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Firms often outsource search processes such as the acquisition of real estate, new technologies, or talent. To

ensure the efficacy of such delegated search, firms need to carefully design incentive contracts to attenuate the

ill effects of agency issues. We model this problem using a dynamic principal-agent framework, embedding

the standard sequential search model. The optimal contract pays the agent a fixed per-period fee, plus a

bonus for finding a suitable alternative. The bonus size is defined a priori and decreases over time, while the

range of values deemed suitable expands over time. If the principal is unable to contract on the value of the

delivered alternatives, the optimal contract consists of two parts: early in the search process, the agent is

granted a small bonus for every alternative brought to the principal, irrespective of whether the principal

accepts it; late in the search process, the agent is awarded a comparatively larger bonus, which is decreasing

in time, but only if the principal accepts the alternative. We also consider situations where the principal

chooses between searching in-house and outsourcing. This decision is shown to hinge on the principal’s trade-

off between speed and quality. The age-old aphorism “if you want it done right, do it yourself” holds, as

in-house search is optimal for a principal who prioritizes quality. Yet, in the context of our model, we also

establish an addendum: “if you want it done fast, hire someone else to do it.”

Key words : search; contract theory; dynamic programming

1. Introduction

Consider a search for a new house to buy. How many houses should be surveyed before a decision

is made? How can one balance time pressure with the desire to find something better than what

has already been observed? These questions arise not only in real estate but also in job search, the

search for profitable investment opportunities, and the process of discovering and adopting new

technologies.
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A ubiquitous practice in business is to hire someone else to conduct the search on your behalf.

Looking for a new employee? A headhunter will find the person for you. Need to sell a house? Hire

a real estate agent. Looking to acquire new technology? – technology scout.

Suppose, for example, that you are looking for a house. Would it be better to search for a

property yourself or rather to hire a real estate agent for that task? This is a nuanced decision

that depends on several factors. In the first place, there is a cost to hiring an agent, yet it will

save you time by delegating activities you would otherwise have to do yourself. Moreover, there

are other possible benefits to hiring an agent. The agent, who conducts searches for a living, can

probably search more rapidly and efficiently than you can, might be aware of unlisted but available

properties that give you more options, and may be more proficient at bargaining – giving you a

better price than if you had negotiated yourself.

However, the agent may have other incentives besides your best interest. For example, a standard

real estate contract pays the agent a percentage of the final purchase price for the house. In that

case, the agent has no incentive to seek a lower price because doing so would reduce his fee. So

if the agent is aware of two similar houses with different prices, he earns more by bringing only

the higher-priced house to your attention (a classic adverse selection problem). Even in situations

where the price is not an issue, such as when you offer the agent a flat fee, there are still agency

frictions. In particular, the agent will then be incentivized to find you a property of minimum

acceptable quality and as rapidly as possible – instead of patiently looking for a property you will

like the most. Similarly, if the agent is paid for his time, the agent might not even search only to

report that nothing suitable was found (a classic moral hazard problem).

Another factor to bear in mind is that once the search has been delegated to an agent who

maximizes his own utility, you must rely on the information that this agent presents to you. Finally,

in addition to the moral hazard and adverse selection issues that create frictions, there are many

settings in which the agent (e.g., an independent expert or a niche consulting firm) is risk-averse,

and so requires compensation for any uncertainty. All these agency issues make it difficult to

determine whether you are best served by hiring an agent and, if so, to devise incentives that will

yield the best possible outcome from your perspective.

Our paper aims to resolve this conundrum by answering two questions. (i) What conditions call

for, respectively, hiring an agent and conducting the search oneself? (ii) When search is delegated,

what is the principal’s optimal contract with the agent?

Related Literature. The problem of a single decision maker undertaking a search process

has been the topic of extensive research in search theory. For foundational work on this topic

(including reviews), the reader is referred to McCall (1970), Gronau (1971), Lippman and McCall
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(1976), Weitzman (1979), Lancaster and Chesher (1983), and Mortensen (1986). Variants of the

sequential search model have been used to describe a variety of situations, including job search

(Mortensen 1986), adoption of new technologies (McCardle 1985), the real estate market (Baucells

and Lippman 2004), and innovation (Rahmani and Ramachandran 2021). Some of the more recent

contributions to this literature are Tang et al. (2009), Ulu and Smith (2009), Lippman and Mamer

(2012), Massala and Tsetlin (2015), Mai and Pekeč (2018), Hu and Tang (2021), Alizamir et al.

(2019), and Zorc and Tsetlin (2020). We draw from this stream of work by building on the canonical

model of sequential search without recall (Gronau 1971, Lippman and McCall 1976).

Several papers on delegated search address the outsourcing of a search process. Erat and Krishnan

(2012) study the case of a principal who seeks to solve a design problem by setting up a contest

among several agents. Their paper differs from ours in terms of how the process is outsourced

(contract vs. contest) and also in the nature of the process being outsourced: Erat and Krishnan

study a single-period problem in which the key decision is where to search, as in the classic case

of a treasure buried in one of several possible locations; in contrast, we use the canonical model of

sequential search. Rahmani and Ramachandran (2021) examine search delegation in the context of

innovation, focusing on whether it is beneficial for the principal to commit to a stopping rule for

the search process. They do not identify the optimal contract, instead viewing the contract between

the principal and the agent as exogenous, with its form restricted to a tractable parametric family.

Lewis (2012) explores delegation of a sequential search process, but his model differs from ours

with regard to the nature of the process being outsourced and to the source of agency frictions.

Lewis presents a search model in which alternatives represent technologies, and the principal

receives a continuous income stream from the best technology identified so far. Thus there is no

decision to be made about which alternatives to accept and which to reject; the only decision

involved in forming a search strategy concerns the amount of effort to put into it. Hence there is

also no adverse selection problem with the agent; however, moral hazard arises because he may

exert less effort than the principal would prefer (our model features both moral hazard and adverse

selection). The model we develop also differs vis-à-vis contracting: whereas Lewis considers a risk-

neutral agent with limited liability, the agent in our model is risk-averse and has unlimited liability.

Ulbricht (2016) develops a model where search with recall is outsourced to a risk-neutral agent

with no capital constraints. The source of agency frictions in that model is information asym-

metry, as the principal does not know the distribution of the alternatives. Also related to this

stream is the study by Poblete and Spulber (2017), who examine R&D partnerships in which one

party is responsible for the invention and the other for innovation (where innovation is modeled

as a sequential search); these authors find that the optimal contract amounts to call options. The

model of Gerardi and Maestri (2012) studies delegation of information acquisition, which closely
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resembles a delegated version of the technology adoption model of McCardle (1985); they find the

optimal contracts are performance-based, consisting of a single payment upon conclusion of the

search. Kleinberg and Kleinberg (2018) focus on using “prophet inequalities” (Samuel-Cahn 1984)

to establish theoretical bounds on the efficiency of delegated search.

Our work contributes to this literature by being the first to examine several aspects of delegated

search. More specifically, we assess the effect of an agent’s risk aversion and describe how not only

the search dynamics but also the optimal contract evolve in the presence of a search deadline. We

believe that this study is also the first to explore the topic – which is highly relevant from a practical

standpoint – of when a search process should be outsourced instead of performed in-house.

From the perspective of methodology, the delegation of search is a problem in dynamic con-

tract theory. The literature on contract theory and incentive design is vast, with a long history of

applications and impact across many fields. Good reviews of the foundations of this literature are

provided by Hart and Holmström (1987), Bolton and Dewatripont (2005), and Laffont and Marti-

mort (2009). The study of dynamic contracting problems began with Rubinstein and Yaari (1983),

Radner (1985), and Malcomson and Spinnewyn (1988); these papers consider multiperiod versions

of classic contracting problems. One issue that has burdened dynamic contract theory models is

the tendency for optimal contracts to be complex, history-dependent, and seldom expressible in

analytic form. Spear and Srivastava (1987) show that – under the fairly mild assumptions of a

risk-neutral agent, limited liability, and a common discount rate – history dependence can be made

tractable because all of a history’s relevant information can be reduced to a single variable: the

agent’s promised future utility. Spear’s solution technique sparked a multitude of papers, primarily

in economics and finance. The delegated search paper of Lewis (2012) relies on this approach. In

the operations literature, an alternative technique is proposed by Plambeck and Zenios (2000);

these authors develop a dynamic principal–agent framework for solving the delegation of Markov

decision processes (MDPs). They employ the methodology of Fudenberg et al. (1990) and Smith

(1998) and show that, given a risk-averse agent who maximizes utility from consumption and can

access efficient banking, the contracting problem’s temporal complexity can be decomposed into a

sequence of (tractable) single-period problems. This solution technique, which has been adopted

by several papers in operations management, is the one that we shall use.

The application of dynamic contracting is of interest also to the operations research (OR) and

management science (MS) communities. One stream of literature builds on the dynamic principal–

agent approach of Plambeck and Zenios (2000). For instance, Plambeck and Zenios (2003) use it to

examine the outsourcing of a make-to-stock single-server queueing system, and Fuloria and Zenios

(2001) study the design of incentives for healthcare services delivery. Zhang and Zenios (2008)

and Zhang (2012a,b) propose a related framework for the delegation of control over MDPs; in
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these papers, it is hidden information (not hidden actions) that creates agency frictions. Our paper

contributes to this literature stream by extending the framework to systems in which the principal

makes active monitoring decisions. Most other OR/MS treatises on dynamic contracting problems

adopt the approach of “promised future utility”: Li et al. (2013) model multiperiod contracting in

a supply chain setting where the suppliers compete with each other; Belloni et al. (2016) develop

computational methods for a dynamic procurement setting in which the optimal contract lacks

closed form; Balseiro et al. (2019) examine a dynamic resource allocation problem that excludes the

possibility of monetary transfers; Sun and Tian (2018) consider a continuous-time setting wherein

the principal induces the agent to exert effort, which in turn increases the arrival rate of favorable

events; and Chen et al. (2020) focus on determining an optimal monitoring schedule in a setting

that is similar but in which agent effort reduces the arrival rate of unfavorable events.

Contributions and Key Results. To the best of our knowledge, this paper is the first to

address the two central aspects of delegated search described next.

1. Finite horizon. A plethora of search decisions are made under the time pressure of an impend-

ing horizon. Many job markets, from the one for freshly minted MBAs to the one for star football

players, have a clearly defined time horizon over which recruiting occurs. It has long been estab-

lished that the presence of a horizon has a critical effect on optimal search strategies: the searcher

becomes increasingly less selective as the end of the horizon approaches (Lippman and McCall

1976, Van den Berg 1990). However, such horizons have yet to be studied in the context of dele-

gated search.1 We shall demonstrate that a finite horizon affects delegated search even more than

it does own search: Proximity of the horizon is a critical factor in decisions about whether or not

to delegate search. The horizon also affects the type and structure of the optimal contract.

2. The outsourcing decision. The literature on delegated search is chiefly concerned with the

question of how best to outsource a search process. However, in real-world search settings, an

omnipresent conundrum is whether the search should be delegated at all. Although companies that

seek to fill a position can delegate the search process to an agent (a recruiter or a headhunter),

they have the option of conducting the same process in-house. Under what conditions is one or the

other of these options optimal? Our model is designed to tackle this question. We show that the

ages-old aphorism “if you want it done right, do it yourself” holds, as the principal’s sensitivity

to quality leads to the optimality of in-house search. Yet, we also find that, instead, delegation is

optimal when the principal is more sensitive to speed than to quality. Hence we dare add to the

aphorism: “if you want it done fast, hire someone else to do it.”

1 In the delegated search literature, only the model of Rahmani and Ramachandran (2021) has a finite horizon.
However, that paper does not solve the principal’s contracting problem.
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In addition, we derive optimal contracts between principal and agent in the context of delegated

search – in other words, contracts that enable the principal to attain her second-best outcome

when outsourcing. The optimal contracts must be identified if we are to compare the performance

of outsourcing and in-house search. Interestingly, we find that the specificities being studied in this

paper lead to optimal contracts that are different from ones in the prior literature.

3. Optimal contract type. If the values of alternatives found in a search process are verifiable,

then the contract types that emerge as optimal in our model consist of a per-time fee and a bonus

for delivering an alternative of sufficiently high value. It turns out that the per-time component of

the optimal contract vanishes if there is no opportunity cost for accepting a contract, a result that

mirrors observations from practice. However, our findings differ from current business customs with

respect to how the bonus amount is determined and when the bonus is awarded. In practice, bonuses

are either fixed or a function of the search result’s value – as when a real estate agent receives

some fraction of a house’s sales price, or a headhunter receives some percentage of the recruited

employee’s first-year salary. Yet, in our model, the optimal bonus size is determined ex-ante (when

the contract is signed) and decreases with time, while the bonus is sometimes awarded even for

alternatives that the principal is not willing to accept. Our results suggest that existing contracts

could be improved if the principal is endowed with sufficient information about the parameters of

the search process to be able to construct such a contract optimally.

If the values of the alternatives brought to the principal are not verifiable, then two contract types

emerge as optimal: a per-delivery contract, which pays the agent for every alternative delivered

(regardless of its quality); and a purchase-right contract, under which the principal has the right

to purchase any of alternatives found by the agent. In this latter arrangement, the agent receives

a pre-specified bonus (and thus is rewarded only for the alternatives that the principal accepts).

An interesting result is that if the search horizon is short enough, then there is no loss of efficiency

from the inability to contract on the quality of the alternatives.

2. Model

We begin by introducing the canonical sequential search model (Gronau 1971, Lippman and McCall

1976). This is the setting faced by a principal who is conducting an in-house search process – that

is, without hiring an agent. It is also an essential building block of our delegated search model.

2.1. Canonical Model: Sequential Search without Recall

The search process lasts up to N time periods, during each of which the following sequence of

events occurs. The searcher first decides on whether or not to pay the search cost c. If he does,

then with probability p, he finds an alternative (of value u) via a random draw from a distribution
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with cumulative distribution function (cdf) H(·), such that suppH ⊆ [u, ū], where 0 ≤ u < ū.

The searcher then decides whether to keep this drawn alternative, receiving its value as a payoff

and ending the search process, or to continue searching. Thus, the searcher can only accept one

alternative. The searcher’s goal is to devise a policy that will maximize his net present value (NPV)

for a given per-period discount factor α ∈ (0,1). Denoting by Vn the searcher’s value function, it

follows from Lippman and McCall (1976) that a decreasing threshold policy {ξ̄n} = {αVn+1} is

optimal. That is, in period n, it is optimal to accept any alternative with a value of at least αVn+1

and to reject all others. Denoting H̄(x) := P (X ≥ x), where X is a random variable distributed

according to cdf H, the value function is then given recursively by

Vn =

(
p

∫ ū

αVn+1

H̄(x)dx− c
)+

+αVn+1 (1)

with boundary condition VN+1 = 0. This condition represents the fallback option – that is, the

searcher’s payoff if the process is completed (N periods have passed) and no alternative has been

accepted. The fallback option’s value can be normalized to zero without loss of generality.

Several properties of the searcher’s optimal policy are relevant for our analysis. If the (bracketed)

term on the right-hand side (RHS) of (1) is positive, then it is optimal to pay the search cost;

otherwise, it is optimal not to pay it. If there is any period during which paying the search cost is

optimal, then paying it is optimal in every period – that is, both before and after.2 In short: either

it is optimal never to search (a degenerate solution), or it is optimal to search in every period.

2.2. Delegated Search Process

The principal can delegate control of the search process to an agent. (To facilitate the exposition,

we continue using feminine and masculine pronouns for the principal and the agent, respectively.)

She can therefore offer the agent a contract s that specifies how he will be paid for this task.

Informally, the contract is a sequence of functions s= {sn(·)}, each of which describes the payment

to the agent in period n, which depends on the history of publicly observable events until time of

payment; we formalize it once all the relevant notation has been introduced. The decision of whether

to search in period n is denoted by ωn ∈ {0,1} (1 standing for the decision to search). If the search

finds an alternative, the agent observes its value, which is drawn from a distribution with cdf F (·).

We assume that the distribution specified by F (·) is discrete with finite support suppF ⊂ [u, ū]

(where 0 ≤ u < ū) and a constant probability mass function µ(·) (so µ(x) = 1/| suppF | for all

x∈ suppF ). Such F (·) can be interpreted as a discrete approximation of a continuous distribution

G(·) with support [u, ū]; two common discretization techniques which satisfy our assumptions and

2 This property is established in the proof of Lemma A1 (see Appendix B).



8 Zorc, Tsetlin, Hasija, and Chick: Delegated Search

can be made arbitrarily precise are discussed in Appendix C.1. (A variant where the distribution

of alternatives is itself continuous is considered in Appendix C.2.)

After observing the value, the agent must decide whether to report the alternative to the prin-

cipal. We denote this decision by Ξn ∈ F , the set of all alternatives that will be reported to the

principal if found, where F is the set of all subsets of suppF . If the alternative is reported to the

principal, the principal will incur an evaluation cost e, observe the value of the alternative u, and

decide whether to accept it and end the search process (receiving u as the payoff), or reject it and

continue. We denote this decision of the principal by Ψn ∈ F , the set of all alternatives that she

will accept. Thus, the search will conclude at a stochastic stopping time T , which is either the time

at which the principal accepts an alternative, or N , if an alternative is never accepted. The evalu-

ation cost e is key to our model because it motivates the principal’s decision to delegate selection

decisions to an agent. If evaluation were costless, then the principal would prefer to evaluate all

alternatives herself, and so the problem would be reduced to just dynamic moral hazard.

We refer to the sequence of agent’s decisions on whether to search as his search policy {ωn}, which

alternatives he should report to the principal as his reporting policy {Ξn}, and to the principal’s

decision about which alternatives to accept as her acceptance policy {Ψn}. All of these policies are

dynamic, so can be contingent on history of the process until the time at which the decision needs

to be made; we formalize the policies in Section 2.3. This process is illustrated in Figure 1.

Figure 1 Delegated Search Process

This model features complete but imperfect information; that is, both players are aware ex-

ante of the game’s parameters (e.g., the search cost c, the probability p of finding an alternative,

the distribution F (·)), yet information asymmetries arise over time because the principal cannot

observe all of the agent’s actions. More precisely, the principal is not able to observe whether the
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agent actually searched in any particular period (i.e., he paid the search cost); neither does she

know whether the agent found an alternative – that is, unless he reports it to her for evaluation.

We express the common knowledge about period n of the search process through

Xn =


∅ | If no alternative was reported to the principal in period n;

(u,A) | If an alt. of value u was reported to and accepted by the principal in period n;

(u,R) | If an alt. of value u was reported to but rejected by the principal in period n.

Using Xn, we can represent the delegated search process as a competitive Markov decision process

with state variable Xn, starting in X0 = ∅. Denote the set of all possible states in period n by Xn :=

{∅}∪{(u,R)|u∈ suppF}∪{(u,A)|u∈ suppF} and denote the set of possible states where no alter-

native was accepted by X̄n := {∅}∪ {(u,R)|u∈ suppF}. We also define Xn := (X0,X1,X2, ...,Xn),

which is the state history of the Markov process up to the end of period n. Denote by P (S) the

probability that a random variable with cdf F (·) has a realization in set S ∈F . If the current state

is Xn−1 ∈ X̄n−1, where n ∈ {1, ..,N}, then the search is still ongoing, and the state transitions of

the Markov process are governed by the distribution F (·) and decisions ωn,Ξn,Ψn as follows. With

probability 1−ωnpP (Ξn), the agent does not find an alternative that he reports to the principal,

and the state transitions to Xn = ∅. For every u∈Ξn, the agent finds an alternative of value u with

probability ωnpµ(u), which he reports to the principal. If u∈Ψn, the principal accepts it, resulting

in state transition to the terminal state Xn = (u,A), otherwise she rejects it and the state transi-

tions to Xn = (u,R). Defining all XN states to be terminal as well (when the horizon N is reached),

the stopping time T (the time at which the search process is completed) is the time at which a

terminal state is reached. With this is mind, the set of all possible state histories up to period n is

X n := {(X0, ...,Xn)|(X0 = ∅)∧ (∀k ∈N, k < n :Xk ∈ X̄k)∧ (Xn ∈Xn)}, and the set of possible histo-

ries where no alternative was accepted is X̄ n := {(X0, ...,Xn)|(X0 = ∅)∧ (∀k ∈N, k≤ n :Xk ∈ X̄k)}.

An important property for the tractability of the model is that the private knowledge acquired by

the agent in one period (e.g., the value of the alternative when it was not reported to the principal)

has no bearing on any probabilities in the future periods, due to the search process consisting of

i.i.d. draws from the same known distribution.3

The history variable Xn also serves as the sole contractable variable in our main model. We

can formalize the contract as s= {sn(Xn)}, where for every n, sn(·) :X n→R. In other words, s is

a sequence of payment rules, one for each period, with each payment rule being a function of the

state history. We assume that, in any given period, contractual payments are made at the start of

3 This property would not apply, and the methodology of Fudenberg et al. (1990) and Plambeck and Zenios (2000)
we rely on would not work, if, e.g., the distribution F (·) was not known and had to be inferred from observations.
In this case, every time the agent observes a draw which the principal does not, that event would endow him with
private knowledge about the distribution, which will remain relevant throughout the search horizon.
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the period – i.e., before any actions in that period are taken. Once the search process terminates (at

time T ), there is one final payment to agent based on the terminal state, after which the contractual

relationship dissolves. This formulation allows for a large variety of contracts, e.g., paying per unit

of time, paying a percentage of the final result’s value, and more complex arrangements such as

the “tenure evaluation” contract of Sun and Tian (2018).

Two problems central to contract theory are moral hazard and adverse selection (Bolton and

Dewatripont 2005). The information asymmetries in our model give rise to both of these problems.

First, moral hazard is present because the principal cannot distinguish between the agent searching

unsuccessfully and exerting no search effort. Hence the agent is incentivized to forgo paying the

search cost and to report that he did not find a suitable alternative. Second, adverse selection is

also an issue, because the agent might find an alternative that the principal would accept, yet not

present it to her (or he might present her with alternatives of unacceptable value). For example,

this can occur within a contract that pays the agent only for his time (i.e., for the duration of

a search process), which naturally creates an incentive to prolong the search. While the adverse

selection dimension of the problem comes down to a binary decision of whether to report or not, in

section 4.3 we consider a variant where the agent can also misrepresent the value of the alternative,

which is more in line with the more general adverse selection settings in the literature.

2.3. The Principal-Agent Problem of Delegated Search

We first describe the problem faced by an agent under a contract {sn(Xn)}. In each period, the

agent decides whether to pay the search cost (i.e., he determines ωn) and also decides which found

alternatives to bring to the principal (i.e., he determines Ξn). We assume that the agent is risk-

averse with constant absolute risk aversion (CARA), where r is his coefficient of risk aversion,

and that he seeks to maximize his utility from consumption. The agent starts with a certain

wealth W0, and in each period, he determines γn – that is, how much wealth to consume (where the

wealth not consumed is saved at accruing interest rate α−1). So, in addition to making decisions

about the search process, the agent faces a classic consumption–saving problem (Merton 1990).

We assume frictionless access to banking: the agent’s wealth can be negative, in which case he is

charged the same interest rate α−1 on any loan required to maintain solvency. Suppose, by way of

illustration, that the agent starts period n with wealth Wn and decides to pay the search cost c and

to consume γn; then he will receive utility − exp(−rγn), and his wealth in the next period will be

Wn+1 = (Wn−γn− c)/α+ sn(Xn). An agent who decides not to sign a contract with the principal

can earn wage w in each period, and he will be able to earn w after any signed contract ends.

