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We consider the problem of sequentially allocating sample observations to learn personalized treatment

strategies, motivated by the design of adaptive clinical trials that aim to learn the best treatment as a

function of patient covariates. In such settings there may be clinical knowledge of which covariates are

predictive (they may interact with the treatment choice) and which are prognostic (they may influence the

outcome independent of treatment choice). We extend the expected value of information (EVI)/knowledge

gradient framework to develop useful heuristics for a context with predictive and prognostic covariates and

a delay in observing outcomes. We also propose and analyze closely related Monte Carlo-based allocation

policies to enhance our proposal’s computational efficiency and applicability for adaptive contextual learning.

We show that several of our proposed allocation policies are asymptotically optimal in learning treatment

strategies. We run simulation experiments motivated by an application for clinical trial design to assess

potential treatments of sepsis. We illustrate that the proposed EVI-based allocation policies, with knowledge

about which covariates are predictive and prognostic, can improve the rate of inference relative to some

existing approaches to adaptive contextual learning.
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expected value of information, sepsis
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Precision medicine tailors the treatment to patient characteristics and has received con-

siderable attention in recent years (NIH 2015, US FDA 2021). It has provided significant

health improvements in cancer treatment (Tsimberidou et al. 2020) and is expected to lead

to advancements in other areas, such as cardiovascular disease (Lee et al. 2012), neurology

(Cutter and Liu 2012), and sepsis (Rello et al. 2018, Seymour et al. 2019). Due to the

increasing number of medical tests and interventions, a key aspect of developing person-

alized treatments is designing clinical trials that efficiently find the best interventions for

each type of patient (Berry 2011, Opal et al. 2014, Schork 2018). This paper is motivated

by the design of sequential clinical trials to identify the best personalized interventions.

We study the sequential allocation of subjects to a finite set of alternative treatments

to identify the best treatment strategy. A treatment strategy assigns a treatment based

on the subject’s characteristics, and “best” is defined as maximizing the expected mean

reward. Because the best strategy is not initially known, the trial manager enrolls subjects
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sequentially in the trial to learn the best strategy. While the trial manager can observe

many characteristics, she may have insights into which are the relevant characteristics that

interact with one or more treatments and can lead to personalized treatments. Using termi-

nology from the medical literature, we refer to such characteristics as predictive (sometimes

called moderators, e.g., Wu and Zumbo 2008). Other characteristics do not interact with

treatments but may affect the outcome. We use the medical term prognostic to refer to

these characteristics (e.g., Oldenhuis et al. 2008). Predictive covariates can help identify

groups of patients that benefit from personalized treatment, and prognostic covariates

improve the precision of estimating the benefits of personalized treatment (US FDA 2021).

To illustrate predictive and prognostic covariates, consider treatments for cancer patients

that target the presence or overexpression of specific proteins in the tumor (Tsimberidou

et al. 2020). In this scenario, the presence of such proteins is a predictive characteristic

because it interacts with some treatments. Other characteristics, such as age and comor-

bidities, are prognostic because they influence the patient’s outcome regardless of the treat-

ment. This paper considers the problem of designing a fully sequential clinical trial with a

fixed budget in order to find the best treatment strategy in the presence of prognostic and

potentially predictive covariates.

Our model can be thought of as a contextual bandit. It is contextual in that subjects

sequentially arrive with observable covariates, and treatments can be selected based on

their values. After enrolling a finite number of subjects and observing their outcomes, a

treatment strategy is selected for implementation in the patient population. We seek to

optimize the selected treatment strategy, i.e., a function that maps observable covariates

to treatments, instead of identifying a single overall best alternative, as is more typical in

the ranking and selection (R&S) literature (Kim and Nelson 2006).

Four distinguishing features of the problem we consider are the following:

1. We seek to exploit structural knowledge, as may be available in precision medicine

trials, regarding the potential for covariates to interact with treatments (i.e., to be

predictive) or to influence the outcome independent of treatment (i.e., prognostic).

2. The trial manager does not fully control the subject’s characteristics: patients arrive

at the trial sites with random covariates from a known distribution.

3. Rewards are obtained at the conclusion of the trial, when treating post-trial patients.

Patients enrolled in the trial are treated to learn the best treatment strategy.



Alban, Chick, Zoumpoulis: Learning Personalized Treatment Strategies
3

4. Outcomes may be observed with a fixed delay after treatment has begun.

While different communities consider these features, to the best of our knowledge we are

the first to take all of them into account. Biostatisticians have studied Feature 1 to reduce

the variance of estimators of the mean effectiveness of treatments and sharpen comparisons

between treatments, but have tended not to deal with Feature 3. Feature 2 is standard

in contextual bandits, which tends not to consider Features 1 and 3. R&S maximizes the

rewards from Feature 3 but tends not to model Features 1 and 2. Most sequential learning

work in these streams, discussed further in Section 1, does not account for delay (Feature 4)

in observing outcomes. Work on batch allocation or parallel Bayesian optimization can be

adapted to account for delay, but does not account for Feature 1.

This paper assumes that the patient outcomes are continuous-valued, modeled with a

normal distribution with an unknown mean, where the mean is given by a linear response

function that depends on the treatment and the subject’s covariates. We learn the unknown

mean using a Bayesian conjugate inference model that infers the values of the parameters of

the linear response model. The response model allows for the mean rewards to be correlated

across treatments for a given set of covariates (to model that different treatments may have

similar features) or across covariates for a given treatment (to model that a treatment may

work similarly well for multiple patient types).

Although we focus here on clinical trial applications, nonclinical applications exist, such

as (i) online advertising, where the alternative ads target specific characteristics of the

users, while some (prognostic) user characteristics may affect the outcome (e.g., click or

not on the ad) independent of the ad, and (ii) engineering testing, where the uncertain

environment represents the subjects and the alternative system configurations represent the

treatments. Despite broader potential applicability, the sequential learning literature tends

to assume that covariates are all predictive (involving more parameters to estimate), all

prognostic (missing the chance to learn which treatment is best for which subpopulation),

or not relevant, as discussed in Section 1.

The paper makes the following contributions:

• Modeling contribution. We present what appears to be the first fully sequential

learning model that accounts for both predictive and prognostic covariates with either

Bayesian techniques or offline rewards (Section 2).
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• Algorithmic contributions. Although the optimal policy can be characterized by

Bellman’s equation (Section 3), its computation suffers from the curse of dimension-

ality, and we are motivated to provide pragmatic heuristics (Section 4). To the best

of our knowledge, this is the first work to extend the so-called expected value of infor-

mation (EVI) or knowledge gradient (KG) framework to develop useful heuristics for

a context with predictive and prognostic covariates and a delay in observing outcomes

after treatment decisions. We call the main proposed heuristic fEVI because it max-

imizes the EVI of myopic lookahead allocations of patients to treatments to learn the

best treatment strategy, a function (f) from covariates to treatments. We also pro-

pose and analyze closely related Monte Carlo-based allocation policies to enhance our

proposal’s computational efficiency and applicability for adaptive contextual learning.

• Analytical contributions. We show that the proposed EVI-based heuristics are

asymptotically optimal. The justification of the theoretical guarantees involves some

novel variations on standard EVI/KG proof structures (Section 5 and Appendix EC.3).

• Pragmatic contributions. Simulation experiments motivated by an application to

sepsis treatment (Section 7) show that knowledge that a covariate is prognostic, rather

than predictive, can improve the speed of inference of the best treatment strategy. Our

numerical results suggest that there is promise for using our proposed fEVI family of

allocation policies in the design of a clinical trial to assess the potential of precision

medicine for treating sepsis (Singer et al. 2016, van Mourik et al. 2022), a leading

driver of global mortality (WHO 2020) and hospital costs (Paoli et al. 2018).

We delineate some areas that lie outside of our scope in this work. We are exploring the

design of a trial to assess the potential for precision medicine for sepsis treatment with

medical collaborators. We model adaptive contextual learning problems (multiarm trials)

that can be highly sequential and where the goal is to identify the treatment with the

highest mean for real-valued outcomes. There are trials where the heuristics, as proposed,

are less suitable. Bernoulli trials are not formally analyzed. More work is required to assess

the identification of covariates as predictive or prognostic as the trial proceeds. We do not

handle multiple longitudinal measures through time (as do Anderer et al. 2022). The delays

considered here are short enough relative to the enrollment period to allow adaptations in

treatment allocation. Multiyear survival studies are less suited to the model as proposed.
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We do not consider covariates of interest that are observable with a delay or with mea-

surement error. We discuss adaptations of the model to handle practical issues that may

arise during trials, or that may provide paths for future research in Appendix EC.6.

1. Related Literature and Contributions

This work is linked to several streams of literature. This includes work on using covariates in

the clinical trial context, both for analyzing clinical trial data and designing clinical trials.

There are also related methods for learning treatment strategies, including contextual

bandits and R&S. We also discuss the structural assumptions about the functional form

of the mean response of patients to treatments and its interaction with covariates.

Covariates and Clinical Trials. The use of clinical trial data for identifying subgroups of

patients that have an exceptional response to treatment has been studied under the sub-

group selection area of biostatistics (Foster et al. 2011, Lipkovich et al. 2017). Interesting

approaches include information theory (Sechidis et al. 2018), which ranks covariates by

their predictive and prognostic value, and optimization (Bertsimas et al. 2019b). That

literature focuses on analyzing already collected clinical trial data to identify subgroups,

while we aim at designing trials that choose how to allocate patients to treatments to more

efficiently learn predictive and prognostic effects.

The use of prognostic covariates for clinical trials focuses on balancing covariates across

the treatment arms, most notably using the “biased coin” approach (Pocock and Simon

1975), which adjusts the randomization probabilities to favor the balancing of covariates.

Optimization approaches have been proposed (Bertsimas et al. 2019a, Bhat et al. 2020).

That line of research assumes that all covariates are prognostic, aiming to learn average

treatment effects in a population, and does not tailor treatment to patient covariates.

The literature on trial design for precision medicine is expanding. Prominent examples

include the BATTLE trial (Zhou et al. 2008) for lung cancer and the I-SPY 2 breast

cancer platform trial (Barker et al. 2009, Berry 2011, Wang and Yee 2019). Initial work

focused on predictive covariates, but increasing attention is given to both predictive and

prognostic effects (Symmans et al. 2018, US FDA 2021), our focus here. Lai et al. (2013)

provide a trial design using multi-armed bandit policies, generalized likelihood ratio tests,

and ranking and selection ideas to design a trial that accomplishes three goals: a) give trial

patients good treatment, b) identify an effective treatment strategy, and c) demonstrate

its effectiveness. We model prognostic covariates and use them to help speed up learning,

while Lai et al. (2013) rely on randomization to balance them across arms.
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Sampling to learn the best alternative. The ranking and selection (R&S) literature (reviews

include Kim and Nelson 2006, Chick 2006) focuses on finding the best alternative among

a small set focusing on offline rewards. This rich literature primarily focuses on selecting

the best overall treatment rather than a treatment strategy. More recently, R&S has been

extended to account for covariates (Pearce and Branke 2018, Gao et al. 2019, Xiong 2020,

Li et al. 2020, Ding et al. 2021, Shen et al. 2021). These papers assume control over both

covariates and treatments for various simulation optimization problems. In contrast, our

work assumes that the covariates are random arrivals, as is typical in clinical trials.

Another related stream of literature studies the classic bandit problem (e.g., Auer 2002).

In particular, the contextual bandit literature focuses on designing policies that minimize

the cumulative regret for enrolled patients, and several algorithms have been shown to

achieve asymptotically optimal regret (Goldenshluger and Zeevi 2013, Russo and Van Roy

2014, Villar and Rosenberger 2018, Bastani and Bayati 2020, Bastani et al. 2021). Regret in

that context is typically relative to online rewards (for patients in trial), whereas we focus

on offline rewards obtained upon committing to a treatment strategy for future patients.

The contextual R&S and bandit works above consider all covariates to be predictive and

do not exploit the potential gains in learning quicker using prognostic biomarkers. A recent

working paper (Carranza et al. 2022) decomposes rewards of an online contextual bandit

into treatment effect and confounder terms (analogous to our model below of predictive

and prognostic covariates) and gives asymptotic, frequentist, online regret results.

Our approach extends the EVI/KG framework of Bayesian optimization (Chick and

Inoue 2001, Frazier et al. 2008, Powell and Ryzhov 2012) to allocate patients to arms in a

fully sequential manner before selecting a treatment strategy. Those works do not model

covariates. Some contextual R&S work noted above uses the EVI approach (Pearce and

Branke 2018, Ding et al. 2021). We model correlated outcomes across treatment types,

building on Frazier et al. (2009) and Chick et al. (2021). We extend the methods of Alban

et al. (2021), allowing for covariates to be continuous and prognostic, and we provide

theoretical results. We also make a novel use of a result of Frazier et al. (2009) in an

efficiency improvement for Monte Carlo estimates of the EVI when there are delayed

outcomes.

Our model is related to other KG work as well. Ryzhov and Powell (2011) study a

problem where the set of implementation decisions (choice of a path in a graph) are not in
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one-to-one correspondence with the set of sampling choices (measure an arc of the graph).

Similarly, our model’s implementation decision (choice of a function from covariates to

treatment options) differs from the sampling actions (choice of treatment for a patient).

We build on Negoescu et al. (2011) for learning regression coefficients by incorporating

structural knowledge about the predictive and prognostic nature of covariates. Chick and

Inoue (2001) account for batching with stochastic outputs but use a less precise EVI

approximation and do not model covariates. Wu and Frazier (2016), Wang et al. (2020), and

Astudillo et al. (2021) explore batch and parallel allocations with Bayesian optimization.

Those works share a commonality with our delayed observation model: multiple allocations

are made before observing outcomes. We differ in that they can choose covariate values for

the batch simultaneously, whereas our covariates arrive randomly and sequentially; and our

observations are stochastic rather than deterministic. Finally, Wang et al. (2016) studied

prognostic (but not predictive) covariates for 0-1 (rather than real-valued) outcomes.

Other related works on clinical trial design that do not focus specifically on covariates

but that relate to our sequential learning include Williamson et al. (2017), Jacko (2018),

Pallmann et al. (2018), Rojas-Cordova and Bish (2018). Williamson and Villar (2020) study

Bayesian response adaptive multi-arm trials with normally distributed data. Williamson

et al. (2022) compare random and fixed delays for 0-1 trials.

Structural Assumptions on Mean Response. When learning treatment strategies, it is nec-

essary to make some assumptions about the response function, the expected outcome of

a patient with a given set of covariates and treatment. When the space of covariates and

treatments is finite, each response for each covariate-treatment combination can be learned

independently and effectively model-free. Several papers use this approach (Lai et al. 2013,

Villar and Rosenberger 2018, Gao et al. 2019, Li et al. 2020), which is a special case of our

model. Those works assume that the covariates are predictive and only consider a small

set of possible covariate values.

When we have many possibly continuous covariates, we make structural assumptions

about the response function. One approach assumes a Gaussian process (GP) model (e.g.,

Xiong 2020, Ding et al. 2021). We assume a linear response function because it is a common

model in the literature and tractable (e.g., Goldenshluger and Zeevi 2013, Bhat et al. 2020,

Shen et al. 2021). Instead of learning a different model for each treatment (a standard

assumption in multi-armed bandits, e.g., Bastani et al. 2021), we learn a single model in
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which covariates can be predictive and prognostic (e.g., Lipkovich et al. 2017). We discuss

possible implementations of model selection for the response function in Appendix EC.6.

Summary. There is much relevant work in the biostatistics, bandit, R&S, and simulation

optimization literature. To the best of our knowledge, the literature on adaptive contextual

learning has not yet studied models with both predictive and prognostic covariates in a

context with offline rewards or delayed observations. We do so here using the EVI/KG

framework to develop practical heuristics for allocating patients to arms to determine the

best treatment strategy as a function of predictive covariates.

2. Mathematical Model of a Sequential Trial with Covariates

We formulate a model of a sequential clinical trial that enrolls a fixed number of patients.

The trial manager assigns a treatment for each enrolled patient after observing the patient’s

covariates. We model the patient outcomes using a linear response function that allows

for treatment effects, effects from predictive and prognostic covariates, and homoskedastic

noise. The trial manager uses the patient outcomes, observable with some delay, to update

sequentially in a Bayesian manner the posterior distribution for the parameters of the linear

response model. The trial manager assesses all the information collected so far to decide

on each subsequent patient’s treatment allocation. After the trial, the trial manager has

learned a treatment strategy, i.e., a mapping from patient covariates to treatments, which

she then applies to a population of post-trial patients. The trial manager’s objective is to

learn the best treatment for each set of covariates in order to optimize expected cumulative

outcomes in a post-trial patient population.

2.1. Information and decisions

Consider a trial with a budget to enroll T patients. The patients are enrolled sequentially

in evenly spaced time steps, where the time steps t = 0,1, . . . , T represent the number

of patients that have been allocated to treatment. At time steps t = 1,2, . . . , T , the trial

manager observes one patient with covariates Xt ∈X ⊆Rm, and allocates that patient to

treatment Wt ∈W = {1,2, . . . , n}. We fix T now, and discuss allowing T to be a response-

adaptive stopping time in Appendix EC.6.

The patient’s outcome Yt ∈Y ⊆R is observed after a fixed delay of ∆ ∈ {0,1, . . .} time

steps, so the trial manager observes at time t+ ∆ the outcome of the patient who was

enrolled at time t. At time steps t= T + 1, T + 2, . . . , T + ∆, no more allocations are made



Alban, Chick, Zoumpoulis: Learning Personalized Treatment Strategies
9

Figure 1 Timeline of decisions and information acquisition.

t = 0

H0 H1X1 W1

t = 1

π1

t = ∆

H∆ H∆+1X∆+1W∆+1 Y1

t = ∆+ 1

π∆+1

t = T

HT HT+1YT−∆+1

t = T + 1 t = T +∆

HT+∆YT f̃

implementation

Allocate Allocate and observe outcomes Observe outcomes

but patient outcomes are still observed. The response function rµ(Xt,Wt) = E[Yt |µ,Xt,Wt]

yields the expected outcome of the patient given an unknown vector of parameters µ, the

covariates, and the treatment. Figure 1 summarizes the sequence of events. Table EC.1 in

the Appendix summarizes the notation of the model.

At time t= T + ∆ the trial concludes and each of P post-trial patients with covariates

X̃i ∈X receives treatment W̃i ∈W and obtains health outcome Ỹi, where i= 1,2, . . . , P

indexes the post-trial patients. We assume here that P is a known constant. The expected

outcome for post-trial patients is also assumed to be rµ(X̃i, W̃i) = E[Ỹi | µ, X̃i, W̃i]. The

distribution of the covariates may differ for patients in the trial, Xt, and those post-trial,

X̃i, as discussed below in Section 2.4.

The history Ht represents all the available data at time t. At time t= 0, the trial manager

has not observed any patients, so H0 = ∅. For 1≤ t≤∆ she has not observed any patient

outcomes yet, so Ht includes only the covariates and treatments of the enrolled patients.

For t≥∆ + 1, she observes delayed outcomes, so Ht continues to gather patient covariates

and treatments and also includes delayed patient outcomes. For t≥ T + 1, she no longer

enrolls patients, but delayed patient outcomes are included in Ht until time T + ∆. Thus,

Ht :=


∅, for t= 0

(X1, . . .Xt,W1, . . . ,Wt), for 1≤ t≤∆

(X1, . . .Xt,W1, . . . ,Wt, Y1, . . . , Yt−∆), for ∆ + 1≤ t≤ T
(X1, . . .XT ,W1, . . . ,WT , Y1, . . . , Yt−∆), for T + 1≤ t≤ T + ∆

(1)

An allocation policy π = (πt)t=1,2,...,T is a sequence of functions that map the available

data, Ht−1, to a probability distribution over the set of treatments for each of the possible

covariate vectors; i.e., πt(w | h,x) = P(Wt = w |Ht−1 = h,Xt = x) is the probability that

allocation policy π assigns treatment w to a patient with covariates x at time t given data h.

Thus, an action is not a treatment but rather a probability distribution over the available

treatments. The allocation policy assigns a treatment after observing the covariate vector,
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and is specified for all possible patient covariate vectors. Because the allocation policy only

uses past information, it is a member of the set of non-anticipatory policies Π.

A treatment strategy is a mapping from the space of covariates to the set of treatments.

We denote the space of all treatment strategies by f = {f : X →W }. The implementation

decision f̃ ∈ f is the treatment strategy implemented for future patients: W̃i = f̃(X̃i).

We denote the probability measure induced by an allocation policy π by Pπ, and the

expectation with respect to that measure by Eπ. When the allocation policy is irrelevant

for the event under consideration, we omit it from the superscript; e.g., E[Yt |µ,Xt,Wt] is

conditioned on the choice of treatment, so the policy is irrelevant, while Eπ[Yt] depends on

allocation policy through the assigned treatment.

