if x ∈ A and x ≤ y imply y ∈ A. This condition is hard to verify. For
discrete distributions it is possible to use a characterization via transfers, from which a transportation
problem can be derived and solved (see Range and Østerdal, 2019, for details). But even this case is
not easy to deal with.

Notice that X ≤st Y implies Xi ≤st Yi for all i = 1, . . . , N , but the converse implication is false.
This is due to the fact that the dependence within the vectors X and Y has a relevant role for their
dominance conditions. Sklar (1959) proved that, for every N -variate distribution function F with
marginals F1, . . . , FN , we have

F (t1, . . . , tN ) = C(F1(t1), . . . , FN (tN )), for all (t1, . . . , tN ) ∈ RN , (2.6)
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where C is a copula, i.e., a multivariate CDF with uniform marginals on [0, 1]. The function C describes
the dependence structure of the random vector. The following theorem shows that, when two random
vectors have the same copula, then they are stochastically ordered if and only if their marginals are
(Rüschendorf, 1981, Scarsini, 1988b).

Theorem 2.1. Let X and Y have a common copula. Then X ≤st Y if and only if Xi ≤st Yi for all
i = 1, 2, . . . , N .

Equality of the two copulas is a quite restrictive condition. It is interesting to notice that, if X
and Y both have multivariate normal distributions, then having the same copula is necessary for
being stochastically ordered. Let N (µ,Σ) denote a multivariate normal distribution with mean µ and
covariance matrix Σ. The following result can be found, e.g., in Müller and Stoyan (2002, theorem
3.3.13).

Theorem 2.2. Let X ∼ N (µX ,ΣX) and Y ∼ N (µY ,ΣY ). Then X ≤st Y if and only if µi ≤ µ′i
for all i = 1, ..., N, and ΣX = ΣY .

In practical applications the parameters in the covariance matrix Σ are typically estimated and
then it is almost impossible to get exactly the same values. Therefore dominance conditions for the
important case of multivariate normal distributions are almost never satisfied.

In general we are not aware of sufficient dominance conditions except the following very restrictive
condition of separated supports for the marginals, which trivially yields FSD.

Theorem 2.3. Consider the random vectors X and Y , and assume that there exists a vector δ ∈ RN

such that Xi ≤st δi and δi ≤st Yi for all i = 1, . . . , N . Then X ≤st Y .

If we can verify this very restrictive condition on the marginals, then we can completely ignore
the dependence structures of the random vectors. Notice that, in contrast to this, in Theorem 2.1 we
have to assume equal covariance matrices even if the means are very different. This shows that it is
hopeless to find general weaker sufficient conditions on the marginals that imply FSD for all dependence
structures, when the supports overlap, in particular when they are unbounded. However, for uniform
marginals with overlapping supports this is possible, as the following example shows.

Example 2.4. Consider the random vectors X = (X1, X2) and Y = (Y1, Y2), and assume that the
marginal distributions of X are uniform on [0, 4] and the marginals of Y are uniform on [3, 7]. Then
we have X ≤st Y , no matter what the copulas of the two random vectors are. To see this, define the
following four sets:

A = [0, 3]2, B = [0, 4]2 \A, D = [4, 7]2, C = [3, 7]2 \D,

Thus, the support of X is A ∪B, the support of Y is C ∪D, and we have

P(X ∈ B) ≤ P(X1 > 3) + P(X2 > 3) =
1

2
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and

P(Y ∈ C) ≤ P(Y1 ≤ 4) + P(Y2 ≤ 4) =
1

2
.

Therefore P(Y ∈ D) = 1− P(Y ∈ C) ≥ 1/2. Now assume that u is an increasing function and define

a := u(3, 3), b := u(4, 4).

On the support of X we get u(x) ≤ a · 1A(x) + b · 1B(x); therefore

E[u(X)] ≤ a · (1− P(X ∈ B)) + b · P(X ∈ B) ≤ a+
1

2
(b− a) =

1

2
(a+ b)

as a ≤ b. Similarly, on the support of Y we have u(x) ≥ a · 1C(x) + b · 1D(x); therefore

E[u(Y )] ≥ a · (1− P(Y ∈ D)) + b · P(Y ∈ D) ≥ 1

2
(a+ b).

This implies that E[u(X)] ≤ E[u(Y )] for all increasing u.

Range and Østerdal (2019, section 5) contains an interesting example, where first two bivariate
normal distributions with different covariance matrices and significantly different means are discretized
and then the algorithm for the discrete case is used. As we know from Theorem 2.2, FSD cannot hold
in this case. However, if the discretization is done on a grid of at most 16 × 16 points, then FSD
holds for the discretization! Only a very fine discretization shows that FSD is false for the original
distributions. This indicates that some version of almost FSD should hold for any multivariate normal
distribution if the difference of the means is relatively large compared to the variances. Our results in
the next sections will show that this is indeed the case. Notice also that all examples in this section
concerned distributions from location-scale families (normal, uniform). An explicit treatment of these
families will be provided in Section 4.3.

3 Defining γ-multivariate almost stochastic dominance

We consider a decision maker whose utility function u depends on N attributes x = (x1, . . . , xN ). The
function u : RN → R is assumed to be differentiable, and u′i denotes its partial derivative with respect
to its i-th argument:

u′i(x) :=
∂u(x)

∂xi
.

We now define γ-multivariate almost stochastic dominance (γ-MASD) for N -variate random vec-
tors. Recall that, given a class U of utility functions, we say that X ≤U Y if

E[u(X)] ≤ E[u(Y )] for all u ∈ U .
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Definition 3.1. For a given vector γ := (γ1, . . . , γN ) ∈ [0, 1]N , the symbol Uγ denotes the set of utility
functions such that, for all i ∈ {1, . . . , N}, we have

0 ≤ γiu′i(y) ≤ u′i(x) for all x,y ∈ RN . (3.1)

Notice that the condition in inequality (3.1) is equivalent to

inf u′i(x)

supu′i(x)
≥ γi. (3.2)

For γ ∈ [0, 1]N , the random vectorX is dominated by the random vector Y in the sense of γ-MASD
if X ≤Uγ Y . For the sake of simplicity, we will write X ≤γ Y instead of X ≤Uγ Y .

Definition 3.1 corresponds to MASD, as defined by Tsetlin and Winkler (2018), with γi = εi/(1−εi)
for all i ∈ {1, . . . , N}. In the univariate case (N = 1), it corresponds to almost first-degree stochastic
dominance (AFSD), as defined by Leshno and Levy (2002).

Notice that, if γ ≤ λ componentwise, then Uλ ⊂ Uγ . Therefore X ≤γ Y implies X ≤λ Y and
obviously for γ = 0 we get X ≤st Y .

Example 3.2. The board of a company evaluates projects by focusing on two attributes x1 and x2,
where x1 is the NPV of profits for the next five years and x2 is the MS in percentage at the end of
the period. The members of the board have different risk preferences, but they all agree about the
following bounds on marginal utilities:

inf u′1(x)

supu′1(x)
≥ 0.2,

inf u′2(x)

supu′2(x)
≥ 0.4.

Therefore, if two projects can be ranked as X ≤(0.2,0.4) Y , then all board members prefer Y to X.