This combination of assumptions (CARA utility from consumption, frictionless banking, same

discount rate) follows the approach of Fudenberg et al. (1990) and Plambeck and Zenios (2000) and
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is essential for tractability of the principal-agent component of the model. What these assumptions

jointly accomplish is that they remove the timing of the payment as an incentive device for the

agent. In other words, they guarantee that the agent’s expected utility depends on the payments

only through how the payments affect his terminal wealth. Thus, the agent will be indifferent

between all sequences of payments that have the same NPV.

With this in mind, we can formalize the set of admissible policies. The search policy {ωn} is a

sequence of functions {ω1(·), ..., ωN(·)}, each of which maps a state history in a period to a decision

on whether to search or no in that situation, so for every n ∈ {1, ...,N}, ωn(·) : X̄ n−1→ {0,1}.4

Analogously, the reporting policy {Ξn} is a sequence of functions that map the state history to

a set of alternatives to be reported if found (Ξn(·) : X̄ n−1 → F), the acceptance policy {Ψn} is

a sequence of functions that map the state history to a set of alternatives to accept if reported

(Ψn(·) : X̄ n−1→F), and the consumption policy {γn} is a sequence of functions that map state

history and current wealth to the consumption decision for that period (γn(·) : X̄ n−1 ×R→ R).5

An important property here – which holds for all of the policies just described and follows from

their domain being X̄n – is that they only need to specify what to do in the situation where the

principal has not accepted an alternative yet; once a principal accepts an alternative, a terminal

state is reached and there are no more decisions to be made.

The agent seeks to maximize expected utility from consumption, which we concisely express as

E

[
−

(
T∑
n=1

αn−1 exp(−rγn(Xn−1,Wn−1))

)
− αT

1−α
exp[−r(w+ (1−α)WT )]

∣∣∣W0

]
. (2)

Here, the sum is the discounted utility from consumption, whereas the αT/(1 − α) exp[−r(w +

(1−α)WT )] term is the terminal utility after the dissolution of the contract, and reflects that the

optimal consumption policy after contract completion is to consume the earned wage w as well as

interest on terminal wealth in perpetuity.

The principal is risk-neutral and maximizes her (discounted) expected wealth. A principal’s

wealth increases when the search process is completed and she receives the search’s result u as a

payoff; her wealth is decremented by payments made to the agent and by her evaluation cost e.

Thus, the principal aims to maximize

E

[
−

(
T∑
n=1

αnsn(Xn−1) +1(Xn 6=∅)α
n−1e

)
+αTuT

]
, (3)

4 Note the slight abuse of notation here where ωn(·) refers to a function that maps histories to decisions, but we also
use ωn (without arguments) to refer to the decision itself. The same convention is used for other policies. However, it
should be clear from the context whether we refer to the decision or the policy. This issue also vanishes immediately
following Theorem 2, which establishes the optimality of history-independent policies.

5 We could also allow the agent to make the policies {ωn} and {Ξn} contingent on his current wealth Wn. However,
this option will never be used due to the absence-of-wealth-effects property established in Fudenberg et al. (1990),
where the agent’s CARA utility in combination with efficient banking implies that the optimal policies {ωn} and
{Ξn} chosen by the agent in response to any contract do not depend on his wealth.
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where uT is the value of the alternative that the principal accepted or 0 if no alternative was

accepted. While (2)-(3) clearly reflect the sources of both the principal and the agent’s goals, they

suppress complexity inside the parameters (e.g., the parameter WT , which is critical for the agent’s

utility, will depend on all of the agent’s and the principal’s decisions as well as randomness).

To expose the full complexity of this dependence, consider the principal’s value function

in period n, denoted by V P
n ({sn(Xn)},{ωn},{Ξn},{Ψn},Xn−1). This term corresponds to her

expected wealth, starting from period n, with history Xn−1, if she adopts acceptance policy {Ψn}

while the agent holds a contract {sn(Xn)}, uses the search policy {ωn}, and the reporting pol-

icy {Ξn}. Using ⊕ to denote concatenation (so e.g., (X0, ...,Xn)⊕Xn+1 = (X0, ...,Xn+1)), for every

non-terminal history Xn−1 ∈ X̄ n−1, n≤N , we can express V P
n recursively by:

V Pn ({sn(Xn)},{ωn},{Ξn},{Ψn},Xn−1) =

ωnp

∫
Ξn∩Ψn

(
u− e−αsn(Xn−1⊕ (u,A))

)
dF (u)

+ωnp

∫
Ξn\Ψn

(
−e−αsn(Xn−1⊕ (u,R)) +αV Pn+1({sn(Xn)},{ωn},{Ξn},{Ψn},Xn−1⊕ (u,R))

)
dF (u)

+

(
1−ωnp

∫
Ξn

dF (u)

)(
−αsn(Xn−1⊕∅) +αV Pn+1({sn(Xn)},{ωn},{Ξn},{Ψn},Xn−1⊕∅)

)
,

(4)

subject to boundary condition V P
N+1({sn(Xn)},{ωn},{Ξn},{Ψn},Xn) = 0.6 In (4), the second line

is the scenario where the agent finds an alternative (which happens with probability ωnp), he

reports that alternative to the principal (so its value is in Ξn) and she accepts the alternative (the

value is also in Ψn), in which case the principal incurs the evaluation cost e, and pays the agent

what the contract stipulates for that history (sn(Xn−1 ⊕ (u,A))), but receives the value of the

accepted alternative u, and the search process ends (thus the absence of V P
n+1 in this scenario).

The third line is the scenario where the agent finds an alternative that he reports but the

principal rejects, in which case the principal incurs the evaluation cost, the report and the rejection

are added to the history variable Xn−1, the principal pays the agent what the contract stipulates

for the just updated history, and the process proceeds to the next period.

The last line is the scenario in which the agent does not report any alternative to the principal,

either due to not searching at all, or searching and not finding an alternative that is suitable to

be reported (u ∈ Ξn). As in the previous case, the lack of report is added to the history variable

Xn−1, the principals pays the agent what the contract stipulates for the just updated history, and

the process proceeds to the next period.

6 As F (u) is discrete, integration in (4) could be replaced with summation. We will maintain integral notation though,
as a) it will lead to more concise expressions in many places, b) it maintains notational consistency with both the
canonical model and the variant of our model where F (·) is continuous, as given in Appendix C.
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We can express the agent’s value function in the same way:

V An ({sn(Xn)},{ωn},{Ξn},{Ψn},{γn},Wn,X
n−1) =− exp(−rγn)

+ωnp

∫
Ξn∩Ψn

− α

1−α exp

[
−r
(
w+ (1−α)

(
Wn− c− γn

α
+ sn(Xn−1⊕ (u,A))

))]
dF (u)

+ωnp

∫
Ξn\Ψn

αV An+1({sn(Xn)},{ωn},{Ξn},{ψn},{γn},
Wn− γn− c

α
+ sn(Xn−1⊕ (u,R)),Xn−1⊕ (u,R))dF (u)

+

(
1−ωnp

∫
Ξn

dF (u)

)
αV An+1({sn(Xn)},{ωn},{Ξn},{ψn},{γn},

Wn− γn−ωnc
α

+ sn(Xn−1⊕∅),Xn−1⊕∅),

(5)

subject to boundary condition V A
N+1({sn(Xn)},{ωn},{Ξn},{ψn},{γn},WN+1,X

N) =

− 1
1−α exp[−r(w+ (1−α)WN+1)] (this is the agent’s terminal utility, as in (2)).

In the expression above, there are a few additional details that are not present in the principal’s

value function. The right-hand side of the first line in the equation is the utility from consuming γn.

The second line is the scenario where the agent finds and reports an alternative that the principal

accepts, in which case the integrand is his terminal utility after his wealth has been adjusted for

the search cost, consumption, and the final payment for successfully concluding the search process.

The third line is the scenario where the agent finds an alternative that he reports but the principal

rejects, in which case the process proceeds to the next period with both state variables (wealth

and history) updated. The last line is the scenario where the agent did not report any alternative.

The value functions (4)-(5) are cumbersome to deal with directly (and we will avoid doing so

until we derive results that enable their simplification: Lemma 1 and Theorems 1 and 2), but they

allow us to formalize the dynamic principal agent problem as follows. The principal aims to solve

what we refer to as the main contracting problem, which is the maximization in (6)

max
{sn(Xn)},{ωn},{Ξn},{Ψn}

V P
1 ({sn(Xn)},{ωn},{Ξn},{Ψn},X0) (6)

subject to the three constraints described next.

First, an incentive compatibility constraint dictates that the contract {sn(Xn)} implements the

search policy {ωn} and the reporting policy {Ξn}; that is, the pair ({ωn},{Ξn}) needs to maximize

the agent’s expected utility when holding contract {sn(Xn)}:

({ωn},{Ξn},{γn})∈ arg max
{ω̃n},{Ξ̃n},{γ̃n}

V A
1 ({sn(Xn)},{ω̃n},{Ξ̃n},{Ψn},{γ̃n},W0,X

0). (7)

Second, there is an incentive compatibility for the principal as well. In particular, it must be in her

best interest to use the acceptance policy {Ψn} once the contract {sn(Xn)} has been signed:

{Ψn} ∈ arg max
{Ψ̃n}

V P
1 ({sn(Xn)},{ωn},{Ξn},{Ψ̃n},X0). (8)
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Third, there is a participation (individual rationality) constraint: the agent will accept the contract

only if it offers him expected utility that is no less than the disagreement payoff. Formally,

V A
1 ({sn(Xn)},{ωn},{Ξn},{Ψn},{γn},W0,X

0)≥− 1

1−α
exp[−r(w+ (1−α)W0)]. (9)

Equations (6)–(9) jointly form a dynamic contracting problem, which we now proceed to solve. We

will focus on the case where the solution of this problem results in a strictly positive value function

for the principal; otherwise, there would be no value to be generated from the delegation, and the

principal should not offer any contract. The question of whether the principal should be delegating

search in the first place is studied in greater detail in Section 3. Our notation is summarized in

Table EC.1 in Appendix A (which includes the terms that have not yet been introduced).

2.4. Analysis

The solution of the main contracting problem (6)-(9) is derived in two steps. First, we identify which

search and reporting policies for the agent are implementable and determine, for each such policy

pair, the contract that implements them at the lowest possible cost to the principal. This step is the

focus of Theorem 1. Second, we use that theorem’s results to reduce the main contracting problem

to a classic dynamic program in which the principal optimizes over two choices: the acceptance

policy and the induced reporting policy. Then the solution to this problem is the one given in

Theorem 3, which completely characterizes the optimal contract.

Theorem 1 (Implementable Policies) The principal can implement any policy pair

({ωn},{Ξn}), provided it satisfies the implementability condition

pP (Ξn)>ωn−
1

exp[rc(1−α)α−1]
, (10)

for all n ∈ {1, ...,N}. This can be done by offering the agent a contract that pays a base pay of s0
n

in every period, replaced by bonus sBn (Ξn) if the agent delivers an alternative with a value in Ξn in

a period in which the principal would like him to search (ωn = 1), where

sBn (Ξn) :=
w+ c

α
+

1

r(1−α)
ln

pP (Ξn)

1− (1− pP (Ξn)) exp[rc(1−α)α−1]
and s0

n :=
w

α
. (11)

This contract implements ({ωn},{Ξn}) at the lowest possible cost to the principal (optimized over

the space of all contracts), and the contract is renegotiation proof.7 Under any such contract, the

agent’s optimal consumption policy is given by γn(Xn−1,Wn) = (1−α)Wn+w, for all n∈ {1, ...,N}.

7 A contract {sn(Xn)} is said to be renegotiation proof if, for any possible (partial) history of the game, there exists
no contract {s̄n(Xn)} such that both the principal and the agent would prefer to substitute it for {sn(Xn)}.
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From the history Xn, only one event is relevant to the optimal contract: whether an alternative

that the principal would like reported (one in Ξn) was delivered in the current period. Formally,

sn(Xn) =

{
sBn (Ξn) if Xn ∈ {(u,A), (u,R)|u∈Ξn} and ωn = 1

s0
n otherwise.

This still does not exclude history-dependent contracts, as the principal can make the contract

history-dependent by choosing to induce {ωn} and {Ξn} which are themselves history-dependent.

However, we will show in Theorem 2 that is not an option she would like to use.

We observe that the principal can induce the agent to adopt almost any policy. In any period,

she can induce him not to search (ωn = 0) by paying him only s0
n irrespective of the search outcome,

or she can induce him to search and report all alternatives with a value in Ξn, by also awarding an

appropriately sized bonus – sBn (Ξn), as given by (11) – when such alternatives are found. The sole

exception is that she cannot induce him to search for an extremely rare alternative, because that

would violate the implementability condition (10). This limitation stems from the agent’s CARA

utility (which is bounded from above); thus, in situations where the bonus is awarded very rarely,

even infinitely large bonus size will be insufficient to incentivize the agent to pay the search cost.

For these reasons, the number of policies that cannot be implemented increases with the agent’s

risk aversion and also with his search cost. These limitations vanish as c→ 0 or r→ 0, which we

can infer from the implementability condition.

The contract that induces any implementable policy pair ({ωn},{Ξn}) at the lowest possible cost

to the principal consists of paying the agent a fixed fee s0
n in every period, and a variable bonus

sBn in periods where the ωn = 1 and the agent delivers to the principal an alternative with a value

in Ξn. The size of this bonus depends not on the value of the delivered alternative but rather on

pP (Ξn), which is the probability that the agent finds an alternative of acceptable value. Observe

that sBn is increasing in pP (Ξn), and so, if the principal wants the agent to be more selective in his

search, she will have to offer a higher bonus.

To solve the principal’s main contracting problem, it remains to determine which policies

({ωn},{Ξn}) she would prefer to implement and which acceptance policy {Ψn} she should use. As

those are all decisions of the principal, Theorem 1 reduces the problem to an MDP in which her

decision is the triple ({ωn},{Ξn},{Ψn}). From (4), the Bellman equation of the resulting program is

V P
n = max

ωn∈{0,1},Ξn,Ψn∈F
ωnp

∫
Ξn∩Ψn

(u− e−αsBn (Ξn))dF (u)

+ωnp

∫
Ξn\Ψn

(αV P
n+1− e−αsBn (Ξn))dF (u) + (1−ωnpP (Ξn))(αV P

n+1−αs0
n)

= max
ωn∈{0,1},Ξn,Ψn∈F

ωnpP (Ξn)
(
αs0

n− e−αsBn (Ξn)
)

+ωnp

∫
Ξn∩Ψn

(
u−αV P

n+1

)
dF (u)−αs0

n +αV P
n+1,

(12)
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with boundary condition V P
N+1 = 0. This is still not a straightforward problem, so we start by

identifying simplifications that can be made without loss of optimality.

Theorem 2 (Optimality of Memoryless Threshold Policies) Without loss of optimality,

the choice of {ωn}, {Ψn}, and {Ξn} in (6)-(9) can be restricted to history-independent policies,

i.e., for all n∈ {1, ..., n}: ωn(Xn−1), Ψn(Xn−1), and Ξn(Xn−1) are constant functions. There exist

sequences of thresholds {ξn} and {ψn}, such that under an optimal contract, the agent uses reporting

policy {Ξn}= {[ξn, ū]∩ suppF} and the principal uses evaluation policy {Ψn}= {[ψn, ū]∩ suppF}.

The theorem shows that the optimality of history-independent threshold policies from the canon-

ical model extends to our setting as well. This is a convenient property for our analysis, as it allows

us to conduct the optimization in the main contracting problem (6)–(9) over sequences of thresh-

olds {ξn} and {ψn} rather than policies {Ξn} and {Ψn} (real numbers rather than functions). Thus,

henceforth, we will use {ξn} (resp. {ψn}) in place of {Ξn} (resp. {Ψn}), referring to it also as the

reporting (resp. acceptance) policy. In this notation {ωn}, {ξn}, and {ψn} are simply sequences of n

numbers. We also find it useful to introduce notation � x �:= inf{y ∈ suppF |y≥ x}; this operation

rounds up x to the closest number in the support of F (·).8

Next, we identify the policies that the principal would like the agent to use – that is, if there

were no conflicts of interest between the principal and the agent and if the principal could simply

dictate all of the agent’s actions while reimbursing him for the costs incurred. We refer to these

as the first-best (FB) policies, and we formally derive them in Lemma A2 (in Appendix B). The

principal’s FB value function is given by

V FB
n =

(
p

∫ ū

αV FB
n+1+e

F̄ (u)du− c

)+

−w+αV FB
n+1, (13)

with boundary condition V FB
N+1 = 0. The first-best reporting and acceptance policies are {ξFB

n }=

{ψFB
n }= {� αV FB

n+1 + e �}. For all n∈ {1, ...,N}, the first-best search policy is

ωFB
n =

{
1 if p

∫ ū
αV FB

n+1+e
F̄ (x)dx− c > 0;

0 otherwise.

Comparing (13) to the canonical problem in (1), we can see that the first-best search differs only

through the addition of the costs w and e which are absent in the canonical model.9 To understand

8 Note that inf ∅=∞, so if x is grater than all elements of suppF , then � x �=∞.

9 Assuming parameter values are such that it is optimal to search in the canonical search problem, the first-best
policy {ξFB

n } has two intuitive interpretations that link it to the canonical policy. First, {ξFB
n } is also the solution of

the canonical problem in which the search cost is w higher, and the evaluation cost needs to be paid only once (i.e.,
when an alternative is accepted). Second, {ξFB

n } is the solution of the canonical problem in which the search cost is
w higher and the distribution is shifted to the left by e (so alternatives come from G(x) := F (x+e), instead of F (x)).
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this resemblance, consider what happens in the very last period: if the principal is searching on

her own, then she will accept any alternative with a positive value; if the search is delegated to an

agent, then she remains willing to accept any (positive-value) alternative yet would prefer that the

agent not bring her alternatives with a value lower than the evaluation cost (because that would

then yield a loss). The same need – that is, for the alternative’s value to be at least e higher than

the value of the rest of the search – also prevails in all previous periods.

The following lemma combines all of the principal’s costs into one well-behaved function, which

has the additional advantage of simplifying her choice of which reporting policy to induce.

Lemma 1 (The Principal’s Costs) The expected single-period costs incurred by the principal

when implementing search policy {ωn} and reporting policy {ξn} are w if ωn = 0, and are otherwise

given by the quasi-convex function

z(ξn) =w+ pF̄ (ξn)(αsBn (ξn) + e−w). (14)

The restriction z(ξn)|suppF is strictly increasing (strictly decreasing) on ξn ≤ ξLC (ξn > ξ
LC), where

ξLC := min arg min
ξn∈suppF

z(ξn). (15)

The fundamental trade-off involved in choosing ξn is that, while making the agent more selective

in his search is more expensive for the principal (as sBn increases with pF̄ (ξn)), an agent who is

less selective entails higher expected evaluation costs for the principal (as the principal incurs

evaluation cost with probability pF̄ (ξn)). Using Lemma 1, we identify the lowest-cost (LC) reporting

policy ξLC, which resolves this tradeoff. Notice from the last part of the lemma that it is possible

for the cost-minimizing policy not to be unique, as arg minξn∈suppF z(ξn) can contain up to two

(consecutive) elements. In order to break the tie, we assume that if the principal is ever indifferent

between these two policies (due to them yielding the same expected utility), she will choose ξLC.

Thus, using Lemma 1 and Theorem 2, we can reformulate (12) as

V P
n = max

ωn∈{0,1},ξn,ψn∈suppF
ωnp

∫ ū

max{ξn,ψn}
(u−αV P

n+1)dF (u)− (1−ωn)w/α−ωnz(ξn) +αV P
n+1, (16)

with boundary condition V P
N+1 = 0.10 We now use this result to characterize the optimal (second-

best) contract and its properties.

10 We could allow the choice of ξn and ψn to be over [0, ū] instead of over suppF . Doing so would result in a well-defined
problem and an identical value function; however it would introduce ambiguity as the function x 7→ [x, ū] ∩ suppF
(used to map threshold policies to their set analogues) is not injective for x∈R, but is injective for x∈ suppF .
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Theorem 3 (Solution of the Main Contracting Problem) The optimal contract induces

search policy ω∗n = 1,∀n∈ {1, ...,N}, the reporting policy {ξ∗n} that solves

V P
n = max

ξn∈suppF
p

∫ ū

max{ξn,αV Pn+1}
(u−αV P

n+1)dF (u)− z(ξn) +αV P
n+1, (17)

with boundary condition V P
N+1 = 0, and the acceptance policy given by ψ∗n =� αV P

n+1 � for all n ∈

{1, ...,N}.11 The optimal contract {s∗n(Xn)} is then given by Theorem 1, as the one that implements

{ω∗n}, {ξ∗n} at the lowest cost to the principal.

The optimal policies exhibit the following properties.

(i) {ξ∗n} satisfies min{ξLC,� αV P
n+1 �} ≤ ξ∗n ≤min{ξLC,� αV P

n+1 + e �}, for all n∈ {1, ...,N}.

(ii) {ψ∗n} and {V P
n } are weakly decreasing in n.

(iii) {ξ∗n} is constant and equals ξLC up to a point, after which it is weakly decreasing in n.

(iv) Both the agent and the principal are less selective than the first-best policy, and so, for all

n∈ {1, ...,N}, it holds that ξ∗n ≤ ξFB
n and ψ∗n ≤ ξFB

n .

(v) The policy {ψ∗n} crosses {ξ∗n} at most once from above as n increases. Furthermore, denote

M := min{n∈N | ξ∗n ≥ψ∗n, n≤N}, if M > 1 we then have ξ∗M−1 = ξLC.

One salient feature of the theorem is that the search policy has a simple solution: it is optimal

for the principal to have the agent search in all periods until an acceptable solution has been found.

Observe that ωn gives the decision to search or no in period n unless the search has reached a

terminal state by the proposer accepting an alternative before that. Thus, the choice of ωn becomes

redundant on sample paths where T < n. In essence, the property of the canonical search model –

that it is optimal to either search in all periods or to not search at all – extends to the delegated

search setting. The solution where the principal hires the agent and then pays him a fixed wage

only for the agent to never search does not appear in the theorem, as that one can not generate

any value for the principal, so that situation would result in no contract being offered at all.

The other policies given in Theorem 3 are different than what the principal would prefer to do

in the absence of agency frictions (the first-best case); in that event, the principal would adopt

policy {ξFB
n }. The optimal reporting and evaluation policies are both threshold policies, with the

threshold being below the one of {ξFB
n }. In other words: it is optimal for the agent to exhibit less

than ideal selectivity when searching, and it is also optimal for the principal to accept most of

what the agent delivers despite its quality being less than ideal.

11 Optimal acceptance policies are not unique: when an agent uses reporting policy ξn, all evaluation policies ψn ≤ ξn
are payoff equivalent (because him bringing an alternative valued below ξn is a zero-probability event). We focus on
the particular optimal policy ψ∗n as it is the only optimal policy in suppF that remains optimal even if the agent
deviates from the induced reporting policy.
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Figure 2 Optimal Threshold Policies

(x-axis, time (period index); y-axis, value of alternatives)

Figure 2 reveals that, when the deadline of the search is near, the principal prefers the agent to

bring most of the alternatives he finds. This situation results in minimal agency frictions because

the agent’s policies with the lowest threshold are those that can be induced via the smallest payment

(Theorem 1). As the deadline gets further away, the principal prefers the agent to be more selective

in his search. However, the resulting policies – which will have higher ξn – are more expensive to

induce because they require that the agent be paid a higher risk premium.