2.2. Trial value

In our main model, we define the trial value with allocation policy π as the expected

cumulative outcomes of the post-trial population:

V π = Eπ
[ P∑
i=1

rµ(X̃i, f̃(X̃i))
]

= PEπ
[
rµ(X̃1, f̃(X̃1))

]
. (2)

The expectation is over the prior distribution Fµ of µ (Section 2.5), the distributions

of covariates (Section 2.4), and the treatments allocated during the trial, which may be

randomized by allocation policy π.

We assume the implementation decision is the treatment strategy that maximizes the

value for future patients given the information collected from the trial:

f̃(x) = arg max
w̃∈W

E[rµ(x, w̃) |HT+∆] ∀x∈X .

Our objective is to find an allocation policy that maximizes trial value: supπ V
π. Because

P is assumed fixed for now, it is sufficient to solve for the case P = 1 and we do so here.

Sampling to find the best treatment strategy at the end of information collection optimizes

so-called offline rewards. In Appendix EC.6 we discuss useful ways to extend this model.

2.3. Linear response function and labelings of active regressors

In general, a response function rµ(x,w) maps a vector of covariates x∈X and a treatment

w ∈W to the expected outcome. Here, we assume a linear model for rµ(x,w) to describe

the effects of covariates and their potential interactions with treatments.
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Preliminary model with all regressors. Let µi,l for i∈ {0,1, . . . , n} and l ∈ {0,1, . . . ,m} be the

linear coefficient associated with treatment i and covariate l. Here, µ0,l for l = 1,2, . . . ,m

are the coefficients that represent effects of covariates regardless of treatment; µi,0 for

i= 1,2, . . . , n are the coefficients for treatment effects that influence mean outcomes inde-

pendent of covariates. This motivates our preliminary linear response function:

rµ(x,w) = µ0,0︸︷︷︸
intercept term

+
n∑
i=1

1w=iµi,0︸ ︷︷ ︸
treatment effect

+
m∑
l=1

xlµ0,l︸ ︷︷ ︸
prognostic term

+
n∑
i=1

m∑
l=1

1w=ixlµi,l︸ ︷︷ ︸
predictive term

, (3)

where 1 is the indicator function. If the coefficient µ0,l is non-zero, we say that covariate

l is prognostic. If the coefficient µi,l is non-zero, we say that covariate l is predictive with

respect to treatment i. If µi,l = 0 for all i= 0,1, . . . , n, then covariate l does not change the

mean, and we say that covariate l is idle. Similarly, if µi,l = 0 for all l= 0,1, . . . ,m, we say

that treatment i is idle.

Active regressors. In applications, contextual knowledge may suggest that some of these

coefficients are zero. We therefore consider response functions where some coefficients are

constrained to be zero. Let the labels ξi,l represent whether each coefficient is allowed to

be nonzero: if ξi,l = 0, then µi,l = 0; if ξi,l = 1, then µi,l is free, needs to be estimated, and

is referred to as potentially active. We define the labeling ξ to be the matrix of labels. The

set of indices of potentially active coefficients is denoted Ξ := {(i, l) : ξi,l = 1}.
We assume the trial manager knows the labels based on expert knowledge. Our base

model for the response function for a fixed ξ is

rµ(x,w) = µ0,0ξ0,0 +
n∑
i=1

1w=iµi,0ξi,0 +
m∑
l=1

xlµ0,lξ0,l +
n∑
i=1

m∑
l=1

1w=ixlµi,lξi,l. (4)

To simplify these sums, we now introduce operators that will be useful to simplify the

expression (4) in the sequel using matrix multiplication. We let µ be a (n+ 1)(m+ 1)-

dimensional column vector of the regression coefficients as follows:

µ=
(

µ0,0, µ0,1, . . . , µ0,m︸ ︷︷ ︸
associated with no treatment

, µ1,0, . . . , µ1,m︸ ︷︷ ︸
associated with treatment 1

, . . . , µn,0, . . . , µn,m︸ ︷︷ ︸
associated with treatment n

)>
.

Let µξ ∈R|Ξ| be the vector containing only potentially active coefficients in µ, as indicated

by the labeling ξ, and let (w⊗ξ x)∈R1×|Ξ| be the row vector of active regressors such that

rµ(x,w) = (w⊗ξ x)µξ. (5)
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When we fix a known labeling and it is clear that we refer to it, we drop the ξ subscripts

and use notation rµ(x,w) = (w⊗x)µ instead of rµ(x,w) = (w⊗ξ x)µξ, where, with a slight

abuse of notation, µ∈R|Ξ| only includes potentially active coefficients.

Example 1 (Two patient types, two treatments). Consider a population with

two types of patients, A and B, such that Xt = 0 for type A and Xt = 1 for type B.

Consider two treatments, i.e., W = {1,2}. Let ξi,l = 1 for i= 1,2 and l = 0,1; and ξi,l = 0

for i= 0 and l= 0,1; i.e., the treatment effect and predictive terms are potentially active,

whereas the intercept and the prognostic terms are not. Then

(1⊗ 0)µ= (1,0,0,0)µ= µ1,0, (1⊗ 1)µ= (1,1,0,0)µ= µ1,0 +µ1,1,

(2⊗ 0)µ= (0,0,1,0)µ= µ2,0, (2⊗ 1)µ= (0,0,1,1)µ= µ2,0 +µ2,1. �

2.4. Distribution of covariates

We assume the covariates of patients enrolled in the trial are exogenous, independent, and

identically distributed (i.i.d.) random variables from a known distribution Fx: Xt
i.i.d.∼ Fx.

The covariates of post-trial patients are exogenous with a known distribution, X̃i
i.i.d.∼ Fx̃,

which is not necessarily the same distribution as that of the trial patients. Allowing the

distribution of covariates for patients enrolled in the trial to differ from that for patients

treated post-trial provides useful flexibility, e.g., to account for trial inclusion-exclusion

criteria, different disease mix near the trial centers versus in the general population, etc.

We impose two assumptions on the distributions of covariates Fx and Fx̃. Assumption 1

requires that E[X>t Xt] and E[X̃>t X̃t] are bounded to ensure integrability:

Assumption 1 (Integrability). The distributions Fx of Xt and Fx̃ of X̃i are such that

E[X>t Xt]<∞ and E[X̃>i X̃i]<∞.

This is similar to the standard assumption in regression analysis that X>X is invertible,

which ensures estimation can be done. Assumption 2 requires that patients to be treated

post-trial be represented in the trial with nonzero probability. It will help ensure asymptotic

convergence of proposed allocation policies to the optimal treatment strategy.

Assumption 2. Fx̃ is absolutely continuous with respect to Fx.

2.5. Bayesian modeling and updating

For a known labeling ξ, we assume a conjugate normal model for patient outcomes and

the parameters of the linear response function. We use the operator ⊗ (Section 2.3) to

describe it.
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Assumption 3 (Conjugate normal model). We assume the following model for

patient outcomes and for the parameters of the response function:

Yt |µ,Xt,Wt
i.i.d.∼ N ((Wt⊗Xt)µ, σ

2)

µ∼N (θ0,Σ0)

The parameters σ2 ∈ R>0, θ0 ∈ R|Ξ|, and Σ0 ∈ R|Ξ|×|Ξ| (symmetric positive semi-definite)

are known and bounded, where Ξ := {(i, l) : ξi,l = 1}.

With this model, the distribution of the unknown coefficients remains normally distributed

after updating with Bayes’ rule (Gelman et al. 2013, Chap. 14), with

µ |Ht ∼N (θt,Σt),

where θt and Σt are updated after each observation. For t ≤ ∆, we do not observe any

outcomes and do not update, so θt = θ0 and Σt = Σ0. For t ≥∆ + 1, we use Bayes’ rule

and update with the following recursive equations:

θt = θt−1 +
Yt−∆− (Wt−∆⊗Xt−∆)θt−1

σ2 + (Wt−∆⊗Xt−∆)Σt−1(Wt−∆⊗Xt−∆)>
Σt−1(Wt−∆⊗Xt−∆)> (6a)

Σt = Σt−1−
Σt−1(Wt−∆⊗Xt−∆)>(Wt−∆⊗Xt−∆)Σt−1

σ2 + (Wt−∆⊗Xt−∆)Σt−1(Wt−∆⊗Xt−∆)>
. (6b)

We discuss specifying the prior distribution in Section 6 and provide more details on the

Bayesian updating equations in Appendix EC.1.

We define a pipeline state Jt to contain the covariates and treatments of patients that

have been assigned to treatment, but whose outcomes have not been observed at time t:

Jt :=


∅, for ∆ = 0 or t= 0 or t= T + ∆

(X1,W1, . . . ,Xt,Wt), for 1≤ t≤∆

(Xt−∆+1,Wt−∆+1, . . . ,Xt,Wt), for ∆ + 1≤ t≤ T
(Xt−∆+1,Wt−∆+1, . . . ,XT ,WT ), for T + 1≤ t≤ T + ∆− 1.

We denote the knowledge state by Kt := (θt,Σt,Jt). Note that Kt is a sufficient statistic for

the unknown model parameters. Let τt be the transition function that updates the knowl-

edge state recursively, with Kt = τt(Kt−1,Xt,Wt, Yt−∆) for t = 1,2, . . . , T + ∆, respecting

Bayes’ rule in (6) and the definition of the pipeline state above. The function τt has a

subscript t to handle the cases t≤∆ and t≥ T + 1 where Xt, Wt, or Yt−∆ may not exist.
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3. The Optimal Policy

In this section we describe the optimal policy. We first describe the implementation decision

that maximizes trial value given the knowledge state after all data from the trial has been

observed, at time T + ∆. We then present a dynamic program for solving for the optimal

allocation policy of patients to arms as a function of their covariates and show the existence

of an optimal solution. The dynamic program is generally computationally infeasible to

solve, yet provides the foundation for the development of expected value of information

heuristics (Section 4) and their theoretical properties (Section 5).

Implementation decision. Recall our linear model, rµ(x,w) = (w⊗ x)µ, which has condi-

tional mean E[rµ(x,w) |Kt] = (w ⊗ x)θt given knowledge at time t. The treatment that

optimizes outcomes for a new patient with covariates x given knowledge at time t is

f̃θt(x) = arg max
w∈W

(w⊗x)θt, (7)

where the notation f̃θt emphasizes the dependence of the treatment strategy on θt, and

not all of Ht or Kt. The implementation decision given all trial data HT+∆ is therefore

f̃(x) = f̃θT+∆
(x) = arg max

w∈W
(w⊗x)θT+∆. (8)

Dynamic program. We now write supπ∈Π V
π as a dynamic program. Let Kt be the set of

feasible knowledge states at time t∈ {0,1, . . . , T}, and let k = (θ,Σ, j)∈Kt be a knowledge

state at time t with posterior mean θ and covariance matrix Σ for µ and pipeline state j.

By construction, the terminal reward G(k) for knowledge states k∈KT that are feasible

at time T , using the implementation decision in (8), is

G(k) = E[(f̃θT+∆
(X̃1)⊗ X̃1)θT+∆ |KT = k] = E[max

w̃
(w̃⊗ X̃1)θT+∆ |KT = k], (9)

with the expectation taken over the outcomes of the pipeline patients that are to be

observed by time T + ∆ and that help determine the optimal treatment strategy. Also by

construction, the value-to-go V π
t (k) for an allocation policy π (not necessarily the optimal

allocation policy), evaluated at time t≤ T − 1 with state k∈Kt, is

V π
t (k) = Eπt+1[V π

t+1(τt+1(k,Xt+1,Wt+1, Yt−∆+1)) |Kt = k], for t= 0, . . . , T − 1, (10)
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where πt determines the treatment Wt, and τt updates the knowledge state as in Section 2.5.

Thus, the optimal value-to-go upon treating patient t is given by the dynamic program:

Vt(k) = sup
πt+1

Eπt+1[Vt+1(τt+1(k,Xt+1,Wt+1, Yt−∆+1)) |Kt = k], for t= 0,1, . . . , T − 1

VT (k) =G(k).

(11)

With this formulation, we can prove the existence of an optimal allocation policy π∗

that solves maxπ∈Π V
π. The optimal allocation policy is deterministic (does not randomize

treatments) and Markov (only depends on the knowledge state). Our proof of this result

in Appendix EC.2 maps (11) to the model in Bertsekas and Shreve (1978, Chap. 8).

Prop. 1. The dynamic program in (11) satisfies that V0(K0) = supπ∈Π V
π and there

exists a deterministic Markov allocation policy π∗, which can be computed using Bellman’s

recursion in (11), such that Vt(k) = V π∗
t (k) for all k∈Kt and all t= 0, . . . , T .

Because an optimal allocation policy is attainable, we use V ∗ = maxπ∈Π V
π to denote

the trial value attained by an optimal allocation policy π∗.

4. Heuristics for Learning with Predictive and Prognostic Covariates

The computation of the optimal allocation policy suffers from the curse of dimensionality.

Thus, we develop heuristics to assign patients to arms that are computationally tractable,

perform well, and have useful analytic properties. In this section, we extend the expected

value of information approach of Bayesian sequential optimization to account for predictive

and prognostic covariates. We will assess the theoretical properties in Section 5 and assess

the performance numerically in Section 7.

4.1. Functional Expected Value of Information (fEVI)

We call this heuristic fEVI because it uses the EVI approach to learn a treatment strategy,

a function from covariates to treatments. The fEVI allocation policy makes at each step the

sampling decision that maximizes the expected value of information of one more sample.

In particular, the fEVI-index, νt(x,w), is the value gained from allocating one additional

patient with covariates x to treatment w, and selecting a treatment strategy after waiting

to observe the outcomes of that patient and the patients in the pipeline, over selecting

a treatment strategy using only the outcomes of the patients that have been allocated

already, including the ones in the pipeline (all conditional on Kt). For 0≤ t≤ T − 1,

νt(x,w) = E[(f̃θt+∆+1
(X̃1)⊗ X̃1)µ |Kt,Xt+1 = x,Wt+1 =w]−E[(f̃θt+∆

(X̃1)⊗ X̃1)µ |Kt]
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= E

[
max
w̃∈W

(w̃⊗ X̃1)θt+∆+1 |Kt,Xt+1 = x,Wt+1 =w
]

︸ ︷︷ ︸
implement after one more patient and pipeline clears

−E

[
max
w̃∈W

(w̃⊗ X̃1)θt+∆ |Kt

]
︸ ︷︷ ︸

implement after pipeline clears

.

(12)

The fEVI allocation policy assigns the treatment with the highest index, Wt+1 =

arg maxw∈W νt(Xt+1,w), 0 ≤ t ≤ T − 1, breaking ties by sampling uniformly at random

between treatments with the largest index.

4.2. Monte Carlo (MC) estimates of fEVI and randomization of treatments

The computation of the fEVI-index requires integration over a potentially high-

dimensional space, and therefore quadrature can present challenges, particularly if ∆> 0

or if there are multiple continuous-valued covariates. We thus propose an allocation policy

that approximates the fEVI index using MC simulation.

MC simulation helps address the challenge of high-dimensional integration and also

introduces some randomization in allocating treatments. Clinical trial practice may use

randomization to arms to help address sampling biases. We therefore also present alloca-

tion policies that allow a clinical trial manager to further control randomization to arms.

Section 7.4 presents experiment results for these allocation policies.

Monte Carlo fEVI allocation policy ( fEVI-MC). The expectations in (12) that determine

the fEVI-index can be estimated by simulating the unknown regression coefficients and

the outcomes of pipeline patients; optimizing treatments conditional on that data; and esti-

mating rewards for a simulated post-trial population. An advantage of this basic approach

is that models that do not satisfy the conjugate normality of Assumption 3 can be handled.

A potential disadvantage is computational speed.

If Assumption 3 is satisfied, as we assume here, we can improve computational effi-

ciency in the simulation estimates of the fEVI-indices of (12). The fEVI-MC function in

Algorithm 1 implements a MC estimator of the indices νt(x,w) in (12) for each w and

presents several efficiency improvements relative to the basic approach above. There are

three sources of randomness to simulate: (i) the outcomes of ∆′t pipeline patients that are

observed through time t+ ∆, where ∆′t = min{t,∆} is the size of the pipeline at time t,

(ii) the covariates of post-trial patients to estimate mean rewards, and (iii) outcomes of

patient t+ 1 with covariate Xt+1 for each treatment. If Assumption 3 is satisfied, then for

(i) we propose to simulate ηon realizations of θt+∆ given θt,Kt in step 7 using standard
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Algorithm 1 fEVI-MC: Estimate fEVI indices with common random numbers across pipeline
and post-trial patients and with conditional Monte Carlo

1: function fEVI-MC(Kt,Xt+1;ηon, ηoff)
2: Let ∆′t = min{t,∆} . Compute number of patients in pipeline.
3: σ̂← σ̃(Σt,W(t−∆′t+1):(t),X(t−∆′t+1):(t)) . Prepost std dev in (EC.5) for pipeline
4: Compute Σt+∆ . Compute post var, after pipeline clears (6b)
5: for j in {1, . . . , ηon} do . Compute offline rewards for ηon replications

6: Ẑ
i.i.d.∼ N (0, I∆′t) . Noise vector of length of pipeline ∆′t

7: θ̂
(·)
j ← θt + σ̂Ẑ . Simulate a posterior mean θt+∆ when pipeline clears

8: X̂1:ηoff
i.i.d.∼ Fx̃ . Sample ηoff post-trial covariates

9: for all w ∈W do . For each treatment that could be given to patient type Xt+1. . .
10: for all i= 1,2, . . . , ηoff do . For each post-trial patient. . .
11: a← ((1,2, . . . , n)⊗ X̂i)θ̂

(·)
j . vector of means for n treatments, type X̂i patients

12: b← ((1,2, . . . , n)⊗ X̂i)σ̃(Σt+∆,w,Xt+1) . Prepost std dev (EC.5) if patient
t+ 1 has covariates Xt+1 with treatment Wt+1 =w

13: log(νj,w,i)← log(h(a,b)) . conditional EVI, where log(h(a,b)) is the ν . . .
14: end for . . . . for cKG computed in Algorithm 2 in Frazier et al. (2009).

15: log(ν̂j,w)← log((1/ηoff)
∑ηoff

i=1 νj,w,i) . Estimate conditional EVI for w, given θ̂
(·)
j

16: end for
17: end for
18: for all w ∈W do
19: log(ν̂w)← log((1/ηon)

∑ηon

j=1 ν̂j,w) . Est. index for w, ave. over parameter uncertainty
20: end for
21: return Wt+1 = arg maxw∈W log(ν̂w) . Pick largest estimated index (break ties randomly)
22: end function

Bayesian results for the preposterior distribution discussed shortly. For (ii), we simulate

ηoff post-trial patients in step 8. We use common random numbers (CRN) across treatment

choices for patient t+1 for the simulation of (i) and (ii) to reduce the noise when selecting

the largest index. For (iii), we observe that for a given posterior distribution at time t+ ∆

and individual post-trial patient with covariates X̂i, the conditional EVI of computing

the reward for a patient with covariates Xt+1 can be computed using a subroutine of the

correlated knowledge gradient (cKG, Frazier et al. 2009). This is computed in steps 11-13

and leads to an important further variance reduction.

Appendix EC.1 derives the so-called preposterior standard deviation used in fEVI-MC,

σ̃(Σt1,W(t1−∆′t1+1):(t2−∆),X(t1−∆′t1+1):(t2−∆)), a |Ξ|× ((t2− t1)− (∆−∆′t1)) matrix such that

σ̃(Σt1,W(t1−∆′t1+1):(t2−∆),X(t1−∆′t1+1):(t2−∆))σ̃
>(Σt1,W(t1−∆′t1+1):(t2−∆),X(t1−∆′t1+1):(t2−∆)) is

the covariance of the mean θt2, given Σt1, and the outcomes of pipeline patients with indices

t1 −∆′t1 + 1, t1 −∆′t1 + 2, . . . , t2 −∆ to be observed by time t2. Here, ∆′t1 = min{t1,∆}.

Step 3 uses t1 = t and t2 = t+ ∆. Step 12 uses t1 = t+ ∆ and t2 = t+ ∆ + 1.
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Randomized fEVI allocation policies: fEVI-rand and fEVI-MC-rand. The fEVI allocation

policy is deterministic. In clinical trials, randomization in the allocation of treatments

helps mitigate potential biases (Piantadosi 1997). Although fEVI-MC allows for some

randomization, the degree of randomness in fEVI-MC is not under explicit control of

the trial manager. To accommodate greater control over randomization, allocation policy

fEVI-rand(ε) samples a treatment uniformly at random with probability ε > 0, and chooses

the treatment with the largest fEVI-index with probability 1− ε (an approach followed by

Cheng and Berry 2007, Lai et al. 2013, Williamson et al. 2017). When the fEVI-indices

are estimated using the fEVI-MC algorithm, we call the policy fEVI-MC-rand(ε).