We have defined an SD rule by a set of utility functions with bounded marginal utilities, and illus-
trated how one can check that a particular utility belongs to this set. The corresponding preferences can
also be characterized via transfers, which might be easier to explain and use for elicitation of decision
makers’ preferences. The idea of using transfers to characterize SD can be traced back to the seminal
paper by Rothschild and Stiglitz (1970), who have shown that increasing risk can be decomposed into
a sequence of mean-preserving spreads. The name transfer for such operations like mean-preserving
spreads was originally more common in the related literature on inequality measurement, where these
transfers have the meaning of real transfers of income or wealth; see Atkinson (1970), a famous com-
panion paper to Rothschild and Stiglitz (1970). It can be shown for many types of SD that, in the case
of distributions assuming only a finite number of values, the dominance rule holds if and only if one
distribution can be obtained from the other by a sequence of simple transfers. For multivariate FSD
Østerdal (2010) shows that this holds for increasing transfers, i.e., transfers that shift some probability
mass from some point x to some point y > x, meaning that we have a good transfer to a better situ-
ation. For first-degree or second-degree ASD one typically also allows for decreasing transfers shifting
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some probability mass from some point x to some point y < x as long as this is compensated or
overcompensated by corresponding inreasing transfers. See, e.g., Müller et al. (2017) for the univariate
case or Müller and Scarsini (2012) for the multivariate case of inframodular transfers. Other related
concepts of transfers have been considered in Kamihigashi and Stachurski (2020) and Elton and Hill
(1992). A general theory of transfers has been developed in Müller (2013). We will show now that
such a characterization also holds for the multivariate versions of SD considered in this paper.

Given two vectors x,y ∈ RN we use the notation x < y to indicate

xi ≤ yi, for i = 1, . . . , N, and x 6= y.

The symbol ei denotes the i-th vector of the canonical basis.

Definition 3.3. Consider two discrete cumulative distribution functions F and G with respective mass
functions f and g.

(a) We say that G is obtained from F via an increasing transfer if there exist x1 < x2 and η > 0

such that

g(x1) = f(x1)− η,

g(x2) = f(x2) + η,

g(z) = f(z) for all other values z.

(b) We say that G is obtained from F via a γi-transfer along dimension i if there exist x1,x2,x3,x4 ∈
RN , h, η1, η2 > 0 such that

x2 = x1 + hei, η2(x4 − x3) = γiη1(x2 − x1), (3.3)

and

g(x1) = f(x1)− η1,

g(x2) = f(x2) + η1,

g(x3) = f(x3) + η2,

g(x4) = f(x4)− η2,

g(z) = f(z) for all other values z.

We say that G is obtained from F via a γ-transfer if G is obtained from F via a γi-transfer along some
dimension i ∈ {1, . . . , N}.

Fig. 1 gives an example of γ1-transfer with N = 2, γ1 = 2/3, η1 = η2. This multivariate transfer
is the natural generalization of the univariate (convex or concave) γ-transfer (or equivalently the
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x4

−η
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+η
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−η

x2

+η

Figure 1: Example of a γ-transfer with γ1 = 2/3, η1 = η2 = η.

univariate AFSD transfer (Müller et al., 2017)). It simply consists of a decreasing transfer from x4 to
x3 which is compensated by an increasing transfer from x1 to x2 concerning the same component i.
It leads to a univariate γ-transfer of the i-th marginal as described in Müller et al. (2017)) and does
not affect any of the other marginals.

We now characterize the order ≤γ in terms of probability transfers.

Theorem 3.4. Let the random vectorsX and Y assume only a finite number of values. ThenX ≤γ Y
if and only if the distribution of Y can be obtained from the distribution of X by a finite number of
increasing transfers and γ-transfers.

Theorem 3.4 illustrates that preferences consistent with γ-MASD can be thought of as preferences
for multivariate γ-transfers. Later we state a similar result in Theorem 5.5 and discuss a generalization
to distributions with nonfinite support in Theorem A.1.

Eliciting a multiattribute utility function is notoriously difficult. However, a decision maker might
feel comfortable answering this question: “For any fair lottery (say, a coin flip), would increasing
attribute i by one unit if the outcome is heads or reducing this attribute by t < 1 units if it is tails
improve this lottery for you or make it worse for you?” This question can be asked for different values
of t. A typical strategy for doing that in decision analysis is to ask the question for a very low value
of t (expecting the decision maker will prefer the lottery) and for a high value of t (expecting that
the lottery will not be preferred). Then values of t higher than the low value and values lower than
the high value can be used to narrow in on an indifference point. This should provide a reasonable
estimate of the indifference point, which is the bound γi for MASD. Her preference for γi-transfers is,
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by Theorem 3.4, consistent with γ-MASD. Note that such preferences extend beyond the framework
of expected utility over the distributions of the alternatives to settings with dependent background risk
(Section 4.5) and with payoffs that are expressed as suprema of expected utilities (Section 6).

The following theorem is the building block in the proofs of the subsequent results. The basic
idea is that increments of functions u ∈ Uγ can be bounded above and below by separable piecewise
linear utility functions that depend on γ. This fact will allow us to find sufficient conditions for γ-
dominance that do not depend on the joint distributions of the random vectors X and Y , but only
on the marginal distributions of their components. They will be much less restrictive than the ones
mentioned in Theorem 2.3.

Theorem 3.5. Let

vU (x; γ) :=

γx if x ≤ 0,

x if x > 0,

vL(x; γ) :=

x if x ≤ 0,

γx if x > 0.

For any u ∈ Uγ , let bi := supx∈RN u′i(x) and fix some z ∈ RN . Then, for any x ∈ RN , we have

N∑
i=1

bivL(xi − zi; γi) ≤ u(x)− u(z) ≤
N∑
i=1

bivU (xi − zi; γi). (3.4)

4 Sufficient dominance conditions

In this section we consider sufficient conditions for γ-dominance. Most of the existing literature on
stochastic dominance deals with necessary conditions.

In the whole paper the random vectors X,Y are assumed to have components with finite means
and variances:

µXi
:= E[Xi], µYi := E[Yi], σ2Xi

:= V[Xi], σ2Yi := V[Yi]. (4.1)

4.1 Conditions for γ-dominance when Y is degenerate

We start considering the case where one the alternatives has a degenerate distribution (i.e., is a sure
payoff vector). In this special case we can obtain necessary and sufficient dominance conditions, as the
following propositions shows.

It clarifies that, if the payoff Y is equal to a sure vector c, then the dominance conditions do not
depend on the joint distribution of the random vector X, but only on its marginals. Therefore the
dependence structure of X has no role.

Proposition 4.1. Assume that the marginal distributions of the components of X are known and that
c is a sure payoff vector.
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(a) Let ci ≤ µXi for all i = 1, . . . , N . Then c ≤γ X if and only if ci ≤γi Xi for all i = 1, . . . , N .

(b) Let µXi ≤ ci for all i = 1, . . . , N . Then X ≤γ c if and only if Xi ≤γi ci for all i = 1, . . . , N .

The next proposition makes the necessary and sufficient conditions for γ-dominance explicit. Notice
that the integral condition for Xi ≤γi ci reduces to E[(Xi − ci)+] ≤ γi E[(ci −Xi)+] in this degenerate
case. Therefore we immediately get the following result.

Proposition 4.2. Assume that the marginal distributions of the components of X are known and that
c is a sure payoff vector.

(a) Let ci ≤ µXi for all i = 1, . . . , N . Then c ≤γ X if and only if

γi ≥
E[(ci −Xi)+]

E[(Xi − ci)+]
, i = 1, . . . , N. (4.2)

(b) Let µXi ≤ ci for all i = 1, . . . , N . Then X ≤γ c if and only if

γi ≥
E[(Xi − ci)+]

E[(ci −Xi)+]
, i = 1, . . . , N, (4.3)

In this subsection we established sufficient conditions for γ-MASD for the case that one distribution
is degenerate. These conditions are based on marginal distributions only, which make them especially
easy to implement. In the next subsections we discuss how powerful this is and the corresponding
intuition, given that usually the comparison of marginal distributions provides only necessary conditions
for MSD.