When the search deadline is distant, it becomes attractive to the agent to not search, yet to report

that nothing suitable was found. This incentive creates a need for the principal to micromanage the

agent: she requires the agent to bring her even some alternatives that are of too low quality for her

to accept and pays the agent a bonus for those alternatives nonetheless. Such micromanagement

serves two functions: it allows the principals to more closely monitor whether the agent is really

searching, and it allows the size of the bonus to be smaller than it would otherwise need to be, as

the agent will receive it more often. (The agent’s risk aversion causes him to prefer smaller bonuses

paid more often, provided the expectation is the same.) This scenario can be observed in the region

of Figure 2 left of the vertical dashed line, where {ξ∗n} is constant at ξLC while {ψ∗n} rises above it.

The expression for the optimal value function (17) is more complex than in the canonical search

model (1) because there is a maximization embedded in the recursion. The source of this complexity

is that, although the principal is willing to accept any alternatives with a value at least as high

as the expectation for her search (αV P
n+1), she would actually prefer that the agent not bring her

alternatives with values below αV P
n+1 + e, because she incurs an evaluation cost for every delivered

alternative. In the first-best solution, this problem is easily resolved by setting ξFB =� αV P
n+1 + e �.

Yet, in the optimal contract, another tradeoff needs to be considered: the payment needed to induce

ξn increases as ξn gets larger. Hence the principal might prefer to set ξn <αV
P
n+1 + e, even though

it will reduce the expected gain from search, because it will also reduce the expected payment
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to the agent. This is not a straightforward decision, as even the simplest single-period problem

VN = maxξN p
∫ ū
ξN
xdF (x) − z(ξN) lacks a closed-form solution. Even so, the optimal reporting

policy lies in a relatively narrow interval (per Theorem 3(i)). This behavior can also be observed

on the right side of Figure 2, where {ξ∗n} is higher (but not more than e higher) than ψ∗n.

2.5. Limiting Results

In the following proposition, we consider four special cases where the model becomes simpler.

Proposition 1 (Limiting Results)

(i) If the horizon is infinite (N →∞), then the policies {ξFB
n },{ξ∗n},{ψ∗n} are constant thresh-

old policies such that ξFB
n ≥ ψ∗n, ξFB

n ≥ ξ∗n, and � ψ∗n + e �≥ ξ∗n. The bonus size under the optimal

contract (sBn ) is also constant.

(ii) In both the finite- and infinite-horizon cases, if there is no risk aversion (r→ 0), then the

optimal contract converges to the contract under which the agent’s bonus exactly compensates for

his expected costs:

sBn →
w

α
+

c

pF̄ (ξn)α
, s0

n→
w

α
.

This contract achieves the first-best.

(iii) If there is no evaluation cost (e= 0), the optimal contract induces the agent to report every-

thing he finds to the principal (ξ∗n = minsuppF ). This contract achieves the first-best only if p= 1.

(iv) If there is no opportunity cost for the agent (w = 0), the optimal contract reduces to one

with only a bonus and no per-period fee (s0
n = 0).

Many traditional search models in the literature consider an infinite horizon, in which case the

optimal policy is a constant threshold, lending analytical tractability to those models. The same

property extends to delegated search, where the optimal bonus and optimal delegation policies

become time-invariant under an infinite horizon.

If there is no risk aversion, then the optimal contract offers a bonus of c/(pF̄ (ξn)α) any time

the agent finds an alternative of value at least ξn. As this occurs with probability pF̄ (ξn) (if the

agent searches), it follows that he receives his search cost back in expected compensation – the

discount factor α exactly compensates the agent for his search cost being incurred one period

before receiving his compensation for that cost. Thus the agent’s expected payment is the same

regardless of the principal’s policy preferences, which in turn allows her to achieve the first-best.

Achieving the first-best in the absence of risk aversion is a standard result in contract theory

(Bolton and Dewatripont 2005). What is noteworthy here is that the first-best can be achieved

using the contract structure of Theorem 1 and without the need to breach limited liability.
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Part (iii) of Proposition 1 highlights the important role that evaluation cost e plays in the model.

The principal would like the agent to make selection decisions (what to bring to the principal) in

order to avoid this cost. In the absence of e, it is costless for the principal to verify whether the

agent found anything in his search – removing the adverse selection component and reducing it to

just dynamic moral hazard. Even in this case, the first-best outcome is not attained (unless p= 1),

owing to the uncertainty of finding an alternative, which necessitates a risk premium for the agent.

3. The Decision to Outsource

Until this point, we have focused on how to maximize the efficiency of delegating a search process.

Yet, another question remains: Is it a good idea to delegate at all, or would it be better to conduct

the search on your own?

Consider the same model as in Section 2 except that now the principal can search on her own

in lieu of contracting with an agent. If we assume that all search-related parameters are the same

for both agent and principal, then a principal who conducts her own search will always be more

efficient, thanks to the absence of agency frictions. We conclude that there must be some aspect(s)

in terms of which the agent is more efficient at searching – that is, to compensate for those frictions –

otherwise, it would never be a good idea to hire an agent. (This is proven in Proposition 2 to follow.)

Here we discuss three such aspects: the agent’s search cost might be lower than the principal’s, he

could be faster at searching,12 or he might have a better distribution of the alternatives. The agent’s

distribution of alternatives can be interpreted as him having access to certain types of opportunities

to which the principal does not. For instance, an agent’s knowledge of the language and the local

stakeholders could gain him entry into a foreign market that is inaccessible to the principal.

These differences between the principal’s and agent’s search parameters capture the two reasons

most often cited for outsourcing: a specialized firm can execute the task either better or at a lower

cost. Denote the principal’s and agent’s search costs by cP and cA, and let pP (resp., FP ) and pA

(resp., FA) denote the probabilities of finding an alternative (resp., the distribution of alternatives).

The supports of these distributions can also differ (suppFP ⊂ [uP , ūP ] and suppFA ⊂ [uA, ūA]).

Our next proposition identifies the conditions under which it is preferable to hire an agent. In the

proposition, the requirement that the agent has access to a better distribution of the alternatives

is quantified by the condition pAF̄A(x+ e)≥ pP F̄P (x). If the search speeds are the same (pA = pP ),

then this condition is the conventional first-order stochastic dominance applied to the agent’s

distribution shifted to the left by e, which is a classic interpretation of the agent’s distribution

12 In search models, the probability of finding an alternative p is usually interpreted as search speed. That interpreta-
tion is perhaps more natural in search models which are continuous-time (where the search period’s length approaches
zero), in which p becomes the arrival rate of alternatives; see Zorc and Tsetlin (2020) for such a model.
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being “strictly better.” Yet, if the agent can search more rapidly than the principal (pA > pP ), then

we have the weaker condition F̄A(x+ e)≥ pP
pA
F̄P (x);13 here FA can actually be worse than FP in

terms of first-order stochastic dominance (although not by an overly large margin). Thus the agent

could be more effective at searching than the principal – even if he is accessing a worse distribution

than she is – if he is sufficiently faster.

Proposition 2 (Optimal Delegation Decision) Let pAF̄A(x + e) ≥ pP F̄P (x) for all x ≥ 0.

Then the optimal decision of whether to delegate a search is given as follows.

(i) It is optimal for the principal to search herself if

pP

∫ ūP

uP

F̄P (x)dx− cP ≥ max
ξ∈suppF

pA

∫ ūA

ξ

xdFA(x)− z(ξ). (18)

(ii) It is optimal to delegate if V IN ≤ V OUT, where

V IN =
1

1−α

(
pP

∫ ūP

αV IN

F̄P (x)dx− cP
)

and

V OUT =
1

1−α
max

ξ∈suppF

(
pA

∫ ūA

max{ξ,αV OUT}
(x−αV OUT)dFA(x)− z(ξ)

)
.

(iii) If neither (i) nor (ii) hold, then there exists an N∗ ∈N such that it is optimal to delegate if

N ≤N∗ yet optimal not to delegate if N >N∗.

The first two parts of this proposition involve corner cases, where the decision of whether to hire

the agent is clear. Part (i) demonstrates that the agent’s search cost being smaller (cA < cP ) is not

a sufficient condition for delegating to be optimal. Not only must his search cost be lower than the

principal’s, it must also be low enough (a) that her complete hiring cost does not exceed her own

search cost and (b) to compensate for agency frictions. However, this need for sufficiently low agent

costs can be offset by the agent having access to a more promising distribution of alternatives.

Proposition 2(ii) concerns those situations in which it is always optimal to delegate. In such

cases, V IN and V OUT are the limits of the principal’s value functions– if she (respectively) conducts

the search in-house and outsources – as N approaches infinity. These situations where N →∞

(ones where there is no pressure from impending deadline) are also the ones where the principal

would like to be the most selective; however, (11) in Theorem 1 establishes that these are also the

situations in which agency frictions are greatest. This result is intuitive because the principal’s

cost to contract with an agent increases with the quality threshold she wants him to apply, which

13 We could combine p and F into a single distribution G by defining G as a distribution that yields 0 (an alternative
that cannot be brought to the principal) with probability 1−p and otherwise yields a draw from distribution F with
probability p. Given this definition of G, the condition F̄A(x+ e)≥ (pP /pA)F̄P (x) for all x is equivalent to GA(x+ e)
dominating GP (x) in terms of first-order stochastic dominance.
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means that the optimal policy’s cost increases with temporal distance from the deadline. So if

the principal benefits from hiring an agent under these conditions, then she will also benefit from

hiring an agent under any shorter deadline.

Part (iii) of the proposition states that when these two corner causes are excluded, the agent’s

hiring should depend on the length of the search horizon. The shorter the horizon, the more inclined

the principal should be to hire an agent – with the decision to delegate always being optimal if

there is but one period left. Underlying that claim is the greater expense of contracting with the

agent when the principal wants him to search for a rare alternative. This connection is evident

from (11), our expression for the optimal bonus, because it shows that the agent must be paid a

larger risk premium when searching for rare alternatives; it is evident also from (15), according to

which a search for rare alternatives entails more frequent (and hence more resources devoted to)

evaluations by the principal if she is to avert the moral hazard problem.

In light of all these factors, conducting an in-house search is usually optimal when there is no

time pressure. As for the search outcome’s quality, the aphorism “if you want it done right, do

it yourself” holds because the principal’s sensitivity to quality leads to the optimality of in-house

search. However, the same cannot be said of a principal who is – because of (say) a short deadline N

or a steep discount rate α – more concerned about time pressure than quality. Hence we can

augment that aphorism as follows: “if you want it done fast, hire someone else to do it.”

The condition pAF̄A(x+ e) ≥ pP F̄P (x) in the proposition includes a horizontal shift from x to

x+ e. This shift is needed because there is no evaluation cost in the classical search model. An

alternative way of modeling the same decision would be to model the in-house search as attaining

the first-best outcome (under the principal’s search parameters with the search cost increased by

agent’s wage w) and not as the canonical search model; then the evaluation cost is present in both

in-house and delegated search, eliminating the need for an e-shift when comparing distributions.

This model could be interpreted as an in-house search being conducted not by the principal herself

but rather by an in-house agent whose actions are fully observable by the principal.

Remark 1. Proposition 2 extends to the variant case in which the principal’s in-house search is

modeled as attaining the first-best outcome (under her search parameters, but with the search cost

increased by w). This extension follows because increasing the search cost by w and replacing the

distribution F with G(x) := F (x+ e) in the canonical value function (1) makes it equivalent to the

first-best value function (13) in all cases where it is optimal to search.

Remark 2. If it is possible for the principal to “mix and match” – in other words, by searching

in some periods herself and delegating the search in other periods – then cases (i) and (ii) of

Proposition 2 are unaffected. In case (iii), however, there exists a time T ∗ ∈ {1, ...,N −1} such that
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it is optimal for the principal to search on her own until T ∗ is reached and then to delegate the

rest of the search. (This conclusion follows directly from the proof of Proposition 2, which derives

this mix-and-match policy in Step 1 of the proof.)

4. Variants

4.1. Inability to Contract on Outcomes

The optimal contracts identified in Section 2 require that the value of the delivered alternative

be contractible and thus verifiable by a third party. There are many business situations for which

either this requirement is satisfied, or there is a good proxy for that value. For example, common

contracts with real estate agents tie the agent’s bonus to the final price of the purchased property,

and bonuses for recruiters are similarly tied to the recruited candidate’s salary. Yet, there are cases

where contracting on the outcome is not feasible. For instance, most would view a design solution’s

quality as a subjective enough assessment that it could not be truly verifiable by a third party.

We explore the case of optimal contracting when the alternative’s value is not contractible.

Instead of Xn being the contractible variable, for this setting it is Y n := (Y1, ..., Yn), where

Yn =


∅ | If no alternative was reported to the principal in period n;

A | If an alternative was reported to and accepted by the principal in period n;

R | If an alternative was reported to but rejected by the principal in period n.

This type of delegated search is referred to as unspecified search (Lewis 2012). We therefore mark

the associated policies with a superscript US to distinguish them from the policies of Section 2.

It might seem at first glance that the inability to contract on outcomes is not restrictive as

the optimal payments prescribed in Theorem 1 do not depend on the value of the alternative.

However, that value is still relevant (as a threshold) to the optimal contract {s∗n(Xn)}: the agent is

awarded a bonus for every delivered alternative with a value of at least ξ∗n. Of course, such contracts

cannot be implemented if the principal is unable to contract on the alternative’s value. A major

consequence is that the agent’s actions will depend not only on the offered contract’s stipulations

(as in Theorem 1) but also on the principal’s choice of acceptance policy. As a result, her ability

to commit to an acceptance policy (which was inconsequential in Section 2) becomes relevant, as

it effectively allows the principal to avoid her IC constraint. Next, we provide the solution to the

variant where the principal is able to commit.

Theorem 4 (Unspecified Delegated Search with Commitment) Suppose that the princi-

pal announces and commits to an acceptance policy when offering the contract. Then the optimal

contract consists of two parts, as follows.
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(i) In the first K time periods (0 ≤ K < N), the principal pays the agent a fixed per-period

wage s0
n as well as a bonus sBn (min suppF ) for every alternative that the agent delivers irrespective

of whether (or not) the principal accepts it; here, s0
n and sBn are given by (11).

(ii) In the remaining N−K periods, the agent receives the same per-period wage, while the bonus

of size sBn (ψUS
n ) is given whenever the principal accepts an alternative.

In either case, if we denote the principal’s value function by V US
n then the optimal acceptance

policy {ψUS∗
n } is the one that solves

V US
n = max

ψn∈suppF

(
p

∫ ū

ψn

(x−αV US
n+1)dF (x)− min

ξ∈{ψn,min suppF}
z(ξ) +αV US

n+1

)
, (19)

with boundary condition V US
N+1 = 0. The optimal K is then given by max{n ∈ N | z(ψUS∗

n ) ≥

z(min suppF ), n≤N} or by 0 if this set is empty. The optimal search policy is ωUS∗
n = 1, for all

n∈ {1, ...,N}. The optimal reporting policy {ξUS∗
n } is

ξUS∗
n =

{
minsuppF if n≤K,
ψUS∗
n if n>K.

(20)

This contract closely resembles the optimal contract when alternative values are contractible.

The structure – which amounts to a fixed wage plus a bonus for delivery of some alternatives –

remains, and our expression for the optimal payment size is unchanged. The optimality of threshold

policies and having the agent search in every period extend to this setting as well.

We next examine how this contract and also its value to the principal differ from {s∗n(Xn)} (the

optimal contract described in Section 2). The main difference is that a bonus being awarded now

depends not on an alternative’s value but rather on the principal’s decision about accepting that

alternative. Recall that, under {s∗n(Xn)}, there is a time after which the agent presents the principal

only with alternatives that she will be willing to accept. We use M to denote this time, and by

Theorem 3, part (v), we have M = min{n ∈N | ξ∗n ≥ ψ∗n, n≤N}. In Section 2, the principal would

prefer that the agent bring her only those alternatives that are of at least slightly (less than e)

higher quality than the minimum she is willing to accept. Enforcing that gap between the optimal

reporting and acceptance policies is impossible without contracting on the value of alternatives,

but the principal can still induce the agent to use the desired reporting policy by committing to an

acceptance policy that equals the desired reporting policy. This possibility is illustrated in Figure 3,

where the optimal induced reporting policy {ξUS∗
n } coincides with the optimal acceptance policy

{ψUS∗
n } during the later part of the search.

From time M onward, the principal can induce the same actions at the same cost as when

using the optimal contract of Section 2, without contracting on the value of the alternatives; the

latter is possible via what is, in effect, the purchase-right contract described in Theorem 4(ii).
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Figure 3 Optimal Policies for Unspecified Search

(x-axis, time (period index); y-axis, value of alternatives)

When signing this contract, the principal commits to paying the agent a pre-determined bonus

amount if, at any time from M onward, she accepts an alternative that he delivers. Thus, after M ,

there is no loss of efficiency if the principal is unable to contract on the outcomes; for n≥M , we

have ξ∗n = ξUS∗
n = ψUS∗

n and Vn = V US
n . From a practical standpoint, this conclusion indicates that

if the search deadline is near or if the principal is relatively less sensitive to the search outcome’s

quality,14 then there is no need for the contract to specify acceptable values of the search result.

The principal’s discretion to identify acceptable alternatives can be relied on without causing a

conflict of interest between principal and agent.

However, that statement is not true if the horizon is far away or if the principal is sensitive to

quality. Recall that under {sn(Xn)}, before time M , the principal partially monitors the agent by

requiring that he report any alternative of value at least ξLC, paying a bonus for each of them,

but only accepting those with a value over ψ∗n. That approach is not possible without the ability

to contract on the value. Between times K and M , where such contracting is not an option, the

principal will still want to use the same purchase-right contract that will be optimal later in the

search (see Figure 3, where ψUS∗
n = ξUS∗

n between K and M). However, this comes with a loss of

efficiency compared to what is possible when the principal can contract on outcomes.

If the search horizon is extremely distant (i.e., prior to K), then the principal will opt for full

monitoring of the agent, which she can achieve by offering a contract that requires him to report

all found alternatives and awards a bonus for each delivery. Such monitoring prevents any moral

hazard, but it does so at a high cost to the principal: this region is characterized by the greatest

loss of efficiency as compared with the case where the principal can contract on value.

14 This could happen, for example, when the support of FA is relatively narrow (i.e., when ū−u is small) – in which
case the principal’s payoff will not be much affected by which alternative was drawn from this distribution.
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Theorem 4’s main limitation is the difficulty of finding credible commitment mechanisms. Here,

commitment can be made by public announcement of the principal’s acceptance policy (which

would impose a reputation loss should the principal deviate from the announced policy) or in

situations involving repeated interaction between principal and agent (which would enable the

latter to punish the former if she reneged on previously agreed-upon policies). Another commitment

mechanism is hiring an intermediary to enforce the policy on which the principal and agent have

agreed. As there exist situations where such mechanisms are not available, it would be useful to

also consider what outcomes arise in the absence of an ability to commit.

However, in a setting of unspecified delegated search without commitment, we encounter method-

ological limitations. Plambeck and Zenios (2000) is designed for delegation of MDPs, such that

the principal has no more decisions to make after signing the contract. This is not true in our

setting, due to the principal’s active decision making after being presented with an alternative.

Nevertheless, we were able to show that Plambeck and Zenios (2000) apply to our setting so far.

In Theorems 1-3, we were able to reduce the problem to a delegation of an MDP by showing that

the optimal contract renders the principal’s actions inconsequential to the agent, and the reduction

to the delegation of an MDP was achieved in Theorem 4 through the power of commitment. Yet,

such reduction is not possible in the setting of unspecified delegated search without commitment.

The source of complexity here is that in the absence of commitment, the choice of contract also

directly determines the principal’s acceptance policy. We can still think about this as delegation

of MDPs (with principal effectively committed to policy determined by her IC constraint), but

the issue is that the nature of the MDP being delegated changes based on the chosen incentive

structure as the incentive structure determines the transition probabilities of the MDP.

4.2. Agent Chooses Search Intensity

One characteristic of our main model is that the agent can influence whether alternatives are

generated (through his search policy ωn), but he cannot influence the value of those alternatives

through his decisions. This characteristic is the driving factor behind the bonus amount under

optimal contracts being independent of the value of the delivered alternative (conditional on the

alternative being of sufficiently high value). Yet, it is not hard to imagine situations where the

agent can influence this value. E.g., a real estate agent who puts in more work into negotiating the

price might find you the same selection of houses, but with a more favorable distribution of prices.

Consider an agent that decides not only on whether to search on not, but with which inten-

sity to search. Thus, we assume ωn ∈ {0, iL, iH}, where iH and iL denote high and low intensity,

respectively. Higher intensity will result in a better distribution of alternatives but also a higher
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search cost (cH > cL). Assume F (·|i) is discrete uniform, but with support depending on the inten-

sity: {0,1, ..., uH} if i= iH and {0,1, ..., uL} if i= iL, where uH , uL ∈ N such that uH > uL. Here,

the agent can influence the values through his actions, and the value of the delivered alternative

provides information about the actions. Alternatives with a value u > uL cannot be found unless

the agent searches with high intensity; thus, those are completely informative. Alternatives with a

value u≤ uL are partially informative as they can be found with both low and high intensity but

are more likely to be found under low intensity.

Here, we illustrate how the property that the optimal bonus size is independent of the value

of the alternative can break under the assumption of multiple intensity levels that change the

distribution. More detailed results for this variant are given in Appendix C.

Consider the situation where p= 1 and the principal would like the agent to search with high

intensity but is willing to accept any outcome (so ωn = iH , ξn = 0, ψn = 0). Here, inducing the

agent to use non-zero intensity is trivial, as p= 1 implies that an outcome will always be generated

under non-zero intensity. However, a flat fee for any outcome that the principal is willing to accept

cannot provide an incentive to use high intensity because the probability that an outcome with a

value of at least 0 is generated is 1, irrespective of the agent’s intensity. Consequently, the only way

to induce ωn = iH , ξn = 0 is to make the value of the bonus depend on the value of the alternative

delivered. Denoting v(x) := − exp[−r(1 − α)x] (this is the instantaneous utility function), and

applying Proposition A3 (in Appendix C), the optimal way to accomplish this is by paying

sLn(iH ,0) =
w+ cL
α

,

if an alternative with a value no greater than uL is delivered, or

sHn (iH ,0) =
w

α
− 1

r(1−α)
ln

(
v(cL/α)(uL + 1)− v(cH/α)(uH + 1)

(uH −uL)

)
, 15

if an alternative of value more than uL is delivered. If nothing is delivered, the agent receives w/α.

4.3. Agent Reports the Value of Alternatives

One curious aspect of our model is that every time the agent finds an alternative, he is endowed

with information about its value. This information could be valuable for the principal as it would

allow her to make informed decisions on accepting or rejecting alternatives without the need to

conduct an evaluation (thus avoiding the evaluation cost e). Yet, there is no mechanism that allows

the agent to transmit this information to the principal, as his reporting consists only of the binary

decision to report the alternative (or no).