5. Theoretical Properties of Expected Value of Information Heuristics

This section discusses the theoretical properties of the expected value of information heuris-

tics of Section 4. EVI heuristics are designed to be one-step look-ahead optimal, at least

when computed exactly. While they are myopic, EVI heuristics may also be optimal as the

sample size goes to infinity. These properties, in the small and large sample size regimes,

were already proved for settings where there are no covariates (Frazier et al. 2009, Chick

et al. 2021) or where covariates are selected by the allocation policy (Ding et al. 2021).

Here, we extend these properties for the setting where the covariates are random arrivals,

satisfying Assumptions 1, 2 and 3 and for a positive fixed delay in observing outcomes.

Proofs of claims in this section are found in Appendix EC.3.

If the sample size is T = 1, the fEVI allocation policy is optimal for (11).

Prop. 2. If T = 1, then V fEVI(K0) = V ∗(K0).

The fEVI-MC, fEVI-rand, and fEVI-MC-rand allocation policies are not necessarily opti-

mal for T = 1, due to their reliance on Monte Carlo samples, randomization, or both.

For asymptotically large T , each of fEVI, fEVI-rand, and fEVI-MC-rand can be shown

to be asymptotically optimal. To show this, we first show an upper bound on the value

function and then show that the value approaches this upper bound as the sample size

grows unbounded. Because the following results characterize V π as a function of the sample

size, we use V π(K0;T ) to make the dependence on K0 and T explicit.

Let U(θ0,Σ0) := E[maxw∈W (w⊗ X̃1)µ | θ0,Σ0] be the expected rewards obtained by an

oracle that knows the parameters exactly ex ante. We first provide a characterization of

the estimated parameters and the value function:
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Theorem 1. For a given allocation policy π, there exists a random vector θπ∞ and a

random matrix Σπ
∞ such that θt→ θπ∞ almost surely and Σt→Σπ

∞ almost surely. Moreover,

V π(K0;T ) is bounded above by U(θ0,Σ0), and V π(K0;∞) := limT→∞ V
π(K0;T ) exists.

Given the upper bound on the trial value, we define an asymptotically optimal allocation

policy to be one that achieves the upper bound as the sample size goes to infinity:

Definition 1. If π is such that V π(K0;∞) =U(θ0,Σ0), then we say that π is an asymp-

totically optimal allocation policy.

Theorem 2 states that allocation policies that have a positive probability of sampling

the treatment with the largest expected value of information are asymptotically optimal.

Theorem 2. Let allocation policy π be such that, for 0 ≤ t ≤ T − 1, if νt(x,w) ≥

νt(x, v) ∀v ∈W , then there exists a δ > 0 so that Pπ(Wt+1 =w |Kt,Xt+1 = x)≥ δ. Then, π

is asymptotically optimal.

The proof of Theorem 2 shows that policies are asymptotically optimal if they always

sample, with probability bounded away from zero, covariate-treatment combinations with

positive value of information. Previous proofs of asymptotic optimality in settings without

covariates (as in Frazier et al. 2009, Xie et al. 2016), show that policies are asymptotically

optimal if they sample all treatments infinitely often (excluding treatments fully correlated

with other treatments). The proof of Ding et al. (2021), which shows asymptotic optimality

in the presence of covariates when the covariates are a choice of the allocation policy, also

relies on showing that each treatment is sampled infinitely often.1 An alternative approach

is necessary in the presence of randomly arriving covariates because sampling each alter-

native infinitely often is not enough to achieve asymptotic optimality.2 Using Theorem 2,

we show that fEVI, fEVI-rand, and fEVI-MC-rand are asymptotically optimal.

Theorem 3. Allocation policies fEVI, fEVI-rand, and fEVI-MC-rand are asymptoti-

cally optimal.

In the analysis for the proof of Theorem 1 (Corollary EC.3 in Appendix EC.3.3.1) we

show that V π(K0;∞) = Eπ[(f̃θπ∞(X̃1)⊗ X̃1)µ |K0]. The definitions of U and f̃µ imply that

1 Compare Lemma EC.3 in the Appendix to Lemma A.7. of Frazier et al. (2009), to Lemma 7 of Xie et al. (2016),
and to Proposition 3 of Ding et al. (2021).

2 Recall Example 1. If all type A patients get treatment 1 and all type B patients get treatment 2, then both treatments
are sampled infinitely often but one cannot learn the mean outcome for the two combinations never sampled (A-2,B-1).
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U(θ0,Σ0) = E[(f̃µ(X̃1) ⊗ X̃1)µ | θ0,Σ0]. For an asymptotically optimal policy π we thus

have

Eπ[(f̃θπ∞(X̃1)⊗ X̃1)µ |K0] = E[(f̃µ(X̃1)⊗ X̃1)µ |K0].

By the definition of f̃µ, we know that (f̃θπ∞(X̃1)⊗ X̃1)µ≤ (f̃µ(X̃1)⊗ X̃1)µ, which implies

(f̃θπ∞(X̃1)⊗ X̃1)µ= (f̃µ(X̃1)⊗ X̃1)µ a.s.

Thus, asymptotically optimal allocation policies (including, by Theorem 3, fEVI,

fEVI-rand, and fEVI-MC-rand) result in convergence to an optimal treatment strategy.

Although a uniform random allocation of treatments for each patient is also asymptotically

optimal, numerical results in Section 7 suggest it is not as effective with small sample sizes.

We do not prove fEVI-MC to be asymptotically optimal using the same approach.

However, note that ν̂w (in step 19 of Algorithm 1) is a consistent estimator of νt(Xt+1,w),

so that fEVI-MC(ηon =∞, ηoff =∞) = fEVI. Moreover, fEVI-MC-indices are averages

of modified cKG-indices, conditional on the outcomes of pipeline patients and post-trial

patient covariates, and cKG indices are asymptotically optimal (Frazier et al. 2009) for

subproblems that condition on those values. This explains the usefulness of fEVI-MC-

indices in numerical examples (Section 7).

6. Modeler’s Prior Distribution and Distribution of Problem Instances

The modeler’s beliefs about the distribution of problem instances is assumed to be specified

by the conjugate normal prior distribution µ∼N (θ0,Σ0) in Assumption 3. It is common

to use a Gaussian process model to specify realizations of means (Frazier et al. 2009).

We distinguish between a modeler’s prior distribution of problem instances, specified by

θ0 and Σ0, and the distribution of problem instances that nature presents to the modeler.

For the latter, we allow nature to generate problem instances µ with a N (θnat0 ,Σnat
0 )

distribution, which we refer to as nature’s distribution.

In general, a modeler may wish to elicit a probability distribution for problem instances

using known elicitation techniques (O’Hagan et al. 2006). If the elicitation is done well

and Assumption 3 holds, then one expects that θ0 = θnat0 and Σ0 = Σnat
0 . Alternatively, one

might use empirical Bayes methods and use some pilot data together with a non-informative

distribution to determine θ0,Σ0 (Gelman et al. 2013). To reduce the dimensionality of the



Alban, Chick, Zoumpoulis: Learning Personalized Treatment Strategies
21

prior covariance matrix, we assume a Gaussian kernel (Frazier et al. 2009), though other

kernels may be used (Rasmussen and Williams 2006, Chen et al. 2013):

Σ0,`1,`2 =


σ2

0 if `1 = `2 (same treatment and covariate)

0 if κx(`1) 6= κx(`2) (different covariate)

σ2
0e
−ψd(κw(`1),κw(`2)) otherwise (same covariate and different treatment),

(13)

where σ2
0 is the prior variance for the unknown value of parameters, κx(`) is the covariate

index associated with the regression coefficient indexed by `= 1, . . . , |Ξ| (0 for intercept or

treatment effect terms), κw(`) is the treatment associated with the regression coefficient

indexed by `= 1, . . . , |Ξ| (0 for intercept or prognostic terms), and d is a distance function

between treatments that is smaller for treatments that act with similar underlying mecha-

nisms and larger if the treatments act with different mechanisms. If either argument of d is

0, corresponding to intercept or prognostic terms, we set d to be infinity (no correlation).

Larger values of ψ > 0 model a lower correlation between similar treatments.

It may be useful to allow the modeler’s prior distribution to differ from nature’s distri-

bution. For example, we may wish to assess the performance of allocation policies when

nature chooses a specific problem structure (e.g., a slippage configuration where the “best”

treatment is precisely δ units better than any alternative treatment, independent of the

covariates, Shen et al. 2021). We call this a fixed instance setting because we let θnat0 denote

a fixed value of the true means µ (and let Σnat
0 be the zero matrix). We may also wish to

allow that problem instances be randomly sampled to assess the average performance of

an allocation policy (Branke et al. 2007). We call this a random instance setting because

we allow nature to generate random draws of µ from nature’s distribution N (θnat0 ,Σnat
0 ).

Related work for optimal sequential learning in optimization applications without covari-

ates suggests that it may be useful to consider manipulations of the modeler’s prior dis-

tribution (Powell and Ryzhov 2012, Chick et al. 2021). With this in mind, we define the

robust prior distribution as follows:

• for coefficients with index ` associated with prognostic or intercept terms, we set

θrob0,` = 0, to push for evidence collection to confirm that the coefficients are non-zero;

• for coefficients with index ` associated with predictive or treatment effect terms, we

set θrob0,` artificially high, to push sampling to confirm whether such effects are active

or not, with a “fudge” factor zα (2 unless otherwise specified) times a standard error:

θrob0,` = max
`′

(θ0,`′) + zα ·max
(

1,
√

max(diag(Σ0))
)

; (14)
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• we set Σrob
0 = c ·Σ0, for some c≥ 1, to reduce the effect of the prior distribution on the

inference and push for further exploration. We let c= 4 unless otherwise specified.

7. Empirical Performance of Expected Value of Information Heuristics

The analytical results in Section 5 provide optimality guarantees for asymptotic sample

sizes or a sample size of 1. We now present numerical results on the learning efficiency of

the EVI heuristics for intermediate sample sizes, relative to adaptations of techniques from

the BATTLE clinical trial (Zhou et al. 2008), the biased coin approach (Pocock and Simon

1975), the Thompson sampling algorithm for multi-armed bandits (Thompson 1933), and

an adaptation of Thompson sampling (Russo 2020).

Section 7.1 describes a motivating example from the field of sepsis management for the

experimental setup, performance metrics, and comparator allocation policies. Section 7.2

studies the efficiency of the EVI-based allocation policies and the comparator algorithms

under the assumption that the labeling of the underlying model is known to the trial

manager. Section 7.3 explores the penalty incurred by a trial manager who does not know

the correct labeling and mislabels the covariates, such as labeling a predictive covariate as

prognostic or idle, or vice versa. Section 7.4 explores how randomization (fEVI-MC and

fEVI-rand) and discretization of covariates affect the efficiency of learning. Section 7.5

explores the role of the delay on the rate of inference.

7.1. Experimental setup, performance metrics, and comparator allocation policies

We use a configuration of model coefficients motivated by work on sepsis treatment to

illustrate our proposed model and allocation policies. We do not intend to provide medical

recommendations here.

7.1.1. Motivating example: Sepsis treatment. Sepsis can be defined a life-threatening

organ dysfunction caused by dysregulated host response to infection, and has been opera-

tionalized with an acute increase in the sequential (sepsis-related) organ failure assessment

(SOFA) score of 2 points or more (Singer et al. 2016). Higher SOFA scores reflect greater

organ dysfunction. Consider a clinical trial where the primary outcome is the change in

SOFA score (Lambden et al. 2019) over a seven day period following the diagnosis of sepsis.

We assume initially that ∆ = 0 (the patient inter-arrival time is larger than the delay in

observing outcomes) and approximate the change in SOFA score as a continuous quantity.

We observe the following patient covariates:
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1. A unique type among four (the Mars1, Mars2, Mars3, and Mars4 endotypes of Scicluna

et al. 2017) based on blood transcriptomic data. The four types are coded as three

binary covariates. Mars4 is the baseline. Indicators for the Mars1, Mars2, and Mars3

endotypes are provided by covariates with indices 1, 2, and 3, respectively.

2. A real-valued covariate representing disease severity (with index 4), motivated by the

APACHE score (Zimmerman et al. 2006) for critically ill patients.

3. A real-valued covariate that is idle (with index 5). In the context of sepsis, many

covariates are idle; we use one here for illustration purposes.

Recent work on sepsis (van Mourik et al. 2022) explores three aspects of treatment that

may interact with one or more Mars types. We consider these aspects of treatment: fluid

management (restrictive or liberal), tighter glucose control (no or yes), and hydrocortisone

dose (low or high). This gives n= 23 = 8 treatment alternatives.3

As an example of a fixed instance, we assume that type Mars3 is predictive with respect

to treatments 5-8, that is, it interacts with one aspect of treatment (fluid management),

and in particular that treatment 5 has an exceptionally good response with Mars3 patients

(µ5,3 = 1, µ6,3 = µ7,3 = µ8,3 = 0.5). The other types all respond equally to each treatment

and respond better to treatment 4 (µ4,0 = 0.5). All types are prognostic, with type Mars3

having better prognosis, consistent with Scicluna et al. (2017) (µ0,1 = µ0,2 = −1, µ0,3 =

1), and the intercept term is non-zero (µ0,0 = 1). We assume that the APACHE score is

prognostic (with µ0,4 =−3, assuming the APACHE score is re-scaled to a [0,1] range) and

is not predictive with respect to any treatment. The last covariate is assumed idle. All

coefficients which are not specified above are assumed to be zero. We assume that σ2 = 1.

As an example of a random instance structure, we assume the same labeling as the

fixed instance, i.e., only the non-zero coefficients of the fixed instance are potentially active

in the random instance. We further assume all active parameters have a zero mean, i.e.

θnat0 = 0, and the standard deviation is two, i.e., the diagonal elements of Σnat
0 are all the

same and equal to four. Because µ5,3, µ6,3, µ7,3, and µ8,3 are the predictive coefficients of

the same covariate for different treatments, we assume a positive correlation between these

coefficients, with

Cov(µ5,3, µ6,3) = Cov(µ5,3, µ7,3) = Cov(µ6,3, µ8,3) = Cov(µ7,3, µ8,3) = 1

3 We index them as 1: fluid restr., gluc. no, hydrocort. low; 2: fluid restr., gluc. no, hydrocort. high; 3: fluid restr.,
gluc. yes, hydrocort. low; 4: fluid restr., gluc. yes, hydrocort. high; 5: fluid lib., gluc. no, hydrocort. low; 6: fluid lib.,
gluc. no, hydrocort. high; 7: fluid lib., gluc. yes, hydrocort. low; 8: fluid lib., gluc. yes, hydrocort. high.
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(correlation= 1/4) because these pairs share two aspects of treatment. The remaining

combinations of these four coefficients have a covariance of one half (correlation= 1/8)

because they share one aspect of treatment. This corresponds to the structure of (13) with

σ2
0 = 4, ψ= log(4), and d(5,6) = d(5,7) = d(6,8) = d(7,8) = 1 and d(5,8) = d(6,7) = 2.

We initially assume that the modeler correctly elicited nature’s distribution (θ0 = θnat0

and Σ0 = Σnat
0 ) of the random instance and uses the robust prior defined in Section 6 with

zα = 2 and c= 4. We assume the same robust prior for the fixed instance setting, too.

Because we can efficiently compute the fEVI allocation policy when ∆ = 0 and the

covariates are discrete and finite (using the method in Alban et al. 2021), we first assume

that the support of the real-valued covariates is three possible values, corresponding to

a low, medium, and high level. Also, for purposes of illustration, we assume that the

APACHE and idle covariates are sampled i.i.d. from the discrete distribution that takes

the value 0 (low) with probability 1/4, 0.5 (medium) with probability 1/2, and 1 (high)

with probability 1/4. An experiment in Section 7.4 assesses the effect of this discretization.

The probabilities for each of the types Mars1, Mars2, Mars3, and Mars4 are, respectively,

proportional to 150, 184, 129, and 59 (these are counts for the respective types as reported

by Scicluna et al. 2017). We assume that the covariates are independent of each other and

are equally distributed for patients enrolled in the trial and post-trial.

7.1.2. Performance. We measure the ability of allocation policies to learn the best

treatment strategy with two performance metrics. The Expected Opportunity Cost (EOC)

is the expected difference between the value obtained by an oracle and by an allocation

policy π for a specific instance of the coefficients µ:

EOCπ(µ;T ) := Eπ
[
max
w∈W

(w⊗ X̃1)µ− (f̃θT+∆
(X̃1)⊗ X̃1)µ |µ

]
. (15)

The Probability of Incorrect Selection (PICS) is the probability that a post-trial patient

does not get a treatment that gives the best mean outcome:

PICSπ(µ;T ) := Pπ
[
max
w∈W

(w⊗ X̃1)µ> (f̃θT+∆
(X̃1)⊗ X̃1)µ |µ

]
. (16)

These performance metrics average over trial outcomes through π and over randomly

selected post-trial patients X̃1 after the treatment strategy f̃ is adopted. Their values are

conditional on the true means, µ, of a given problem instance. For a random instance set-

ting, we average realizations of random problem instances, e.g., EOCπ(T ) = E[EOCπ(µ;T ) |
θnat0 ,Σnat

0 ]. Better allocation policies obtain lower values of EOC and PICS.
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7.1.3. Comparators. We will compare the EVI-based allocation policies against sev-

eral competitor allocation policies. The Thompson Sampling (TS) allocation policy draws

a sample of µ from the posterior distribution and assigns the best treatment for the

patient given the sampled µ (Thompson 1933). Top-Two Thompson Sampling (TTTS) is

an adaptation of Thompson sampling: with probability β, the policy samples the treat-

ment assigned by the TS allocation policy, and with probability 1−β, the policy resamples

µ from the posterior distribution until a sample is drawn such that the best treatment

differs from that recommended by TS (Russo 2020). We use β = 0.5 here. The BATTLE*

policy is derived from the allocation policy used in the BATTLE trial (Zhou et al. 2008)

for 0-1 outcomes, but adapted to our setting. It samples each treatment with probability

proportional to its expected outcome. The Biased Coin (BC*) allocation policy balances

the values of prognostic covariates across arms for a given set of predictive covariate val-

ues, in the spirit of Pocock and Simon (1975). Appendix EC.4 gives further details. The

Random policy assigns treatments uniformly at random, regardless of covariates.

7.2. Performance of fEVI allocation policy

We compare the performance of the allocation policies when the labeling is known to assess

how the policies perform with finite sample size. We aim to demonstrate the performance

of fEVI compared to alternative policies in the literature. Figure 2 shows the EOC against

the sample size for the fEVI policy and the comparator policies defined in Section 7.1.3.

Lower curves correspond to higher learning efficiency. In a challenging fixed instance setting

(Figure 2a), we observe that the fEVI, TS, and TTTS allocation policies obtain the lowest

EOC, with no significant difference. The BATTLE* allocation policy obtains the highest

EOC in the fixed instance setting, performing worse than the Random and BC* allocation

policies; these three are significantly worse than the rest.

Average performance is also of interest. In the random instance setting (Figure 2b), the

fEVI policy obtains the lowest EOC. TTTS is almost as good, statistically, for sample

sizes above 280 in this experiment (EOCfEVI(400) = 0.0032 ± 0.0002, EOCTTTS(400) =

0.0038± 0.00034). TS is the next best (EOCTS(400) = 0.0052± 0.0003) but is statistically

significantly worse than fEVI. BATTLE*, BC*, and Random perform worse than those

three allocation policies. BATTLE* performs better than Random in the random instance

4 We report average ± standard error of simulation results.
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setting, suggesting that the fixed setting we selected for our experiments is more difficult to

learn for this policy. Random and BC* have the highest EOC, at an average of EOCBC∗ ≈
EOCRandom(400) = 0.0076. To obtain the same level of average EOC, BATTLE* requires

361 samples, TS 283, TTTS 207, and fEVI 172.

In the remainder of this section we focus on the random instance setting.

7.3. Mislabeling predictive, prognostic, and idle covariates

We assumed previously that the trial manager knew the true labeling of the covariates.

This is valid in some clinical settings but may not be realistic in other settings. In this

subsection, we explore how the trial manager’s lack of knowledge about the labeling of

the covariates may impact the inference made through the trial. We present results on

some practically relevant mislabelings and summarize additional results reported in an

appendix. Throughout, we still assume that nature’s model is as described in Section 7.1.

Unknown personalization potential. Consider that the trial manager is unaware that Mars3

is a predictive covariate and labels it as only prognostic. Figure 2c shows that this mislabel-

ing prevents the potential benefit of precision medicine. The EOC of all policies approaches

an asymptote: the best EOC that can be achieved without personalization.

Taking all covariates to be potentially predictive. Consider that the trial manager labels all

Mars endotypes, APACHE, and the idle covariate as potentially predictive with respect

to all treatments, with no prognostic covariates (48 instead of 11 coefficients). Labeling

all covariates as predictive is a conservative model often adopted in the literature (e.g.,

Bastani and Bayati 2020). Figure 2d shows that this mislabeling slows inference. The EOC

for any given allocation policy is higher compared to Figure 2b because more coefficients

are estimated. Figure 2d does not show BC* because there are no prognostic covariates.