4.2 Conditions for γ-dominance in the general case

We now provide a sufficient condition for X ≤γ Y for general X and Y that only uses the marginal
distributions and holds for any dependence structures. The basic idea is to find a constant vector δ
that γ-dominatesX and is γ-dominated by Y . According to Proposition 4.2 we can use any δ between
the means of X and Y if these are ordered. Among all these constant vectors δ, we choose the one
that produces the smallest γ. Using this idea, we can derive the following result.

Theorem 4.3. Assume that the marginal distributions of the components of X and Y are known and
that µXi ≤ µYi for all i = 1, . . . , N . Let δi := inf{x : Fi(x) +Gi(x) ≥ 1} and let

γi :=
E[(δi − Yi)+] + E[(Xi − δi)+]

E[(Yi − δi)+] + E[(δi −Xi)+]
, (4.4)

for i = 1, . . . , N . Then X ≤γ Y .

Notice that δi is just the median of the mixture distribution 1
2Fi + 1

2Gi. Also note that if supports
of Yi and Xi don’t overlap, then we are in the conditions of Theorem 2.3, and the corresponding γi
equals zero.
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Given that the proof of Theorem 4.3 is based on Theorem 3.5, which provides separable bounds
for the utility functions in Uγ , one may suspect that it is always true that checking whether X ≤γ Y
holds is equivalent to separately checking whether Xi ≤γi Yi for each i ∈ {1, . . . N}. The following
counterexample shows that this is not the case.

Example 4.4. Let N = 2 and γ = (1/2, 1/2). Consider the binary random vectors X,X ′,Y ,Y ′

having the following distributions:

P(X = (0, 0)) = P(X = (5, 2)) =
1

2
, P(X ′ = (0, 2)) = P(X ′ = (5, 0)) =

1

2
,

P(Y = (2, 0)) = P(Y = (4, 2)) =
1

2
, P(Y ′ = (2, 2)) = P(Y ′ = (4, 0)) =

1

2
.

ThenX andX ′ have the same marginal distributions as well as Y and Y ′. With the characterizations
via transfers one can easily see that

X ≤γ Y and X ′ ≤γ Y ′,

but
X 6≤γ Y ′.

For a proof of the last statement consider the following utility function u:

u(x1, x2) = x1 + x2 + max{x1 + x2 − 4, 0}.

All partial derivatives of this function u are bounded between 1 and 2, so we have u ∈ Uγ , but

E[u(X)] = 5 > 4 = E
[
u(Y ′)

]
.

This shows that the ordering ≤γ in general depends not only on the marginal distributions, but on the
whole joint distributions of the random vectors.

4.3 Marginal location-scale families

In this section we will show that, if the marginal distributions of the vectors that we want to compare,
have nice properties, then the bounds in Theorem 4.3 become easier to compute. In particular, if
the marginal distributions are symmetric and belong to a location-scale family, such as normal or
uniform, then we can derive easy explicit formulas for the sufficient bounds in Theorem 4.3, as shown
in Proposition 4.5. A univariate distribution function F is said to belong to the symmetric location-
scale H-family if

F (x) = H

(
x− µ
σ

)
, with H(x) = 1−H(−x).
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In other words, H is the distribution function of a random variable Z as well as of −Z, and F is the
distribution function of µ+ σZ.

Proposition 4.5. Let Fi and Gi belong to the same symmetric location-scale H-family and let

η(t) :=
E[(Z − t)+]

E[(t− Z)+]
,

where Z has distribution function H. If

τi =
µYi − µXi

σXi + σYi
,

then, in (4.4), we have γi = η(τi).

Remark 4.6. If Y = c, then τi = (µYi − µXi)/σXi and the dominance conditions in Proposition 4.5
are necessary and sufficient.

In the next proposition we deal with sufficient conditions for marginal dominance of Yi over Xi.

Proposition 4.7. Let Fi and Gi belong to the same symmetric location-scale H-family and let

γMi := η

(
µYi − µXi

|σYi − σXi |

)
. (4.5)

Then Xi ≤γMi Yi.

Remark 4.8. Propositions 4.5 and 4.7 can be extended to the case where the distribution H is not
the same for all the marginals. If Fi and Gi belong to the same symmetric location-scale Hi-family,
then

ηi(t) :=
E[(Zi − t)+]

E[(t− Zi)+]
,

where Zi has distribution function Hi and, in Proposition 4.5, γi = ηi(τi). Proposition 4.7 ends
similarly.

Remark 4.9. A particular case of distributions with marginals in a location-scale family is given by
elliptical distributions, such as the multivariate normal, the multivariate t-distribution, etc. (see, e.g.,
Cambanis et al., 1981).

It is important to notice that γMi in Eq. (4.5) is smaller than γi in Proposition 4.5. This larger γi is
the price to pay to have sufficient conditions when the covariance matrices are possibly different. This
is relevant, as standard dominance allows the comparison of multinormal random vectors only when
they have the same covariance matrix. If one distribution is degenerate, then γMi and γi are equal.

4.4 Bounds when only means and variances are known

We now consider the case where the marginal distributions of the random vectors X and Y are not
completely specified, but only the means and variances are known. For univariate almost stochastic
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dominance this problem has been considered in Müller et al. (2021). Using the separable bounds from
Theorem 3.5 we can extend some of the results there to the multivariate case considered here.

Define
ζ(t) :=

1

1 + 2t
(
t+
√
t2 + 1

) . (4.6)

Theorem 4.10. Let the two random vectors X and Y have finite means and variances. Moreover,
for all i = 1, . . . , N , let µXi ≤ µYi and let

τi =
µYi − µXi

σXi + σYi
.

If γi = ζ(τi), i = 1, . . . , N, then X ≤γ Y .
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Figure 2: γi as a function of (µYi − µXi)/(σXi + σYi).

As discussed in Müller et al. (2021), these bounds are not sharp. Fig. 2 shows the values of γi
as functions of (µYi − µXi)/(σXi + σYi) when the distributions of Xi and Yi are normal (according to
Proposition 4.5) and when only their means and variances are known (Theorem 4.10). Fig. 2 extends
Fig. 3 in Müller et al. (2021), which deals with the univariate case when the dominated distribution is
degenerate.
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Proposition 4.11. Assume that the random vector X has finite means and variances and that c is a
sure payoff. Define

ti =
µXi − ci
σXi

. (4.7)

(a) Let ci ≤ µXi for all i = 1, . . . , N . Then c ≤γ X if and only if γi ≥ ζ(ti), as defined in Eq. (4.6).

(b) Let µXi ≤ ci for all i = 1, . . . , N . Then X ≤γ c if γi ≥ ζ(−ti), as defined in Eq. (4.6).

Proof. The result is an immediate corollary of Theorem 4.10 and Proposition 4.2.

Remark 4.12. Notice that in Eq. (4.3) the right hand side is equal to the Omega ratio ΩXi(ci), as
defined in Shadwick and Keating (2002), whereas in Eq. (4.2) the right hand side is 1/ΩXi(ci). The
right hand side of Eq. (4.7) can be interpreted as the Sharpe ratio. The connection between univariate
ASD, the Omega ratio, and the Sharpe ratio is discussed in Müller et al. (2021).

Remark 4.13. There exist various necessary conditions for SD based on moments both in the univari-
ate and the multivariate case (see, e.g., Fishburn, 1980, O’Brien, 1984, O’Brien and Scarsini, 1991).
The perspective we take here is completely different, since we provide sufficient conditions.