15 As in Theorem 1, the value inside the logarithm needs to be positive, otherwise ωn = iH , ξn = 0 is not implementable.
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Here we consider a variant that allows the agent to transmit the full information, or misrepresent

it. In this case, the agent still decides whether to search in each period {ωn}, but the reporting

policy takes a more complex form. In every period, the agent’s reporting decision is a function

Rn(x) : suppF ∪{∅}→ suppF ∪{∅}, which maps each possible value found to value reported (here,

∅ stands for no alternative found). Thus, the agent’s reporting policy is {Rn(·)}. The principal then

has the option to forego evaluation, making the call to either accept the alternative or continue the

search based on the agent’s report. Alternatively, the principal can pay e to reveal the alternative’s

value before making this decision. We allow the principal’s evaluation frequency to also vary based

on what the agent reported, so the principal’s evaluation decisions can be described by functions

φn(x) : suppF ∪ {∅} → [0,1], which map the value of what agent reported to the probability of

evaluating that report. We will refer to {φn(·)} as the principal’s evaluation policy.

The principal can also tie contractual payments to the value reported as well as the true value.

Denote by Zn := (xn, un, dn) the public knowledge about search in period N . Here xn is the reported

value (or ∅ if no report), un is the true value found via evaluation or NE if no evaluation was

conducted, and dn ∈ {A,R,∅} denotes whether principal accepted (A), rejected the alternative (R),

or had no decision to make as there was no report (∅). Then, the contractible variable here is Zn :=

{Z1, ...,Zn}. Denoting v(x) =− exp[−r(1−α)x], as in Section 4.2, we have the following result.

Proposition 3 Assume the principal has a costless mechanism available that induces the agent to

be truthful. Denote the principal’s value function under such mechanism by V T
n . Thus defined V T

n

is an upper bound for the principal’s value function under an optimal contract.

Let the implementability condition p > 1 + v(c/α) hold. The principal can get arbitrarily close

to V T
n in expectation by committing to conducting evaluations with frequency φ irrespective of the

value reported (so φn(x) = φ,∀x,n), and using a contract which consists of:

(i) Bonus when reporting that an alternative was found, and either no evaluation was conducted

or evaluation found the report to be honest. The bonus size is given by

sEn :=
w+ c

α
+

1

r(1−α)
ln

p

1− (1− p) exp[rc(1−α)α−1]
.

(ii) Reduced (and potentially negative) pay when the evaluation was conducted and the report

found to be dishonest, the value of this pay is given by

sPn := v−1

(
1

φ
v(w/α)− 1−φ

φ
v(sEn )

)
. (21)

(iii) Fixed pay s0
n =w/α if the agent reports that no alternative was found.

Denoting the value function of the principal using this contract by V ARV
n (x;φ), we have that

limφ→0 V
ARV
n (x;φ) = V T

n . Thus the contract induces truthful revelation at an arbitrarily low cost to

the principal and gives her an expected value equal to the one from the Section 2 model, where e= 0.
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The intuition of Proposition 3 is that the principal has a simple mechanism available to induce

honesty: she can randomly conduct evaluations (with frequency φ) and charge penalties to the

agent if the reports were found to be dishonest. Because conducting evaluations is costly for the

principal, she would prefer to do it as rarely as possible, which is not in conflict with the desire to

induce truthfulness, as truthfulness can be induced for any non-zero φ by charging an appropriately

sized penalty in case the agent is found to be dishonest, as given in part (ii) of Proposition 3.

This, in turn, allows the principal to avoid all inefficiency created by evaluation cost e, as she

will only need to expand that cost with minuscule probability and is able to make decisions based

on the agent’s report in all other cases. This result is probably not realistic, as it is crucially

dependent on the principal’s ability to charge unboundedly high penalties for the agent if he is

caught making a dishonest report. There are many refinements of this model possible that will

eliminate this corner result by making truthful revelation costly to the principal.

Remark 3. For example, consider a setting where the principal cannot accept an alternative

without evaluating it first. This is a relatively realistic assumption as, e.g., no corporate acqui-

sition is finalized without due diligence (or no house purchase is finalized without conducting an

inspection). Then, the contract of Proposition 3 will still incentivize the agent to be truthful (with

identical proof), at no cost to the principal, but will no longer eliminate all system inefficiency due

to evaluation cost e. Now, the principal will conduct an evaluation only once, before accepting the

alternative, yielding an expected value to the principal equal to the one from the Section 2 model,

but where there is no evaluation cost and F (x) is replaced by G(x) := F (x+ e).

We can thus anticipate the properties that will hold for any refinement of this section’s model

that adds (either directly or indirectly) a cost to inducing truthfulness. First, the agent reporting

the value of the alternative is at worst useless to the principal but never harmful. This is because

the principal always has the option of ignoring any reports, evaluating all alternatives, and using

the contract {s∗n(Xn)} given by Theorem 3, which will give her the same expected payout as in the

Section 2 model. Second, the maximum possible benefit that the principal could attain through

reporting is if she can induce truthful reporting without any cost, thus attaining value as if the

evaluation cost did not exist (this is the case in Proposition 3). Any refinement should thus fall in

between these two extremes, eliminating some but not all inefficiency from the evaluation cost e.

5. Conventional Contracts and Numerical Illustration

The structure of the optimal contracts we identify, which consists of a fixed per-period fee in

every period and a bonus for successfully completing the search, does, in fact, correspond to some

contracts observed in practice (e.g., contracts with consultants or lawyers). Moreover, if the agent
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does not forsake any other opportunities by signing a contract with the principal, as in part (iv) of

Proposition 1, then the optimal contract still contains the bonus but omits a time fee. This type

of contract is commonly observed with corporate recruiters (headhunters) and real estate agents.

However, our proposed contract still diverges from those observed in practice in how the bonus is

calculated and when it is awarded. In practice, a bonus tends to be either some fixed amount or

simply a percentage of the final outcome.

Consider a company desiring to hire a seasoned executive. In practice, such hiring is often

delegated to an outside headhunter (recruiter). So, let us examine in the context of our model,

how would the optimal contract look like in this situation. While the parameter values (given in

Table 1) are primarily chosen to illustrate the interesting behavior of the model, we also ensured

that they are reasonable in the context of job search.

Table 1 Model parameters for the numeric illustration

Parameter Value Comments

Number of periods N = 24 From 6-month recruiting cycle, and a period length of 1 week.
Probability of arrival p= 0.6 Single-week probability of finding a candidate.
Risk aversion coefficient r= 0.005 per $ Consistent with a relatively high risk aversion amongst the

field estimates (Barseghyan et al. 2018).
Discount factor α= 0.999 Weekly discount factor based on yearly discount factor .95.

Distribution of alternatives f(x) =

{
1/
(
x ln

(
γ

β

))
|β ≤ x≤ γ

0 |otherwise

Functional form used as the distribution of job market values
for calibration of search models (Van den Berg 1990). Cal-
ibration using Financial Times EMBA job market salaries
2019,16 adjusted for worker productivity (Kotlikoff and
Gokhale 1992) yields parameters β = $60k, γ = $1,150k. The
resulting distribution has a mean of $369,095 and a standard
deviation of $295,079.17

Search costs c= e= $4k Estimates from interviews with career services.
Opportunity cost w= 0 Corresponds to the agent not forsaking other opportunities

by taking the contract. Chosen to have a situation where the
optimal contract differs from traditional ones only in how
the bonus is determined and when it is awarded.

Consider first what the bonus amounts are under the optimal policy - illustrated in the left panel

of Figure 4. The bonus is constant up to period 14 and decreases afterward. The part where the

bonus is constant are the periods for which ξ∗n = ξLC, as earlier illustrated in Figure 2.

16 Total compensation around $400k would be a typical compensation package for an EMBA holder from a top school,
3 years after graduation. “FT Global Executive MBA ranking 2019,” Financial Times, 27th November, available
online at http://rankings.ft.com/businessschoolrankings/executive-mba-ranking-2019.

17 In order to satisfy the assumptions of our model, we discretized this distribution using bracket-mean with bin
probability µ = 10−6. We also obtained the numerical results with other discretization techniques (which do not
satisfy the constant pmf assumption), as well as with the continuous distribution directly. In all of these cases, the
results where indistinguishable as long as the discretization was sufficiently precise; this observation suggests that –
consisten with the results of the continuous model in Appendix C.2 – the reliance on a specific discretization appears
to be a purely technical limitation, which does not substantially affect the results.



32 Zorc, Tsetlin, Hasija, and Chick: Delegated Search

Let us compare the performance of the optimal contract given in Theorem 3 to two contracts

conventionally used in practice for headhunters. We can explore these suboptimal contracts in our

framework by constraining the principal’s choice of contracts to certain functional forms.

One conventional contact is a fixed bonus for successful completion of the search. Out of the

history of the game Xn, this contract is contingent only on the value of the alternative reported

in the current period, which we denote by xn. Thus we can express this contract class as F :=

{{sn(xn)}|sn(xn) = 1(xn∈Ψn)s, s ∈R+}. The principal pays the agent a fixed amount s if the prin-

cipal accepts the alternative brought by the agent.

Another conventional contract is a percentage of the value of the accepted alternative (e.g.,

percentage of the hire’s salary). In our notation, this class of contracts is P := {{sn(xn)}|sn(xn) =

1(xn∈Ψn)qxn, q ∈ [0,1]}, where q is the percentage of final value given as bonus.

Methodology for finding the optimal contract within F and P is given in Lemmas A4-A5 in

Appendix B. Using the parameter values from Table 1 yields the optimal fixed bonus ∼ $219.9k

and the optimal percentage bonus ∼ 15.0%.

The comparison of the principal’s value function under the optimal contract (given in Theorem 3)

to these fixed-bonus and percentage-bonus contracts is given in the right panel of Figure 4. Using

a percentage bonus contract instead of the optimal one results in the value function dropping by

$113,486 (13.9%) while fixed-bonus contracts perform even worse: a loss of $197,010 (24.2%).

Figure 4 Left panel: optimal bonus size sBn . Right panel: principal’s value functions under different contracts.
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What is the reason behind this efficiency loss? Consider a fixed bonus contract paying $10k.

This bonus is more than sufficient to incentivize the agent to search in the last period. However, an

agent with such contract is not incentivized to search in the period prior to the last – even though

searching would be immediately profitable in the same period – because waiting for the last period

and searching only then is even more profitable, due to the principal’s decreased selectivity in the
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last period. The only way to incentivize the agent to search in periods before the last is to make

the bonus higher, but that compounds the problem of overpaying the agent in the last period.

In other words, if the bonus size is not decreasing over time, then the last few periods – in which

the principal is not very selective – are more profitable for the agent. Thus, it becomes attractive

for the agent not to search in early periods where it would be much less profitable and only start

searching closer to the deadline. A curious consequence of this issue is that the maximum bonus

that the optimal contract pays is ∼ $38.7k, yet the best fixed bonus contract pays ∼ $219.9k.

The percentage bonus contract partially resolves this issue, as the bonuses it pays for less valuable

alternatives are smaller. However, percentage bonus contracts have an issue of their own: they

impose an additional source of risk on the agent (the exact size of the bonus to be paid). This was

not a serious issue in our chosen parameter set due to the relatively low risk aversion of the agent,

but as risk aversion increases, the performance of percentage bonus contracts degrades.

One important property of the optimal contracts is that if it is optimal for the agent to search

in one period, then it will be optimal in all of them. The same is not true for other contracts as

contracts in Fand P can fail to induce the agent to search. Indeed this can be seen in the right panel

of Figure 4, where the agent under suboptimal contracts does not search in periods 2-5, leading

to the flat value function for the principal there. Note, however, that the agent does search in the

first period. This is driven by the incentive to search later (when it is more profitable) becoming

weaker the longer the agent has to wait for the profitable situation (because of discounting).

It is worth noting that this inefficiency of conventional contract types is not driven by our

assumptions about the agent’s behavior:

Remark 4. Consider a multi-period problem (N > 1) with a risk-neutral agent. Then the con-

tract of Theorem 3 will eliminate all agency frictions, achieving the first-best (shown in Proposi-

tion 1), however so will simple contracts such as the “sell the firm” contract (Bolton and Dewa-

tripont 2005).18 Yet, contracts in F and P will not, as a necessary condition for the first-best to

be achieved under these contracts is that the expected bonus that the agent is paid in the last

period is equal to the search cost plus the value of the outside option, but such bonus will then be

insufficient to incentivize the agent to search in all prior periods.

There are other dimensions in which optimal contracts differ from the traditional ones. First, the

optimal contracts include a per-period component that compensates for the agent’s opportunity

cost. This is irrelevant for our example where w= 0, but becomes key if the opportunity cost w is

high (e.g., increasing w to $10,000 in our example will eliminate all value generated by conventional

18 This contract charges the agent a fixed amount in the beginning (enough to make the participation constraint
binding) but then gives the agent all the value from successfully completing the search.
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contracts but reduce the value from optimal contracts by only ∼ 11%). Second, the optimal contract

sometimes awards the bonus to the agent even for some of the alternatives that are not accepted (in

this numerical example, this happens in periods 1-13), which reduces the amount of risk imposed

on the agent, and becomes particularly important for high values of the risk aversion coefficient

r, or when the alternatives that the principal is willing to accept can only be found with a small

probability. This second difference can also be crucial, as there are situations where awarding

bonuses for some alternatives that are not accepted is needed to gain any value from the contract

(examples of such situations are given in the Proof of Proposition 4 in Appendix B). We now

provide performance bounds for conventional contracts.

Proposition 4 (Efficiency of fixed and percentage bonus contracts) Let V F
n (resp. V P

n )

be the principal’s value function when using the optimal contract within contract class F (resp.

P), as given by Lemmas A4-A5 in Appendix B. Then, V F
n , V P

n ≤ V US
n ,∀n ∈ {1, ...,N} (V US

n is

the principal’s value function in the setting of Theorem 4). The efficiency gaps from the optimal

contract, V US
n −V F

n and V US
n −V P

n , can be unboundedly large.

The performance of the conventional contracts is bounded from above by what can be accom-

plished under unspecified search (US, the setting of Theorem 4). The optimal US contracts can be

in the form of a bonus for successful completion of the search; it is just that this bonus is not sta-

tionary. However, in situations where N = 1 or N →∞, the optimal bonus under US is stationary;

thus, in this situation, the fixed-bonus contract can be the same as the optimal US contract.

Other than this upper bound on the performance of conventional contracts, figuratively “any-

thing can happen;” there is no lower bound on their performance, as the efficiency loss from use

of suboptimal contracts can become unboundedly high, as stated in the last part of Proposition 4.

The existence of this efficiency gap suggests the possibility of improvement over existing con-

tracts. One reason why we might not currently see the optimal contracts in practice is that they

place a large knowledge burden on the principal to be able to set the decreasing bonus size in

advance. Yet, we can expect this issue to diminish over time as the increasing availability of data

helps the principal acquire the information needed.

For another possible reason, note that the discrepancy between conventional and optimal con-

tracts is driven by periods in the proximity of the deadline. If there is no time pressure (N →∞)

and no opportunity cost (w= 0), the optimal delegation contracts in unspecified search can become

exactly of the type currently used in practice: fixed bonus upon successful completion of the search.

Thus, a plausible explanation for the prevalence of such contracts in practice is that time pressure

from deadlines and the opportunity cost are negligibly small.
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6. Discussion and Concluding Remarks

We first discuss the implications of our modeling approach, which should prove useful to scholars of

dynamic contracting who must decide which methodology is most appropriate for their problems.

We adopt the dynamic principal-agent (DPA) framework based on Plambeck and Zenios (2000);

the other widely used method is the promised future utility (PFU) approach of Spear and Srivastava

(1987). The commonality of these two approaches is that they eliminate the complexity of needing

to deal with history-dependent contracts. PFU reduces history-dependence to but a single variable,

while DPA eliminates it entirely; however, DPA does so by relying on a stronger set of assumptions.

One difference between the two approaches is the agent’s limited liability, which is commonly

present in PFU but would violate the assumptions of DPA. Here, we had the luxury of a non-

binding limited liability constraint: there are no negative payments in an optimal contract. Thus

our solution remains valid even in the presence of this constraint. Moreover, this property will hold

for any model in which an event that is profitable (from the principal’s viewpoint) can occur only

if the agent undertakes some costly action. (In our setting, as in the standard search model, an

agent cannot find alternatives without paying the search cost.)

However, if there is a baseline rate at which such profitable events occur even without the agent’s

action (e.g., as in Sun and Tian 2018), then the optimal solution under a DPA approach will

penalize the agent when the profitable event does not occur. If the same is modeled using PFU

with limited liability, these penalties are not possible, and in lieu of the penalties, there is an initial

period in which the agent does not receive compensation even for the profitable events – although

their occurrence does reduce his time without compensation.

Our results are fairly robust to the approach used; the key difference is in how agents are

penalized (direct monetary penalties in DPA vs. periods without pay in PFU). This robustness is

perhaps best exemplified by the overlap between our solution in Section 2 and the solution of Lewis

(2012), which occurs despite our substantially different search models and solution techniques.

When searching for a suitable alternative, such as a hire or a real estate property, a common

conundrum is whether to search yourself or to hire an agent to search on your behalf. Seriously

entertaining the latter requires that one consider how payments to the agent should be structured.

The incentive structure affects not only the cost of hiring an agent but also the search outcome

itself, as the decisions made during an agent’s search process naturally depend on his incentives.

The optimal contracts we identify consist of a fixed wage (per period of time) and a bonus for

delivering alternatives of sufficiently high value. This structure corresponds to conventional con-

tracts encountered in the business world (e.g., those for recruiters, real estate agents, consultants,

and lawyers). Thus our model offers a plausible rationale for why such contracts are so prevalent



36 Zorc, Tsetlin, Hasija, and Chick: Delegated Search

in practice, although our optimal contracts differ in how the bonus size is determined and when it

is awarded. In our model, the size of the bonus is set when the contract is signed and decreases

over time; it is also sometimes awarded even if the search is not successfully completed.

We show that the most common ways to determine those bonuses – namely, as a fixed value

or as fraction of the accepted alternative’s value – can be improved upon. In our numerical anal-

ysis, resorting to conventional contracts instead of the optimal ones results in a 14-24% loss of

expectation for the principal. The reason why such bonus calculations are rare in practice may

be that they place a large knowledge burden on the principal, who would need to know the exact

distribution of possible values of the alternatives. Yet, as data become more accessible, it should

become less difficult to implement these contracts, and so, we expect to see more of them. Another

plausible reason for the scarcity of contracts in which the bonus decreases with time is that, when

there is no deadline, this aspect of the optimal contract disappears (i.e., the bonus size is constant).

Apparently, in practice, the time pressure due to deadlines seldom plays a leading role.

As for the question of whether to delegate search or not, the single greatest challenge related

to that decision is the difficulty of inducing an agent to search for an alternative that is rare. The

principal cannot easily distinguish between the agent not actually searching and him searching

but without finding the desired alternative. This problem can be addressed only by the principal’s

costly monitoring in order to preclude moral hazard. It follows that a principal looking for rare,

high-quality outcomes will prefer searching on her own – as will a principal with sufficient time

available to explore different options. Conversely, a principal who is willing to accept a wide variety

of alternatives or who faces a short deadline will prefer to delegate the search to an agent.

The principal’s decisions concerning whether and how to outsource search are inherently complex,

especially because conflicts of interest with the agent can easily arise. Our analysis sheds light on

some aspects of this decision that have not been previously explored; however, our conclusions are

not definitive because some of the complexities could not be incorporated into our framework. For

instance, the business world is rife with complications, such as information asymmetries, that can

arise at certain times and then continue to influence subsequent decisions – as when an agent is

initially unclear about the target of his search but becomes more knowledgeable upon investigating

the alternatives. There are also likely to be sources of agency frictions other than those that we

consider; one example is not knowing the agent’s attributes, so that the agent has private knowledge

of his type. Also, there might be multiple agents that the principal could simultaneously hire,

which would open up possibilities for different contracts (e.g., making the agents compete against

each other). Addressing these topics would require an alternative modeling approach. In absence of

those complexities, our analysis manages to identify which aspects of delegated search are the most

consequential ones, and should help decision makers at large to decide when and how to delegate.
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Electronic Companion: Appendices

Appendix A summarizes the principal notation. Appendix B contains proofs of the formal claims in the main

paper. Appendix C provides supplementary content for the paper: Appendix C.1 gives further details on

discretization techniques that satisfy our assumption of a constant pmf, Appendix C.2 contains an alternate

version of our model where the distribution of alternatives is assumed to be continuous, and Appendix C.3

provides additional results for the variable search intensity variant of our model, as given in Section 4.2.

Appendix A: Notation

Table EC.1 Notation

Notation Definition

N Maximum number of periods in the model (search horizon)
T Stochastic stopping time of the search process (acceptance time or N , whichever is first)
p Probability of finding an alternative within a single period when searching
F (·) Distribution from which search alternatives are drawn
P (S) Probability of drawing an outcome in set S when drawing from F
µ(·) Probability mass function of F (·); with property that µ(x) = 1/| suppF |, for all x∈ suppF
c Search cost
e Evaluation cost
α Discount factor
{ξ̄n} Canonical threshold search policy, equal to {αVn}, where Vn is given by (1)
{ωn} Agent’s search policy
{Ξn} Agent’s reporting policy
{ξn} Agent’s reporting policy in case it is a threshold policy (Ξn = [ξn, ū]∩ suppF,∀n)
{γn} Agent’s consumption policy
{ξFB
n } First-best (threshold) reporting policy given by Lemma A2
{Ψn} Principal’s acceptance policy
{ψn} Principal’s acceptance policy in case it is a threshold policy (Ψn = [ψn, ū]∩ suppF,∀n)
Xn Common knowledge about the search in period n
Xn Common knowledge about the search process up to the end of period n, i.e., (X0, ...,Xn)
� · � Rounding up to an element in suppF (� x �:= min{u∈ suppF |u≥ x})
s= {sn(Xn)} Agent’s contract
{s∗n(Xn)} The optimal (second-best) contract, as given in Theorem 3
V P
n (·) (V A

n (·)) Principal’s (agent’s) value function in period n
r Agent’s risk aversion coefficient
Wn Agent’s wealth in period n, immediately following the contractual payments in that period
w Agent’s opportunity cost (per-period amount earned absent the principal)
sBn (Ξn) (sBn (ξn)) Single-period payment to the agent when an alternative of value in Ξn (at least ξn)

is delivered to the principal under a Theorem 1–type contract that induces {Ξn} ({ξn})
z(ξn) Expected single-period principal costs when inducing the agent to use ξn (Lemma 1)
ξLC Value of ξn that minimizes the principal’s expected single-period costs z(ξn) (Lemma 1)
{ξ∗n} ({ψ∗n}) Optimal threshold reporting (acceptance) policy as given in Theorem 3

Appendix B: Proofs of Formal Statements

The following lemma, stated here in the appendix, establishes a property of search policies that will be used

in several of the proofs that follow for results from the main paper.
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Lemma A1. In the canonical model, if there exists a period n∈ {1, ...,N} in which it is optimal to pay the

search cost, then it is optimal to pay the search cost in every period.

Proof. Because {Vn} is positive (from the boundary condition) and decreasing in n, it follows that

p
∫ ū
αVn+1

F̄ (x)dx is increasing in n. So if there exists a k ∈ {1, ...,N} such that p
∫ ū
αVn+1

F̄ (x)dx− c≥ 0, then

p
∫ ū
αVn+1

F̄ (x)dx− c≥ 0 for all h∈ {k, ...,N}. Therefore, the optimality of paying the search cost in period k

implies the optimality of paying it in every subsequent period.