In both settings of Figures 2c and 2d, the relative performance of the different allocation

policies is the same as for the known labeling setting in Section 7.2: fEVI does best.

Summary of other insights. Appendix EC.5 provides some additional numerical experi-

ments exploring the effect of other types of mislabelings of covariates. We summarize some

of those insights, all applicable to the specific scope of our model and example. (i) Knowing

the right labeling is more important than employing a smart allocation policy: the random

allocation policy assuming the correct labeling outperforms the adaptive allocation policies

on highly erroneous labelings. (ii) The general insights of Sections 7.2–7.3 with respect to

the EOC performance metric are largely in line with those for PICS in these experiments
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Figure 2 Expected opportunity cost (EOC) for policies with different labelings.
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(a) Fixed instance: known correct labeling.
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(b) Random instance: known correct labeling.
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(c) Random instance: unknown personalization poten-

tial.
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(d) Random instance: all covariates potentially predic-

tive.

(Appendix EC.5.1). (iii) Comparisons across fixed instance to random instance settings for

other labelings tested resemble those for Figures 2a –2b (data not shown).

7.4. Simulation to estimate fEVI or to randomize patients

We assess the performance of the allocation policies that use simulation or randomization,

compared to that of fEVI, on the base case with random instances described in Section 7.1.

Firstly, the fEVI-MC allocation policy uses simulation to estimate fEVI indices. Fig-

ure 3a shows the EOC for the fEVI-MC allocation policy with several values of ηon. In this

experiment, we fixed ηoff = 1 because, when ∆ = 0, the fEVI-MC policy makes ηonηoff i.i.d.

simulations regardless of the specific values of ηon and ηoff. The fEVI-MC policy performs

very closely to fEVI even with a few replications (small ηoffηon). Importantly, the variance

reduction in fEVI-MC (see Section 4.2) that computes an expected information gain for

all potential outcomes for the extra patient, not just for one realized outcome, is effective.
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Figure 3 Effect of practical considerations on the performance of fEVI. The plots show the EOC of the

random instance setting.
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(a) fEVI-MC (with ηoff = 1, several values of ηon )
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(b) fEVI-rand (with several values of ε)
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(c) EOC when APACHE score is continuous-valued. Allo-

cation policies fEVI and BC* bin the APACHE score into

three levels. fEVI-MC uses ηon = 20, ηoff = 1.
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(d) Effect of delay ∆ on the EOC when using the fEVI-

MC and fEVIblind allocation policies.

Appendix EC.5.3 shows that an implementation of Monte Carlo estimation without this

variance reduction uses at least two orders of magnitude more replications.

Secondly, fEVI-rand provides additional control to randomize patients. Figure 3b com-

pares the random instance EOC of the fEVI-rand policy for several values of ε to the

EOC obtained by the Random policy (equivalent to fEVI-rand with ε = 1) and fEVI

(equivalent to fEVI-rand with ε→ 0). The EOC increases with ε. For ε≤ 0.2, we do not

observe a practically significant difference compared to fEVI. For ε = 0.5, we observe a

loss in efficiency compared to fEVI but obtain a significant improvement compared to

Random. We observe similar results for the fEVI-MC-rand allocation policy presented

in Appendix EC.5.4. In line with observations of Williamson et al. (2017) for a related

context, some randomization can be obtained without significantly degrading performance.
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Lastly, to further assess the practical value of fEVI-MC, we compare which of the two

approximations is better for handling continuous-valued covariates: binning the continuous

covariates’ values in buckets and employing the exact fEVI versus leaving the covari-

ates continuous-valued and approximating the fEVI-index computation with fEVI-MC.

Figure 3c considers the random instance setting when the APACHE score is a continuous-

valued covariate, as described in Section 7.1. fEVI-MC estimates the fEVI-indices with

ηon = 20 and ηoff = 1, while fEVI estimates the indices by binning the APACHE score

into three levels. The fEVI-MC allocation policy obtains the lowest EOC, although not

practically significantly lower than that of fEVI. We also plot the comparator policies as

a reference. We observe a performance very similar to that observed in Figure 2b. Thus,

both approximation approaches are viable in this example.

7.5. Effect of delay and pipeline information on the EOC of the fEVI-MC policy

We quantify the effect of delay on the performance of fEVI-MC. We use fEVI-MC because

it is easier to compute than fEVI when delays are not zero. We also explore the benefit

of accounting for the allocations to pipeline patients before their outcomes are observed.

We use an allocation policy that only uses information on patients in hand without using

information about patients still in the pipeline and the treatments assigned to them. We

call this latter allocation policy fEVIblind. Both allocation policies use information from

all patients when making an implementation decision.

Figure 3d shows three performance curves for EOC with delay ∆ = 0,20,50 for fEVI-

MC. It shows a very modest degradation in performance, but not strongly significant, for

delays over the tested range. Figure 3d also shows two performance curves for fEVIblind

with ∆ = 20,50. Knowledge of the pipeline, even before seeing the outcome, is beneficial

for arm allocation, particularly in the early stages of sampling (up to sample sizes of 4-

5 times the ∆). For smaller trials, accounting for the pipeline as done in fEVI-MC is

very important. Ignoring the pipeline has a lower effect if the sample size exceeds several

multiples of ∆, after many samples have been collected.

8. Discussion

This paper presented modeling and algorithmic contributions to support the efficient learn-

ing of personalized treatment strategies through clinical trials designed to identify the

best treatment as a function of patient covariates in the context of precision medicine.
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We proposed allocation policies that maximize the expected value of information from

one additional sample and that leverage knowledge of predictive and prognostic covariates

to learn the best treatment strategy, a function from covariates to treatments. Several of

our proposed fEVI-based allocation policies were shown to be asymptotically optimal in

learning such treatment strategies. All proposed fEVI-based allocation policies performed

well in intermediate-sample regimes in numerical experiments in comparison with a biased

coin approach to balancing prognostic covariates in clinical trials and in comparison with

a model that assumes all covariates are predictive with respect to all treatments, as is

sometimes assumed in applications in and outside of medicine.

Our numerical experiments for adaptive contextual learning were motivated by sepsis

management. In that example, the APACHE score is a known prognostic covariate, and

preliminary findings in the literature suggest that certain blood transcriptomic endotypes

may be predictive covariates with respect to certain sepsis treatments. Our numerical

results suggest a promise for using our proposed fEVI family of allocation policies in the

design of a clinical trial to validate the potential for precision medicine for sepsis on the

basis of blood transcriptomic typing, in comparison with other allocation policies tested

here (adaptations of the BATTLE trial, the biased coin, and Thompson sampling).

Thus, our main hypothesis is supported on theoretical and computational grounds: there

is a benefit to adaptive contextual learning with predictive and prognostic covariates (if

their identity is known), particularly with our proposed fEVI approach. The variance

reductions embedded in fEVI-MC apply to contextual learning applications beyond clinical

trials when the predictive distribution for posterior mean, for when the pending observa-

tions have been observed, is available. There are several related issues to consider towards

extending the base model to allow for a broader set of clinical trials and other applications.

Appendix EC.6 discusses a number of them, showing how some can be incorporated into

our framework, while some can provide areas for further research.
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E-Companion

Table EC.1 summarizes the principal notation of the model. Appendix EC.1 provides

additional details regarding Bayes’ rule used in the inference process as trial data accu-

mulates. Appendix EC.2 justifies the claim of Proposition 1 that Bellman’s equation

gives an optimal policy. Appendix EC.3 proves the main results of Section 5, includ-

ing the asymptotic optimality of our heuristic allocation policies, and gives a number

of useful supporting results. Appendix EC.4 describes in detail the comparator alloca-

Table EC.1 Table of notation

Parameters Description

Time T ∈ {0,1,2, . . .} Sample size (deterministic for main model)

∆∈ {0,1,2, . . .} Delay in observing the outcomes of patients (in number of patients enrolled)
t∈ {0, . . . , T + ∆} Discrete time steps; for t≤ T , the number of patients enrolled so far

∆′t = min{∆, t} Number of patients in pipeline at time t≤ T
Treatments w Generic treatment

n∈N>0 Number of available treatments

W = {1, . . . , n} Set of treatments

Wt Treatment assigned to patient at time t= 1,2, . . . , T

Covariates x Generic vector of covariates

m∈N>0 Dimension of covariate vector

X ⊆Rm Set of feasible covariate values
Xt Vector of covariates of patient at time t

Outcomes Y ⊆R Set of feasible outcomes

Yt Outcome of patient arriving at time t= 1,2, . . . , T

Ht History of covariates, treatments, and observed outcomes until time t= 0,1, . . . , T + ∆

Response function rµ(x,w) Expected outcome given covariates x, treatment w, and coefficients µ
µ Unknown coefficients

ξ Coefficients that are potentially active (labeling)

⊗ Operator from Section 2.3 that identifies potentially active coefficients

Bayes inference σ2 Variance in patient outcomes
θt Prior/Posterior mean of µ at time t= 0,1, . . . , T + ∆

Σt Prior/Posterior covariance matrix of µ at time t= 0,1, . . . , T + ∆

Jt Pipeline state at time t= 0,1, . . . , T + ∆
Kt = (θt,Σt,Jt) Knowledge state at time t= 0,1, . . . , T + ∆

k = (θ,Σ, j) Generic knowledge state

Kt Domain of knowledge states at time t= 0,1, . . . , T + ∆
τt Updating equation of the knowledge state at time t

Decisions π= (πt)t=1,...,T Allocation policy, where πt maps (Ht,x) to a distribution over treatments

Π Set of non-anticipatory allocation policies

f̃ Optimal implementation decision (map from X →W ) after all samples observed

f̃θ Optimal implementation decision given posterior mean θ

f Set of treatment strategies

Expected rewards P Size of post-trial population to be treated

V π Trial value for policy π, prior to sampling
V ∗ Optimal trial value

V πt (k) Value-to-go with policy π from time t

Vt(k) Optimal value-to-go from time t
qt(k,x,w) Value-to-go if Xt+1 = x and Wt+1 =w

Qt(k, f) Value-to-go if Wt+1 = f(Xt+1)

U(θ,Σ) Oracle’s value, assuming perfect information about µ
G(k) Expected terminal reward before observing outcomes of pipeline patients

G̃(θ) Terminal reward after observing all patients and their outcomes

fEVI-MC ηon Number of replications for unknown regression parameters for EVI estimation
ηoff Number of replications of post-trial patients per sampled regression parameter
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tion policies against which we compare our EVI-based allocation policies in the numer-

ical experiments. Appendix EC.5 presents additional numerical experiments to supple-

ment the numerical results of the main paper. Computer code (in the Julia program-

ming language) that implements the numerical results of this manuscript can be found

at https://github.com/andres-alban/EVI-covariates. Appendix EC.6 discusses addi-

tional conceptual and practical considerations for extending the base model. Some are

dealt with directly here, while others identify areas for potential further research.

EC.1. Bayesian Inference for Unknown Regression Coefficients

This appendix provides additional discussion for the steps that lead to the Bayesian updat-

ing for the unknown regression coefficients in (6) in Section 2.5 of the main paper. It also

describes the derivation of the so-called preposterior5 distribution, the distribution of the

posterior mean to be realized after outcomes of pipeline patients are observed, given the

current knowledge state.

Bayesian updating. For times t1 ≤ t2, let X(t1):(t2) be the m×(t2−t1 +1) matrix where each

column corresponds to Xt′ for t′ = t1, t1 +1, . . . , t2, W(t1):(t2) be the (t2− t1 +1)-dimensional

column vector where each entry corresponds to Wt′ for t′ = t1, t1 + 1, . . . , t2, and Y(t1):(t2)

be the (t2 − t1 + 1)-dimensional column vector where each entry corresponds to Yt′ for

t′ = t1, t1 +1, . . . , t2. We extend the definition of ⊗ to allow for matrix operations as follows:

W(t1):(t2)⊗X(t1):(t2) =


Wt1 ⊗Xt1

Wt1+1⊗Xt1+1

. . .

Wt2 ⊗Xt2

 , (EC.1)

where the result is a (t2 − t1 + 1)× |Ξ| matrix, where Ξ := {(i, l) : ξi,l = 1} is the set of

indices of potentially active coefficients in the linear model for a given labeling ξ.

Suppose that we want to update the knowledge state at time t1 to the knowledge state

at time t2 > t1. If t2 ≤∆, then no patient outcomes have been observed at time t1 or t2, so

θt2 = θt1 = θ0 and Σt2 = Σt1 = Σ0. If t2 ≥∆+1, then the patient outcomes Y(t1−∆′t1+1):(t2−∆)

are observed in the time window that starts at t1 + 1 and ends at t2 (inclusive), where

∆′t1 = min{t1,∆} represents the number of patients in the pipeline at time t1. If Σt1 is

5 We use the term “preposterior” consistent with preposterior analysis used in decision theory, particularly in expected
value of information (see Raiffa and Schlaifer 1961).

https://github.com/andres-alban/EVI-covariates
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positive definite, we can use the following result from Bayesian updating (Gelman et al.

2013, Chapter 14):

θt2 =

(
Σ−1
t1

+
(
W(t1−∆′t1

+1):(t2−∆)⊗X(t1−∆′t1
+1):(t2−∆)

)> (
W(t1−∆′t1

+1):(t2−∆)⊗X(t1−∆′t1
+1):(t2−∆)

)
/σ2

)−1

((
W(t1−∆′t1

+1):(t2−∆)⊗X(t1−∆′t1
+1):(t2−∆)

)>
Y(t1−∆′t1

+1):(t2−∆)/σ
2 + Σ−1

t1
θt1

)
(EC.2a)

Σt2 =

(
Σ−1
t1

+
(
W(t1−∆′t1

+1):(t2−∆)⊗X(t1−∆′t1
+1):(t2−∆)

)> (
W(t1−∆′t1

+1):(t2−∆)⊗X(t1−∆′t1
+1):(t2−∆)

)
/σ2

)−1

(EC.2b)

An alternative computation using the Sherman-Morrison-Woodbury matrix identity is

valid also when Σ0 is positive semi-definite (e.g., Frazier et al. 2009):

θt2 = θt1 + Σt1(W(t1−∆′t1
+1):(t2−∆)⊗X(t1−∆′t1

+1):(t2−∆))
>(

σ2I(t2−t1)−(∆−∆′t1
) + (W(t1−∆′t1

+1):(t2−∆)⊗X(t1−∆′t1
+1):(t2−∆))Σt1 (EC.3a)

(W(t1−∆′t1
+1):(t2−∆)⊗X(t1−∆′t1

+1):(t2−∆))
>
)−1

(
Y(t1−∆′t1

+1):(t2−∆)− (W(t1−∆′t1
+1):(t2−∆)⊗X(t1−∆′t1

+1):(t2−∆))θt1

)
,

Σt2 = Σt1 −Σt1(W(t1−∆′t1
+1):(t2−∆)⊗X(t1−∆′t1

+1):(t2−∆))
>(

σ2I(t2−t1)−(∆−∆′t1
) + (W(t1−∆′t1

+1):(t2−∆)⊗X(t1−∆′t1
+1):(t2−∆))Σt1 (EC.3b)

(W(t1−∆′t1
+1):(t2−∆)⊗X(t1−∆′t1

+1):(t2−∆))
>
)−1

(W(t1−∆′t1
+1):(t2−∆)⊗X(t1−∆′t1

+1):(t2−∆))Σt1 ,

where It is the identity matrix of size t. This formula requires the inversion of a ((t2− t1)−

(∆−∆′t1))× ((t2− t1)− (∆−∆′t1)) matrix, which is not computationally efficient if (t2−

t1)−(∆−∆′t1) is much larger than |Ξ|. However, when t2−t1 = 1 and t2 ≥∆+1, it simplifies

to the recursive equations in (6) in Section 2.5, which require scalar division instead of

matrix inversion. We have thus characterized the prior and posterior distributions.

Preposterior distribution. We can also characterize the preposterior distribution, i.e., the

distribution of the posterior mean of the coefficients that will be obtained at t2 ≤ t1 + ∆

after observing all or some of the patients in the pipeline given the knowledge state at

time t1: θt2 |Kt1. We can derive the distribution from (EC.3a). For purposes of updating

the posterior mean at time t2, given Kt1, we note that the only source of variation is the

unobserved outcomes, Y(t1−∆′t1+1):(t2−∆), which standard Bayesian results (Gelman et al.

2013, Chapter 14) show to be normally distributed:

Y(t1−∆′t1
+1):(t2−∆) |Kt1 ∼N

(
(W(t1−∆′t1

+1):(t2−∆)⊗X(t1−∆′t1
+1):(t2−∆))θt1 , (EC.4)

σ2I(t2−t1)−(∆−∆′t1
) + (W(t1−∆′t1

+1):(t2−∆)⊗X(t1−∆′t1
+1):(t2−∆))Σt1(W(t1−∆′t1

+1):(t2−∆)⊗X(t1−∆′t1
+1):(t2−∆))

>
)
.
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For a vector of treatments W of dimension t assigned to t patients with covariates given

by matrix X of dimension m × t, we define the preposterior standard deviation as the

following |Ξ| × t matrix:6

σ̃(Σ,W,X) = Σ(W⊗X)>(σ2It + (W⊗X)Σ(W⊗X)>)−1/2. (EC.5)

This term is used in the fEVI-MC algorithm and in mathematical proofs below. We call

it the preposterior standard deviation because, combining (EC.4) with (EC.3a), we obtain

θt2 |Kt1 ∼N
(
θt1 , σ̃(Σt1 ,W(t1−∆′t1

+1):(t2−∆),X(t1−∆′t1
+1):(t2−∆))σ̃

>(Σt1 ,W(t1−∆′t1
+1):(t2−∆),X(t1−∆′t1

+1):(t2−∆))
)
.

Other representations of the inference for proofs. For t≥∆+1, we define the random variable

Zt−∆ =
Yt−∆− (Wt−∆⊗Xt−∆)θt−1√

σ2 + (Wt−∆⊗Xt−∆)Σt−1(Wt−∆⊗Xt−∆)>
, (EC.6)

such that Zt−∆ |Kt−1,Xt,Wt ∼N (0,1)7. With this definition, we obtain another represen-

tation of (6a) and (6b) in the main paper:

θt = θt−1 + σ̃(Σt−1,Wt−∆,Xt−∆)Zt−∆ (EC.7)

Σt = Σt−1− σ̃(Σt−1,Wt−∆,Xt−∆)σ̃>(Σt−1,Wt−∆,Xt−∆). (EC.8)

We also define Z(t1):(t2) = (Zt1, . . . ,Zt2)
> as the (t2− t1 +1)-dimensional column vector to

write the updating equations for multiple observations (EC.3a) and (EC.3b). For t2 ≥∆+1,

we obtain

θt2 = θt1 + σ̃(Σt1 ,W(t1−∆′t1
+1):(t2−∆),X(t1−∆′t1

+1):(t2−∆))Z(t1−∆′t1
+1):(t2−∆) (EC.9)

Σt2 = Σt1 − σ̃(Σt1 ,W(t1−∆′t1
+1):(t2−∆),X(t1−∆′t1

+1):(t2−∆))σ̃
>(Σt1 ,W(t1−∆′t1

+1):(t2−∆),X(t1−∆′t1
+1):(t2−∆)).

(EC.10)

EC.2. Proof of Proposition 1

We first rewrite the focal dynamic program (DP) in (11) into an alternative DP model,

whose state space is augmented to include the covariates of the next patient to be observed.

Thus, the alternative DP shifts the time of the decision from before observing the next

patient’s covariates to right after. The focal and alternative DPs will be shown to have

6 If W = 1t, where 1t denotes the vector of all 1’s of dimension t, and n= 1 (only one treatment is available), X is
empty, and ξ = (1,0) (only the intercept term is active), then (W⊗X) = 1t is a vector of all ones, (W⊗X)>(W⊗X) =
t, |Ξ| = 1, Σ is a scalar, and we recover the formula for the preposterior variance before obtaining t observations
without covariates: σ̃2(Σ,W,X) = σ̃(Σ,W,X)σ̃>(Σ,W,X) = Σ2t/(σ2 + Σt).

7 We need to condition on Xt and Wt to make the distribution valid when ∆ = 0.
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equivalent rewards and solutions. We then construct a mapping of this alternative model

to the model in Bertsekas and Shreve (1978, Sec 8.1). This will allow us to use their results

to justify our Proposition 1.

More formally, the alternative DP has state (Kt,Xt+1), where Xt+1 ∈X is the covariate

of the next patient, for time t = 0,1, . . . , T − 1. For t = T , the alternative DP has the

same terminal reward as does our focal DP (the term XT+1 will be referenced but its

value will be ignored by the updating equation τT ). The control space of the alternative

DP is the set of treatments W and an allocation policy, π′, that maps the history and

covariates to a distribution over the treatments: π′t(w | h,x) = P(Wt =w |Ht−1 = h,Xt = x)

for t = 1,2, . . . , T . The allocation policies are equivalent in both DP formulations (they

have the same definition). We modestly abuse notation by distinguishing the value-to-go

function Vt for the alternative DP by giving it two arguments, (k,x), to distinguish it from

that of the focal DP which has one argument (k).