Example 4.14. To continue Example 3.2, let X denote the return from project A and Y the return
from project B, and recall that the utility functions of all board members belong to U(0.2,0.4). According
to Theorem 4.10, X ≤(0.2,0.4) Y if

µY1 − µX1

σX1 + σY1
≥ 0.9 and

µY2 − µX2

σX2 + σY2
≥ 0.48.

In this case the choice of project B over A is unanimous knowing only the projects’ means and variances.
If we know in addition that the marginal distributions are normal distributions, then we get better

bounds from Proposition 4.5. In this case X ≤(0.2,0.4) Y if

µY1 − µX1

σX1 + σY1
≥ 0.64 and

µY2 − µX2

σX2 + σY2
≥ 0.37.

4.5 Dependent background risks

In many situations, a decision about a risky project must be made in the presence of other important
uncertainties. Pratt (1988, p. 395) makes this point very nicely: “Most real decision makers, unlike
those portrayed in our popular texts and theories, confront several uncertainties simultaneously. They
must make decisions about some risks when others have been committed to but not resolved. Even
when a decision is to be made about only one risk, the presence of others in the background complicates
matters.”

Many decisions involve some form of background risk that cannot be eliminated. Imagine a depart-
ment in a company that is contemplating a choice between risksX or Y ; the background risk Z would
depend on projects undertaken by other departments. For other examples, see Tsetlin and Winkler

15



(2005) and papers cited there. In individual decision making, Z might correspond to health and/or
family situation. It is difficult to analyze situations where the random variables that are being compared
and the background risk are not stochastically independent. For instance, assume that the marginal
distribution of each of the random variables X,Y, Z is uniform on [0, 1]. Moreover let Z = X = 1− Y
and let u(x, z) = xz. Then v(X) := E[XZ | X] = X2 and E[Y Z | Y ] = Y (1− Y ) 6= v(Y ).

In many cases, the joint distribution of X,Z is impossible to estimate, and even the distribution
of Z might be hard to assess. Our bounds make it possible to handle such situations.

Theorem 4.15. Consider X and Y as in Theorem 4.3, and let γi be given by Eq. (4.4). Let Z
be a K-dimensional multivariate background risk. Let γ = (γ1, . . . , γN , 0, . . . , 0) ∈ RN+K

+ . For any
u( · , · ) ∈ Uγ we have that E [u (X,Z)] ≤ E [u (Y, Z)].

As an illustration, consider univariate X, Y and Z having joint normal distributions with µY > µX .
Then

γM1 = η

(
µY − µX
|σX − σY |

)
is given in Proposition 4.7, and dominance with this γM1 holds for X + Z and Y + Z if X, Y and Z
are independent. In particular, if σX = σY , then Y + Z first-order dominates X + Z, but this result
fails under dependence.

In general, dominance for X + Z and Y + Z will hold with

γ = η

(
µYi − µXi

|σX+Z − σY+Z |

)
,

which in turn depends on correlations between X,Z and between Y,Z. Note, however, that

|σX+Z − σY+Z | ≤ σX + σY ,

and therefore Y + Z dominates X + Z for any correlations with γ1 given by Proposition 4.5. Thus,
our sufficient bounds for dominance of Y over X are also sufficient for dominance of Y +Z over X+Z

regardless of the dependence.
As mentioned earlier, our sufficient conditions are based on marginal distributions only, which

makes them especially easy to implement. They are also useful in settings with background risk
(Theorem 4.15), as we can establish dominance of (Y ,Z) over (X,Z) by comparing only marginal
distributions of X and Y .

5 (γ,β)-dominance

In the univariate case, when γ = 1, we have

X ≤γ Y ⇐⇒ E[X] ≤ E[Y ].
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This means that, in this case, there exists a complete order on the set of random variables with finite
expectation. In the multivariate case the situation is more complicated, due to the fact that RN is not
completely ordered, so there is no natural way to order random vectors by their expectations. One
possible way would be to consider weighted expectations E

[∑N
i=1 βiXi

]
, as in portfolio analysis. In

this section we will consider a version of multivariate almost stochastic dominance with a parameter
γ ∈ [0, 1] and a parameter vector β such that we get complete ordering based on weighted expectations
E
[∑N

i=1 βiXi

]
for the case γ = 1 and classical first order stochastic dominance for the case γ = 0.

5.1 Defining (γ,β)-dominance

To achieve a complete order of random vectors, we consider a new class of utility functions defined in
terms of two parameters: a scalar γ and a vector β. Then we define the corresponding SD relation,
(γ,β)-multivariate almost stochastic dominance ((γ,β)-MASD).

Definition 5.1. For γ ∈ [0, 1] and β ∈ RN+ , let Uγ,β be the class of utility functions u : RN → R such
that

0 < γβi ≤ u′i(x) ≤ βi for all i ∈ {1, . . . , N}. (5.1)

The random vector X is dominated by the random vector Y in the sense of (γ,β)-MASD (X ≤γ,β Y )
if

E[u(X)] ≤ E[u(Y )], for all u ∈ Uγ,β.

Notice that, for any α > 0, we have X ≤γ,β Y iff X ≤γ,αβ Y . This is coherent with the fact that
two utility functions represent the same preferences if one is proportional to the other one.

If γ = 1, then we get a complete ordering by comparing E[
∑
βiXi] and E[

∑
βiYi] and for γ = 0 we

get X ≤st Y .

5.2 Characterization via (γ,β)-transfers

We now consider the class Uγ,β of utility functions of Definition 5.1 and define the corresponding
transfers. We first discuss why it is basically sufficient to consider the case of βi = 1 for all i ∈
{1, . . . , N}, which yields a more intuitive concept than the general case.

Notice that βi is a scale factor that depends on the units that are used. Indeed, if ũ : RN → R is a
function such that

0 < γ ≤ ũ′i(x) ≤ 1 for all i ∈ {1, . . . , N}, (5.2)

then the function
u(x1, . . . , xN ) := ũ(β1x1, . . . , βNxN )

fulfills (5.1). Thus, by changing units we can assume without loss of generality that u is a function
with the property (5.2), i.e., with the property that all marginal utilities are bounded between γ and 1.
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A function u that satisfies (5.2) also satisfies

γu′i(x) ≤ u′j(y) for all x,y and for all i, j. (5.3)

Vice versa, if a function satisfies (5.3), we can define

β := sup
i,x

u′i(x)

and then
γβ ≤ u′j(y) ≤ β for all y and for all j;

thus u/β satisfies (5.2). Hence the functions satisfying (5.3) build the convex cone generated by the
functions satisfying (5.2) and therefore define the same SD rule.

Similarly, the convex cone generated by the functions in Uγ,β is given by the functions satisfying

γβju
′
i(x) ≤ βiu′j(y) for all x,y and for all i, j ∈ {1, . . . , N}.

In the following discussion of transfers we will first restrict our attention to the class Uγ,1, i.e., the
functions that satisfy property (5.2). In contrast to the γ-transfer, we will now allow the decreasing
transfer from x4 to x3 concerning component i to also be compensated by an increasing transfer from
x1 to x2 concerning some other component j.

Definition 5.2. Consider two discrete cumulative distribution functions F and G with respective mass
functions f and g. We say that G is obtained from F via a (γ,1)-transfer (along dimensions i, j) if
there exist x1,x2,x3,x4, ε1, ε2 > 0 and η1, η2 > 0 such that, for some i, j ∈ {1, . . . , N},

x2 = x1 + ε1ei, x4 = x3 + ε2ej , η2ε2 = γη1ε1,

and

g(x1) = f(x1)− η1,

g(x2) = f(x2) + η1,

g(x3) = f(x3) + η2,

g(x4) = f(x4)− η2,

g(z) = f(z) for all other values z.