We demonstrate that the same holds for preceding periods by contradiction. Assume there exists a periodm

such that (a) it is optimal for the agent not to pay the search cost in period m but (b) it is optimal to pay

that cost in period m+ 1. Then, under an optimal policy, this agent’s NPV in period m is αVn+1. Yet, it is

possible to use the same search strategy as if it were currently period m+ 1; doing so would yield a higher

value (Vn+1) in expectation – contradicting the optimality of not searching in period m. �

Proof of Theorem 1.

Assume (temporarily) that the principal commits to an acceptance policy {Ψn} when offering the contract

to the agent. Then, the principal has no decisions to make once the contract is accepted, which reduces

this problem to delegation of control over a Markov decision process. It follows from Plambeck and Zenios

(2000, Thm. 1) that the problem of finding a contract that implements any policy pair ({ωn},{Ξn}) at the

lowest possible cost to the principal can be decomposed into N single-period optimization problems (for

every n∈ {1, ...,N}), where each problem is given by

arg min
sAn (u),sRn (u),s0n

pωn
∑

u∈Ξn∩Ψn

sAn (u)µ(u) + pωn
∑

u∈Ξn\Ψn

sRn (u)µ(u) +

(
1− pωn

∑
u∈Ξn

µ(u)

)
s0
n; (EC.1)

−pωn
∑

u∈Ξn∩Ψn

exp[−r(1−α)(sAn (u)−α−1c)]µ(u)− pωn
∑

u∈Ξn\Ψn

exp[−r(1−α)(sRn (u)−α−1c)]µ(u)

−

(
1− pωn

∑
u∈Ξn

µ(u)

)
exp[−r(1−α)(s0

n−α−1c)] =− exp[−rα−1(1−α)w];

(EC.2)

−p
∑

u∈Ξ∩Ψn

exp[−r(1−α)(sAn (u)−α−1c)]µ(u)− p
∑

u∈Ξ\Ψn

exp[−r(1−α)(sRn (u)−α−1c)]µ(u)

−

(
1− p

∑
u∈Ξ

µ(u)

)
exp[−r(1−α)(s0

n−α−1c)]≤− exp[−rα−1(1−α)w] ∀Ξ∈F ;

(EC.3)

− exp[−r(1−α)s0
n]≤− exp[−rα−1(1−α)w]. (EC.4)

In these expressions, sAn (u) is the agent’s reward for bringing an alternative of value u to the principal

when the principal accepts that alternative; his reward is sRn (u) when delivering an alternative of value u

that the principal rejects. Finally, s0
n is the agent’s reward when he does not present the principal with any

alternatives. The objective function (EC.1) minimizes the expected sum of these rewards conditional on the

agent using the desired policy Ξn. Equation (EC.2) is the (binding) participation constraint. The incentive

compatibility constraint (EC.3) ensures that the agent can not do better by searching and using any other

reporting policy, while (EC.4) ensures that he can not do better by not searching at all (notice that the

reporting policy is redundant if not searching). The recurring − exp[−r(1− α)x] expression in the system

(EC.1)-(EC.4) is the amount by which the agent’s expected wealth-independent utility component changes
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(under an optimal consumption policy) if the agent receives payment x (this also follows from Theorem 1 of

Plambeck and Zenios 2000).

If the principal would like to implement ωn = 0 – i.e., induce the agent to not search – a simple solution

of the problem (EC.1)–(EC.4) is sRn (u) = sAn (u) = s0
n =w/α,∀u.

We now turn to the case where ωn = 1. We can make several observations that will allow us to simplify

the system of equations (EC.1)–(EC.4).

First of all: to solve (EC.1)–(EC.4) while ignoring the incentive compatibility constraint (EC.3), we will

show that we can restrict our attention to sAn (u) and sRn (u), which are step functions that pay a fixed

value sAn (resp. sRn ) if the reported alternative is in Ξn and pay 0 otherwise. To do that, let sA∗n (u), sR∗n (u),

and s0∗
n be solutions of the system (EC.1),(EC.2),(EC.4) and denote ϕ(x) :=− exp−r(1−α)(x− c/α). We

can define sA∗∗n (u) as sA∗∗n (u) := sA∗∗n if u ∈ Ξn and sA∗∗n (u) := 0 otherwise, where the constant sA∗∗n is the

solution of
∑

u∈Ξn∩Ψn

ϕ(sA∗∗n )µ(u) =
∑

u∈Ξn∩Ψn

ϕ(sA∗n (u))µ(u). In other words, sA∗∗n (u) is constructed so that it is

a step function of the desired form and so that the agent’s expected payoff when using Ξn is the same

under sA∗n (u) and sA∗∗n (u). Then, noticing that ϕ(·) is an increasing and concave function and using Jensen’s

inequality yields ϕ(Eu[sA∗∗n (u)|u ∈ Ξn ∩ Ψn]) = φ(sA∗∗n ) = Eu[ϕ(sA∗∗n (u))|u ∈ Ξn ∩ Ψn] = Eu[ϕ(sA∗n (u))|u ∈

Ξn ∩Ψn]≤ ϕ(Eu[sA∗n (u)|u ∈ Ξn ∩Ψn])⇒ Eu[sA∗∗n (u)|u ∈ Ξn ∩Ψn]≤ Eu[sA∗n (u)|u ∈ Ξn ∩Ψn]. Observing that

the objective function in (EC.1) depends on the choice of sAn (u) only through its first term which is equal

to pP (Ξn ∩Ψn)Eu[sAn (u)|u ∈ Ξn ∩Ψn], the objective function is weakly higher under (sA∗∗n (u), sR∗n (u), s0∗
n )

compared to (sA∗n (u), sR∗n (u), s0∗
n ), while the constraints (EC.2) and (EC.4) are satisfied in both cases. Thus,

the optimality of (sA∗∗n (u), sR∗n (u), s0∗
n ) follows, showing that we can restrict attention to sAn (u) functions of

the desired form without loss of optimality. The same property for sRn (u) follows analogously.

The intuition of the result in the above paragraph is straightforward. By choosing policy Ξn, the agent

ensures that all alternatives in Ξn that are found are brought to the principal. Yet, the agent has no control

over the exact value of these alternatives, and from this it follows that basing his payment on such exact

values – and not simply on whether an alternative’s value is in Ξn – serves only as an additional source of

risk for the agent, which in turn reduces his expected utility due to the agent’s risk aversion.

Returning to the problem given by the system (EC.1),(EC.2),(EC.4): the participation constraint is bind-

ing, and so, the agent is indifferent between the principal accepting the alternative (and thereby ending the

search process) or rejecting it (thus continuing the search). By the same Jensen’s inequality argument as

before, we also have sAn = sRn . With this in mind, a relaxed version of the problem (EC.1)-(EC.4) that drops

constraint (EC.3) is the solution of

arg min
sAn ,s

0
n

pP (Ξn)sAn + (1− pP (Ξn))s0
n; (EC.5)

−pP (Ξn) exp[−r(1−α)(sAn −α−1c)]− (1− pP (Ξn)) exp[−r(1−α)(s0
n−α−1c)] =− exp[−rα−1(1−α)w];

(EC.6)

− exp[−r(1−α)s0
n]≤− exp[−rα−1(1−α)w]. (EC.7)

We proceed to solve this relaxed version of the problem, after which we will demonstrate that the solution

does not violate (EC.3) and is thus also a solution to the original problem (EC.1)-(EC.4). Substituting
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uAn := exp
[
−r(1−α)sAn

]
, u0

n := exp
[
−r(1−α)s0

n

]
, k := exp

[
r(1−α)α−1c

]
, o := exp

[
−rα−1(1−α)w)

]
, the problem

(EC.5)-(EC.7) simplifies to

arg min
uAn ,u

0
n

(r(1−α))−1
(
−(1− pP (Ξn)) lnu0

n− pP (Ξn) lnuAn
)
; (EC.8)

−(1− pP (Ξn))u0
nk− pP (Ξn)uAnk+ o= 0; (EC.9)

−u0
n + o≤ 0. (EC.10)

Here, the objective function is convex and the constraints are affine, so the Karush–Kuhn–Tucker (KKT) con-

ditions are both necessary and sufficient. From KKT conditions, the solution only exists if 1−k(1−pP (Ξn))>

0 (this is the implementability condition (10)), and is given by u0
n = o,uAn = o(1−k(1−pP (Ξn)))/(kpP (Ξn)).

Reverting the substitution then gives

sAn =
w+ c

α
+

1

r(1−α)
ln

pP (Ξn)

1− (1− pP (Ξn)) exp [rc(1−α)α−1]
, s0

n =
w

α
, (EC.11)

as the solution. We find it useful to resort to slightly different notation in the main text compared this this

proof, writing sBn (Ξn) rather than sAn in (11) to emphasize its dependence on Ξn as well as the fact that

whether the bonus is awarded does not depend on whether the alternative is accepted (thus the supersript

A might be misleading). We still need to verify if this solution adheres to the dropped constraint. Plugging

the solution of (EC.5)-(EC.7) into the constraint (EC.3) and expanding its RHS yields

pP (Ξn ∩Ξ)sAn + (1− pP (Ξn ∩Ξ))s0
n ≤ pP (Ξn)sAn + (1− pP (Ξn))s0

n,∀Ξ∈F ,

which holds because it follows from (EC.11) that sAn ≥ s0
n. Thus, this is the solution to the original problem

(EC.1)-(EC.4) as well. That this contract is renegotiation proof follows from Plambeck and Zenios (2000,

Cor. 1).

Then, observe from (EC.11) that the solution depends neither on the acceptance policy nor on the agent’s

knowledge of that policy. Furthermore, the solution does not depend on the principal adhering to the

announced policy; the reason is that, because the single-period participation constraint is binding, the agent

is always indifferent between the principal accepting or rejecting the alternative he delivers.19

It remains to find the optimal consumption policy under contracts given by this theorem. Thus, let the

agent hold the contract given by this theorem which implements policies {ωn}, {Ξn}, and let the principal

use acceptance policy {Ψn}. From (5) it follows that the agent’s optimal consumption policy solves

V An (Wn) = max
γn
− exp(−rγn) +ωnp

∫
Ξn∩Ψn

− α

1−α exp

[
−r
(
w+ (1−α)

(
Wn− c− γn

α
+ sBn (Ξn)

))]
dF (u)

+ωnp

∫
Ξn\Ψn

αV An+1

(
Wn− γn− c

α
+ sBn (Ξn)

)
dF (u) +

(
1−ωnpP (Ξn)

)
αV An+1

(
Wn− γn−ωnc

α
+ s0

n

)
,

(EC.12)

19 The optimal contract identified here is not unique. In particular, the contract is not sensitive to the payment linked
to bringing the principal an undesirable alternative (sAn (u) and sRn (u) for u 6∈ Ξn). We arbitrarily set this value to 0
in the proof so as to simplify the expressions, but any payment that does not exceed w/α can accomplish the same
result.
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with boundary condition V A
N+1(WN+1) = − 1

1−α exp[−r(w + (1− α)WN+1)]. We will show – by backwards

induction – that in any period, the optimal consumption is given by γn = Wn(1 − α) + w and that the

agent’s value function is V A
n (Wn) = − 1

1−α exp[−r(w + (1 − α)Wn)]. Assume there is a period n + 1 such

that V A
n+1(Wn+1) =− 1

1−α exp[−r(w+ (1−α)Wn+1)]. For the induction base, this property holds for n=N ,

directly from the boundary condition.

For the induction step, in period n using V A
n+1(Wn+1) =− 1

1−α exp[−r(w+ (1−α)Wn+1)] yields

V An (Wn) = max
γn
− exp(−rγn) +ωnp

∫
Ξn

− α

1−α exp

[
−r
(
w+ (1−α)

(
Wn− c− γn

α
+ sBn (Ξn)

))]
dF (u)

−
(
1−ωnpP (Ξn)

)
exp

[
−r
(
w+ (1−α)

(
Wn−ωnc− γn

α
+ s0

n

))]
.

(EC.13)

If ωn = 0, this reduces to V A
n+1(Wn+1) = maxγn − exp(−rγn)− α

1−α exp
[
−r
(
w+ (1−α)

(
Wn+w−γn

α

))]
. Here

the objective is concave and solving for its FOC yields γn = w + (1 − α)Wn as the sole maximizer and

V A
n (Wn) = − 1

1−α exp [−r (w+ (1−α)Wn)] as the maximum. For the other case, if ωn = 1, (EC.13) can be

decomposed as

V An (Wn) = max
γn
− exp(−rγn)− α

1−α exp

[
−r
(
w+ (1−α)

Wn− γn
α

)]
×
(
pP (Ξn) exp[−r(1−α)(sBn (Ξn)− c/α)] +

(
1− pP (Ξn)

)
exp

[
−r(1−α)

(
s0
n− c/α

)])
.

Using (EC.6), the second line of this expression is equal to exp[−rα−1(1−α)w], which reduces the problem

to V A
n+1(Wn+1) = maxγn − exp(−rγn)− α

1−α exp
[
−r
(
w+ (1−α)

(
Wn+w−γn

α

))]
, which is the same as in the

ωn = 0 case. Thus, γn = w + (1− α)Wn and V A
n (Wn) = − 1

1−α exp [−r (w+ (1−α)Wn)] hold in both cases,

completing the induction. �

Proof of Theorem 2 and Lemma 1.

We prove these two results concurrently.

Part 1: the Cost Function. This part is an intermediate step that is needed for the other parts of the proof.

Summing the different costs in (12), and using s0
n = w/α (shown in Theorem 1), the principal’s expected

single-period costs to induce the agent to search and use reporting policy Ξn are:

ζ(Ξn) =w+ pP (Ξn)(αsBn (Ξn) + e−w). (EC.14)

Applying (11) to expand sBn (Ξn) then yields

ζ(Ξn) =w+ pP (Ξn)

(
c+

α

r(1−α)
ln

pP (Ξn)

1− (1− pP (Ξn)) exp [rc(1−α)α−1]
+ e

)
. (EC.15)

As ζ(Ξn) depends on Ξn only through P (Ξn), for any two sets Ξn,Ξ
′
n ∈F such that P (Ξn) = P (Ξ′n) it also

holds that ζ(Ξn) = ζ(Ξ′n).

Part 2: Optimality of History-Independent Policies. This part establishes the first sentence of Theorem 2.

Applying Theorem 1, the contracting problem (6)-(9) reduces to an MDP, after which from (12) we have

that the principal’s value function in any non-terminal state is given by:

V P
n = max

ωn∈{0,1},Ξn,Ψn∈F
ωnpP (Ξn)

(
αs0

n− e−αsBn (Ξn)
)

+ωnp

∫
Ξn∩Ψn

(
u−αV P

n+1

)
dF (u)−αs0

n +αV P
n+1,
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with boundary condition V P
N+1 = 0. Here, the objective function is independent of the history and thus the

optimal choices of ωn,Ξn,Ψn need not depend on it either. Note that the property that the optimal policy of

an MDP needs to depend only on the current state and not on the full history is universal to most dynamic

programs (see the adequacy of Markov policies in ch. 1.1.3 of Bertsekas 2012); however, as in the canonical

search problem with no recall, the optimal policy here can also be independent of the current state

Part 3: Optimality of Threshold Policies. This part establishes the second sentence of Theorem 2. If ωn = 0,

the choice of Ξn and Ψn is redundant, so consider the case where ωn = 1. From (12), the choice of Ψn affects

the principal’s value function only via the
∑

u∈Ξn∩Ψn
(u−αV P

n+1)µ(u) term, thus the threshold acceptance

policy Ψ∗n = [αV P
n+1, ū]∩ suppF is optimal (as this sum is maximized by including all points for which the

summands are positive).20

Assume, by contradiction, there exists an optimal Ξ∗n that is not a threshold one, denote k := |Ξ∗n| (| · | is the

cardinality of a set), and define Ξ∗∗n as the set of k largest elements of suppF . We then have P (Ξ∗n) = P (Ξ∗∗n ), as

|Ξ∗n|= |Ξ∗∗n | and µ(u) is constant. Thus, part 1 yields ζ(Ξ∗n) = ζ(Ξ∗∗n ). Denote by V P
n (ωn,Ξn,Ψn) the principal’s

expected value when using (ωn,Ξn,Ψn) in period n and proceeding optimally. From the objective function in

(12) we then have V P
n (1,Ξ∗∗n ,Ψ

∗
n)−V P

n (1,Ξ∗n,Ψ
∗
n) = pµ

∑
u∈Ξ∗∗n ∩Ψ∗n

(u−αV P
n+1)−pµ

∑
u∈Ξ∗n∩Ψ∗n

(u−αV P
n+1)≥

0. (Here, the last inequality follows from noticing that the first sum has at least as many summands as the

second, all of which are positive, and that the i -th biggest element of the first sum is greater than or equal to

the i -th biggest element of the second.) Thus, either both Ξ∗n and Ξ∗∗n are optimal, or we have a contradiction

to optimality of Ξ∗n. Either way, the optimality of threshold reporting policies follows.

Part 4: the Cost Function for Threshold Policies. This part establishes the statement of Lemma 1. Defining

z(ξn) := ζ([ξn, ū]∩ suppF ) yields (14). Because ζ(Ξn) depends on Ξn only through the probability of finding

an alternative in Ξn, we can also consider a cost function Π(π) defined directly on these probabilities, which

is then given by

Π(π) =w+π

(
c+

α

r(1−α)
ln

π

1− (1−π) exp [rc(1−α)α−1]
+ e

)
.

From (14), Π(pF̄ (ξn)) = z(ξn) for all ξn that satisfy the implementability condition of Theorem 1. Consider

Π(π) on the domain (τ, p] where τ := 1− 1/ exp[rc(1− α)/α] (this is the implementability threshold). We

then have

d2Π(π)

dπ2
=

α
(
e(

1
α
−1)cr − 1

)2

(1−α)rπ
(

(π− 1)e(
1
α
−1)cr + 1

)2 > 0,

thus Π(π) is strictly convex. Consequently, as F̄ (ξn) is weakly decreasing, z(ξn) = Π(pF̄ (ξn)) is quasi-convex.

Because F̄ |suppF (ξn) is strictly decreasing, it follows from strict convexity of Π(π) that z|suppF (ξn) is strictly

increasing on ξn ≤ ξLC and strictly decreasing on ξn > ξ
LC. �

The following lemma, which characterizes the first-best policy, will be used in several of the proofs.

20 Note that because summation here is taken over Ξn ∩Ψn, Ψ∗n is not uniquely optimal. Every Ψ′n such that that
Ξn∩Ψ∗n = Ξn∩Ψ′n will also be optimal. However, Ψ∗n is the only policy which is optimal irrespective of which Ξn the
agent uses, which is why we focus on it.



e-companion to Zorc, Tsetlin, Hasija, and Chick: Delegated Search ec7

Lemma A2. The principal’s first-best value function is given by

V FB
n =

(
p

∫ ū

αV FB
n+1

+e

F̄ (u)du− c

)+

−w+αV FB
n+1, (EC.16)

with boundary condition V FB
N+1 = 0. The first-best reporting and acceptance policies are {ξFB

n }= {ψFB
n }=

{� αV FB
n+1 + e �}. For all n∈ {1, ...,N}, the first-best search policy is

ωFB
n =

{
1 if p

∫ ū
αV FB
n+1

+e
F̄ (x)dx− c > 0;

0 otherwise.

Proof. Noting that under the FB, the agent’s costs are just passed on to the principal and the agent

receives no additional compensation, from (4) we have that the FB policies solve the Bellman equation

V FB
n = max

ωn∈{0,1},ξn,ψn∈suppF
ωn

(
p

∫ ū

max{ξn,ψn}
(u− e−αV FB

n+1)dF (u)− peP ([ξn,ψn))− c
)
−w+αV FB

n+1, (EC.17)

with boundary condition V FB
N+1 = 0. The choice of ξn,ψn affects the objective function of (EC.17) in two

ways: a) through the non-positive −peP ([ξn,ψn)) term (which is then maximized by any ξn ≥ψn, and b) the

integral term
∫ ū

max{ξn,ψn}
(u− e−αV FB

n+1)dF (u), which is maximized by max{ξn,ψn}= αV FB
n+1 + e (thus also

for max{ξn,ψn}=� αV FB
n+1 +e �, as F (u) has no probability mass in (αV FB

n+1 +e,� αV FB
n+1 +e �)). Consequently,

setting ξFB
n = ψFB

n =� αV FB
n+1 + e � is optimal. Statement of the lemma then follows from using the identity∫ ū

�αV FB+e�(u− e− αV
FB
n+1)dF (u) =

∫ ū
αV FB+e

(u− e− αV FB
n+1)dF (u) =

∫ ū
αV FB
n+1

+e
F̄ (u)du to shorten the integral

in (EC.17) and noticing that ωn = 1 is optimal if and only if the expression in large brackets in (EC.17) is

positive. �

Proof of Theorem 3.

As shown in part 2 of the proof for Theorem 2, ψ∗n =� αV P
n � is an optimal acceptance policy, inserting which

into (16) yields

V P
n = max

ωn∈{0,1},ξn∈suppF
ωn

(
p

∫ ū

max{ξn,αV Pn+1
}
(x−αV P

n+1)dF (x)− z(ξn) +w

)
−w+αV P

n+1, (EC.18)

with boundary condition V P
N+1 = 0.

We will now demonstrate that it is optimal to search (set ωn = 1) in every period. There has to be at

least one period in which it is optimal to search, otherwise the principal would pay cost w in any period but

never get any benefits from search, in which case it would better to offer no contract at all (in violation of

the V P
1 > 0 assumption). Assume there are two consecutive periods, k and k+ 1, such that that under the

optimal policies {ω∗n},{ξ∗n},{ψ∗n} the agent searches in period k + 1 but not in k. Then, from (EC.18), we

have

V P
k =−w+α

(
p

∫ ū

max{ξ∗
k+1

,ψ∗
k+1
}
(x−αV P

k+2)dF (x)− z(ξ∗k+1) +αV P
n+1

)
.

Using an alternate policy which switches the order of strategies for these two periods (searching and using

ξ∗k+1,ψ
∗
k+1 in period k and then not searching in period k+ 1) yields

V P ′
k := p

∫ ū

max{ξ∗
k+1

,ψ∗
k+1
}
(x−α2V P

k+2 +αw)dF (x)− z(ξ∗k+1)−αw+α2V P
n+1.
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Looking at the difference between these two value functions gives

V P ′
k −V P

k = p

∫ ū

max{ξ∗
k+1

,ψ∗
k+1
}
((1−α)x+αw)dF (x)− (1−α)z(ξ∗k+1) + (1−α)w,

= (1−α)

[
p

∫ ū

max{ξ∗
k+1

,ψ∗
k+1
}
xdF (x)− z(ξ∗k+1)

]
+ (1−α+ pαF̄ (max{ξ∗k+1,ψ

∗
k+1}))w,

≥ (1−α)
[
pF̄ (max{ξ∗k+1,ψ

∗
k+1})αV P

k+2−w
]

+ (1−α+ pαF̄ (max{ξ∗k+1,ψ
∗
k+1}))w,

= pαF̄ (max{ξ∗k+1,ψ
∗
k+1})

(
(1−α)V P

k+2 +w
)
> 0.

Here, the first inequality follows from the assumed optimality of ω∗k+1, ξ
∗
k+1,ψ

∗
k+1, while the second follows

from −w/(1 − α) being a strict lower bound for the value function under an optimal policy (it is the

NPV of paying −w in every period ad infinitum). Consequently, V P ′

k > V P
k , contradictory to optimality of

{ω∗n},{ξ∗n},{ψ∗n}. Thus, if there are periods in which the agent does not search, they have to come at the end

of the search process, or in other words, there exists K ∈ {1, ...,N} such that ω∗n = 1 for n≤K and ω∗n = 0

for n>K.