Vt(k,x) = sup
π′
t+1

Eπ
′
t+1 [Vt+1(τt+1(k,Xt+1,Wt+1, Yt−∆+1),Xt+2) |Kt = k,Xt+1 = x], for t= 1,2, . . . , T − 1

VT (k,x) = G(k). (EC.11)

Formulations (11) and (EC.11) are equivalent in the sense that Vt(k) = E[Vt(k,Xt+1)].

This follows by the tower property of expectations, the definition of allocation policy in

each formulation, and mathematical induction, as we proceed to show next. The base case

is VT (k) = E[VT (k,x)] = G(k). The induction step shows that Vt+1(k) = E[Vt+1(k,Xt+2)]

implies Vt(k) = E[Vt(k,Xt+1)] for any t= T − 1, T − 2, . . . ,0:

E[Vt(k,Xt+1)] = E

[
sup
π′
t+1

Eπ
′
t+1 [Vt+1(τt+1(k,Xt+1,Wt+1, Yt−∆+1),Xt+2) |Kt = k,Xt+1]

]
= sup
π′
t+1

E

[
Eπ
′
t+1 [Vt+1(τt+1(k,Xt+1,Wt+1, Yt−∆+1),Xt+2) |Kt = k,Xt+1]

]
= sup
πt+1

E

[
Eπt+1 [Vt+1(τt+1(k,Xt+1,Wt+1, Yt−∆+1),Xt+2) |Kt = k,Xt+1]

]
= sup
πt+1

Eπt+1 [Vt+1(τt+1(k,Xt+1,Wt+1, Yt−∆+1),Xt+2) |Kt = k]

= sup
πt+1

Eπt+1 [E[Vt+1(τt+1(k,Xt+1,Wt+1, Yt−∆+1),Xt+2) |Xt+1,Wt+1, Yt−∆+1] |Kt = k]

= sup
πt+1

Eπt+1 [Vt+1(τt+1(k,Xt+1,Wt+1, Yt−∆+1)) |Kt = k]

= Vt(k),

where the first equality is by the definition in (EC.11), the second and third equalities

follow by our definition of π′t+1, which allows us to exchange the order of the supremum

and the outer expectation, noting that the outer expectation is over Xt+1 only, the fourth

equality follows by the tower property of expectations, the fifth equality is also by the

tower property of expectations, the sixth equality uses the induction hypothesis, and the

last equality is by the definition in (11).
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We now map our alternative DP model in (EC.11) to the model in Bertsekas

and Shreve (1978, Section 8.1). The state space in (EC.11) is K × X . The con-

trol space is the finite set of treatments W . The disturbance space is given by

Y × X and is handled in two cases. If t ≥ ∆, for a given state (k,x) and con-

trol w, the disturbance Yt−∆+1 ∈ Y has a stochastic kernel given by Yt−∆+1 | k ∼
N
(
(Wt−∆+1⊗Xt−∆+1)θ, σ

2 + (Wt−∆+1⊗Xt−∆+1)Σ(Wt−∆+1⊗Xt−∆+1)
>) (recall Xt−∆+1

and Wt−∆+1 are in the knowledge state), and, independently, Xt+2 ∈X has a stochas-

tic kernel given by Fx regardless of the state. For t < ∆, we can define the disturbance

Yt−∆+1 arbitrarily (e.g., Yt−∆+1 = 0 with probability 1) because such values of Yt are not

used by the transition function when t < ∆ and do not affect the model, and Xt+2 has

the kernel given by Fx regardless of the state. The system function (transition function)

of Bertsekas and Shreve (1978), ft(k,x,w, (Yt−∆+1,Xt+2)), is our transition function that

does the Bayesian updating, (τt+1(k,Xt+1,Wt+1, Yt−∆+1),Xt+2). The discount factor is one.

The one-stage cost function is g(k,x,w) = 0 for t= 1, . . . , T − 1 and g(k,x,w) =G(k) for

t = T . The horizon is T . Finally, all entries in Σ0 are finite, and using notation Σt,i,j to

denote the (i, j) entry of matrix Σt, each diagonal entry Σt,i,i is non-increasing in t (Xie

et al. 2016, Lemma 6), and Σ2
t,i,j ≤Σt,i,iΣt,j,j by the positive semi-definiteness of Σt. Thus,

each element of Σt is bounded. By Assumption 1, we know that Xt and X̃i have at least two

finite moments. Therefore, Eπ[|g(Kt,Xt+1,Wt+1)|] exists (is bounded) for all t = 1, . . . , T

and any π ∈Π, so we satisfy condition (F+) and (F−).

Because W is finite, by Corollary 8.1.1 and Proposition 8.5 of Bertsekas and Shreve

(1978), there exists a deterministic, Markov allocation policy π′∗ that achieves the supre-

mum in (EC.11). Moreover, Vt(k) = E[Vt(k,Xt+1)], so an allocation policy that solves

(EC.11) gives an allocation policy that solves (11), so these results also hold for (11). �

EC.3. Proofs of Results in Section 5

We first prove optimality for the fEVI allocation policy with sample size T = 1 and then

turn to the asymptotic results for the EVI heuristics presented in Section 4.

Proposition 2 If T = 1, then V fEVI(K0) = V ∗(K0).

Proof. By Proposition 1, the optimal allocation policy π∗ can be computed using Bell-

man’s recursion. Thus, there is a π∗ that maximizes

Eπ[G(τ1(K0,X1,W1, Y1−∆)) |K0] = Eπ
[
max
w̃∈W

(w̃⊗ X̃1)θ∆+1 |K0

]
.
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The fEVI allocation policy, which samples the treatment with the highest fEVI-index

defined in (12), maximizes the same expectation. �

In the rest of this section we assume that T ≥∆ + 1 for two reasons. First, the main

result we are set out to prove is Theorem 3, which is an asymptotic result as T →∞, so

the assumption that T ≥∆ + 1 does not affect it. Second, this allows us to avoid handling

a variable number of patients in the pipeline, when T <∆, without losing any insights for

the asymptotic regime.

We first recall some related results from the literature and describe how we adapt

our model to be able to use them and build on them (Appendix EC.3.1). Then, in

Appendix EC.3.2 we describe and prove properties of the value functions that will be

useful for proving our main analytical results. Appendix EC.3.3 provides some additional

intermediate results and uses them to prove the main theorems in Section 5.

EC.3.1. Preliminaries for asymptotic results

We use many elements of the proofs in Frazier et al. (2009, Online supplement A) and

Xie et al. (2016), extending the statements and proof methodology to our setting with

covariates where necessary. The proofs rely on the DP model in Section 3 through the

value functions Vt(k) (optimal value-to-go with knowledge state k), qt(k,x,w) (value-to-go

if treatment w is given to patient t+1 with covariates x), Qt(k, f) (value-to-go if treatment

strategy f is used to treat patient t+ 1), and V π
t (k) (value-to-go of policy π):

VT (k) =G(k) = E[max
w̃

(w̃⊗ X̃1)θT+∆ |KT = k]

Vt(k) = max
f∈f

E[Vt+1(τt+1(k,Xt+1, f(Xt+1), Yt−∆+1)) |Kt = k], t= 0, . . . , T − 1

qt(k,x,w) = E[Vt+1(τt+1(k,x,w,Yt−∆+1)) |Kt = k], t= 0, . . . , T − 1

Qt(k, f) = E[qt(k,Xt+1, f(Xt+1)) |Kt = k]

= E[Vt+1(τt+1(k,Xt+1, f(Xt+1), Yt−∆+1)) |Kt = k], t= 0, . . . , T − 1

V π
T (k) = VT (k)

V π
t (k) = Eπ[V π

t+1(τt+1(k,Xt+1,Wt+1, Yt−∆+1)) |Kt = k], t= 0, . . . , T − 1

Here, the action at each time point is a treatment strategy f that deterministically maps

covariates to treatments, unlike (11) where the actions are allowed to be random. We do

so because Proposition 1 guarantees the existence of an optimal deterministic allocation
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policy. The value-to-go of an allocation policy is equivalently defined by expanding the

recursive definition above:

V π
t (k) = Eπ[VT (KT ) |Kt = k].

We further define

G̃(θ̂) := E

[
max
w̃∈W

(w̃⊗ X̃1)θT+∆ |KT+∆ = (θ̂,ΣT+∆,∅)
]

= E

[
max
w̃∈W

(w̃⊗ X̃1)θ̂

]
(EC.12)

as the value after all patient outcomes have been observed (and the pipeline is empty) with

posterior mean θ̂ at time T + ∆. This term does not depend on ΣT+∆. Thus, the terminal

reward is G(k) = E[G̃(θT+∆) |KT = k].

EC.3.2. Properties of the value functions

We provide several analytical results regarding the value functions that are useful for

proofs, and that provide results that are analogous to results shown elsewhere when there

is no delay and no predictive-prognostic structure. These results will show that the value

functions are “well-behaved”.

Continuity. We first show that the value functions are continuous in the posterior mean

and covariance matrix for any pipeline state.

Prop. EC.1. Vt(k), Qt(k, f), and qt(k,x,w) are continuous in θ and Σ for any j such

that k = (θ,Σ, j)∈Kt is a valid state at time t.

Proof. The proof is by induction. The base case is that VT (k) = E[maxw̃∈W (w̃ ⊗

X̃1)θT+∆ |KT = k] is continuous because it is the expectation of a continuous function in

both θ and Σ (Billingsley 2008, Theorem 16.8). To see this, note that θT+∆ is updated

with (EC.3a), which is a continuous function of θ and Σ.

The induction step assumes that Vt+1(k) is continuous in θ and Σ for all

k ∈ Kt+1. Then, Vt(k) = maxf∈f E[Vt+1(τt+1(k,Xt+1, f(Xt+1), Yt−∆+1)) | Kt = k] =

E[maxw∈W Vt+1(τt+1(k,Xt+1,w,Yt−∆+1)) | Kt = k] is the expectation of the maximum of

continuous functions. The maximum of a finite set of continuous functions is continuous,

and the expectation of continuous functions is continuous.

Similarly, qt(k,x,w) = E[Vt+1(τt+1(k,x,w,Yt−∆+1)) |Kt = k] is the expectation of a con-

tinuous function for any x ∈X and w ∈ W . Finally, Qt(k, f) = E[qt(k,Xt+1, f(Xt+1)) |

Kt = k] is the expectation of a continuous function. �
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Value of information. The next proposition shows that it is more valuable in expectation

to have an additional observation, regardless of the covariates and treatment, than having

no observation at all, if sampling is optimal thereafter.

Prop. EC.2. qt(k,x,w) ≥ Vt+1(k) for t = ∆, . . . , T − 1, any k ∈Kt, any x ∈X , and

any w ∈W .

Proof. To prove the claimed inequality, we show that an allocation policy that discards

the information from patient t+ 1 obtains the same value as not having the observation

at all, which corresponds to the smaller side of the inequality. Moreover, such a policy is

within the set of possible policies, and therefore it cannot obtain a larger value than does

the optimal policy, which corresponds to the larger side of the inequality. We now formalize

this argument.

First, fix a given t= ∆, . . . , T − 1. The assumption t≥∆ implies that the pipeline is full

with exactly ∆ treatments whose outcomes are not yet observed. Let π[t+1] = (πt′)t′=t+2,...,T

be an allocation policy for the allocation of patients starting at t+ 2 and Π[t+1] be the set

of all such allocation policies. Let π∗[t+1] ∈Π[t+1] be an optimal allocation policy, so that

Vt+1(k) = E
π∗

[t+1] [VT (KT ) |Kt+1 = k] = E
π∗

[t+1]

[
max
w̃∈W

(w̃⊗ X̃1)θT+∆ |Kt+1 = k

]
. (EC.13)

Thus, qt(k,x,w) is the expected value from sampling a patient with covariates x and

treatment w at t+ 1, and using π∗[t+1] for the remaining patients:

qt(k,x,w) = E
π∗

[t+1]

[
max
w̃∈W

(w̃⊗ X̃1)θT+∆ |Kt = k,Xt+1 = x,Wt+1 =w

]
Consider the set of policies Π̃[t+1] constrained to only see a subset of the history H̃t′ ⊂Ht′

for t′ ≥ t+ 1, which we now describe. First, H̃t′ is defined so that it does not include the

data from the patient arriving at t+ 1, i.e., Xt+1, Wt+1, and Yt+1 are not included in the

histories H̃t′ for t′ ≥ t+1, and therefore they are not available to policies in Π̃[t+1]. Second,

for t′′ = t−∆, . . . , t, Yt′′ is observed with one additional unit of delay, i.e., Yt′′ is included in

H̃t′′+∆+1 (and all later histories) but is missing in H̃t′′+∆ (whereas it is present in Ht′′+∆).

Let θ̃T+∆ be the posterior mean excluding patient t+1 (i.e., the terminal posterior mean

when using history H̃T+∆) and let π̃∗[t+1] be the policy that maximizes value among all

policies in Π̃[t+1]:

π̃∗[t+1] = arg max
π̃∈Π̃[t+1]

Eπ̃
[
max
w̃∈W

(w̃⊗ X̃1)θ̃T+∆ |Kt = k,Xt+1 = x,Wt+1 =w

]
,
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where x and w do no affect the expectation because they are not included in the history

available to policies in Π̃[t+1].

We define q̃t as the maximum value-to-go if a patient with covariates x is allocated to

treatment w at t+ 1 under the additional constraint that the allocation policy belongs to

Π̃[t+1] ⊂Π[t+1]:

q̃t(k,x,w) := E
π̃∗

[t+1]

[
max
w̃∈W

(w̃⊗ X̃1)θ̃T+∆ |Kt = k,Xt+1 = x,Wt+1 =w

]
.

By construction, H̃t′ is the same available history as if Kt+1 = k (instead of Kt = k),

and therefore, q̃t(k,x,w) = Vt+1(k). Moreover, because π̃∗[t+1] is among the available policies

Π[t+1], the optimal policy obtains higher or the same value: qt(k,x,w)≥ q̃t(k,x,w). Putting

these two observations together, we get the final result:

qt(k,x,w)≥ q̃t(k,x,w) = Vt+1(k). �

The following corollaries show how Proposition EC.2 maps to value functions Vt and Qt.

Corollary EC.1. Qt(k, f)≥ Vt+1(k) for t= ∆, . . . , T − 1, any k∈Kt, and any f ∈ f .

Proof. By the definition of Qt, we get Qt(k, f) = E[qt(k,Xt+1, f(Xt+1)) | Kt = k] ≥
Vt+1(k), where the inequality follows from Proposition EC.2. �

Corollary EC.2. Vt(k)≥ Vt+1(k) for t= ∆, . . . , T − 1 and any k∈Kt.

Proof. From the definition of Qt, we have Vt(k) = maxf Qt(k, f)≥ Vt+1(k), where the

inequality follows from Corollary EC.1. �

Boundedness. We now show that the value function is bounded. We show that an upper

bound is the value obtained by an oracle that knows the value of µ ex ante, which we

redefine here to generalize the definition of U(θ0,Σ0) in Section 5. This generalization

allows for knowledge states, k = (θ,Σ, j), and uses the fact that perfect knowledge of µ

does not depend on j.

U(θ,Σ) :=U(k) = E[max
w̃∈W

(w̃⊗ X̃1)µ | θ0 = θ,Σ0 = Σ]. (EC.14)

We will call U(θ,Σ) the oracle’s value. The proof of Theorem 2 below will give some

sufficient conditions on allocation policies to achieve this upper bound.

Prop. EC.3. For t = 0, . . . , T , for any k = (θ,Σ, j) ∈Kt, and any allocation policy π,

V π
t (k) is bounded above by U(θ,Σ) and below by E[minw̃∈W (w̃⊗ X̃1)µ |Kt = k].
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Proof. For any allocation policy π and knowledge state k = (θ,Σ, j)∈Kt,

V π
t (k) = Eπ[V π

T (KT ) |Kt = k]

= Eπ
[
max
w̃∈W

(w̃⊗ X̃1)θT+∆ |Kt = k

]
= Eπ

[
max
w̃∈W

((w̃⊗ X̃1)E[µ |KT+∆]) |Kt = k

]
≤ Eπ

[
E

[
max
w̃∈W

(w̃⊗ X̃1)µ |KT+∆

]
|Kt = k

]
(EC.15)

= E

[
max
w̃∈W

(w̃⊗ X̃1)µ |Kt = k

]
(EC.16)

= E

[
max
w̃∈W

(w̃⊗ X̃1)µ | θ0 = θ,Σ0 = Σ

]
(EC.17)

=U(θ,Σ).

The inequality in (EC.15) follows from Jensen’s inequality and the convexity of the max-

imization operator. The tower property of expectations justifies (EC.16). The step in

(EC.17) follows because the expectation does not depend on the time but only on the

distribution of µ, which is fully given by θ and Σ. The same argument using Jensen’s

inequality and the concavity of the minimization operator shows the lower bound. �

EC.3.3. Analysis for Theorems 1, 2, and 3

Equipped with the results about value functions in Appendix EC.3.2, we now turn to prove

the main theorems for asymptotic optimality stated in Section 5.

Proofs of the asymptotic optimality of EVI algorithms without covariates typically

rely on showing that each alternative (with an uncertain mean performance) is sampled

infinitely often. Such condition is not sufficient in our setting: some allocation policies may

sample infinitely often each alternative and still be inconsistent. To illustrate, consider

Example 1 and an allocation policy that always allocates patients of type A to arm 1 and

patients of type B to arm 2. Such an allocation policy allocates both treatments infinitely

often but fails to learn the expected outcomes for type-treatment combinations A-2 and

B-1. Thus, the allocation policy cannot make perfectly informed decisions as the number

of observed patients grows large.

Therefore, we use a different approach for the proofs of our results. We will construct

a contradiction by first showing that any non-anticipatory allocation policy π ∈ Π has

posterior parameters converging to some θπ∞ and Σπ
∞ (Lemma EC.1). Then, we will show
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that, if an allocation policy with some special properties (sampling the treatment with

largest EVI with positive probability, see the premise of Theorem 2) did not reach a knowl-

edge state with zero value of information, the posterior parameters would not converge

(Lemma EC.3). Furthermore, we show that an allocation policy that reaches a state with

zero value of information is asymptotically optimal (Lemma EC.2). This shows that an

allocation policy with such special properties is asymptotically optimal.

Here, we characterize the trial value as a function of the sample size T . Let V π(K0;T )

be the value of allocation policy π with prior knowledge state K0 and sample size T .

EC.3.3.1. Convergence of parameters and value function — Proof of Theorem 1.

We now provide convergence results that are used to build the proof of Theorem 1.

Lemma EC.1 guarantees that the posterior mean vector and covariance matrix converge.

However, it does not guarantee that all allocation policies converge to the same random

variables, i.e., the parameters θπ∞ and Σπ
∞ that an allocation policy π converges to may

depend on the allocation policy π. For instance, an allocation policy that always samples

the same treatment might not converge to the same posterior parameters as a policy that

randomizes uniformly over all treatments.

Lemma EC.1. For a given allocation policy π, there exist random variables θπ∞ and Σπ
∞

such that θt converges to θπ∞ and Σt converges to Σπ
∞ almost surely.

Proof. Let Mt = (θt,Σt + θtθ
>
t ). Because θt and Σt are continuous transformations of

Mt, by the continuous mapping theorem (Van der Vaart 2000, Theorem 2.3) it is sufficient

to show that Mt converges almost surely as t→∞.