Fig. 3 shows an example of a (γ,1)-transfer with N = 2, ε1 = 1.5, ε2 = 1, γ = 2/3, η1 = η2 = η.
With a proof similar to the proof of Theorem 3.4, we get the following result.

Theorem 5.3. Let the random vectors X and Y assume a finite number of values. Then X ≤γ,1 Y
if and only if the distribution of Y can be obtained from the distribution of X by a finite number of
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x4−η

x3+η

x1

−η

x2

+η

Figure 3: Example of (γ,1)-transfer with ε1 = 1.5, ε2 = 1, γ = 2/3, η1 = η2 = η.

increasing transfers and (γ,1)-transfers.

Notice that
E[u(X)] ≤ E[u(Y )] for all u ∈ U(γ,β)

is equivalent to

E[ũ(β1X1, . . . , βNXN )] ≤ E[ũ(β1Y1, . . . , βNYN )] for all ũ ∈ U(γ,1).

From this equivalence we get the general (γ,β)-transfers as follows.

Definition 5.4. Consider two discrete cumulative distribution functions F and G with respective mass
functions f and g. We say that G is obtained from F via a (γ,β)-transfer if there are i, j ∈ {1, . . . , N}
and exist x1,x2,x3,x4 ∈ RN , ε1, ε2, η1, η2 > 0 such that, for some i, j ∈ {1, . . . , N},

x2 = x1 + ε1ei, x4 = x3 + ε2ej , η2ε2βj = γη1ε1βi,
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and

g(x1) = f(x1)− η1,

g(x2) = f(x2) + η1,

g(x3) = f(x3) + η2,

g(x4) = f(x4)− η2,

g(z) = f(z) for all other values z.

Theorem 5.5. Let the random vectors X and Y assume a finite number of values. Then X ≤γ,β Y
if and only if the distribution of Y can be obtained from the distribution of X by a finite number of
increasing transfers and (γ,β)-transfers.

5.3 Sufficient conditions for (γ,β)-dominance

We can derive sufficient conditions for this version of MASD that are very similar to the conditions
described in Section 4.

Theorem 5.6. Assume that the marginal distributions of the components of X and Y are known. Let
δi := inf{x : Fi(x) +Gi(x) ≥ 1} and let

γ :=

∑N
i=1 βi(E[(δi − Yi)+] + E[(Xi − δi)+])∑N
i=1 βi(E[(Yi − δi)+] + E[(δi −Xi)+])

.

If
N∑
i=1

βiµXi ≤
N∑
i=1

βiµYi , (5.4)

then X ≤γ,β Y .

We next address the case where only means and variances are known.

Theorem 5.7. Let the two random vectors X and Y have finite means and variances. Let

γ =

∑N
i=1 βi

(√
(σXi + σYi)

2 + (µYi − µXi)
2 − (µYi − µXi)

)
∑N

i=1 βi

(√
(σXi + σYi)

2 + (µYi − µXi)
2 + (µYi − µXi)

) .
If (5.4) holds, then X ≤γ,β Y .

Example 5.8. Returning to the setting of Example 3.2, suppose the board has to decide whether
project Y (with N = 2, Y1 being NPV and Y2 being MS) is worth undertaking, thus comparing Y
to the status quo 0. It is hard to assess the joint distribution of Y , but estimates of the means and
variances are available:

µY1 = −5, σY1 = 4, µY2 = 2, σY2 = 1.
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In expectation, this risky project will decrease NPV by $5 million and increase MS by 2%. To apply
Theorem 5.7 we choose the parameters β1, β2 as the sup of the partial derivatives of the utility function:

β2
β1

=
sup(u′2(x))

sup(u′1(x))
.
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Figure 4: γ as a function of β2/β1.

Fig. 4 plots γ from Theorem 5.7 as a function of β2/β1. As we can see, for β2/β1 < 2.5, it is better
not to undertake the project. After discussing the issue in a board meeting, all members of the board
agree that β2/β1 ≥ 18. From Fig. 4, if β2/β1 = 18, then γ = 0.2, which implies that Y dominates 0

with respect to the utility class U0.2,β with β2/β1 ≥ 18. If, as in Example 3.2, all board members agree
that U(0.2,0.4) includes their preferences, then the support for the project is unanimous, and further
information on the joint distribution of the components of Y is not needed.

Example 5.9. Returning to the data analytics startup from the scenario (b) in the Introduction, the
current approach is to maximize E

[∑N
i=1 βiXi

]
, as mentioned at the beginning of Section 5. At the

same time, some bounds on variances might be available (Arlotto et al., 2014). To take into account
the riskiness of different solutions, the startup team can apply Theorem 5.7. For any two contending
solutions that will give γ; by varying γ, they can identify dominated and dominating sets of the available
alternatives, and see how these sets change as β varies. Then these results can be discussed with a
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client.

6 A case study on investments in photovoltaic power systems

A company wants to compare the efficiency of a photovoltaic solar power system in two different lo-
cations. The productivity of a photovoltaic (PV) solar power system depends on solar irradiance,
which varies through the day and depends on latitude and climate. We want to compare the two
possible locations of Rome in Italy and Siegen in Germany. Data for solar irradiance are publicly avail-
able for all locations in Europe from the Copernicus Atmosphere Monitoring Service CAMS (2019)
http://www.soda-pro.com/web-services/radiation/cams-radiation-service. From this source we down-
loaded the hourly data for the so-called global horizontal irradiation (GHI) for the year 2020. For each
location we get a sample of 365 vectors of daily GHI data. These are displayed for the two cities of
Rome and Siegen in Fig. 5 together with the hourly means.
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Siegen: hourly data from 4:00-22:00 in 2020
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Roma: hourly data from 4:00-22:00 in 2020

Figure 5: Global horizontal irradiation in Siegen and Rome.

Positive values are only possible between 5 a.m. and 10 p.m. so that only 17 hours of the day are
relevant. Therefore we can describe the possible productivity of the PV systems by a random vector
X = (X1, . . . , X17) for Siegen and by a similar random vector Y for Rome, whose distributions we
estimate by the empirical distributions of the data. It is not surprising that the values for Rome are
typically larger than the ones for Siegen as Rome is more than 1000 km south of Siegen and less rainy.
However, we do not have multivariate FSD between the two distributions as not even all hourly means
are larger. This can easily be explained by the fact that in the summer days are longer in the north
and therefore very early in the morning and late in the evening Siegen has a higher (though small)
solar irradiance on average, whereas in the rest of the day Rome has much higher irradiance, as shown
in Fig. 6. It is quite clear, however, that an investment in Rome should be more profitable as there is
some kind of almost FSD.
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Figure 6: Expected hourly GHI for Siegen and Rome.

We will show now that it is reasonable to assume that the expected reward of the decision maker
can be written in form of an expected utility E[u(X)] that fulfills the assumptions of Definition 5.1
for appropriate parameters and that we can show with the results of Section 5 that X ≤γ,β Y holds
for appropriate parameters. For this illustrative example we make a few simplifying assumptions as
the real world problem is very complex. We assume that the output of the PV system is exactly
proportional to the GHI. The decision maker is assumed to be a so called prosumer, who at the same
time is a producer as well as a consumer of electricity. For simplicity we assume that the consumption
can be described by a random vector Z that is independent of the production of the PV system. Notice,
however, that with the methods described in this paper, we can also handle situations with dependent
background risk; see Theorem 4.15.