We note that there exists at least one period i such that p
∫ ū

max{ξ∗
i
,ψ∗
i
} xdF (x)− z(ξ∗i )> 0, otherwise the

principal could not create any value through delegation, which would be in contradiction to the V P
1 > 0

assumption. But then if K <N , in period K + 1, setting ωK+1 = 1, ξK+1 = ξ∗i , and ψK+1 = ψ∗i would yield

higher expectation than using ω∗K+1 = 0, contradictory to optimality of {ω∗n}. Consequently K =N , and thus

for each n∈ {1, ...,N} we have ω∗n = 1. Using this, (EC.18) simplifies to

V P
n = max

ξn∈suppF
p

∫ ū

max{ξn,αV Pn+1
}
(x−αV P

n+1)dF (x)− z(ξn) +αV P
n+1, (EC.19)

with boundary condition V P
N+1 = 0. The optimal contract is then given by Theorem 1, and is the one that

implements the above-given {ω∗n} alongside with {ξ∗n} that solves (EC.19).

It remains to prove the properties stated in parts (i)–(v) of the theorem.

Part (i): min{ξLC,� αV P
n+1 �} ≤ ξ∗n ≤ min{ξLC,� αV P

n+1 + e �}, ∀n ∈ {1, ...,N}. Consider the objective

function in (EC.19) as a function of ξn on domain suppF . In situations where ξLC ≤ αV P
n+1, the optimal

policy is ξ∗n = ξLC – as is evident from (EC.19), where the integral term is constant in ξn for ξn ≤ αV P
n+1

(and strictly decreasing in ξn afterwards) while the cost term z(ξn) is minimized at ξn = ξLC (per Lemma 1).

Consider now the situations where ξLC > αV P
n+1. Then, it has to be that ξ∗n ≤ ξLC because higher values

would both weakly increase the costs (as z(ξn) is minimized at ξLC) and strictly decrease the value from

search (the integral term). In that case, we also have ξ∗n ≥ αV P
n+1, because the integral term in (EC.19) is

constant for ξn ≤ αV P
n+1 whereas the costs are strictly decreasing in ξn on the same region (by Lemma 1, as

ξLC >αV P
n+1). Thus, in the case where ξLC >αV P

n+1, we can expand z(ξn) and rewrite (EC.19) as

V P
n = max

ξn∈suppF |αV P
n+1
≤ξn≤ξLC

p

∫ ū

ξn

(x− e−αV P
n+1)dF (x)−w− pF̄ (ξn)(αsBn (ξn)−w) +αV P

n+1, (EC.20)

from which we see that the integral term is strictly increasing in ξn for ξn ≤ αV P
n+1 +e (and strictly decreasing

afterwards), while the term pF̄ (ξn)(αsBn (ξn)−w) is strictly increasing in ξn. Therefore, if [αV P
n+1, αV

P
n+1 +e] 6=

∅ then ξ∗n ∈ [αV P
n+1, αV

P
n+1 + e]∩ suppF , otherwise ξ∗n =� αV P

n+1 + e �. Finally, because ξLC ≤ αV P
n+1 implies

ξ∗n = ξLC and ξLC >αV P
n+1 implies ξ∗n ∈ [αV P

n+1,min{ξLC,� αV P
n+1 + e �}]∩ suppF , noticing that ξn ≥ x (for

any x) also implies ξn ≥� x � we obtain min{ξLC,� αV P
n+1 �} ≤ ξ∗n ≤min{ξLC,� αV P

n+1 + e �}.



e-companion to Zorc, Tsetlin, Hasija, and Chick: Delegated Search ec9

Part (ii): {ψ∗n},{V P
n } ↓ n. At any time m, following the policy ({ξshifted

n },{ψshifted
n }) given by ∀n : ξshifted

n :=

ξ∗n+1,ψ
shifted
n := ψ∗n+1 yields V P

m+1 in expectation,21 implying that the optimal policy has to yield at least

that much, i.e., V P
m ≥ V P

m+1 and thus {V P
n } ↓ n. Then, {ψ∗n} ↓ n follows from ψ∗n =� αV P

n+1 �.

Part (iii): {ξ∗n} is constant and equal to ξLC up to a point, after which it is decreasing in n. We have

{V P
n } ↓ n from part (ii) of the theorem and that αV P

n+1 ≥ ξLC implies ξ∗n = ξLC from part (i). Hence there

exists K ≥ 0 such that the first K elements of {ξ∗n} are equal to ξLC and, for all n > K, ξLC > αV P
n+1. It

follows that {ξ∗n} solves (EC.20) for n > K + 1. Denote the objective function of (EC.20) as ob(ξ,n) :=

p
∫ ū
ξ

(x− e−αV P
n+1)dF (x)−w− pF̄ (ξ)(αsBn (ξ)−w) +αV P

n+1. Thus defined ob(ξ,n) is submodular, and so,

by Topkis’s theorem (Topkis 1978), {ξ∗n} ↓ n.

Part (iv): for all n ∈ {1, ...,N}, ξ∗n ≤ ξFB
n and ψ∗n < ξFB

n . By Lemma A2, ξFB
n =� αV FB

n+1 + e �≥� αV P
n+1 +

e �≥� αV P
n+1 �= ψ∗n. Here, the V FB

n+1 ≥ V P
n+1 inequality follows from the definition of the first-best and the

principal of optimality (it can also be derived from comparison of (13) to (EC.19) by noticing that z(ξn)≥

w+ c+ pF̄ (ξn)e). As shown in part (i), ξ∗n ≤� αV P
n+1 + e �, so ξFB

n =� αV FB
n + e �≥� αV P

n+1 + e �≥ ξ∗n.

Part (v): Single crossing of ψ∗n and ξ∗n. From part (iii), ξ∗n is constant and equal to ξLC up to a certain

period, after which it is weakly decreasing in n. Then, from part (i), in the non-constant region of ξ∗n we

have that ξ∗n ≥ αV P
n , thus also ξ∗n ≥� αV P

n �= ψ∗n (so no crossings within this region). Hence, ψ∗n > ξ∗n can

only be in the region where ξ∗n = ξLC, from which the ξ∗M−1 = ξLC property immediately follows. Using part

(ii), ψ∗n is weakly decreasing and thus crosses the constant function at most once. �

Proof of Proposition 1.

In the first-best solution (analogously, for the principal who delegates search), V FB
n (resp., V P

n ) is the value of

the rest of the search under an optimal policy. As N →∞ this value must be equal in all periods (Proposition

5.4.1 of Bertsekas 2017). Hence, as ξFB
n =� αV FB

n+1 + e � (Lemma A2) and ψ∗n =� αV FB
n+1 � (Theorem 3), those

policies are equal in all periods as well. Then, stationarity of ξ∗n follows from (17), while ξFB
n ≥ ξ∗n and ξFB

n ≥ ξ∗n
follow from Theorem 3(iv). Because ψ∗n =� αV P

n+1 �, we have �ψ∗n + e �=�� αV P
n+1 � +e �≥� αV P

n+1 + e �≥ ξ∗n,

where the last inequality follows from Theorem 3(i). The time invariance of sBn then follows from equation

(11) because ξ∗n is constant.

Now we turn to the risk-neutral case. Using the expression for sBn from (11) gives us the equality

limr→0 s
B
n (ξn) = w/α+ c/(pF̄ (ξn)α). Observe that the expected single-period payment to the agent is now

independent of ξn, which follows more explicitly from substituting this expression for sBn into (14). Thus

the principal can induce any policy (including the first-best) for the same expected cost. Given that the

participation constraint is binding (as shown in the proof of Theorem 1), the principal is also able to extract

all value from the agent; hence the contract achieves the first-best.

For part (iii) of the proposition, z(ξ) is an increasing function of ξ when e= 0, so ξLC = min suppF and

thus also ξ∗n = minsuppF by Theorem 3(i). First-best being attained for p= 1 (but not otherwise) follows

21 The shifted policy leaves undefined what to do in the last period (as ξ∗N+1 is undefined). However, we do not need to
know what happens in the last period, only that there is some policy we can use there that does not result in a negative
payoff. As we demonstrated earlier in the proof, a policy pair (ξ,ψ) exists for which p

∫ ū
max{ξ,ψ} xdF (x)− z(ξ) > 0

which can then be used in the last period.
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from sBn (min suppF ) = (c+w)/α when p= 1 (but not when p < 1), which then makes the first-best value

function (13) equivalent to the one under the optimal contract, as given by (17).

Lastly, part (iv) of the proposition follows directly from Theorem 3 under parameter value w= 0. �

Proof of Proposition 2.

Denote by V IN
n the principal’s value function (her NPV under an optimal policy) in period n if she searches

on her own (in-house); V IN
n is given by (1) with c= cP , p= pP , and F (·) = FP (·). From Lemma A1 it follows

that the bracketed term in (1) is positive, so

V IN
n = pP

∫ ūP

αV IN
n+1

F̄P (x)dx− cP +αV IN
n+1, (EC.21)

with boundary condition V IN
N+1 = 0. We similarly use V OUT

n to denote the value function for the principal

who delegates (outsources) search. Applying (17) now yields

V OUT
n = max

ξn∈suppF
pA

∫ ūA

max{ξn,αV OUT
n+1

}
(x−αV OUT

n+1 )dFA(x)− z(ξn) +αV OUT
n+1 , (EC.22)

with boundary condition V OUT
N+1 = 0. The rest of our proof proceeds in three steps: after showing that these

two value functions do not cross more than once, we characterize situations in which they do not cross at all.

Step 1: Single-crossing property. Consider the problem faced by a principal who can, in each period, choose

whether to search herself in that period or to delegate the search task. Thus she need not commit to one

of these options at the beginning of the search and can mix and match as needed, getting the best of both

options. (Such principal is also the subject of Remark 2 in the main text.) Our motive for considering such

a principal is to establish that optimal single-period outsourcing decisions depend primarily on the value of

the rest of the search (i.e., from period n+ 1 onward): delegation is optimal when that value is low, but an

in-house search is optimal when it is high.

Let V̂n denote this principal’s value function. To express that function concisely, we first define

ξ̂(V ) = min arg max
ξ∈suppF

pA

∫ ūA

max{ξ,αV }
(x−αV )dFA(x)− z(ξ) +αV. (EC.23)

This function gives the optimal threshold (reporting policy) ξ̂ that the principal should induce when

delegating, and her value function in the next period will be V . The property given in part (i) of Theorem 3

can also be extended, via an identical proof, to show that ξ̂(V ) ∈ [min{ξLC,� αV �},min{ξLC,� αV + e �

}]∩ suppF . Using (EC.21) and (EC.22), the principal’s value function is given by

V̂n = max

{
pP

∫ ūP

αV̂n+1

F̄P (x)dx− cP ,

pA

∫ ūA

max{ξ̂(V̂n+1),αV̂n+1}
(x−αV̂n+1)dFA(x)− z(ξ̂(V̂n+1))

}
+αV̂n+1, (EC.24)

with boundary condition V̂N+1 = 0. We can also express (EC.24) as

V̂n = max
hn∈{0,1}

hn

[
pA

∫ ūA

max{ξ̂(V̂n+1),αV̂n+1}
(x−αV̂n+1)dFA(x)− pP

∫ ūP

αV̂n+1

F̄P (x)dx+ cP − z(ξ̂(V̂n+1))

]
+ pP

∫ ūP

αV̂n+1

F̄P (x)dx− cP +αV̂n+1,
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where hn = 1 (resp. hn = 0) stands for the decision to delegate search (resp. not delegate) in period n. It is

then optimal to delegate if and only if the expression in brackets next to hn is positive. We abbreviate that

expression as VDn, the value of delegation, where

VDn(V̂n+1) = pA

∫ ūA

max{ξ̂(V̂n+1),αV̂n+1}
(x−αV̂n+1)dFA(x)− pP

∫ ūP

αV̂n+1

F̄P (x)dx+ cP − z(ξ̂(V̂n+1)). (EC.25)

Next we show that VDn(V̂n+1) is a weakly decreasing function of V̂n+1. Consider first the case when

αV̂n+1 ≥ ξLC. In this case, we have that ξ̂(V̂n+1) = ξLC, which enables the following simplification:

VDn(V̂n+1) = pA

∫ ūA

αV̂n+1

(x−αV̂n+1)dFA(x)− pP
∫ ūP

αV̂n+1

F̄P (x)dx+ cP − z(ξLC),

=

∫ max{ūA,ūP }

αV̂n+1

(pAF̄A(x)− pP F̄P (x))dx+ cP − z(ξLC),

which is decreasing in V̂n+1 because the integrand is positive.

Now consider the case where αV̂n+1 ≤ ξLC (thus ξ̂(V̂n+1)≥� αV̂n+1 �), and let ξLC/α≥ V̂ H
n+1 > V̂ L

n+1. We

will show that the following difference is positive

VDn(V̂ L
n+1)−VDn(V̂ H

n+1) = pA

∫ ūA

ξ̂(V̂ L
n+1

)

(x−αV̂ L
n+1)dFA(x)− pA

∫ ūA

ξ̂(V̂H
n+1

)

(x−αV̂ H
n+1)dFA(x)

− z(ξ̂(V̂ L
n+1)) + z(ξ̂(V̂ H

n+1))− pP
∫ αV̂Hn+1

αV̂ L
n+1

F̄P (x)dx

≥ pA
∫ ūA

αV̂ L
n+1

+e

(x−αV̂ L
n+1)dFA(x)− pA

∫ ūA

ξ̂(V̂H
n+1

)

(x−αV̂ H
n+1)dFA(x)

− z(ξ̂(V̂ L
n+1)) + z(ξ̂(V̂ H

n+1))− pP
∫ αV̂Hn+1

αV̂ L
n+1

F̄P (x)dx

= pA

∫ ūA

αV̂ L
n+1

+e

(x−αV̂ L
n+1− e)dFA(x)− pA

∫ ūA

ξ̂(V̂H
n+1

)

(x−αV̂ H
n+1− e)dFA(x)

+ pAeF̄A(αV̂ L
n+1 + e)− pAeF̄A(ξ̂(V̂ H

n+1))

− z(ξ̂(V̂ L
n+1)) + z(ξ̂(V̂ H

n+1))− pP
∫ αV̂Hn+1

αV̂ L
n+1

F̄P (x)dx.

Then, as ξ̂(V̂ H
n+1)≤� αV̂ H

n+1 +e � we have
∫ ūA
ξ̂(V̂H

n+1
)
(x−αV̂ H

n+1−e)dFA(x) =
∫ ūA
�αV̂H

n+1
+e�(x−αV̂

H
n+1−e)dFA(x)+∫

x∈[ξ̂(V̂H
n+1

),�αV̂H
n+1

+e�)(x − αV̂ H
n+1 − e)dFA(x) ≤

∫ ūA
αV̂H
n+1

+e
(x − αV̂ H

n+1 − e)dFA(x) =
∫ ūA
αV̂H
n+1

+e
F̄A(x)dx =∫ ūA

αV̂H
n+1

F̄A(x+ e)dx. Inserting this inequality into the equation above yields

VDn(V̂ L
n+1)−VDn(V̂ H

n+1)≥ pA
∫ ūA

αV̂ L
n+1

F̄A(x+ e)dx− pA
∫ ūA

αV̂H
n+1

F̄A(x+ e)dx

+ pAeF̄A(αV̂ L
n+1 + e)− pAeF̄A(ξ̂(V̂ H

n+1))

− z(ξ̂(V̂ L
n+1)) + z(ξ̂(V̂ H

n+1))− pP
∫ αV̂Hn+1

αV̂ L
n+1

F̄P (x)dx

=

∫ αV̂Hn+1

αV̂ L
n+1

(
pAF̄A(x+ e)− pP F̄P (x)

)
dx

+ pAeF̄A(αV̂ L
n+1 + e)− pAeF̄A(ξ̂(V̂ H

n+1))− z(ξ̂(V̂ L
n+1)) + z(ξ̂(V̂ H

n+1)).
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Expanding the z(·) terms yields

VDn(V̂ L
n+1)−VDn(V̂ H

n+1)≥
∫ αV̂Hn+1

αV̂ L
n+1

(
pAF̄A(x+ e)− pP F̄P (x)

)
dx

− pAF̄A(ξ̂(V̂ L
n+1))(αsBn (ξ̂(V̂ L

n+1))−w) + pAF̄A(ξ̂(V̂ H
n+1))(αsBn (ξ̂(V̂ H

n+1))−w)

+ pAe(F̄A(αV̂ L
n+1 + e)− F̄A(ξ̂(V̂ L

n+1))).

Here, the first line is weakly positive as the integrand is weakly positive, the second is weakly positive becaue

pAF̄A(x)(αsBn (x) − w) ↑ x and ξ̂(V ) ↑ V , and the last is also weakly positive as ξ̂(V̂ L
n+1)) ≤� αV̂ L

n+1 + e �,

thus F̄A(ξ̂(V̂ L
n+1))≥ F̄A(� αV̂ L

n+1 + e �) = F̄A(αV̂ L
n+1 + e). Consequently, VDn(V̂ L

n+1)−VDn(V̂ H
n+1)≥ 0, that is

VDn(V̂n+1) is weakly decreasing.

As a result, the optimal control sequence {h∗n} is weakly increasing in n. So if there exists k such that

h∗k = 1, then for every n∈ {k, ...,N} we have h∗n = 1 and hence V̂n = V OUT
n for n≥ k. We conclude that, if the

principal who solves (EC.24) should delegate, then (a) so should the main model’s principal and (b) their

value functions are identical. So if there exists period n in which V OUT
n ≥ V IN

n , then the same holds for any

subsequent period. Conversely, if there exists n, in which V OUT
n ≤ V IN

n , then the same holds in every preceding

period, completing the single-crossing property.

Step 2: Situations where it is optimal not to delegate. Consider the problem in the last period N . The princi-

pal receives V IN
N = pP

∫ ūP
uP

F̄P (x)dx−cP if searching on her own or V OUT
N = maxξ∈suppF pA

∫ ūA
ξ

xdFA(x)−z(ξ)

if she delegates. So in the last period, the principal is better-off conducting her own search if and only if

V IN
N ≥ V OUT

N ; expanding this expression gives the condition (18). Finally, if this condition holds then it is

optimal to conduct an in-house search not only in the last period but in every preceding period as well, a

result that follows from Step 1 of this proof and completes part (i) of the proposition.

Step 3: Situations where not delegating is optimal. Notice that V IN
n ≥ V OUT

n ⇒ V IN
n−1 ≥ V OUT

n−1 , which was

shown in part 1, also implies that if it is optimal to delegate if there are N periods until the horizon, it is also

optimal to delegate if there are K periods until the horizon, for every K ∈ {1, ..,N}. Thus we can identify

situations in which delegation is optimal – irrespective of the number of periods – by considering N →∞,

in which case the optimal policies are stationary (see Lippman and McCall 1976). Then, by (EC.21) and

(EC.22), the value functions in any period n are given by

V IN =
1

1−α

(
pP

∫ ūP

αV IN

F̄P (x)dx− cP
)

and

V OUT =
1

1−α
max

ξ∈suppF

(
pA

∫ ūA

max{ξ,αV OUT}
(x−αV OUT)dFA(x)− z(ξ)

)
.

Therefore, if V OUT ≥ V IN then it is optimal to delegate for every possible horizon length N ∈ N. This

completes part (ii) of the proposition, and also part (iii) by applying the single-crossing property (Step 1 of

this proof). �

Proposition A1 and Lemma A3 (to follow) are the analogues of (respectively) Theorems 1 and 2 and

Lemma 1 for the setting in which u is not contractible. Both of these results are used in our proof of

Theorem 4.
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Proposition A1 (Implementable policies under unspecified search) If Y n is the sole contractible

variable and the principal commits to an acceptance policy {Ψn} when offering the contract, then the principal

can implement any policy pair ({ωn},{Ξn}) that satisfies the following conditions for every period n ∈

{1, ...,N} : either ωn = 0 or Ψn ⊆ Ξn and pP (Ψn)1Ξn 6=suppF > 1 − 1/exp[rc(1−α)α−1]. The contract that

implements {Ξn} at the lowest possible cost to the principal has two possible components. In periods during

which the agent does not bring all alternatives to the principal (Ξn 6= suppF ), the contract pays the agent

a bonus of sBn (Ψn) if the principal accepts the delivered alternative or of s0
n if she does not accept it or no

alternative was delivered; here sBn (·) and s0
n are given by (11). In periods where (Ξn = suppF ) the bonus is

equal to sBn (suppF ) and is paid for any alternative presented to the principal – that is, irrespective of her

decision to accept or reject it. This contract is renegotiation proof.

Proof. From Theorem 1 of Plambeck and Zenios (2000) it follows that the problem of finding a contract

that implements any admissible search policy {ωn} and reporting policy {Ξn} at the lowest possible cost to

the principal can be decomposed into N single-period problems, each given by

arg min
sAn ,s

R
n ,s

0
n

pωnP (Ψn ∩Ξn)sAn + pωnP (Ξn\Ψn)sRn + (1− pωnP (Ξn))s0
n; (EC.26)

−pωnP (Ψn ∩Ξn) exp[−r(1−α)(sAn −α−1c)]− pωnP (Ξn\Ψn) exp[−r(1−α)(sRn −α−1c)]

−(1− pωnP (Ξn)) exp[−r(1−α)(s0
n−α−1c)] =− exp[−rα−1(1−α)w];

(EC.27)

−pP (Ψn ∩Ξ) exp[−r(1−α)(sAn −α−1c)]− pP (Ξ\Ψn) exp[−r(1−α)(sRn −α−1c)]

−(1− pP (Ξ)) exp[−r(1−α)(s0
n−α−1c)]≤− exp[−rα−1(1−α)w] ∀Ξ∈F ;

(EC.28)

− exp[−r(1−α)s0
n]≤− exp[−rα−1(1−α)w]. (EC.29)

As before, sAn (resp. sRn ) is the agent’s reward for bringing an alternative to the principal that she accepts

(resp. rejects), and s0
n is his reward if he does not bring her any alternative. The objective function (EC.26)

minimizes the expected sum of these rewards conditional on the agent using the desired policies ωn and Ξn.

Equation (EC.27) is the (binding) participation constraint. The incentive compatibility constraints (EC.28)

and (EC.29) ensure that the agent could not do better by choosing a different reporting policy or by declining

to pay the search cost. As in Proposition 1, if ωn = 0 then (EC.26)-(EC.29) has a trivial solution of sAn =

sRn = s0
n =w/α, so we proceed to examine the case when ωn = 1.

Notice from the incentive compatibility constraint (EC.28) that if sAn , s
R
n > s

0
n, then it is strictly optimal for

the agent to report all alternatives, if sAn > s
0
n > s

R
n it is strictly optimal for him to report only the ones that

the principal will accept (and the exact value of sRn is redundant), and if sRn > s0
n > sAn it is strictly optimal

for the agent to report all that the principal will not accept (and the exact value of sAn is redundant). Thus,

unless sAn = s0
n or sRn = s0

n, the only search policies which can be induced are Ξn = suppF , Ξn = Ψn, and

Ξn = suppF\Ψn. Thus, we will separate this problem into 5 exhaustive cases and solve each case individually.