We first show that Mt is a martingale relative to the filtration induced by Kt. Because

θt = E[µ |Kt] and Σt +θtθ
>
t = E[µµ> |Kt]

are conditional expectations of integrable random variables, Mt is integrable. Moreover,

using (6a) and (6b), we obtain 8

Eπ[θt+1 |Kt] = θt +Eπ
[

Yt+1− (Wt+1⊗Xt+1)θt
σ2 + (Wt+1⊗Xt+1)Σt(Wt+1⊗Xt+1)>

Σt(Wt+1⊗Xt+1)>
∣∣∣∣ Kt

]
= θt +Eπ

[
E

[
Yt+1− (Wt+1⊗Xt+1)θt

σ2 + (Wt+1⊗Xt+1)Σt(Wt+1⊗Xt+1)>
Σt(Wt+1⊗Xt+1)>

∣∣∣∣ Xt+1,Wt+1

] ∣∣∣∣ Kt

]
= θt +Eπ

[
E[Yt+1− (Wt+1⊗Xt+1)θt |Xt+1,Wt+1]

σ2 + (Wt+1⊗Xt+1)Σt(Wt+1⊗Xt+1)>
Σt(Wt+1⊗Xt+1)>

∣∣∣∣ Kt

]
= θt

8 Here, we assume ∆ = 0. If ∆> 0, the only difference is that we subtract ∆ in the subscripts of Xt+1, Wt+1, and
Yt+1. In that case, we can skip the conditioning on Xt+1 and Wt+1 because they are given by the knowledge state.
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and

Eπ[Σt+1 +θt+1θ
>
t+1 |Kt] = Σt−Eπ

[
Σt(Wt+1⊗Xt+1)>(Wt+1⊗Xt+1)Σt

σ2 + (Wt+1⊗Xt+1)Σt(Wt+1⊗Xt+1)>

∣∣∣∣ Kt

]
+θtθ

>
t

+ 2Eπ
[

Yt+1− (Wt+1⊗Xt+1)θt
σ2 + (Wt+1⊗Xt+1)Σt(Wt+1⊗Xt+1)>

Σt(Wt+1⊗Xt+1)>θ>t

∣∣∣∣ Kt

]
+Eπ

[
(Yt+1− (Wt+1⊗Xt+1)θt)

2

(σ2 + (Wt+1⊗Xt+1)Σt(Wt+1⊗Xt+1)>)2
Σt(Wt+1⊗Xt+1)>

(Wt+1⊗Xt+1)Σt

∣∣∣∣∣Kt

]

= Σt +θtθ
>
t −Eπ

[
Σt(Wt+1⊗Xt+1)>(Wt+1⊗Xt+1)Σt

σ2 + (Wt+1⊗Xt+1)Σt(Wt+1⊗Xt+1)>

∣∣∣∣ Kt

]
+Eπ

[
E[(Yt+1− (Wt+1⊗Xt+1)θt)

2 |Xt+1,Wt+1]

(σ2 + (Wt+1⊗Xt+1)Σt(Wt+1⊗Xt+1)>)2
Σt(Wt+1⊗Xt+1)>

(Wt+1⊗Xt+1)Σt

∣∣∣∣∣Kt

]
= Σt +θtθ

>
t ,

where we have used E[Yt+1 |Kt,Xt+1,Wt+1] = (Wt+1⊗Xt+1)θt, as well as the law of total

variance to obtain

E

[
(Yt+1− (Wt+1⊗Xt+1)θt)

2 |Kt,Xt+1,Wt+1

]
=V[Yt+1 |Kt,Xt+1,Wt+1]

= E [V[Yt+1 |µ] |Kt,Xt+1,Wt+1]

+V[E[Yt+1 |µ] |Kt,Xt+1,Wt+1]

= σ2 + (Wt+1⊗Xt+1)Σt(Wt+1⊗Xt+1)>.

That Mt is a martingale with finite expectation guarantees the claimed almost sure

convergence (for example, Billingsley 2008, Section 35, Theorem 35.5). �

A corollary of Lemma EC.1 is that the value function converges as T →∞.

Corollary EC.3. For any allocation policy π, V π(K0;∞) := limT→∞ V
π(K0;T ) =

E[G̃(θπ∞) |K0], where G̃ is as defined in (EC.12).

Proof. Fix an allocation policy π. Let gT = (f̃θT+∆
(X̃1)⊗ X̃1)µ be the random variable

capturing the terminal reward such that Eπ[gT |K0] = V π(K0;T ). gT is bounded above by

maxw̃∈W (w̃⊗ X̃1)µ and below by minw̃∈W (w̃⊗ X̃1)µ, both of which are integrable. By the

definition of f̃θT+∆
in (8) and Lemma EC.1, we have that gT → (f̃θπ∞(X̃1)⊗ X̃1)µ almost

surely. By the dominated convergence theorem (e.g., Billingsley 2008, Theorem 16.4), we

get that limT→∞ E[gT |K0] = E[(f̃θπ∞(X̃1)⊗ X̃1)µ |K0], or equivalently

lim
T→∞

V π(K0;T ) = lim
T→∞

E[(f̃θT+∆
(X̃1)⊗ X̃1)µ |K0]
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= E[(f̃θπ∞(X̃1)⊗ X̃1)µ |K0]

= E[E[(f̃θπ∞(X̃1)⊗ X̃1)µ | θπ∞] |K0]

= E[(f̃θπ∞(X̃1)⊗ X̃1)θ
π
∞ |K0]

= E[G̃(θπ∞) |K0]. �

These results cumulatively justify Theorem 1.

Theorem 1 For a given allocation policy π, there exists a random vector θπ∞ and a

random matrix Σπ
∞ such that θt→ θπ∞ almost surely and Σt→Σπ

∞ almost surely. Moreover,

V π(K0;T ) is bounded above by U(θ0,Σ0), and V π(K0;∞) := limT→∞ V
π(K0;T ) exists.

Proof. The claims follow directly from Lemma EC.1, Proposition EC.3 and Corol-

lary EC.3, respectively. �

EC.3.3.2. A sufficient condition to obtain the oracle’s value. Theorem 1 showed

the convergence of posterior means and covariances for the unknown rewards and the

convergence of the trial value, but does not guarantee that the asymptotic trial value

obtained by an allocation policy is optimal. We now prove two lemmas to show conditions

under which the asymptotic trial value converges to the optimal value obtained by the

oracle, in building to the proof of Theorem 2. We then show that the EVI heuristics in

Section 4 satisfy those conditions in the proof of Theorem 3.

Lemma EC.2 shows that if there is no value in sampling any treatment on any patient,

then the value of that knowledge state is equal to the value that an oracle would obtain. In

the proof of Theorem 2, we will show that any allocation policy that samples the treatment

with the largest one-step look-ahead value with positive probability will almost surely

converge to a state where there is no value in further sampling. Lemma EC.2 will then

justify that any such allocation policy (e.g., the fEVI policies) converges to the oracle’s

value U(θ,Σ).

Lemma EC.2. Assume T ≥∆ + 1. If k = (θ,Σ, j)∈KT is such that QT−1(k, f) =G(k)

for all f ∈ f , then G(k) = G̃(θ) =U(θ,Σ), where G̃ is as in (EC.12).

Proof. We fix the knowledge state k = (θ,Σ, j). Using the notation introduced in

Appendix EC.1, X(T−∆):(T−1) and W(T−∆):(T−1) are the matrix of covariates and vector of

treatments of the patients arriving at times T −∆, T −∆ + 1, . . . , T −1. At time T −1, the
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covariates of these patients are in the knowledge state. The covariates from the patient that

arrives at time T are still unobserved and hence random. Let Z(T−∆):(T−1) be the vector

of normalized outcomes of the patients arriving at times T −∆, T −∆ + 1, . . . , T − 1 as

defined in Appendix EC.1.

We consider the difference QT−1(k, f)−G(k). Instead of using the transition function

τT to write QT−1(k, f), we use an expectation conditional on allocating the next patient

with treatment strategy f :

QT−1(k, f) = E[G(τT (k,XT , f(XT ), YT−∆) |KT−1 = k]

= E[E[G(KT ) |XT ,WT = f(XT )] |KT−1 = k]

= E

[
E

[
max
w̃∈W

(w̃⊗ X̃1)θT+∆ |XT ,WT = f(XT )

]
|KT−1 = k

]
,

where the second line follows because KT = τT (KT−1,XT ,WT , YT−∆) and by the tower

property of expectations, and the last step follows from plugging in (9) for G(k) and using

the tower property of expectations.

The terminal reward G(k) is the reward of making an implementation decision after

observing the outcomes of the ∆ patients in the pipeline. While its definition is specific to

the patients in the pipeline at t= T −∆, . . . , T , we can shift the pipeline to any other time

point that has a full pipeline. In particular, here we use

G(k) = E

[
max
w̃∈W

(w̃⊗ X̃1)θT+∆ |KT = k

]
= E

[
max
w̃∈W

(w̃⊗ X̃1)θT+∆−1 |KT−1 = k

]
. (EC.18)

Thus, we obtain the following, where we let σ̃T := σ̃(ΣT+∆−1, f(XT ),XT ) to simplify

notation:

QT−1(k, f)−G(k)

= E

[
E

[
max
w̃∈W

(w̃⊗ X̃1)θT+∆ |XT ,WT = f(XT )

]
|KT−1 = k

]
−E

[
max
w̃∈W

(w̃⊗ X̃1)θT+∆−1 |KT−1 = k

]
= E

[
max
w̃∈W

(
(w̃⊗ X̃1)

(
θT+∆−1 + σ̃TZT

))
|KT−1 = k

]
−E

[(
(f̃θT+∆−1

(X̃1)⊗ X̃1) (θT+∆−1)
)
|KT−1 = k

]
= E

[
max
w̃∈W

((
(w̃⊗ X̃1)− (f̃θT+∆−1

(X̃1)⊗ X̃1)
)(
θT+∆−1 + σ̃TZT

))
+
(
f̃θT+∆−1

(X̃1)⊗ X̃1

)
σ̃TZT |KT−1 = k

]
,



e-companion to Learning Personalized Treatment Strategies ec16

where in the second step we have used (EC.7) to update θT+∆ from the knowledge state

KT+∆−1. Because ZT is a standard normal random variable independent of XT and X̃1,

the last term in the expectation is zero, and we can write

QT−1(k, f)−G(k) = E

[
max
w̃∈W

((
(w̃⊗ X̃1)− (f̃θT+∆−1

(X̃1)⊗ X̃1)
)
θT+∆−1 (EC.19)

+
(

(w̃⊗ X̃1)− (f̃θT+∆−1
(X̃1)⊗ X̃1)

)
σ̃TZT

)
|KT−1 = k

]
.

All almost sure equalities that follow in this proof are implicitly conditioned on KT−1 = k.

Because f̃θT+∆−1
(X̃1) is a possible value for treatment w̃, for any given set of realizations

of the random variables the expression inside the expectation is non-negative and, because

by assumption QT−1(k, f)−G(k) = 0, the expression inside the expectation needs to be

almost surely zero. Because ZT has infinite support, we obtain that(
(w̃⊗ X̃1)− (f̃θT+∆−1

(X̃1)⊗ X̃1)
)
σ̃(ΣT+∆−1, f(XT ),XT ) = 0 a.s. ∀w̃ ∈W , ∀f ∈ f .

Using the definition of σ̃ in (EC.5) and replacing w̃ with f̂(X̃1) for some treatment strategy

f̂ , we obtain(
(f̂(X̃1)⊗ X̃1)− (f̃θT+∆−1

(X̃1)⊗ X̃1)
)

ΣT+∆−1(f(XT )⊗XT )> = 0 a.s. ∀f, f̂ ∈ f .

By Assumption 2, we can replace XT by X̃1 and maintain almost sure equality:

(f̂(X̃1)⊗ X̃1)ΣT+∆−1(f(X̃1)⊗ X̃1)
> = (f̃θT+∆−1

(X̃1)⊗ X̃1)ΣT+∆−1(f(X̃1)⊗ X̃1)
> a.s. ∀f, f̂ ∈ f ,

which can be rewritten as

(i⊗ X̃1)ΣT+∆−1(j⊗ X̃1)
> = (f̃θT+∆−1

(X̃1)⊗ X̃1)ΣT+∆−1(j⊗ X̃1)
> a.s. ∀i, j ∈W . (EC.20)

This implies that for any i, j ∈W ,

Cov((i⊗ X̃1)µ, (j⊗ X̃1)µ |KT+∆−1, X̃1) = (i⊗ X̃1)ΣT+∆−1(j⊗ X̃1)
>

= (f̃θT+∆−1
(X̃1)⊗ X̃1)ΣT+∆−1(j⊗ X̃1)

>

=CT+∆−1(X̃1), (EC.21)

where the second step uses (EC.20), and where CT+∆−1 is a function that does not depend

on i, j ∈W . To see why this holds, notice that for any i, we obtain the same covariance.
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Moreover, we know that (i⊗ X̃1)ΣT+∆−1(j⊗ X̃1)
> = (j⊗ X̃1)ΣT+∆−1(i⊗ X̃1)

>, so we can

repeat the same argument to show that we also obtain the same covariance for any j ∈W .

Fix a j ∈W and consider the random vector s∈Rn with components

si = (i⊗ X̃1)θT+∆−1 + (j⊗ X̃1)µ− (j⊗ X̃1)θT+∆−1,

where i = 1, . . . , n. Conditional on KT+∆−1 and X̃1, the vector s is normally distributed

with conditional mean (i⊗ X̃1)θT+∆−1 and conditional covariance matrix with all entries

equal to V((j ⊗ X̃1)µ |KT+∆−1, X̃1) = CT+∆−1(X̃1). Conditional on KT+∆−1 and X̃1, the

vector ((i⊗ X̃1)µ)i=1,...,n is also normally distributed with matching conditional mean and

covariance matrix, and therefore s and ((i⊗ X̃1)µ)i=1,2,...,n have matching distributions.

So, we have

U(θ,Σ) = E[max
w̃

(w̃⊗ X̃1)µ | θ0 = θ,Σ0 = Σ]

= E[max
w̃

(w̃⊗ X̃1)µ |KT−1 = (θ,Σ, j)]

= E[max
w̃

(w̃⊗ X̃1)µ |KT−1 = k]

= E[E[max
w̃

(w̃⊗ X̃1)µ |KT+∆−1, X̃1] |KT−1 = k]

= E[E[max
i
si |KT+∆−1, X̃1] |KT−1 = k]

= E[E[max
i

(i⊗ X̃1)θT+∆−1 |KT+∆−1, X̃1] |KT−1 = k]

+E

[
E[(j⊗ X̃1)µ− (j⊗ X̃1)θT+∆−1 |KT+∆−1, X̃1] |KT−1 = k

]
= E[E[max

i
(i⊗ X̃1)θT+∆−1 |KT+∆−1, X̃1] |KT−1 = k]

= E[max
i

(i⊗ X̃1)θT+∆−1 |KT−1 = k]

=G(k), (EC.22)

where the first step is the definition of U ; the second step follows because U does not

depend on the pipeline, and because U depends on the knowledge state and not on the

time index of the knowledge state; the third step is because k = (θ,Σ, j) by assumption;

the fourth step uses the tower property of expectations; the fifth step uses that s and ((i⊗

X̃1)µ)i=1,2,...,n have the same distribution; the seventh step follows because the conditional

expectations cancel out; the eighth step uses the tower property of expectations; the last

step uses (EC.18).
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We now show that G̃(θ) =U(θ,Σ). For any i, j ∈W and some function CT−1 that does

not depend on i, j ∈W , we obtain

Cov((i⊗ X̃1)µ, (j⊗ X̃1)µ |KT−1 = k, X̃1) = (i⊗ X̃1)ΣT−1(j⊗ X̃1)
>

=CT−1(X̃1).

We next justify the second equality. Consider the covariance matrix of the expected reward

(i⊗X̃1)µ for all i= 1,2, . . . , n, given knowledge state Kt: Ct(X̃1) = (W ⊗X̃1)Σt(W ⊗X̃1)
>,

for ∆ + 1 ≤ t ≤ T + ∆, where W ⊗ X̃1 is defined by (EC.1) and is a n× |Ξ|-dimensional

matrix. We proceed to show by induction that Ct(X̃1) =Ct(X̃1)Ln for some function Ct,

for ∆+1≤ t≤ T +∆−1, where Ln is the square matrix of dimension n×n with all entries

equal to one. For the base case, by (EC.21), we know that CT+∆−1(X̃1) =CT+∆−1(X̃1)Ln.

For the inductive step, suppose that Ct(X̃1) =Ct(X̃1)Ln for some function Ct, for ∆ + 2≤
t≤ T + ∆− 1. Then, using the Bayesian updating equations9 for Σt, we obtain

Ct−1(X̃1) = (W ⊗ X̃1)Σt−1(W ⊗ X̃1)
>

= (W ⊗ X̃1)

(
Σt +

Σt(Wt−∆⊗Xt−∆)>(Wt−∆⊗Xt−∆)Σt

σ2− (Wt−∆⊗Xt−∆)Σt(Wt−∆⊗Xt−∆)>

)
(W ⊗ X̃1)

>

= (W ⊗ X̃1)Σt(W ⊗ X̃1)
>+

(W ⊗ X̃1)Σt(Wt−∆⊗Xt−∆)>(Wt−∆⊗Xt−∆)Σt(W ⊗ X̃1)
>

σ2− (Wt−∆⊗Xt−∆)Σt(Wt−∆⊗Xt−∆)>
.

Given the assumption that Ct(X̃1) = (W ⊗X̃1)Σt(W ⊗X̃1)
> =Ct(X̃1)Ln for some function

Ct, the matrix (W ⊗ X̃1)Σ
1/2
t , where Σ

1/2
t is the symmetric positive semi-definite square

root of Σt = Σ
1/2
t Σ

1/2
t , can be shown to be a matrix in which every row is the same.

Therefore, the second summand in the equation above is a matrix multiplication where the

first factor (W ⊗ X̃1)Σ
1/2
t is a n× |Ξ| matrix with all rows the same, and the last factor is

its transpose, Σ
1/2
t (W ⊗ X̃1)

>, a |Ξ|×n matrix with all columns the same. As a result, the

second summand is overall a matrix with all entries equal.10 Thus, Ct−1(X̃1) is the sum of

two matrices, each one of which has all entries equal. That is, Ct−1(X̃1) =Ct−1(X̃1)Ln for

some function Ct−1, and the induction is complete. It follows that CT−1(X̃1) =CT−1(X̃1)Ln

for some function CT−1.

9 (6b) solves for Σt as a function of Σt−1. To express Σt−1 as a function of Σt, we solve the updating equation (EC.2b)
for Σt1 and then apply the Sherman-Morrison-Woodbury matrix identity.

10 Let a = [a1 a2 . . . a|Ξ|]
> be a column vector and M = [m1 m2 . . . m|Ξ|] an arbitrary |Ξ| × |Ξ| square matrix

where column vectors a,m1, . . . ,m|Ξ| all have dimensions |Ξ| × 1. Then, [a a . . . a︸ ︷︷ ︸
n times

]>M[a a . . . a︸ ︷︷ ︸
n times

] is a matrix where

all entries are the same and equal to
∑|Ξ|
i=1 a

>miai.
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The remaining steps are analogous to the argument above to show that G(k) =U(θ,Σ).

For i= 1,2, . . . , n, let

s̃i = (i⊗ X̃1)θ+ (j⊗ X̃1)µ− (j⊗ X̃1)θ,

which, conditional on KT−1 = k and X̃1, is normally distributed with conditional mean

(j⊗X̃1)θ and conditional covariance matrix with all entries equal to V((j⊗X̃1)µ |KT−1 =

k, X̃1) =CT−1(X̃1). Finally,

U(θ,Σ) = E[max
w̃

(w̃⊗ X̃1)µ | θ0 = θ,Σ0 = Σ]

= E[max
w̃

(w̃⊗ X̃1)µ |KT−1 = k]

= E[E[max
w̃

(w̃⊗ X̃1)µ |KT−1 = k, X̃1] |KT−1 = k]

= E[E[max
i
s̃i |KT−1 = k, X̃1] |KT−1 = k]

= E[E[max
i

(i⊗ X̃1)θ |KT−1 = k, X̃1] |KT−1 = k]

+E

[
E[(j⊗ X̃1)µ− (j⊗ X̃1)θ |KT−1 = k, X̃1] |KT−1 = k

]
= E[E[max

i
(i⊗ X̃1)θ |KT−1 = k, X̃1] |KT−1 = k]

= E[max
i

(i⊗ X̃1)θ |KT−1 = k]

= E[max
i

(i⊗ X̃1)θ]

= G̃(θ),

where the eighth step follows because θ is fixed and therefore the only random variable

inside the expectation is X̃1, which does not depend on KT−1; the ninth step is the definition

of G̃ in (EC.12); and the rest of the steps mirror the steps for deriving (EC.22). �

Remark EC.1. While the optimal allocation policy converges to the oracle’s value, this

does not imply that all parameters µ are learned perfectly. If the distribution Fx̃ has zero

probability of observing certain types of patients, then it will not be necessary to learn all

the parameters µ in order to attain an optimal value.11 To guarantee an optimal value, the

proof of Lemma EC.2 requires that all types of patients that will be observed post-trial be

also observed in the trial, mathematically stated as Fx̃ being absolutely continuous with

respect to Fx (Assumption 2).

11 Following Example 1, if type B patients are not observed in the post-trial patients, then there is no real value in
learning coefficients µ1,1 and µ2,1, which are only used in the response model for type B patients.
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Corollary EC.4. If for some θ,Σ, f there is a j such that QT−1(θ,Σ, j, f) =G(θ,Σ, j),

then QT−1(θ,Σ, j
′, f) =G(θ,Σ, j′) for any j′.

Proof. Notice that the premise is similar to that of Lemma EC.2, where the only differ-

ence is that the premise in this corollary is only stated for a fixed f instead of all possible

treatment strategies. Thus, the steps in the proof of Lemma EC.2 leading up to (EC.20)

hold with the only difference that they do not hold for any j ∈W but only for allocation

f , so we can conclude:

(i⊗ X̃1)ΣT+∆−1(f(X̃1)⊗ X̃1)
> = (f̃θT+∆−1

(X̃1)⊗ X̃1)ΣT+∆−1(f(X̃1)⊗ X̃1)
> a.s. ∀i∈W .