Unfortunately, the multivariate distribution of the consumption vector Z of a company typically
also has a multivariate distribution that is difficult to assess, see, e.g., Berk et al. (2018) for an attempt
to describe electricity demand patterns of companies by a stochastic model. It is reasonable to assume
that there always is the possibility of buying electricity for a price of β per unit and selling electricity
for a lower price of γβ with 0 < γ < 1. In practice, these prices may also vary with the hour of the day
and therefore there would be a price vector β, but we assume here for simplicity that β is constant.
Prosumers have the incentive to consume the produced electricity themselves as far as possible to avoid
the higher cost of β per unit for buying electricity. Electricity could be sold for the lower price γβ if
production exceeds consumption. If this simple strategy is applied, then, for a given output vector x
of the PV system and a consumption vector z, the payoff is

v(x, z) =
17∑
i=1

βmin{xi, zi}+ γβ(xi − zi)+. (6.1)
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For a random consumption vector Z, the expected reward given output vector x is

u(x) := E[v(x,Z)]. (6.2)

In the case of this simple separable utility function the strong positive dependence between the
production in different hours is irrelevant. However, strategic behavior of the prosumer may lead to a
higher payoff. For instance, battery storage could be employed to store the produced electricity, so that
the prosumer could adopt a policy π that allows electricity to be used later instead of being sold for a
cheap price. Therefore the real value that one gets as expected payoff is much more complicated and
not separable any more. Thus the dependence structure of the multivariate distribution of X will also
be relevant. When we have a random electricity consumption and in addition the possibility of using
battery storage, we will not be able to give a simple explicit expression for the value of the expected
payoff of an operating policy π. However, it is still true that the marginal utilities are bounded by γβ
and β, so that we have uπ ∈ Uγ,β. Therefore the decision maker with operating policy π will prefer
the investment with a production vector Y to the one with production vector X if X ≤γ,β Y . If
the prosumer solves an optimization problem to find an optimal operating policy among all possible
operating policies, the expected value of the PV system will have the form V (X) = supπ E[uπ(X)],
which may not have the form of an expected utility anymore as the optimal policy may depend on the
random vector X. Nevertheless, it is still true that X ≤γ,β Y implies V (X) ≤ V (Y ) as the ordering
property is preserved by taking a supremum.

It is also very difficult to determine the complicated dependence structure of the random vector
of GHI data; see, e.g., Müller and Reuber (2022) for an attempt to describe the whole multivariate
distribution of this time series by a stochastic model using time dependent beta distributions and
copula models. Therefore the results of Section 5 are useful to obtain bounds for the parameter γ that
ensures X ≤γ,β Y . Approximating the marginal distributions with their empirical counterparts, and
ignoring the dependence structure, from Theorem 5.6 we can derive the value γ = 0.525. Using only
means and variances of the marginals, from Theorem 5.7 we get the value γ = 0.576. The difference
between the two values is comparable to the difference for the values of γi that one obtains for normally
distributed marginals in Section 4, as described in Fig. 6.

In the context of this example the transfers corresponding to the stochastic dominance rule also
have a simple and intuitive interpretation. If the marginal utility of the produced electricity is bounded
by the buying price β and the selling price γβ, then we prefer a scenario where we produce more in
hour i and less in hour j as long as the lower production in hour j is bounded by a fraction γ of the
higher production in hour i.

Table 1 shows the means, standard deviations, and the corresponding univariate γ for the different
time slots. The numbers in boldface refer to the times when Siegen dominates Rome. One can see that
the value of γ = 0.576 obtained for the multivariate version of the bounds discussed in Section 5 is
about the same size as the bounds that one gets when considering the univariate problem for a single
hour in the most relevant hours in the middle of the day.
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Table 1: Expected values, standard deviations and γ’s for different time slots

Expected value Standard deviation γ

time Siegen Roma Siegen Roma

04:00 0.000 0.000 0.000 0.000 -

05:00 1.003 0.199 2.393 0.542 0.582

06:00 15.401 15.744 26.398 25.754 0.987

07:00 50.707 73.894 70.451 87.724 0.747

08:00 115.811 177.978 128.355 157.311 0.649

09:00 197.805 314.928 185.353 204.742 0.553

10:00 275.557 450.991 224.584 232.883 0.473

11:00 336.451 561.013 249.567 248.803 0.418

12:00 387.412 615.468 262.666 260.380 0.429

13:00 419.324 620.697 266.839 263.684 0.476

14:00 399.560 577.937 257.419 252.466 0.504

15:00 348.290 487.155 235.694 234.401 0.558

16:00 279.321 363.207 209.142 212.732 0.674

17:00 193.808 222.166 171.812 176.166 0.850

18:00 114.787 106.833 122.830 113.958 0.935

19:00 52.316 32.758 68.294 47.429 0.714

20:00 14.082 2.432 24.152 5.123 0.460

21:00 0.821 0.000 2.020 0.000 0.453

22:00 0.000 0.000 0.000 0.000 -
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7 Conclusions

SD is a useful concept, especially in a multivariate context, where assessing multiattribute utility is
challenging and different stakeholders might have divergent views. However, applying multivariate SD
is difficult for two reasons: First, often distributions cannot be ranked (e.g., by FSD); this can be
overcome by using γ-MASD. Second, integral conditions for multivariate SD do not exist; to overcome
this challenge, we develop sufficient conditions for γ-MASD that are based on marginal distributions
of the compared alternatives or just on their means and variances. This makes our conditions very
practical, as full assessments of joint multivariate distributions are usually difficult. In the framework of
portfolio analysis, Arvanitis et al. (2021) study stochastic bounding of a portfolio by another, i.e., they
look at conditions under which a set of portfolios contains one portfolio that stochastically dominates
all portfolios in another set. When these conditions are not satisfied, they look for approximate bounds,
in the spirit of ASD.

Another distinction of the multivariate case, compared to the univariate case, is that a real coor-
dinate space is not completely ordered. To attain a path to a complete order, we need to constrain
maximal marginal utilities for different attributes. Section 5 presents the corresponding definition
of (γ,β)-MASD, its characterization via transfers, and sufficient conditions for comparing two risky
alternatives.

Within the expected utility framework, γ-MASD and (γ,β)-MASD translate into bounds on
marginal utilities (Definitions 3.1 and 5.1). Alternatively, these preferences can be characterized via
transfers (Definitions 3.3 and 5.4 and Theorems 3.4 and 5.5). Such transfers might be easier to explain
to decision makers and use for elicitation of γ and β.

Examples 3.2, 4.14 and 5.8 illustrate our approach in a classical decision-making setting, where one
needs to choose between two alternatives. We also discuss broader potential applications (Example 5.9)
for screening of the most promising solutions in (potentially large-scale) optimization problems such as
risk-averse revenue management (Gönsch, 2017). There is always a tension between a careful compar-
ison and evaluation of available alternatives and a search for new solutions. With multiple attributes,
the former is difficult and laborious. Our results provide tools for “fast and frugal” screening and
evaluation, while properly accounting for tradeoffs and riskiness. As the world moves toward decisions
with multiple objectives (e.g., many environmental, social and governance (ESG) criteria in addition
to the financial performance of a company), such tools, consistent with normative decision analysis,
should become even more in demand.

A Note on general distribution functions

The following theorem shows how the previous results on transfers can be adapted to the case of
random variables that are not finite.

Theorem A.1. Let B ⊂ RN be bounded and let U be a class of continuous increasing functions
u : B → R. Let the random vectors X,Y take values in B. Then X ≤U Y if and only if there exist
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two sequences (Xn)n∈N and (Y n)n∈N such that

Xn →X a.s., Y n → Y a.s., and Xn ≤U Y n for all n ∈ N.

Proof. For bounded univariate random variables X,Y we can construct sequences (Xn), (Yn) with
Xn ≤ X, Yn ≥ Y , and Xn → X,Yn → Y a.s.. A concrete construction is given in the proof of
Theorem 2.8 in Müller et al. (2017). We can apply this procedure componentwise to bounded random
vectors X and Y . Thus we get sequences such that, almost surely, Xn ≤X, Y n ≥ Y , Xn →X, and
Y n → Y . Since X ≤ Y a.s. implies X ≤U Y we thus get sequences with

Xn ≤U X ≤U Y ≤U Y n.