Case 1. Consider first the contract parameters sRn = s0
n. Then we also need sAn > s

R
n , otherwise the contract

would induce ωn = 0. Such contract parameters will induce the agent to report any alternative in Ψn to the

principal, and make him indifferent about reporting other alternatives. We first solve relaxed version of the

problem, where the constraint (EC.28) is replaced by sRn = s0
n, which is then given by
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arg min
sAn ,s

0
n

pP (Ψn)sAn + (1− pP (Ψn))s0
n; (EC.30)

−pP (Ψn) exp[−r(1−α)(sAn −α−1c)]− (1− pP (Ψn)) exp[−r(1−α)(s0
n−α−1c)] =− exp[−rα−1(1−α)w]; (EC.31)

− exp[−r(1−α)s0
n]≤− exp[−rα−1(1−α)w]. (EC.32)

This problem is identical to (EC.5)–(EC.7), which was solved in our proof of Theorem 1. It is thus solvable

only if the implementability condition pP (Ψn)> 1− 1/ exp[rc(1−α)α−1] holds, and its solution is

sAn =
w+ c

α
+

1

r(1−α)
ln

pP (Ψn)

1− (1− pP (Ψn)) exp[rc(1−α)α−1]
, s0

n = sRn =
w

α
. (EC.33)

Plugging this solution back into the incentive compatibility constraint (EC.28), we obtain

−pP (Ψn ∩Ξ) exp[−r(1−α)(sAn −α−1c)]

−(1− pP (Ψn ∩Ξ)) exp[−r(1−α)(s0
n−α−1c)]

≤− exp[−rα−1(1−α)w],∀Ξ∈F .

This condition is satisfied for any Ξn such that Ψn ⊆ Ξn. This is because the LHS of the condition is

maximized at Ξ = Ψn (as sAn > s0
n) and because, by (EC.31), the value of the left-hand side when evaluated

at Ξ = Ψn is equal to that of the right-hand side. Hence (EC.33) is a candidate solution to the original

system (EC.26)–(EC.29) for any Ξn that satisfies Ψn ⊆Ξn. The solution is only a candidate solution as the

optimization restricts the contract parameters to those that satisfy sRn = s0
n < s

A
n . Thus, we still need to verify

that none of the other cases are capable of implementing the same reporting policy at a lower cost. Note

that the expression in (EC.33) for optimal payments is independent of the desired policy Ξn; in fact, the

optimal incentive structure renders the agent indifferent between all policies that satisfy Ψn ⊆Ξn.

Case 2. Consider the contract parameters sRn < s0
n. Then we also need sAn > s0

n, otherwise the contract

would induce ωn = 0. As noted earlier, an optimal strategy for the agent would then be to report everything

that the principal will accept and nothing else; this is a situation which can be solved analogously to Case

1 and yields the same candidate solution for sAn and s0
n as in (EC.33), while s0

R can be any s0
R < s

0
n. Another

difference from Case 1 is that here we can only implement Ξn = Ψn. This similarity of solutions between

Case 1 and 2 is driven by insensitivity to parameter sRn when sRn < s
0
n, as under any induced policy reporting

something that the principal will reject is a zero probability event.

Case 3. Consider the contract parameters sAn = s0
n; then we also need sRn > sAn , lest we induce ωn = 0. We

can solve this analogously to Case 1, which is possible if the implementability condition pP (suppF\Ψn)>

1− 1/ exp[rc(1−α)α−1] holds, and yields

sAn =
w+ c

α
+

1

r(1−α)
ln

pP (suppF\Ψn)

1− (1− pP (suppF\Ψn)) exp[rc(1−α)α−1]
, s0

n = sRn =
w

α
. (EC.34)

This is a candidate solution to problem (EC.26)–(EC.29) for any Ξn that satisfies Ξn ⊆ suppF\Ψn. Note

that the contract from this case will never be a part of an optimal contract, as it generates an acceptable

outcome for the principal with probability 0, but is more expensive to implement than ωn = 0.

Case 4. Consider the contract parameters sAn < s0
n; then we also need sRn > sAn , lest we induce ωn = 0.

Solving it (analogously to Case 1) yields sRn and s0
n given by (EC.34) as the candidate solution (sA can be
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anything as long as sAn < s0
n), and can only implement reporting policies such that Ξn = suppF\Ψn. As in

Case 3, the contract from this case will never be a part of an optimal contract, as it generates an acceptable

outcome for the principal with probability 0, but is more expensive to implement than ωn = 0.

Case 5. Consider the contract parameters sAn , s
R
n > s0

n. This contract will induce the agent to report all

found alternatives to the principal. Using the same Jensen’s inequality argument as in Theorem 1, the

contract then also has to satisfy sAn = sRn , otherwise it would impose an additional source of risk on the risk-

averse agent, requiring the principal to pay an increased risk premium in expectation. This is also solvable

analogously to Case 1, which is possible if the implementability condition p > 1−1/ exp[rc(1−α)α−1] holds,

and yields

sAn = sRn =
w+ c

α
+

1

r(1−α)
ln

p

1− (1− p) exp[rc(1−α)α−1]
and s0

n =
w

α
. (EC.35)

This is the solution to problem (EC.26)–(EC.29) for Ξn = suppF – even though the contract from Case 1

can also implement this reporting policy – as it can be observed from inserting (EC.35) and (EC.33) into

(EC.26) that (EC.35) implements it for a lower cost.

Finally, the renegotiation-proof nature of this contract in all cases follows from Corollary 1 of Plambeck

and Zenios (2000), the statement of the proposition follows from combining the exhaustive cases. �

Lemma A3. If Y n is the sole contractible variable and the principal commits to an acceptance policy, we

can restrict attention to history-independent policies without loss of optimality and under an optimal contract,

threshold reporting and accepting policies are optimal, so ΨUS∗
n = [ψUS∗

n , ū] ∩ suppF and ΞUS∗
n = [ξUS∗

n , ū] ∩

suppF , for all n ∈ {1, ..,N}. The optimal contract implements either ξUS∗
n = ψUS∗

n or ξUS∗ = min suppF

for all n∈ {1, ..,N}. The expected single-period costs incurred by the principal when implementing reporting

policy ξUS∗
n are z(ξUS∗

n ) as given by (14).

Proof. Part 1: The agent should report either all alternatives or all acceptable ones. If ωn = 0 the choice

of threshold and reporting policies is redundant (any policy is optimal), so consider periods where ωn = 1.

Notice that for any implementable Ξn other than Ξn = suppF , the amount paid to the agent is the same

(from Proposition A1), as is the principal’s upside (she will accept any alternative with a value in Ψn), but the

principal’s evaluation costs are incurred every time an alternative is delivered to her and are thus increasing

in P (Ξn). Consequently, under an optimal contract, it has to be that ΞUS∗
n = ΨUS∗

n or ΞUS∗
n = suppF , and

similarly to the proof of Lemma 1, the principal’s expected single-period costs to induce the agent to search

and use reporting policy ΞUS
n are given by ζ(ΞUS

n ) as defined in (EC.14).

Part 2: Optimality of threshold policies. Assume, by contradiction, there exists an optimal ΨUS∗
n that is

not a threshold one in a period where ωUSn = 1, and let ψUS∗
n be such that P ([ψUS∗

n , ū]∩ suppF ) = P (ΨUS∗
n )

(the existence of such ψUS∗
n is guaranteed by the probability mass function µ being constant). Then, from

(EC.14), the costs to the principal will be the same under both policies, acceptable alternatives will be

delivered to the principal with the same probability, but the value of delivered alternatives will be better

(in terms of weak first-order stochastic dominance) under [ψUS∗
n , ū]∩ suppF . Thus, using [ψUS∗

n , ū]∩ suppF

gives a higher expectation to the principal, in contradiction to optimality of ΨUS∗
n , so optimality of threshold

acceptance policies follows. Then, optimality of threshold reporting policies follows from part 1 of this proof.
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Thus, either ΞUSn = ΨUS
n is optimal or ΞUSn = suppF is. Lastly, the principal cost function being given by (14)

follows by inserting the optimal threshold policies into (EC.14).

Part 3: Optimality of History-Independent Policies. Proposition A1 reduces the contracting problem to an

MDP in which the principal’s choice is over the policies {Ξn},{Ψn},{ωn}. Applying part 1 of this proof to

(4), the resulting MDP can be expressed as

V US
n = max

ωn∈{0,1},Ψn∈F,Ξn∈{Ψn,suppF}

(
ωnp

∫
Ψn

(x−αV US
n+1)dF (x)−ωnζ(Ξn)− (1−ωn)w+αV US

n+1

)
,

with boundary condition V US
N+1 = 0. Here, the objective function is independent of the state history, including

the current state, thus so are the optimal choices of ωn,Ξn, and Ψn. �

Proof of Theorem 4.

By Lemma A3, history-independent threshold policies are optimal, and in every period it is optimal for the

principal to induce a reporting policy which is equal to the announced acceptance policy (ξn = ψUS
n ) or to

induce ξn = suppF . We can therefore express the principal’s problem as the dynamic program

V US
n = max

ωn∈{0,1},ψn∈suppF

(
ωnp

∫ ū

ψn

(x−αV US
n+1)dF (x)−ωnmin{z(ψn), z(min suppF )}− (1−ωn)w+αV US

n+1

)
,

with boundary condition V US
N+1 = 0. Here, optimality of setting ωn = 1 in every period follows analogously to

the same statement in the proof of Theorem 3, simplifying the equation to

V US
n = max

ψn∈suppF

(
p

∫ ū

ψn

(x−αV US
n+1)dF (x)−min{z(ψn), z(min suppF )}+αV US

n+1

)
. (EC.36)

Note that this reduces the problem to a univariate one: the choice of acceptance policy. Denoting ob(ψ,n) :=

p
∫ ū
ψ

(
x−αV US

n+1

)
dF (x)−min{z(ψ), z(min suppF )}+αV US

n+1, it is easily verifiable that ob(ψ,n) is submod-

ular, thus by Topkis’s theorem the optimal {ψUS
n } is weakly decreasing in n. From the shape of the

cost function z given in the proof of Lemma 1 (it is quasi-convex with minimum at ξLC, such that it

is strictly decreasing on [u, ξLC] ∩ suppF and strictly increasing and unbounded for ξn > ξLC), it follows

that ∃ψcrit ∈ suppF s. t. ψcrit ≥ ξLC, z(ψcrit) ≥ z(min suppF ) and ∀ψ ∈ suppF such that ψ > ψcrit : z(ψ) >

z(min suppF ), and ∀ψ ∈ suppF s. t. ψ < ψcrit : z(ψ) < z(min suppF ). Thus, there exists 0 ≤ K ≤ N such

that for K periods the principal induces policy ξn = min supF in the agent, while in the remaining periods

she induces ψUS
n . Parts (i) and (ii) of the theorem then follow from Proposition A1, which gives the optimal

contracts for implementing those policies. �

Proof of Proposition 3.

Consider the setting where agent always reports truthfully, i.e., Rn(u) = u,∀u,n. This eliminates the adverse

selection dimension of the contracting problem, but the moral hazard part remains. It is then optimal for

the principal to never evaluate the agent’s reports (φn(x) = 0,∀x,n) and from Theorem 1 of Plambeck and

Zenios (2000) it follows that the problem of finding a contract that implements any admissible search policy
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{ωn} at the lowest possible cost to the principal can be decomposed into N single-period problems, each

given by

arg min
sAn (u),sRn (u),s0n

pωn
∑
u∈Ψn

(
sAn (u)µ(u)

)
+ pωn

∑
u∈suppF\Ψn

(
sRn (u)µ(u)

)
+ (1− pωn)s0

n; (EC.37)

−pωn
∑
u∈Ψn

(
exp[−r(1−α)(sAn (u)−α−1c)]µ(u)

)
− pωn

∑
u∈suppF\Ψn

(
exp[−r(1−α)(sRn (u)−α−1c)]µ(u)

)
− (1− pωn) exp[−r(1−α)(s0

n−α−1c)] =− exp[−rα−1(1−α)w];
(EC.38)

− exp[−r(1−α)s0
n]≤− exp[−rα−1(1−α)w]. (EC.39)

Notice that the system above is equivalent to the system (EC.1),(EC.2),(EC.4) (solved as part of the proof

for Theorem 1) when Ξn = suppF . Thus, the solution is also the same: for ωn = 1 the solution exists only

if p > 1 + v(c/α) and it is to pay the agent a bonus sBn (suppF ) as given by (11) when any alternative is

reported, or s0
n =w/α when agent reports that no alternative was found. For ωn = 0, the solution is to pay

the agent w/α irrespective of the report. By Theorem 3, the same contract is optimal in the Section 2 model

when e= 0, and the principal’s value function in that setting is equal to V T
n .

Now we will demonstrate how to achieve the same with an agent which is not necessarily truthful. Consider

a principal who conducts evaluations with frequency φ. Applying Theorem 1 of Plambeck and Zenios (2000)

it follows that the problem of finding a contract that implements any admissible search policy {ωn} and a

truthful reporting policy (Rn(u) = u,∀u,n) at the lowest possible cost to the principal can be decomposed

into N single-period problems, each given by

arg min
sn(x,u)

[
(1−ωnp)

(
φsn(∅,∅) + (1−φ)sn(∅,NE)

)
+ωnp

∑
u∈suppF

(
φsn(u,u) + (1−φ)sn(u,NE)

)
µ(u)

]
; (EC.40)

(1−ωnp)
(
φv(sn(∅,∅)) + (1−φ)v(sn(∅,NE))

)
+ωnp

∑
u∈suppF

(
φv(sn(u,u)) + (1−φ)v(sn(u,NE))

)
µ(u)

=−v(w/α)/v(−c/α);
(EC.41)

p
∑

u∈suppF

(
φv(sn(R(u), u)) + (1−φ)v(sn(R(u),NE))

)
µ(u)

+ (1− p)
(
φv(sn(R(∅),∅)) + (1−φ)v(sn(R(∅),NE))

)
≤−v(w/α)/v(−c/α) ∀R : suppF ∪{∅}→ suppF ∪{∅};

(EC.42)

φv(sn(∅,∅)) + (1−φ)v(sn(∅,NE))≤ v(w/α). (EC.43)

Here, sn(x,u) denotes the payment to the agent in the scenario where he reports that an alternative with

value x was found (or that no alternative was found, in which case x = ∅), and the principal’s evaluation

finds the value of the alternative to be u (u= NE if the principal did not conduct an evaluation). Note that

the formulation (EC.40)-(EC.43) does not allow for payment to differ based on the principal’s decision to

accept or reject the alternative. This restriction is made without loss of optimality, which follows from the

same Jensen’s inequality argument as in the proof of Theorem 1. (Intuition: doing otherwise would impose

an additional source of risk on the agent which is outside his control, necessitating a higher payment in
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expectation.) The objective function (EC.40) minimizes the principal’s expected costs, subject to the binding

participation constraint (EC.41), and the incentive compatibility constraints (EC.42)-(EC.43). For ωn = 0,

(EC.40)-(EC.43) has a trivial solution of s(x,u) =w/α,∀x,u.

For ωn = 1, consider a contract which pays sn(u,u) = sn(u,NE) = sBn (suppF ),∀u ∈ suppF (this is the

bonus sEn given in part (i) of the proposition) and sn(∅,∅) = sn(∅,NE) =w/α (this is the fixed pay given in

part (iii) of the proposition), where sBn (suppF ) is given by (11). Notice that this contract solves the problem

(EC.40),(EC.41),(EC.43), irrespective of how sn(x,u) are defined in the case where x 6= u and u 6= NE. This

is essentially the same solution as for (EC.37)-(EC.39), which ensures that the agent is incentivized to search

if he is truthful, but not necessarily that truthfulness is incentive compatible, as it ignores (EC.42).

We will now show that this contract can be made incentive compatible, so also to satisfy (EC.42), by

properly defining sn(x,u) in the case where x 6= u. Consider the point-wise incentive compatibility constraint

φv(sn(u,u)) + (1−φ)v(sn(u,NE))≥ φv(sn(x,u)) + (1−φ)v(sn(x,NE)), ∀x,u∈ suppF ∪∅, s.t. x 6= u.

(EC.44)

This constraint ensures that for every possible u the agent gets higher expected utility by honestly reporting

it (the LHS of of (EC.44)), than by making any dishonest report x (the RHS). Notice that the condition

(EC.44) implies (EC.42). Setting sn(x,u) = sPn ,∀x 6= u,u 6= NE, where sPn is given by (21), ensures that

(EC.44) holds. This is the reduced pay if caught making dishonest reports, as given in part (ii) of the

proposition. Because (EC.44) is satisfied, this contract solves (EC.40)-(EC.43) and is thus optimal.

Finally, the identity limφ→0 V
ARV
n (x;φ) = V T

n follows from comparing the solution of (EC.37)-(EC.39) to

the one of (EC.40)-(EC.43) and noticing that these contracts induce the same actions and pay the same

amount to the agent; yet in the second of these two cases the principal bears an additional cost from random

evaluations, but this cost vanishes as φ→ 0. �

Lemma A4. Let the agent hold contract {sn(x)} ∈F∪P and the principal use threshold acceptance pol-

icy {ψn}. Then, it is optimal for the agent to use policies {γ̃n}, {ω̃n}, {ξ̃n} which solve the recursion:

UA
n ({sn(x)},{ψn}) = max

γn,R,ξn∈{ξ∈suppF |ξ≥ψn},ωn∈{0,1}
− exp[−rγn]

+ωnpα

∫ ū

ξn

exp[−r(1−α)(sn(x)− (γn + c)/α)]dF (x)UA
N+1({sn(x)},{ψn})

+ (1−ωnpF̄ (ξn))α exp[−r(1−α)(−(γn +ωnc)/α)]UA
n+1({sn(x)},{ψn})

with boundary condition

UA
N+1({sn(x)},{ψn}) =− 1

1−α
exp(−rw).

If {sn(x)} ∈F, the agent reports only those alternatives that the principal is willing to accept ({ξ̃n}= {ψn}).

Proof. Follows directly from applying Lemma 1 of Plambeck and Zenios (2000) to the agent’s value

function (5). �

Lemma A5. Let C∈ {F,P} and {sn(x)} ∈ C. It will then be optimal for the principal to use a threshold

acceptance policy ψn({sn(x)}) =� αV P
n+1({sn(x)}) +αs � if C= F, or ψn({sn(x)}) =� αV P

n+1({sn(x)})/(1−
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αq) � if C= P. Here, V P
n ({sn(x)}) is the principal’s value function. Denoting by {ω̃n} the agent’s optimal

search policy, as given by Lemma A4, V P
n ({sn(x)}) is given recursively by

V P
n ({sn(x)}) = αV P

n+1({sn(x)}) + pω̃n

∫ ū

ψn({sn(x)})

(
x−αsn(x)− e−αV P

n+1({sn(x)})
)
dF (x),

with boundary condition V P
N+1({sn(x)}) = 0.22 The optimal contract then solves

max
{sn(x)}∈C

V P
1 ({sn(x)}) (EC.45)

s.t. UA
0 ({sn(x)},{αV P

n+1({sn(x)})})≥− 1

1−α
exp(−rw). (EC.46)

This optimization reduces to optimizing over s∈R if C= F or optimizing over q ∈ [0,1] if C= P.

Proof. Let {sn(x)} ∈ C (resp. {sn(x)} ∈F). Each time the principal is presented with an alternative of

value x, the evaluation cost is already sunk when she finds out x, which leaves the principal with two options:

a) accept the alternative, receiving its value x, but paying a bonus s (resp. qx) in the beginning the of

next period, or b) reject it, in which case the search proceeds which will yield αV P
n ({sn(x)}) in expectation.

Optimality of threshold acceptance policy ψn({sn(x)}) =� αV P
n+1({sn(x)}) +αs �,∀n (resp. ψn({sn(x)}) =�

αV P
n+1({sn(x)})/(1−αq) �,∀n) directly follows. The expression for the principal’s value function then follows

by inserting the optimal {ψn}= {ξn} into (4). The system (EC.45)-(EC.46) is then a simplified version of the

contracting problem (6)-(9), which follows from inserting the expressions for optimal policies for any given

{sn} (as given by Lemma A4 and this proof) and from applying Lemma 1 of Plambeck and Zenios (2000)

to replace the agent’s participation constraint by its wealth-independent component. �

Proof of Proposition 4

Part 1: V F
n , V P

n ≤ V US
n . Consider two different principals, each with their own agent. The first principal’s

agent holds {sn(x)} ∈F∪P. Denote by {ψ̃n} the first principal’s optimal acceptance policy and by V 1
n her

value function (both given by Lemma A5). Also denote the optimal searching and reporting policy for this

principal’s agent by {ω̃n} and {ξ̃n} (both given by Lemma A4).

The second principal commits to the same acceptance policy {ψ̃n} and desires to induce the agent to use the

same reporting and search policies {ω̃n}, {ξ̃n} but can optimize over which contract {sn(Y n)} to use, without

being bound to a particular contract class (thus the second principal is in the setting of Section 4.1). Then,

denoting the second principal’s value function by V 2
n , it follows from Proposition A1 that if {sn(x)} ∈F,

then V 2
n ≥ V 1

n ,∀n as in any single period, the contract of Proposition A1 is the most cost-efficient way of

inducing those policies, optimized over the space of all contracts, including the ones in F.

However, the percentage-bonus contracts of P require contracting on the value of the alternative, which

the second principal is not able to do (as Y n is his sole contractable variable, and it does not include

that information). Thus, to show V 2
n ≥ V 1

n in the case where {sn(x)} ∈P, an additional step is needed: to

construct a contract {sn(Y n)} (in the setting of Proposition A1) which induces {ω̃n} and {ξ̃n} (so the same

policies as {sn(x)} ∈P with percentage bonus q), and yields at least V 1
n to the principal. To do that, let the

22 Note that ω̃n here depends on {ψn} and {sn(x)}, thus this recursion needs to be solved jointly with the agent’s
problem in Lemma A4.
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principal instead commit to acceptance policy {ψ̃∗n} given by ψ̃∗n = max{ψ̃n, ξ̃n},∀n ∈ {1, ...,N}, and use a

contract in {s∗n(x)} ∈Fwith fixed bonus size s∗ that solves∫ ū

ψ̃∗n

exp[−r(1−α)qx]dF (x) =

∫ ū

ψ̃∗n

exp[−r(1−α)s∗]dF (x). (EC.47)

Solving it yields s∗ =− 1
r(1−α)

ln
(∫ ū

ψ̃∗n
exp[−r(1−α)qx]dF (x)/F̄ (ψ̃∗n)

)
. Then, applying Lemma A4, because

of (EC.47), {s∗n(x)} also induces {ω̃n} and {ξ̃n} and yields the same value to the agent as {sn(x)}. However

the expected cost for the principal in period n under {sn(x)} is ω̃np
∫ ū
ψ̃∗n
qxdF (x) while under {s∗n(x)} it is

ω̃nps
∗F̄ (ψ̃∗n). Here, from concavity of exp[−r(1−α)x] in x and (EC.47) we have that

∫ ū
ψ̃∗n
qxdF (x)≥ s∗F̄ (ψ̃∗n)

(as for every concave u, random variable X, and constant y, it holds that E[u(X)] = u(y)⇒E[X]≥ y), Thus,

denoting the principal’s value function under {s∗n(x)} by V 1∗
n , we have that V 2

n ≥ V 1∗
n ≥ V 1

n ,∀n.23

Lastly, because V 2
n ≥ V 1

n ,∀n holds in both cases, that the truly optimal contract yields an even higher

expectation (V US
n ≥ V 2

n ≥ V 1
n ,∀n) follows from Bellman’s principle of optimality.