(EC.23)

In addition, the reverse argument also holds, i.e., if (EC.23) holds then QT−1(θ,Σ, j, f) =

G(θ,Σ, j). To see this, notice that, when (EC.23) holds, then(
(w̃⊗ X̃1)− (f̃θT+∆−1

(X̃1)⊗ X̃1)
)
σ̃(ΣT+∆−1, f(XT ),XT ) = 0 a.s. ∀w̃ ∈W ,

and (EC.19) becomes

QT−1(k, f)−G(k) = E

[
max
w̃∈W

(
(w̃⊗ X̃1)− (f̃θT+∆−1

(X̃1)⊗ X̃1)
)
θT+∆−1

]
= E

[
max
w̃∈W

(
(w̃⊗ X̃1)θT+∆−1

)
− (f̃θT+∆−1

(X̃1)⊗ X̃1)θT+∆−1

]
= 0,

where the last equality follows by the definition of f̃θT+∆−1
.

Using the same logic we used to arrive to (EC.21) in the proof of Lemma EC.2, we

obtain that for any i∈W ,

Cov((i⊗ X̃1)µ, (f(X̃1)⊗ X̃1)µ |KT+∆−1, X̃1) = (i⊗ X̃1)ΣT+∆−1(f(X̃1)⊗ X̃1)
>

= (f̃θT+∆−1
(X̃1)⊗ X̃1)ΣT+∆−1(f(X̃1)⊗ X̃1)

>

= C̃T+∆−1(X̃1), (EC.24)

where the function C̃T+∆−1(·) does not depend on i∈W . (The function C̃T+∆−1(·) here is

analogous to the function CT+∆−1(·) in the proof of Lemma EC.2.)

For any t = ∆ + 1, . . . , T + ∆, let C̃t(X̃1) = (W ⊗ X̃1)Σt(f(X̃1) ⊗ X̃1)
> be the n-

dimensional column vector that represents the covariances between (i⊗X̃1)µ and (f(X̃1)⊗
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X̃1)µ for all i = 1,2, . . . , n, given knowledge state Kt. We proceed to show by induc-

tion that C̃t(X̃1) = C̃t(X̃1)1n for some function C̃t, for ∆ + 1 ≤ t ≤ T + ∆− 1, where 1n

is the n-dimensional column vector with all elements equal to one. For the base case,

by (EC.24), we know that C̃T+∆−1(X̃1) = C̃T+∆−1(X̃1)1n. For the inductive step, suppose

that C̃t(X̃1) = (W ⊗ X̃1)Σt(f(X̃1)⊗ X̃1)
> = C̃t(X̃1)1n for some function C̃t, for ∆ + 2 ≤

t ≤ T + ∆− 1. Then, using the Bayesian updating equations for Σt that we used in the

proof of Lemma EC.2, we obtain

C̃t−1(X̃1) =(W ⊗ X̃1)Σt−1(f(X̃1)⊗ X̃1)
>

=(W ⊗ X̃1)

(
Σt +

Σt(Wt−∆⊗Xt−∆)>(Wt−∆⊗Xt−∆)Σt

σ2− (Wt−∆⊗Xt−∆)Σt(Wt−∆⊗Xt−∆)>

)
(f(X̃1)⊗ X̃1)

>

=(W ⊗ X̃1)Σt(f(X̃1)⊗ X̃1)
>

+
(W ⊗ X̃1)Σt(Wt−∆⊗Xt−∆)>(Wt−∆⊗Xt−∆)Σt(f(X̃1)⊗ X̃1)

>

σ2− (Wt−∆⊗Xt−∆)Σt(Wt−∆⊗Xt−∆)>
.

Given the assumption that C̃t(X̃1) = (W ⊗ X̃1)Σt(f(X̃1) ⊗ X̃1)
> = C̃t(X̃1)1n for some

function C̃t, (W ⊗ X̃)Σt is a matrix in which every row is the same. Therefore, the second

summand in the equation above, which is the product of matrix (W ⊗ X̃1)Σt and a |Ξ|×1

vector, is a vector with all its elements equal to each other. Thus, C̃t−1(X̃1) is the sum of

two vectors, each one of which has all elements equal. That is, C̃t−1(X̃1) = C̃t−1(X̃1)1n for

some function C̃t−1, and the induction is complete. It follows that C̃T−1(X̃1) = C̃T−1(X̃1)1n

for some function C̃T−1.

Suppose now that we change the pipeline to be any j′ and let θ′t and Σ′t be the pos-

terior mean and covariance matrix, respectively, for t = T,T + 1, . . . , T + ∆− 1. For any

t = T − 1, . . . , T + ∆− 1, let C̃′t(X̃1) = (W ⊗ X̃1)Σ
′
t(f(X̃1)⊗ X̃1)

> be the n-dimensional

column vector that represents the covariances between (i⊗ X̃1)µ and (f(X̃1)⊗ X̃1)µ for

all i = 1,2, . . . , n, given knowledge state (θ′t,Σ
′
t, j
′) and patient covariates X̃1. Using the

same induction argument as above, but now forward in time, we use as a base case that

C̃′T−1(X̃1) = C̃T−1(X̃1) = C̃T−1(X̃1)1n, and can show that C̃′t(X̃1) = C̃ ′t(X̃1)1n for some

function C̃ ′t, for t = T − 1, T, . . . , T + ∆− 1 (note that C̃ ′t(X̃1) is not necessarily equal to

C̃t(X̃1)). Therefore, we obtain that (W ⊗ X̃1)Σ
′
T+∆−1(f(X̃1)⊗ X̃1)

> is a vector with all

elements equal, and therefore that the covariances between (i⊗ X̃1)µ and (f(X̃1)⊗ X̃1)µ,
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given knowledge state (θ′T+∆−1,Σ
′
T+∆−1, j

′), are all equal to the same constant for all treat-

ments i∈W . This implies that

(i⊗ X̃1)Σ
′
T+∆−1(f(X̃1)⊗ X̃1)

> = (f̃θT+∆−1
(X̃1)⊗ X̃1)Σ

′
T+∆−1(f(X̃1)⊗ X̃1)

> a.s. ∀i∈W ,

which in turn implies that QT−1(θ,Σ, j
′, f) =G(θ,Σ, j′), where we write θ,Σ and not θ′,Σ′

because the posterior mean and covariance matrix part of the knowledge state at time

T − 1 is the same with either pipeline j and j′. �

A second lemma, Lemma EC.3, will also be used in the proof of Theorem 2 to argue,

for the purposes of contradiction, that if an allocation policy that satisfies certain prop-

erties were not asymptotically optimal, then the posterior parameters θt and Σt would

not converge almost surely, contradicting Theorem 1. Let w as an argument to QT−1(k,w)

denote a treatment strategy that assigns treatment w uniformly, regardless of the covari-

ates. Lemma EC.3 shows that if there is a positive expected value of information from

sampling the next patient to arrive with treatment w, before knowing the patient’s covari-

ates, then there is a nontrivial set S of patient covariates for which the posterior mean

of the coefficients will change if w is selected as the next treatment. This lemma holds

regardless of the allocation policy. In stating the lemma, we let Σ̃(k) represent the updated

posterior covariance matrix after observing the outcomes of all the patients in the pipeline

state of k. For instance, at time t, we use (EC.10) with t1 = t and t2 = t+ ∆ to obtain:

Σ̃(Kt) := Σt+∆ = Σt− σ̃(Σt,W(t−∆′t+1):(t),X(t−∆′t+1):(t))σ̃
>(Σt,W(t−∆′t+1):(t),X(t−∆′t+1):(t)).

Lemma EC.3. Assume T ≥ ∆ + 1. If k ∈ KT satisfies QT−1(k,w) > G(k) for some

w ∈W , then there exists some set S ⊆X (S may depend on k and w) such that

1. P(Xt ∈ S)> 0 (for a generic Xt, not conditioned on KT−1),

2. qT−1(k,x,w)>G(k) for x∈ S, and

3. ||σ̃(Σ̃(k),w,x)||2 > 0 for x∈ S.

Proof. Suppose QT−1(k,w) = E[qT−1(k,XT ,w) | KT−1 = k] > VT (k). Recall that

qT−1(k,x,w)≥ VT (k) =G(k) for any k, x, and w by Proposition EC.2. It follows that there

exists a set S ⊂X such that qT−1(k,x,w)>G(k) for x∈ S and P(XT ∈ S)> 0.

We let k = (θ,Σ, j), and write qt(k,x,w) as in the proof of Proposition EC.2 and G(k)

as in the proof of Lemma EC.2, to obtain:

qT−1(k,x,w)−G(k)
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= E

[
max
w̃∈W

(
(w̃⊗ X̃1)θT+∆

)
|KT−1 = k,XT = x,WT =w

]
−E

[
max
w̃∈W

(
(w̃⊗ X̃1)θT+∆−1

)
|KT−1 = k

]
= E

[
max
w̃∈W

(
(w̃⊗ X̃1)

(
θ+ σ̃(Σ,W(T−∆):(T ),X(T−∆):(T ))Z(T−∆):(T )

))
|KT−1 = k,XT = x,WT =w

]
−E

[
max
w̃∈W

(
(w̃⊗ X̃1)

(
θ+ σ̃(Σ,W(T−∆):(T−1),X(T−∆):(T−1))Z(T−∆):(T−1)

))
|KT−1 = k

]
= E

[
max
w̃∈W

(
(w̃⊗ X̃1)

(
θ+ σ̃(Σ,W(T−∆):(T−1),X(T−∆):(T−1))Z(T−∆):(T−1)

+ σ̃(Σ̃(k),w,x)ZT
))
|KT−1 = k,XT = x,WT =w

]

−E

[
max
w̃∈W

(
(w̃⊗ X̃1)

(
θ+ σ̃(Σ,W(T−∆):(T−1),X(T−∆):(T−1))Z(T−∆):(T−1)

))
|KT−1 = k

]
,

where we have used (EC.9) to update θT+∆−1 and θT+∆. Suppose to the contrary of claim

3 that σ̃(Σ̃(k),w,x) is the zero vector for x∈ S. Then, qT−1(k,x,w)−G(k) = 0 for x∈ S.

This provides the necessary contradiction to prove claim 3. �

EC.3.3.3. Combining lemmas to prove Theorems 2 and 3. We now combine Lem-

mas EC.1, EC.2, and EC.3 to prove the consistency results. While the preceding lemmas

and propositions hold for any allocation policy, or only the optimal allocation policy, The-

orem 2 constrains the set of allocation policies to those that sample the treatment with

the largest one-step look-ahead value with positive probability. The allocation policies

introduced in Section 4 will be shown to satisfy this condition in the proof of Theorem 3.

We define Q(k, f) = QT−1(k, f) (value of sampling one more patient with treatment

strategy f before sampling stops), and q(k,x,w) = qT−1(k,x,w) (value of sampling one

more patient with covariates x and treatment w before sampling stops) to clarify that the

one-step look-ahead value only depends on the knowledge state and not the time. In fact,

while the mathematical definition of qT−1 is specific for the time T − 1, it is easy to see

that the definition is equivalent for any other time, as long as the implementation decision

is made after ∆ time steps:

q(k,x,w) = qT−1(k,x,w) :=E

[
max
w̃∈W

(w̃⊗ X̃1)θT+∆ |KT−1 = k,XT = x,WT =w

]
=E

[
max
w̃∈W

(w̃⊗ X̃1)θt+∆ |Kt−1 = k,Xt = x,Wt =w

]
,

for all t= 1,2, . . . , T . Also important in the proof is that the fEVI indices in our alloca-

tion policy can be expressed in terms of q. That is, we have that νt(x,w) = q(Kt,x,w)−
G(Kt), which follows by (12) because q(Kt,x,w) = E

[
maxw̃∈W (w̃⊗ X̃1)θt+∆+1 |Kt,Xt+1 =

x,Wt+1 =w
]

and G(Kt) = E

[
maxw̃∈W (w̃⊗ X̃1)θt+∆ |Kt

]
.
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Theorem 2 Let allocation policy π be such that, for 0 ≤ t ≤ T − 1, if νt(x,w) ≥

νt(x, v) ∀v ∈W , then there exists a δ > 0 so that Pπ(Wt+1 =w |Kt,Xt+1 = x)≥ δ. Then, π

is asymptotically optimal.

Proof. For this proof, assume the probability measure Pπ induced by the allocation

policy π that satisfies the premise of the theorem. Here, we may separately handle the

components of the knowledge state, so the input to value functions is given explicitly by

θt, Σt, and Jt, instead of only Kt = (θt,Σt,Jt) ∈Kt. As this is an asymptotic result as

T →∞, we assume that T ≥ t≥∆ + 1, and thus that Jt is a full pipeline of ∆ patients.

For a given Kt = k, we have νt(x,w) = q(k,x,w)−G(k). Therefore, the premise of the

theorem can be rewritten as follows: if q(k,x,w)≥ q(k,x, v) ∀v ∈W , then Pπ(Wt+1 = w |

Kt,Xt+1 = x)≥ δ > 0.

Let A⊂W be a given nonempty subset of treatments. Let EA be the event that there

is positive expected value, asymptotically, in treating the next patient with treatments

in A (i.e., Q(θπ∞,Σ
π
∞, j,w) > G(θπ∞,Σ

π
∞, j) for at least one j for w ∈ A) and that there is

zero expected value, asymptotically, in treating the next patient with a treatment not in

A (i.e., Q(θπ∞,Σ
π
∞, j,w) = G(θπ∞,Σ

π
∞, j) for at least one j and for w /∈ A), where the j in

these statements has ∆ patients. Note also that, by Corollary EC.1, Q(θπ∞,Σ
π
∞, j,w) ≥

G(θπ∞,Σ
π
∞, j) for any treatment w. Therefore, by Corollary EC.4, the above definition of

EA is equivalent to:

EA = {ω ∈Ω : ∀j : Q(θπ∞(ω),Σπ
∞(ω), j,w)>G(θπ∞(ω),Σπ

∞(ω), j)) ∀w ∈A

and Q(θπ∞(ω),Σπ
∞(ω), j,w) =G(θπ∞(ω),Σπ

∞(ω), j) ∀w /∈A}.

The events EA are exhaustive, i.e, P(
⋃
A∈2W EA) = 1. We will show that Pπ(EA) = 0 for

any nonempty A and use Lemma EC.2 to complete the proof.

By Theorem 1, a random vector θπ∞ and a random matrix Σπ
∞ exist such that θt converges

to θπ∞ and Σt converges to Σπ
∞ almost surely. Thus, we restrict to the sample paths that

converge: let D = {ω ∈ Ω : limt→∞ θt(ω) = θπ∞(ω) and limt→∞Σt(ω) = Σπ
∞(ω)}. Because

Pπ(D) = 1, we have that Pπ(EA) = Pπ(EA ∩D).

Frazier et al. (2009) prove asymptotic optimality of their algorithm by showing that the

event EA ∩D is empty. In our case, EA ∩D is not empty because the randomly observed
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covariates may lead us to observe only a subset of values of covariates.12 So, we prove the

weaker result that its probability is zero.

Suppose, for purposes of contradiction, that Pπ(EA ∩ D) > 0. In the remainder of

this proof we focus on sample paths ω in EA ∩ D. By Lemma EC.3, for any ω ∈

EA ∩ D and any w ∈ A, there is a set Sw(ω) ⊂ X such that P({ω′ ∈ Ω : Xt(ω
′) ∈

Sw(ω)}) > 0 and q(θπ∞,Σ
π
∞, j,x,w) > G(θπ∞,Σ

π
∞, j) for x ∈ Sw(ω) and all j. Moreover,

because Q(θπ∞,Σ
π
∞, j, v) = G(θπ∞,Σ

π
∞, j) for any ω ∈ EA ∩ D and v /∈ A, we have that

q(θπ∞,Σ
π
∞, j,x, v) =G(θπ∞,Σ

π
∞, j) for x∈ Sw(ω) and all j. By the continuity of q in θ and Σ

(Proposition EC.1), there exists a t̃1(ω) such that, for all t≥ t̃1(ω),

|q(θt,Σt, j,x,w)− q(θπ∞,Σπ
∞, j,x,w)|< q(θπ∞,Σ

π
∞, j,x,w)−G(θπ∞,Σ

π
∞, j)

2
, (EC.25)

where we just apply the definition of continuity with ε= q(θπ∞,Σ
π
∞,j,x,w)−G(θπ∞,Σ

π
∞,j)

2
. Similarly,

there exists a t̃2(ω) such that, for all t≥ t̃2(ω),

|q(θt,Σt, j,x, v)−G(θπ∞,Σ
π
∞, j)|= |q(θt,Σt, j,x, v)− q(θπ∞,Σπ

∞, j,x, v)|

<
q(θπ∞,Σ

π
∞, j,x,w)−G(θπ∞,Σ

π
∞, j)

2
. (EC.26)

It follows that there is a t̃(ω), equal to max(t̃1(ω), t̃2(ω)), such that

q(θt,Σt, j,x,w)> q(θt,Σt, j,x, v) for w ∈A, v /∈A, x∈ Sw(ω) (EC.27)

for all t≥ t̃(ω) and any pipeline j. For ease of notation, in the sequel we drop the ω from

notations Sw(ω) and t̃(ω).

Let fq,t(x) = arg maxw∈W q(θt,Σt,Jt,x,w) be the set of treatments with the largest one-

step look-ahead value. By assumption, allocation policy π samples each of the treatments

in fq,t(Xt+1) with probability at least δ. Thus, when Xt+1 ∈ Sw and w ∈ fq,t(Xt+1) for t≥ t̃

(an event with positive probability), treatment w is sampled with probability at least δ.

In addition, for t ≥ t̃, if Xt+1 ∈ Sw for some w ∈ A, then fq,t(Xt+1) ⊆ A because (EC.27)

implies that q(θt,Σt,Jt,Xt+1,w)> q(θt,Σt,Jt,Xt+1, v) for v /∈A, thus excluding all v /∈A

from fq,t(Xt+1). In other words, we can separate the so-called q-factors for treatments in

A and out of A for all j, for all sufficiently large t.

12 Recall Example 1. Suppose that you know exactly how treatment 1 works for patient type A but you need lo learn
how treatment 2 works on patient type B. If you only observe type A patients (an event in Ω), then you cannot learn
enough about type B, and will only sample treatment 2, which is the only treatment providing any learning benefits.
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For a given ω ∈ EA ∩D, let S = S(ω) =
⋃
w∈ASw(ω). By Lemma EC.3 (item 1), S has

measure strictly greater than 0. For ω /∈ EA ∩ D, let S = S(ω) = ∅. Let || · ||F be the

Frobenius matrix norm. By (EC.8),

||σ̃(Σt+∆,Wt+1,Xt+1)σ̃
>(Σt+∆,Wt+1,Xt+1)||F = ||Σt+∆+1−Σt+∆||F .

By Lemma EC.3 (item 3), if Xt+1 ∈ S and Wt+1 ∈ fq,t(Xt+1), there is a scalar C =C(ω)> 0

such that the vector norm ||σ̃(Σt+∆,Wt+1,Xt+1)||2 ≥ C > 0 for t≥ t̃. In that case, by the

definition of the Frobenius norm,

||σ̃(Σt+∆,Wt+1,Xt+1)σ̃
>(Σt+∆,Wt+1,Xt+1)||F = ||σ̃(Σt+∆,Wt+1,Xt+1)||22 ≥C2 > 0

(EC.28)

for all t≥ t̃. We can make a similar argument for all ω ∈EA ∩D. Thus, we find that

Pπ
(

lim sup
t→∞

{
||Σt+∆+1−Σt+∆||F ≥C2

}
|EA ∩D

)
= Pπ

(
lim sup
t→∞

{||σ̃(Σt+∆,Wt+1,Xt+1)||2 ≥C} |EA ∩D
)

≥ Pπ
(

lim sup
t→∞

{Xt+1 ∈ S,Wt+1 ∈ fq,t(Xt+1)} |EA ∩D
)
,

where the equality follows from (EC.28), and the inequality follows by the construction of

C in terms of the event {Xt+1 ∈ S,Wt+1 ∈ fq,t(Xt+1)} in the text before (EC.28). Because

S(ω) = ∅ for ω /∈EA ∩D, we have P(Xt+1 ∈ S,Wt+1 ∈ fq,t(Xt+1 | (EA ∩D)c) = 0 and for all

t > t̃

Pπ(Xt+1 ∈ S,Wt+1 ∈ fq,t(Xt+1) |EA ∩D)

=
Pπ(Xt+1 ∈ S,Wt+1 ∈ fq,t(Xt+1))−Pπ(Xt+1 ∈ S,Wt+1 ∈ fq,t(Xt+1) | (EA ∩D)c)Pπ((EA ∩D)c)

Pπ(EA ∩D)

=
Pπ(Xt+1 ∈ S,Wt+1 ∈ fq,t(Xt+1))

Pπ(EA ∩D)

=
Pπ(Wt+1 ∈ fq,t(Xt+1)) |Xt+1 ∈ S)Pπ(Xt+1 ∈ S)

Pπ(EA ∩D)

≥ δPπ(Xt+1 ∈ S)

Pπ(EA ∩D)

=
δ (Pπ(Xt+1 ∈ S |EA ∩D)Pπ(EA ∩D) +Pπ(Xt+1 ∈ S | (EA ∩D)c)P(EA ∩D)c)

Pπ(EA ∩D)

=
δPπ(Xt+1 ∈ S |EA ∩D)Pπ(EA ∩D)

Pπ(EA ∩D)
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= δPπ(Xt+1 ∈ S |EA ∩D) (EC.29)

> 0,

where the first equality is an application of the total probability theorem, the first inequality

follows by the assumption on the policy π, and the last inequality follows because, for

ω ∈ EA ∩D, {Xt+1 ∈ S} is an event with positive probability for all t by Lemma EC.3.