This shows the only-if-part. The if-part follows from the fact that any SD relation ≤U is closed under
convergence in distribution if U consists only of bounded continuous functions, see, e.g., Müller (1997,
Theorem 4.2).

B Proofs

Proofs of Section 3

The proof of Theorem 3.4 requires the following lemma.

Lemma B.1. Let u : RN → R be continuously differentiable. Then u ∈ Uγ if and only if

η2(u(x4)− u(x3)) ≤ η1(u(x2)− u(x1)) (B.1)

for all x1,x2,x3,x4 satisfying (3.3) for some i and γi.

Proof. If part: Assume that u fulfills (B.1) for some i and γi. Then

η2(x4 − x3) = γiη1(x2 − x1) =⇒ x3 = x4 − γiη1ei

and so (B.1) implies

γi
∂

∂xi
u(x4) = γi lim

η1→0

u(x4)− u(x3)

γiη1
≤ lim

η2→0

u(x2)− u(x1)

η2
=

∂

∂xi
u(x1).

As this holds for arbitrary x1,x4 and the derivatives are assumed to be continuous, by (3.1), we get
u ∈ Uγ .

Only if part: Now assume that u ∈ Uγ is continuously differentiable. Let h := x2 − x1. For
x1,x2,x3,x4 satisfying (3.3) for some i and γi, from η2(x4 − x3) = γiη1(x2 − x1), we get that

x4 − x3 =
γiη1
η2

(x2 − x1).
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Thus, from (B.1) we can deduce

η1(u(x2)− u(x1)) =

∫ 1

0

∂

∂xi
u(x1 + th)dt

≥ η1γi
∫ 1

0

∂

∂xi
u

(
x3 + t

γiη1
η2
h

)
dt

= η2
γiη1
η2

∫ 1

0

∂

∂xi
u

(
x3 + t

γiη1
η2
h

)
dt

= η2(u(x4)− u(x3)).

Proof of Theorem 3.4. The proof is based on the duality theory for transfers that as described in Müller
(2013) Lemma B.1 shows that Uγ can be described by a set of inequalities. Therefore it is induced
by the corresponding set of transfers as described in Müller (2013, Definition 2.2.1). The proof thus
follows from Müller (2013, Theorem 2.4.1).

Proof of Theorem 3.5. Note that u′i(x) ≤ sup(u′i(x)) = bi and that by inequality (3.2) we have u′i(x) ≥
γibi. By a multivariate first-order Taylor expansion, u(x) − u(z) =

∑N
i=1 u

′
i(y)(xi − zi), where yi is

between xi and zi. Then, using u′i(y) ≤ bi if xi > zi and u′i(y) ≥ γibi if xi < zi provides an upper
bound, while using u′i(y) ≥ γibi if xi > zi and u′i(y) ≤ bi if xi < zi provides a lower bound.

Proofs of Section 4

Proof of Proposition 4.1. We will prove (b). The proof for (a) is similar. Let u ∈ Uγ and let

bi := sup
x∈RN

u′i(x). (B.2)

Without any loss of generality, assume u(c) = 0. By Theorem 3.5 we have

u(x) ≤
N∑
i=1

bivU (xi − ci; γi), (B.3)

where vU (xi − ci; γi) = −γi(ci − xi)+ + (xi − ci)+. This implies

E[u(X)] ≤
N∑
i=1

bi(−γi E[(ci −Xi)+] + E[(Xi − ci)+]) (B.4)

Therefore E[u(X)] ≤ 0 if −γi E[(ci −Xi)+] + E[(Xi − ci)+] ≤ 0 for all i = 1, . . . , N .
Notice that −γi E[(ci−Xi)+]+E[(Xi− ci)+] ≤ 0 is equivalent to Xi ≤γi ci. This proves the if part.
Now we prove the only if part. Consider a sequence of utility functions

un(x) =

N∑
i=1

bi,nvU (xi − ci; γi)+ ∈ Uγ (B.5)
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such that limn→∞ bj,n = 0 for j 6= i and bi,n ≡ 1 for all n.
If X ≤γ c, then E[un(X)] ≤ un(c) = 0. This implies −γi E[(ci −Xi)+] + E[(Xi − ci)+] ≤ 0 for all

i = 1, . . . , N , i.e., Xi ≤γi ci, for all i = 1, . . . , N .

Proof of Theorem 4.3. Given u ∈ Uγ , let bi = sup(u′i(x)), and without loss of generality, assume
u(δ) = 0. By Theorem 3.5 we have

N∑
i=1

bivL(xi − δi; γi) ≤ u(x) ≤
N∑
i=1

bivU (xi − δi; γi).

First, we show that, for i = 1, . . . , N , for any δi we have

E[vL(Yi − δi; γi)] = E[vU (Xi − δi; γi)]

for γi defined as in Eq. (4.4). This follows from

E[vL(Yi − δi; γi)] = −E[(δi − Yi)+] + γi E[(Yi − δi)+)],

E[vU (Xi − δi; γi)] = −γi E[(δi −Xi)+] + E[(Xi − δi)+],

and the definition of γi.
Therefore, from inequality (3.4) it follows that

E[u(Y )] ≥
N∑
i=1

bi E[vL(Yi − δi; γi)] =
N∑
i=1

bi E[vU (Xi − δi; γi)] ≥ E[u(X)]

holds for arbitrary δi. We want to choose δi such that γi is as small as possible. As

γi =
E
[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

]
E
[
(Yi − δi)+

]
+ E

[
(δi −Xi)+

] =
E
[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

]
µYi − δi + E

[
(δi − Yi)+

]
+ δi − µXi + E

[
(Xi − δi)+

] ,
we have to minimize E

[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

]
with respect to δi. The right derivative is

∂+

∂δi

(
E
[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

])
= E

[
1[δi−Yi≥0]

]
− E

[
1[Xi−δi≥0]

]
= Gi(δi)− 1 + Fi(δi).

Therefore, δi is minimized for δi = inf{x : Fi(x) +Gi(x) ≥ 1}.
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Proof of Proposition 4.5. In this case we can solve for δi from Theorem 4.3:

Fi(δi) +Gi(δi) = 1 ⇐⇒ H

(
δi − µXi

σXi

)
+H

(
δi − µYi
σYi

)
= 1

⇐⇒ H

(
δi − µXi

σXi

)
= H

(
µYi − δi
σYi

)
⇐⇒ δi − µXi

σXi

=
µYi − δi
σYi

⇐⇒ δi =
µXiσYi + µYiσXi

σXi + σYi
.

Hence

γi =
E
[
(Yi − δi)+

]
+ E

[
(δi −Xi)+

]
E
[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

] =
σYi E

[
(Z − τi)+

]
+ σXi E

[
(Z − τi)+

]
σYi E

[
(τi − Z)+

]
+ σXi E

[
(τi − Z)+

] = η(τi).

The proof of Proposition 4.7 is along the lines of Müller et al. (2017, example 2.11).