Part 2: V P
n − V F

n is unbounded. The idea of the proof is to construct a situation in which no contract

in F can create positive value for the principal, but the optimal contract can generate unboundedly high

value. Consider a single period model (N = 1) where u = min suppF = 0, max suppF < ū, p = 1, e = 0,

and w= 0. Under a contract which pays a fixed bonus s, the principal will use threshold acceptance policy

ψ1 =� αs � and the agent will use reporting policy ξ1 =� αs � (by Lemmas A5 and A4 respectively). As there

is no opportunity cost, this contract will always satisfy the participation constraint. Using Proposition 5 of

Plambeck and Zenios (2000), we can more concisely formulate the agent’s search decision: he should search

if and only if the following inequality holds

−F̄ (αs) exp(−r(1−α)(s− c/α))− (1− F̄ (αs)) exp(−r(1−α)(−c/α))≥−1. (EC.48)

Here the first term is the agent’s instantaneous utility of paying search cost c but then finding an alternative

which results in bonus s, the second term is the scenario where search cost is expanded but no suitable

alternative is found, and the RHS is the utility from not searching. Rearranging (EC.48) yields

F̄ (αs) exp(−r(1−α)s)≤−(1− F̄ (αs)) +
1

exp(−r(1−α)(−c/α))
.

Here, the LHS is positive, so the RHS also needs to be positive, which yields the following necessary (but

not sufficient) condition for the contract to induce the agent to search:

1− F̄ (αs)≤ 1

exp(−r(1−α)(−c/α))
. (EC.49)

Define c∗ := max{c∈R+|1− F̄ (αc)≤ 1/ exp(−r(1−α)(−c/α))}. Existence and uniqueness of c∗ is guaranteed

by 1− F̄ (αc) being an weakly increasing left-continuous function with 1− F̄ (0) = 0 and 1− F̄ (ū) = 1, while

1/ exp(−r(1−α)(−c/α)) is strictly decreasing, continuous, and evaluates to 1 at c= 0. Let the agent’s costs

be c∗. Then, setting the bonus to any amount s > c∗ will violate the condition (EC.49) and thus induce the

23 From this construction, it may appear that the best contract in F outperforms all contracts in P (so V F
n ≥ V P

n ).
However, this is not necessarily true (a counterexample is provided in Figure 4), as attaining V 1∗

n also requires
commitment to an acceptance policy whereas attaining V F

n does not.
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agent not to search, but setting s≤ c∗ will trivially violate (EC.48) (bonus is not enough to recoup even the

cost of search), thus also induce the agent not to search. Consequently, V F
n = 0.

Now consider Fy(·) such that Fy(u) = F (u),∀u≤ c∗ and the expectation of drawing from that distribution

is y > c∗. Notice that the optimal contract s∗ given by Theorem 3 remains the same if the agent is drawing

from Fy instead of F , and the V F
n = 0 property is preserved. Applying Theorem 3, the optimal contract in

this case is to pay the agent c∗/α for any alternative delivered, rather than only accepted alternatives. Using

this contract gives the principal expectation of y− c∗ which can be unboundedly high as y increases.

Part 3: V P
n − V P

n is unbounded. As in part 2, we aim to construct a situation in which no contract in P

can create positive value for the principal, but the optimal contract can generate unboundedly high value.

Consider a single period model (N = 1) where u= min suppF = 0, p= 1, e= 0, and w= 0. Applying Lemmas

A4 and A5, under any contract in P we have ξ1 =ψ1 = 0. Analogously to (EC.48), it will be optimal for the

agent holding such contract to search if and only if the following equation holds:

−
∫ ū

0

exp(−r(1−α)(qu− c/α))dF (u)≥−1.

Here the LHS is the instantaneous utility from searching, while the RHS is the utility of not searching. Now

consider a contract sb(u), which pays the agent c/(2α) for delivery of any alternative with a value below

c/2, and pays b > ū for delivery of alternatives with a value at least equal to c/2. Note that this contract

does not belong to P, but is preferred by the agent over any contract in P as the distribution of payouts to

the agent when searching will dominate the distribution of payouts under all contracts in P by first-order

stochastic dominance. Under ŝ(u), the agent should search if and only if

−F̄ (c/2) exp(−r(1−α)(b− c/α))− (1− F̄ (c/2)) exp(−r(1−α)(−c/(2α)))≥−1.

The utility on LHS in increasing in b, and we can finds its supremum by considering limb→∞ which yields

−(1− F̄ (c/2)) exp(−r(1−α)(−c/(2α)))≥−1,

1− F̄ (c/2)≤ 1/ exp(r(1−α)c/(2α)). (EC.50)

This condition is of interest to us, as the agent not being incentivized to search here will also imply that

no contract in P will incentivize him to search either. Because the RHS of (EC.50) is < 1, there are many

distributions for which this condition is not satisfied. So, let F (·) be one such distribution for which 1−
F̄ (c/2) > 1/ exp(r(1 − α)c/(2α)). Then, no matter the value of b, sb(u) will incentivize the agent not to

search; no contract in P will incentivize him to search either; and thus we have V P
n = 0.

The intuition for why this occurs is as follows: the scenarios where u< c/2 create a loss (and the agent is

loss averse) as the payment is not enough to recoup cost c, the situations where u≥ c/2 create a gain, but

this gain is bounded as exponential utility is bounded on the right. Consequently, if the unfavorable scenario

is common enough and favorable scenario is rare enough, there is no payment for the favorable scenario that

is high enough to make this an attractive prospect. (The same phenomenon is the driver of implementability

condition (10) in Theorem 1.)

Now consider a distribution Fy(·) such that Fy(u) = F (u),∀u≤ c/2 and the expectation of drawing from

that distribution is y > c/2. Notice that if (EC.50) does not hold for F (·) then it does not hold for Fy(·)
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either. Applying Theorem 3, the optimal contract in this case is to pay the agent c/α for any alternative

delivered, rather than only accepted alternatives. Using the optimal contract yields the principal expectation

y− c which can be unboundedly high as y increases. Thus, when the distribution is Fy(u), we have that V P
n

can be unboundedly high (as y→∞) but V P
n = 0. �

Appendix C: Additional results

C.1. Discretization techniques

Here, we illustrate bracket-mean and bracket-median, which are two commonly used discrete approximations

of continuous distributions (Miller III and Rice 1983, Smith 1993); these algorithms are also used in computer

science where they are referred to as equal-frequency binning (Kotsiantis and Kanellopoulos 2006). Denote

by G(·) a continuous probability distribution with support [u, ū], which we will approximate with a discrete

distribution Fn(·). The bracket-mean technique starts with dividing G(·) into n equally probable intervals.

Denoting xn0 := u, xnn := ū, the separation into intervals consists of finding points xn1 , x
n
2 , ..., x

n
n−1 such that

G(xni )−G(xni−1) = 1/n, for all i∈ {1, ..., n}. The discrete approximation Fn(·) is then given as the one with

n elements in its support, each being equal to the mean of one of the n just-defined subintervals of G(x),

and each having a probability mass of 1/n. Formally, for a random variable X distributed according to G(·),

for every i∈ {1, ..., n}, let yni :=E(X|xni−1 ≤X ≤ xni ); the discrete approximation Fn(·) is then defined by its

support {yn1 , ..., ynn} and a constant pmf fn(x) := 1/n.

We can also define the discretization procedure via the discretization function Dn : [u, ū]→ [u, ū], given by

Dn(x) :=


yn1 if x∈ [xn0 , x

n
1)

yn2 if x∈ [xn1 , x
n
2)

. . . . . .

ynn if x∈ [xnn−1, x
n
n].

The bracket-median technique is almost identical, differing only the way yi are defined: in bracket-median,

they are medians (rather than means) of each of the n intervals. Importantly for our purposes, both of these

approximation techniques yield discrete approximations that satisfy our assumption that all elements in the

support of the distribution of alternatives have the same probability mass. In the lemma below, we show

that for both these approximation techniques, the approximation can be made arbitrarily close to the true

distribution by increasing n.

Lemma A6 (Convergence of approximations) Let {Fn} be a sequence of increasingly fine approxima-

tions of a G obtained through either bracket-mean or bracket-median. This sequence converges in distribution

to G: limn→∞Fn(x) = G(x),∀x ∈ [u, ū]. Let X be a random variable with cdf G. Then, Dn(X) has cdf Fn

and the sequence {Dn(X)} converges to X in the L1 norm: limn→∞E[|Dn(X)−X|] = 0.

Proof Sketch. Denote xny↓ := max{x ∈ {xn1 , xn2 , ..., xnn}|x ≤ y} and xny↑ := min{x ∈ {xn1 , xn2 , ..., xnn}|x ≥ y}.

From the construction of Fn, we have that G(xny↓)≤ Fn(y)≤G(xny↑) and G(xny↓)≤G(y)≤G(xny↑),∀y ∈ [u, ū].

Then, limn→∞G(xny↑)−G(xny↓) = limn→∞ 1/n= 0 so limn→∞Fn(y) =G(y), thus convergence in distributions.

To show L1 convergence, we have 0 ≤ limn→∞E[|Dn(X)−X|] ≤ limn→∞
1
n

∑n

i=1(xi − xi−1) = limn→∞(ū−

u)/n= 0. �
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C.2. Continuous distribution of alternatives

Consider a version of our main model (as in Section 2), such that the distribution of alternatives F (·) is

replaced by a continuous distribution G(·), with suppG= [u, ū]. Thus, in this model, P (S) is the probability

of drawing an outcome in set S, when drawing from a distribution with cdf G. This change will cause the

state variable Xn will become uncountably infinite, which gives rise to measurability-related technical issues.

We can ensure our model is well-behaved and eliminate the measurability related problems by tightening

some of the other assumptions. Thus, assume that F (the choice set for Ξn and Ψn) is the set all sets that

can be formed by finite unions of closed intervals in [u, ū], and that for every n, sn(Xn) is bounded and

almost-everywhere continuous.24 A deeper issue still remains in that the uncountably-infinite state space

violates the assumptions of several papers whose results we leverage in the main paper: Plambeck and Zenios

(2000), Fudenberg et al. (1990), and Smith (1998). Yet, there are considerable results we can obtain without

relying on that literature. First, the proposition below serves as an analogue of Theorem 1 for this setting.

Proposition A2 (Implementable policies under a continuous distribution) The principal can

implement any policy pair ({ωn},{Ξn}), provided it satisfies the implementability condition (10), for all

n ∈ {1, ...,N}. This can be done by offering the agent a contract that pays a base pay of s0
n in every period,

replaced by bonus sBn (Ξn) if the agent delivers an alternative with a value in Ξn in a period in which the

principal would like him to search (ωn = 1), where s0
n and sBn (Ξn) are given by (11).Under any such contract,

the agent’s optimal consumption policy is given by γn(Xn−1,Wn) = (1−α)Wn +w, for all n∈ {1, ...,N}. In

all periods, the agent’s value function under such contract is V A
n (Wn,X

n−1) =− 1
1−α exp[−r(w+(1−α)Wn)],

rendering the agent indifferent between termination and continuation.

Proof Sketch. Consider the agent holding the contract given by this proposition, i.e., one designed to

induce policies ({ωn},{Ξn}). From (5) we have that the agent’s optimal policies solve the recursion

V An (Wn,X
n−1) = max

Ξ̄n,ω̄n,γ̄n
− exp[−rγ̄n]

+ ω̄nωnpP
(
Ξ̄n ∩Ξn(Xn−1)∩Ψn(Xn−1)

)(
− α

1−α exp

[
−r
(
w+ (1−α)

(
Wn− c− γ̄n

α
+ sBn (Ξn(Xn−1))

))])
+ ω̄nωnpP

(
Ξ̄n ∩Ξn(Xn−1)\Ψn(Xn−1)

)
αV An

(
Wn− c− γ̄n

α
+ sBn (Ξn(Xn−1))

)
+ ω̄nωnpP

(
Ξ̄n ∩Ψn(Xn−1)\Ξn(Xn−1)

)(
− α

1−α exp

[
−r
(
w+ (1−α)

(
Wn− c− γ̄n

α
+ s0

n

))])
+
(
1− ω̄nωnpP (Ξ̄n ∩ (Ψn(Xn−1)∪Ξn(Xn−1))

)
αV An

(
Wn− cω̄n− γ̄n

α
+ s0

n

)
,

(EC.51)

with boundary condition V A
N+1(WN+1,X

N) =− 1
1−α exp[−r(w+ (1−α)WN+1)]. Note that sBn is well-defined

if and only if (10) holds. The proof is based on showing by induction that V A
n (Wn,X

n−1) =− 1
1−α exp[−r(w+

(1−α)Wn)] (this will also make the participation constraint satisfied and binding). All of the other results –

24 The measurability issues can also be resolved using weaker assumptions by following Bertsekas and Shreve (2004),
i.e., through the use of either outer integration or by constraining all policy choices to universally measurable ones.
Using that approach requires introduction of considerable addition notation and a relatively heavy measure-theoretic
apparatus.
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i.e., that this contract really induces the desired policies ({ωn},{Ξn}) as well as γn(Xn−1,Wn) = (1−α)Wn+

w – are obtained as steps in this proof. The boundary condition of (EC.51) also serves as the induction base.

For induction step, assume V A
n+1(Wn+1,X

n) =− 1
1−α exp[−r(w+ (1−α)Wn+1)], using which, from (EC.51)

we have

V An (Wn,X
n−1) = max

Ξ̄n,ω̄n,γ̄n
− exp[−rγ̄n]

+ ω̄nωnpP
(
Ξ̄n ∩Ξn(Xn−1)

)(
− α

1−α exp

[
−r
(
w+ (1−α)

(
Wn− c− γ̄n

α
+ sBn (Ξn(Xn−1))

))])
+
(
1− ω̄nωnpP

(
Ξ̄n ∩Ξn(Xn−1)

))(
− α

1−α exp

[
−r
(
w+ (1−α)

(
Wn− ω̄Nc− γ̄n

α
+ s0

n

))])
.

(EC.52)

Here, Ξ̄n = Ξn[Xn−1] is optimal as V A
n depends on the choice of Ξ̄n only through P

(
Ξ̄n ∩Ξn(Xn−1)

)
, and

is increasing in that probability as sBn (Ξn(Xn−1)) > s0
n by (11). If ωn = 0, the value function becomes

V A
n (Wn,X

n−1) = maxω̄n,γ̄n − exp[−rγ̄n] + (−α(1−α)−1 exp [−r (w+ (1−α) ((Wn− ω̄nc− γ̄n)/α+ s0
n))]),

where ω̄n = 0 is optimal (it only appears in the −ω̄nc term), reducing the equation to

V An (Wn,X
n−1) = max

γ̄n
− exp[−rγ̄n] +

(
− α

1−α exp

[
−r
(
w+ (1−α)

(
Wn− γ̄n

α
+ s0

n

))])
, (EC.53)

Solving (EC.53) for γ̄n yields γ̄n = (1−α)Wn +w; plugging that back into (EC.53) gives V A
n (Wn,X

n−1) =

− 1
1−α exp[−r(w+ (1−α)Wn)].

Now we turn to the case where ωn = 1. Here, from (EC.52), not searching also yields the RHS of (EC.53),

so − 1
1−α exp[−r(w + (1 − α)Wn)]. Expanding the expressions for bonus sizes in (EC.52) using (11) and

simplifying the resulting expression yields that searching (choosing ω̄n = 1) also gives the agent the RHS

of (EC.53). So searching is optimal (weakly, as the agent is indifferent), the optimal consumption is γ̄n =

(1 − α)Wn + w and V A
n (Wn,X

n−1) = − 1
1−α exp[−r(w + (1 − α)Wn)] in this case as well, completing the

induction. �

Proposition A2 shows that the contracts of Theorem 1 are incentive compatible and individually rational in

this setting as well. They are also subject to same implementability condition, induce the same consumption

policy, and have the same property that the agent’s participation constraint is binding in all periods, not just

at contract signing. The important gap from Theorem 1 is that, here, these contracts are not guaranteed to

be the lowest cost ones over the space of all contracts (even existence of such minimum is not guaranteed in

this setup).

The results of Proposition A2, combined with those that we can approximate the true distribution with

arbitrarily fine precision with discrete approximations (shown in Lemma A6) and that for all the discrete

approximations, the contract class of Proposition A2 is guaranteed to be optimal (shown in Theorem 1),

provide a reasonable justification to focus on this contract class.

Then, as in (12), restricting the principal’s choice of contracts to ones given in Proposition A2 reduces to

the principal’s problem to

V P
n = max

ωn∈{0,1},Ξn,Ψn∈F
ωnpP (Ξn)

(
αs0

n− e−αsBn (Ξn)
)

+ωnp

∫
Ξn∩Ψn

(
u−αV P

n+1

)
dG(u)−αs0

n +αV P
n+1, (EC.54)
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with boundary condition V P
N+1 = 0. This is now a well-behaved dynamic program which is amenable to the

same methods of analysis used in the main paper, thus our main results (Lemma 1, Theorem 2, Theorem 3,

Proposition 1, and Proposition 2) should be obtainable in this setting as well, by following analogous proofs

– or course, with the limitation that the principal be restricted in the form of contracts she can offer to the

contracts of Proposition A2.

As a final reality check that the discrete approximation is reasonable, we show that as the precision of

the approximation increases the principal’s value function converges to the value function in the continuous

version of the model.

Lemma A7 (Convergence of value functions) Let V P
k be the value function of a principal with a

continuous distribution of alternatives G with suppG = [u, ū], when she uses acceptance policy {Ψk} and

induces the agent to use policies {Ξk},{ωn} using a contract given by Proposition A2. Let nV P
k be the value

function of a principal with a discrete distribution Fn (approximation of continuous distribution G obtained

through either bracket-mean or bracket-median method, with n brackets), who uses acceptance policy {Ψk ∩

suppFn} and induces the agent to use policies {Ξk ∩ suppFn},{ωn} using a contract given by Theorem 1.

Then, limn→∞
nV P

k = V P
k .

Proof Sketch. Proof is by induction. The basis nV P
N+1 = V P

N+1 = 0 follows directly from bound-

ary conditions. Assume by the way of induction that limn→∞
nV P

k+1 = V P
k+1. Denote by P (S;D) the

probability of drawing an outcome in set S when drawing from a distribution with cdf D. Then,

from (4) and Theorem 1 we have nV P
k = ωkp

∫
Ξk∩Ψk∩suppFn

(u− e−αsBk (Ξk ∩ suppFn)) dFn(u) +

ωkp
∫

(Ξk\Ψk)∩suppFn

(
−e−αsBk (Ξn ∩ suppFn) + nV P

k+1α
)
dFn(u) + (1−ωnpP (Ξn;Fn))

(
−αs0

k + nV P
k+1α

)
=

ωkp
∫

Ξk∩Ψk∩suppFn

(
u− nV P

k+1α
)
dFn(u) + ωkpP (Ξk;Fn)(−e − αsBk (Ξk ∩ suppFn) + αs0

k) − αs0
k + nV P

k+1α.

Taking a limit of this expression when n→∞ and using the convergence in distribution result of Lemma

A6 yields limn→∞
nV P

k = V P
k . �

C.3. Variable search intensity model

Here we provide more detailed results for the model of Section 4.2, where the agent decides on search intensity.

Proposition A3 is an analogue of Theorem 1 for this setting.

Proposition A3 Any implementable policy pair ({ωn},{ξn}) satisfies the condition pF̄ (ξn|ωn) > 1 −

1/ exp[rc(in)(1− α)α−1] for all n ∈ {1, ...,N |ωn 6= 0}.25 The contract which implements ({ωn},{ξn}) at the

lowest possible cost to the principal consists of a sequence of outcome-dependent payments. Such a contract

pays sHn (ωn, ξn) for period n if the agent delivers an alternative with a value of at least max{ξn, uL}, pays

sLn(ωn, ξn) if the agent delivers an alternative with a value in [ξn,max{ξn, uL}] and pays s0
n in any other

scenario. The exact values of those payments depend on the policy which they are designed to induce as

follows:

(i) If ωn = 0, then sHn (0, ξn) = sLn(0, ξn) = s0
n = w

α
.

25 This implementability condition used to be both sufficient and necessary in the basic model, but here it is only
necessary, as there are additional conditions on implementability of iH : either (EC.57) needs to hold or the argument
of the logarithm in (EC.59) needs to be positive.
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(ii) If ωn = iL then

sLn(iL, ξn) =
w+ cL
α

+
1

r(1−α)
ln

pF̄ (ξn|iL)

1− (1− pF̄ (ξn|iL)) exp[rcL(1−α)α−1]
, sHn (iL, ξn) = s0

n =
w

α
. (EC.55)

(iii) If ωn = iH then first consider the contract with parameters

sLn(iH , ξn) = sHn (iH , ξn) =
w+ cH
α

+
1

r(1−α)
ln

pF̄ (ξn|iH)

1− (1− pF̄ (ξn|iH)) exp[rcH(1−α)α−1]
, s0

n =
w

α
.

(EC.56)

This is the solution if the contract really induces iH , that is, if it satisfies the constraint

uH + 1− ξn
uH + 1

v
(
sHn (iH , ξn)− cH

α

)
+

ξn
uH + 1

s0
n ≥

(uL + 1− ξn)+

uL + 1
v
(
sHn (iH , ξn)− cL

α

)
+

min{ξn, uL + 1}
uL + 1

s0
n.

(EC.57)

Otherwise, the solution is given by

sLn(iH , ξn) =
w+ cL
α

+
1

r(1−α)
ln

pF̄ (ξn|iL)

1− (1− pF̄ (ξn|iL)) exp[rcL(1−α)α−1]
, s0

n =
w

α
, (EC.58)

sHn (iH , ξn) =
w

α
− 1

r(1−α)
ln

(
−1− p

p
+
v(cL/α)(uL + 1)− v(cH/α)(uH + 1)

(uH −uL)p

)
. (EC.59)

Proof Sketch. The proof follows the same steps as the proof of Theorem 1, with the following key dif-

ferences. After applying Theorem 1 of Plambeck and Zenios (2000), the problem reduces to (EC.1)-(EC.4)

with an additional IC constraint that ensures that the agent cannot do better by choosing a different search

intensity. For the case where the principal desires to induce iH , this constraint is given by (EC.57). Sep-

aration into three different bonus levels follows from the observation that all alternatives in {0,1, ..., ūL}

carry the same information about the agent’s search intensity, as do ones in {ūL + 1, ..., ūH}. Part (i) of the

proposition is the same as in Theorem 1, as the new constraint is irrelevant when ωn = 0. Part (ii) follows

from the observation that changing sHn while keeping other contract parameters the same only affects the

agent’s payoff if he uses iH , which reduces the problem to the one solved in Theorem 1 if the principal desires

to induce iL. For part (iii), the constrained problem is solved using KKT conditions (KKT is both sufficient

and necessary here, as in Theorem 1), which yields (EC.56) if (EC.57) is not binding, or (EC.58)-(EC.59) if

it is. �

This result breaks into a number of cases, yet, most of them closely parallel our main model: (EC.55)

and (EC.56) are slight variations of our basic result. The sole situation where the results here substantially

differ from the main model arises when the principal desires to induce ωn = iH combined with ξn ≤ uL. This

difference occurs because here it is possible that the traditional flat contract for everything delivered, as

given by (EC.56), induces ωn = iL instead.

If this happens, the solution involves modifying the values in (EC.56) simultaneously rising sHn (iH , ξn)

(which makes the contract more attractive for the agent who is using high intensity) and reducing the

sLn(iH , ξn) component (which makes the contract less attractive to both high and low intensity, but more so

for the low intensity, who will experience these outcomes more often).
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