Proof of Proposition 4.7. The following condition for γMi -dominance in location-scale models can be
found in Müller et al. (2017, bottom of page 2940):

γMi =

∫ ∞
−∞

(Gi(x)− Fi(x))+ dx∫ ∞
−∞

(Fi(x)−Gi(x))+ dx
=

∫ ∞
−∞

(
H

(
x− µYi
σYi

)
−H

(
x− µXi

σXi

))
+

dx∫ ∞
−∞

(
H

(
x− µXi

σXi

)
−H

(
x− µYi
σYi

))
+

dx
. (B.6)

The two distribution functions Fi and Gi single-cross at a point δi such that

δi − µXi

σXi

=
δi − µYi
σYi

, (B.7)

which implies
δi =

µYiσXi − µXiσYi
σXi − σYi

. (B.8)

Notice that, for x < δi, the distribution with a larger variance takes larger values than the other one.
Moreover, integrating by parts, we get the well-known equalities:∫ δi

∞
Fi(x) dx = E

[
(δi −Xi)+

]
,

∫ ∞
δi

Fi(x) dx = E
[
(Xi − δi)+

]
. (B.9)

Therefore, when σYi > σXi , Eq. (B.6) becomes

γMi =

∫ δi

−∞

(
H

(
x− µYi
σYi

)
−H

(
x− µXi

σXi

))
dx∫ ∞

δi

(
H

(
x− µXi

σXi

)
−H

(
x− µYi
σYi

))
dx

=
E
[
(δi − Yi)+

]
− E

[
(δi −Xi)+

]
E
[
(Yi − δi)+

]
− E

[
(Xi − δi)+

] . (B.10)
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Since
E
[
(δi − Yi)+

]
= E

[
(δi − µYi − σYiZ)+

]
= σYi E

[(
δi − µYi
σYi

− Z
)

+

]
, (B.11)

we have

δi − µYi
σYi

=
1

σYi

(
µXiσYi − µYiσXi

σYi − σXi

− µYi
)

=
1

σYi

(
µXiσYi − µYiσXi − µYiσYi + µYiσXi

σYi − σXi

)
=

1

σYi

(
µXiσYi − µYiσYi

σYi − σXi

)
=

µXi − µYi
σYi − σXi

.

(B.12)

This implies that

E
[
(δi − Yi)+

]
= σYi E

[(
µXi − µYi
σYi − σXi

− Z
)

+

]
. (B.13)

Applying a similar argument to the other components in Eq. (B.10), we obtain

γMi =

E
[(

µXi
−µYi

σYi−σXi
− Z

)
+

]
E
[
Z −

(
µXi
−µYi

σYi−σXi

)
+

] . (B.14)

A similar derivation holds for σYi > σXi .

Proof of Theorem 4.10. The proof uses similar ideas as the proof of Theorem 3 in Müller et al. (2021).
Fix arbitrary δ, consider u ∈ Uγ , and let bi = sup (u′i(x)). Without loss of generality assume u (δ) = 0.
By Theorem 3.5,

N∑
i=1

bivL(xi − δi; γi) ≤ u(x) ≤
N∑
i=1

bivU (xi − δi; γi).

We need to show that, for some appropriate δi and γi, E[vL(Yi − δi; γi)] ≥ E[vU (Xi − δi; γi)] for i =

1, . . . , N . With the same tedious but straightforward calculation as in the proof of Theorem 3 in Müller
et al. (2021), we can establish that the smallest possible choice for γi is obtained by choosing

δi =
µXiσYi + µYiσXi

σXi + σYi

and
γi =

1

1 + 2t
(
t+
√
t2 + 1

)
for

t =
µYi − µXi

σXi + σYi
.
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Proof of Theorem 4.15. The proof is similar to the one of Theorem 4.3. We get

N∑
i=1

bivL(xi − δi; γi) ≤ u (x, z)− u (δ, z) ≤
N∑
i=1

bivU (xi − δi; γi),

and thus

E [u (Y, Z)] ≥
N∑
i=1

biE [vL(Yi − δi; γi)] + E [u (δ, Z)]

=
N∑
i=1

biE [vU (Xi − δi; γi)] + E [u (δ, Z)]

≥ E [u (X,Z)] .

Proofs of Section 5

Proof of Theorem 5.6. As in Theorem 3.5, we get for Uγ,β

N∑
i=1

βivL(xi − δi; γ) ≤ u(x)− u(δ) ≤
N∑
i=1

βivU (xi − δi; γ).

Therefore we can derive as in Theorem 4.3 that a sufficient condition for E[u (Y )] ≥ E[u (X)] is

N∑
i=1

βi E[vL(Yi − δi; γ)] ≥
N∑
i=1

βi E[vU (Xi − δi; γ)],

which is equivalent to

γ ≥
∑N

i=1 βi
(
E
[
(Xi − δi)+

]
+ E

[
(δi − Yi)+

])∑N
i=1 βi

(
E
[
(δi −Xi)+

]
+ E

[
(Yi − δi)+

]) .
Proof of Theorem 5.7. Assume that (5.4) holds. Fix arbitrary δ, consider u ∈ Uγ,β, and without loss
of generality set u (δ) = 0. As in Theorem 3.5, it follows that

N∑
i=1

βivL(xi − δi; γ) ≤ u (x) ≤
N∑
i=1

βivU (xi − δi; γ).

It is sufficient to show that for some δ we have

N∑
i=1

βi E[vL(Yi − δi; γ)] ≥
N∑
i=1

βi E[vU (Xi − δi; γ)]
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for any X and Y such that (4.1) holds. As in the proof of Theorem 3 in Müller et al. (2021), we get

E[vL(Yi − δi; γ)] ≥ γ (µYi − δi)− (1− γ)
1

2

(
δi − µYi +

√
σ2Yi + (µYi − δi)

2

)
and

E[vU (Xi − δi; γ)] ≤ γ (µXi − δi) + (1− γ)
1

2

(
µXi − δi +

√
σ2Xi

+ (µXi − δi)
2

)
.

Thus, we need to find some γ such that

N∑
i=1

βi

(
γ (µYi − δi)− (1− γ)

1

2

(
δi − µYi +

√
σ2Yi + (µYi − δi)

2

))

≥
N∑
i=1

βi

(
γ (µXi − δi) + (1− γ)

1

2

(
µXi − δi +

√
σ2Xi

+ (µXi − δi)
2

))

for some δ. Following Müller et al. (2021, Theorem 3), we choose

δi =
µXiσYi + µYiσXi

σYi + σXi

,

so that
µYi − δi
σYi

= ti and
µXi − δi
σXi

= −ti, where ti =
µYi − µXi

σXi + σYi
.

Then the equation for γ becomes

N∑
i=1

βi

(
γσYiti − (1− γ)

1

2

(
−σYiti + σYi

√
1 + t2i

))

=
N∑
i=1

βi

(
γ (−σXiti) + (1− γ)

1

2

(
−σXiti + σXi

√
1 + t2i

))
,

which is equivalent to

γ

N∑
i=1

βiti (σYi + σXi) = (1− γ)
1

2

N∑
i=1

βi

(
−σXiti − σYiti + (σXi + σYi)

√
1 + t2i

)
.

Define

∆ =

N∑
i=1

βiti (σYi + σXi) =

N∑
i=1

βi(µYi − µXi).

Then (
γ + (1− γ)

1

2

)
∆ = (1− γ)

1

2

N∑
i=1

βi (σXi + σYi)
√

1 + t2i ,
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or equivalently,

(1 + γ) ∆ = (1− γ)

N∑
i=1

βi (σXi + σYi)
√

1 + t2i .

This yields

γ =

∑N
i=1 βi (σXi + σYi)

√
1 + t2i −∆

∆ +
∑N

i=1 βi (σXi + σYi)
√

1 + t2i

.

Alternatively, we can express γ as

γ =

∑N
i=1 βi

(√
(σXi + σYi)

2 + (µYi − µXi)
2 − (µYi − µXi)

)
∑N

i=1 βi

(√
(σXi + σYi)

2 + (µYi − µXi)
2 + (µYi − µXi)

) .
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