Because Xt+1 are independent and identically distributed, the expression in (EC.29) is

bounded below by a positive constant for any t, and we obtain that lim supt→∞Pπ(Xt+1 ∈

S,Wt+1 ∈ fq,t(Xt+1) |EA ∩D)> 0. The probability of the limsup event is at least as large

as the limsup of the probability (Billingsley 2008, Theorem 4.1), therefore

Pπ
(

lim sup
t→∞

{Xt+1 ∈ S,Wt+1 ∈ fq,t(Xt+1)} |EA ∩D
)
> 0.

However, the convergence of the sequence Σt in the event D implies that

Pπ (lim supt→∞ {||Σt+∆+1−Σt+∆||F ≥C2} |EA ∩D) = 0. This contradicts the result of the

preceding displayed equations, that Pπ(lim supt→∞ {||Σt+∆+1−Σt+∆||F ≥C2} |EA∩D)> 0.

Thus, we conclude that Pπ(EA ∩D) = 0, and therefore that Pπ(EA) = 0.

The above argument holds for an arbitrary nonempty subset of treatments A, so we

conclude that Pπ(EA) = 0 for any nonempty A and Pπ(E∅) = 1, i.e., for all j and for all

w ∈W , Q(θπ∞,Σ
π
∞, j,w) =G(θπ∞,Σ

π
∞, j) almost surely. By Lemma EC.2, we get

G̃(θπ∞) =U(θπ∞,Σ
π
∞) a.s. (EC.30)

We can now write

V π(K0;∞) = E[G̃(θπ∞) |K0]

= E[U(θπ∞,Σ
π
∞) |K0]

= E

[
E

[
max
w̃∈W

(w̃⊗ X̃1)µ | θπ∞,Σπ
∞

] ∣∣∣∣ K0

]
= E

[
max
w̃∈W

(w̃⊗ X̃1)µ |K0

]
= E

[
max
w̃∈W

(w̃⊗ X̃1)µ | θ0,Σ0

]
=U(θ0,Σ0).
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Here, the first equality is by Corollary EC.3, the second equality is by (EC.30), the third

equality is by the definition of U , the fourth equality is by the tower property of expec-

tations, the fifth equality follows because the empty pipeline of K0 does not affect the

expectation, and the sixth equality is by the definition of U(θ0,Σ0). �

Finally, we show that each of the allocation policies fEVI, fEVI-rand, and

fEVI-MC-rand satisfy the premise of Theorem 2, justifying their asymptotic optimality.

Theorem 3. Allocation policies fEVI, fEVI-rand, and fEVI-MC-rand are asymptoti-

cally optimal.

Proof. We show that the allocation policies satisfy the premise of Theorem 2, which

will complete the proof. That is, we show that the allocation policies sample the treatment

w with the largest νt(Xt+1,w) with positive probability.

Allocation policy fEVI is defined to sample a treatment w with the largest index

νt(Xt+1,w). Considering that ties for the largest index are broken uniformly at random,

and that there are n treatments, choosing δ = 1/n allows the hypothesis of Theorem 2 to

be satisfied.

Allocation policies fEVI-rand and fEVI-MC-rand potentially sample a treatment with

largest index in two ways. They sample a treatment prescribed by the fEVI and fEVI-MC

allocation policies, respectively, with probability 1−ε > 0. Moreover, they sample uniformly

at random with probability ε > 0. Thus, selecting δ = (1 − ε)/n + ε/n = 1/n allows the

hypothesis of Theorem 2 to be satisfied. �

Remark EC.2. The use of Theorem 2 to prove the asymptotic optimality of the fEVI-

MC allocation policy is less obvious. There is a nonstationarity in the fEVI-indices being

estimated, and it may be hard to prove that the index with highest value is sampled with a

probability bounded below by a specified fixed δ > 0 for all t. However, we observe that the

fEVI-MC allocation policy gives an optimal index to maximize the conditional expected

reward of sample information, for the special case of ηon = ηoff = 1, conditional on the

sampled posterior at time θt+∆, the patients in pipeline given Kt, and the covariates Xt+1

of the next patient to assign to an arm. This follows because the naive MC estimator of

the fEVI-index in (12), conditional on these quantities, becomes a correlated knowledge

gradient (cKG) calculation – the only remaining uncertainty is the univariate outcome
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Yt+1, conditional on the other random quantities. Frazier et al. (2009) has shown the one-

step and asymptotic optimality of cKG. Our fEVI-MC indices are MC averages of such

(conditionally) optimal cKG indices, which explains their usefulness in numerical examples.

EC.4. Comparator Policies in Numerical Experiments

We describe in detail the TS, TTTS, BATTLE*, and BC* policies used in Section 7.

Thompson sampling (TS). Treatments are allocated to a patient with given covariate vec-

tor Xt+1 according to the probability each treatment is the best. This is implemented by

drawing a sample from the posterior mean reward for each treatment, and selecting the

treatment with the largest expected outcome given the sampled mean, as is often done in

practice (Russo 2020).

Top-two Thompson sampling (TTTS). Russo (2020) defines this adaptation of Thompson

sampling as follows. Draw a sample of the posterior mean θt+1 |Kt ∼N (θt,Σt). Compute

the expected outcomes of each treatment γw = (w⊗Xt+1)θt+1, where θt+1 here represents

the drawn sample. With probability β allocate the treatment I = arg maxw γw (using the

Thompson sampling policy). With probability 1− β, we continue drawing samples of the

posterior mean and finding the treatment with the largest expected outcome until we get

a draw in which the treatment with the largest expected outcome is not equal to I, and

allocate that treatment. We limit the number of draws to 100 to limit the time the policy

takes to make an allocation. We use β = 0.5 following the recommendation of Russo (2020).

BATTLE*. The BATTLE trial policy (Zhou et al. 2008) was designed for 0-1 outcomes,

i.e., Yt = 1 if the treatment was successful and Yt = 0 if the treatment failed. It allocates a

treatment with probability proportional to the current probability that the treatment will

be successful, among treatments whose probability exceeds a threshold.

Because our model considers continuous outcomes (Yt ∈R), we use the following BAT-

TLE* procedure to mimic the spirit of the BATTLE trial policy:

1. Compute the expected outcome for the current patient for each treatment: γw = (w⊗

Xt+1)θt for w ∈W .

2. Compute the sample mean µγ and sample standard deviation σγ of the expected

outcomes γw for w ∈W .

3. Compute a lower threshold γlt = µγ − zασγ. We use zα = 2.

4. Allocate each treatment with probability proportional to max{0, γw− γlt}.
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Because treatments with low expected outcomes will have a γw below γlt, their probabil-

ity of assignment is zero, effectively dropping those treatments from the choice for this

specific time t. Therefore, similar to the BATTLE trial policy, BATTLE* allocates with

probabilities proportional to the expected outcomes13 (shifted by a lower threshold) and

drops treatments that are unlikely to be best for the next treatment allocation.

Biased coin (BC*). Pocock and Simon (1975) describe a general algorithm to balance

prognostic covariates across treatment arms. The biased coin scheme of Pocock and Simon

(1975) requires a distance function (for calculating distance between arms with respect to

a covariate value), an aggregating function (for aggregating distances across dimensions

of covariates), and probabilities of assigning treatments given the resulting scores. In this

section, we describe our choices for those.

We split patients into groups with respect to their covariates, where each group corre-

sponds to a unique combination of values for the covariates, and where the covariates are

assumed to be discrete. We index the patient groups by l= 1,2, . . . ,mpred. If there are no

predictive covariates, then mpred = 1 and all patients fall within the same group. Suppose

also that we have mprog prognostic covariates and covariate k, with k= 1,2, . . . ,mprog, can

take Mk distinct values, which we refer to as levels. We also include a covariate with index

k = 0 and M0 = 1 to represent the intercept term, a covariate with only one level that all

patients share. Let xl,k,j,i represent the number of patients in group l ∈ {1,2, . . . ,mpred}

with prognostic covariate k ∈ {0,1, . . . ,mprog} at level j ∈ {1,2, . . . ,Mk} that have been

assigned to receive treatment i∈W .

When a new patient is enrolled, let xwl,k,j,i be the counts that would be obtained if

the patient was allocated to treatment w ∈W . (These counts depend on the time t, but

we suppress t to avoid further indices in subscripts.) For each prognostic covariate k =

1,2, . . . ,mprog, we can compute a distance dk,w that captures the imbalance of the allocation

of covariate k into the treatment arms if we were to allocate this patient to treatment arm

w. Pocock and Simon (1975) propose several distance functions and we use the sample

variance (their first suggestion):

dk,w =

∑
i∈W

(
xw
l̂,k,ĵ,i
−
∑
i∈W

xw
l̂,k,ĵ,i

/n

)2
/(n− 1),

13 The expected outcome of a Bernoulli 0-1 variable is the probability of success.
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where l̂ and ĵ are, respectively, the group and the level of the covariate k for the newly

arrived patient.

After obtaining the distance for each prognostic covariate, we need to aggregate the

distances into a score Gw that represents the total amount of imbalance. We follow the

recommendation of Pocock and Simon (1975) to use a weighted sum with weights uk: Gw =∑mprog
k=0 ukdk,w. We let u0 = 0 and uk = 1 for k = 1,2, . . . ,mprog, unless otherwise specified.

Setting u0 = 0 balances prognostic covariates. Setting u0 > 0 not only balances prognostic

covariates across treatment arms, but also balances treatment arms for the given group of

the new patient to enroll.

Finally, we sort the treatments from lowest to highest score (breaking ties at random) and

sample each with probability pi for i= 1,2, . . . , n, where p1 is the probability of assigning

the treatment with lowest score and pn is the probability of assigning the treatment with

highest score. To promote a reduction in imbalance, i.e., treatments with lower score, pi

should be non-increasing. We set p1 = 0.5 and pi = 0.5/(n− 1) for i= 2,3, . . . , n following

one of the recommendations of Pocock and Simon (1975).

Thus, our BC* algorithm is an extension of the biased coin randomization scheme in

Pocock and Simon (1975). If mpred = 1 and u0 = 0, our BC* allocation policy is equivalent

to the biased coin scheme of Pocock and Simon (1975). Moreover, we allow for some

levels of covariates to be predictive and some levels to be prognostic. Importantly, the

BC* requires a given covariate to be either predictive with respect to all treatments, or

prognostic, or neither. It is not possible, for purposes of allocation to treatments, for BC*

to allow a covariate to both be prognostic and predictive. This is different from all the

other allocation policies we consider. This has implications for comparing BC* with the

other comparator allocation policies in Section 7.

Consider our numerical example in Section 7.1.1. There, we have four Mars endotypes.

Because BC* does not allow for a covariate to be both prognostic as well as predictive

with respect to one or more treatments, we split the Mars endotyping information into two

covariates for the purposes of assessing BC* (otherwise, we could not formally apply BC* if

Mars3 were both prognostic and predictive with respect to aggressive fluids management).

The first is a binary covariate indicating whether the patient is Mars3 or not. The second

is a covariate with four levels indicating whether the patient is Mars1, 2, 4, or not. We

label the first covariate as predictive and the second one as prognostic. The caveat of this
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approach is that patients in the Mars3 endotype group will only have one possible level in

the second covariate, namely none. Therefore, this BC* scheme is promoting the balance

of the treatment arms for Mars3 patients and it is promoting the balance of all other

endotypes otherwise. This covariate splitting is used for the experiments of Figures 2a, 2b,

and 3c.

We note that the covariate splitting proposed here for allocation purposes is one possi-

ble splitting that is compatible with the setting in Section 7.1.1, while other compatible

splittings exist. Although we show results for only one possible covariate splitting in each

experiment, the performance of BC* under various compatible covariate splittings used for

allocation is similar for large enough sample size in the experiments of Section 7.2 (data

not shown). We also note that for implementation purposes, BC* in our experiments uses

the assumed regression model defined by the specified labeling, similarly to all the other

allocation policies considered.

For the experiment of Figure 2c, which explores a mislabeling where there is no predictive

covariate, BC* uses a covariate splitting where all patients belong to the same patient

group (mpred = 1) and the Mars endotypes, the APACHE score, and the idle real-valued

covariate are prognostic.

EC.5. Additional Simulation Results

Here we provide additional experiments to complement the results presented in Section 7.

Appendix EC.5.1 presents graphs for the PICS performance metric for the experiments in

Section 7 that reported the EOC performance metric. Appendix EC.5.2 presents some addi-

tional examples of the performance of our proposed fEVI family of allocations in a setting

where the labeling of potentially active covariates is incorrectly specified. Appendix EC.5.3

presents another Monte Carlo algorithm for estimating fEVI indices, and provides empir-

ical support to the assertion that our chosen fEVI-MC algorithm in the main paper

can compute indices with orders of magnitude improvement by making use of a variance

reduction enabled by results of Frazier et al. (2009). Finally, Appendix EC.5.4 presents a

numerical experiment that suggests that performance of fEVI-MC-rand is what one would

expect from combining the Monte Carlo estimation of fEVI indices in fEVI-MC together

with the randomization of fEVI-rand.
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EC.5.1. PICS for experiments in Section 7

The newly proposed allocation policies and comparator allocation policies presented in the

main paper attempt to optimize regret, or EOC. It is also of interest to assess their perfor-

mance relative to PICS, the probability that a randomly selected patient from the post-trial

population does not receive a treatment with the best mean outcome for that patient.

EOC weights particularly bad choices more than moderately poorer choices, whereas PICS

measures the probability, averaged over all patients, that the true best alternative is not

implemented. In this section, we present performance results analogous to those in Sec-

tion 7, which were measured relative to EOC, for the PICS performance measure.

Figure EC.1 presents results for PICS that correspond to the results in Figure 2 for EOC

that are in Section 7.2 and Section 7.3. The graphs have the same qualitative features for

the relative ranking of the curves for PICS here as compared to those reported for EOC

in the main paper. For example, for our given difficult fixed instance setting problem, that

was motivated by the slippage configuration of R&S, we again see in Figure EC.1a that the

slope on a log scale of the performance metric is roughly linear, and that fEVI dominates

(compare with Figure 2a). For the random instance setting, the slope of the curve is not as

steep, as this curve averages over a variety of random configurations, some of which have

slower improvement rates for all allocation policies. This explains the apparent slowing of

the slopes of the curves for all allocation policies in the random instance setting for PICS,

as also observed for EOC (similar qualitative behaviors in Figure 2b and Figure EC.1b).

Figure EC.2 presents results for PICS that correspond to the results in Figure 3 in Sec-

tion 7.4. We do see some modest changes in the magnitude of the relative performance.

For example, Figure EC.2a shows that for performance of fEVI-MC with the smallest

number of replications (e.g., ηon = 1) in the estimator for the fEVI indices, the perfor-

mance is less severely degraded for PICS as compared to a modest number of replications

(e.g., ηon ≥ 5), in comparison with this difference for EOC in the main paper (Figure 3a).

We see a similar less pronounced degradation for the PICS curve with randomization in

Figure EC.2b as compared to the EOC curve with randomization in Figure 3b. These are

questions of magnitude of difference for these graphs, however, rather than differences in

the relative performance for the different parameter settings for these curves. As such, they

do not shed substantive changes in the insights relative to those presented in the main

paper. We see similar relative comparisons for the panels dealing with approximations for
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handling continuous-values covariates (Figure EC.2c), and with the effect of delay and

ignoring information about pipeline patients in making allocations (Figure EC.2d).

Figure EC.1 Probability of incorrect selection (PICS) for policies with different labelings.
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(a) Fixed instance with known correct labeling.
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(d) All covariates potentially predictive. Random

instance.

EC.5.2. Additional results on mislabeling predictive, prognostic, and idle covariates

Which treatment interacts with a covariate is unknown. Consider that the trial manager

knows that Mars3 is the covariate that enables personalization, but is unaware that it

only interacts with treatments with liberal fluid management, and assumes instead that

Mars3 is potentially predictive with respect to all treatments (adding three coefficients).

Moreover, consider that the trial manager is unaware that treatment 4 is the only treatment

with an active treatment effect, and instead labels all treatment effects as potentially

active (adding six coefficients, as we add 23− 1 predictive coefficients but we remove the

prognostic coefficient for Mars3 to avoid overspecification). Figure EC.3a shows that this
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Figure EC.2 Effect of practical considerations on the performance of fEVI. The plots show the PICS of the

random instance setting.
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(a) fEVI-MC (with ηoff = 1, several values of ηon )
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(b) fEVI-rand (with several values of ε)
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(c) PICS when APACHE score is continuous-valued. Allocation
policies fEVI and BC* bin the APACHE score into three levels.
fEVI-MC uses ηon = 20, ηoff = 1.
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(d) Effect of delay ∆ on the PICS when using the fEVI-MC
and fEVIblind allocation policies.

mislabeling slows inference down (there are 20 instead of 11 coefficients to learn). This can

be seen because the EOC of a given allocation policy is larger in Figure EC.3a compared

to the known labeling case in Figure 2b. This labeling still allows for full personalization

(the EOC curves do not hit a nonzero asymptote). The performance ranking of the policies

remains, with fEVI having the lowest (best) EOC and Random the highest (worst).

Taking all covariates but the idle to be potentially predictive. We consider a different misla-

beling, where the trial manager labels all Mars endotypes and APACHE as potentially

predictive with respect to all treatments, with no prognostic covariate (40 instead of 11

coefficients), but does not mislabel the idle covariate. Figure EC.3b shows that inference is

slowed down compared to knowing the correct labeling (Figure 2b), but less so than in the
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setting where all of the Mars endotypes, APACHE, and the idle covariate are mislabeled

as predictive with respect to all treatments (Figure 2d).

Figure EC.3 Expected opportunity cost (EOC) for policies with different labelings.
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instance.
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Random instance.

EC.5.3. Simple Monte Carlo estimation of the fEVI policy.

To show that the fEVI-MC policy performs better than a naive Monte Carlo estimate of

the fEVI indices, we explore the performance of the fEVI-MC-simple allocation policy.

It uses a simple Monte Carlo estimation of the fEVI indices as described in Algorithm 2.

It is simple in that it draws random samples of the outcome of the current patient instead

of using the closed-form computation implemented by the fEVI-MC policy (to compute

a conditional EVI in step 13 of Algorithm 1). However, fEVI-MC-simple uses common

random numbers for posterior means to be observed when outcomes of pipeline patients

are observed as a variance reduction technique.

Figure EC.4 shows the EOC of the fEVI-MC-simple policy for different values of ηon.

We fixed ηoff = 50 because there are 4× 3 = 12 combinations of active covariates, and we

expect to observe each combination at least once with high probability in each simulated

set of ηoff = 50 post-trial patients. While the EOC for small sample sizes is not significantly

different to that of fEVI, for larger sample sizes (T > 200) we observe a small but sta-

tistically significant increase in EOC even for the largest ηon. Because the EVI decreases

exponentially with sample size, it becomes more difficult to estimate the fEVI indices.

While fEVI-MC uses a closed-form computation that can compute the logarithm of the

indices, thus reducing the difficulty of estimating smaller indices, the performance of the
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Algorithm 2 fEVI-MC-simple: Estimate fEVI indices with Monte Carlo estimates of posterior
means

1: function fEVI-MC-simple(Kt,Xt+1;ηon, ηoff)
2: Let ∆′t = min{t,∆} . Compute number of patients in pipeline.
3: for all w ∈W do . For each potential treatment for the next
4: Wt+1←w . patient, compute the preposterior
5: σ̂(w)← σ̃(Σt,W(t−∆′t+1):(t+1),X(t−∆′t+1):(t+1)) . std dev in (EC.5)
6: end for
7: for j in {1, . . . , ηon} do . Compute offline rewards for ηon replications

8: X̂1:ηoff
i.i.d.∼ Fx̃ . Sample ηoff post-trial covariates

9: Ẑ
i.i.d.∼ N (0, I∆′t+1) . Noise vector of length ∆′t + 1 (pipeline plus extra patient)

10: for all w ∈W do . Compute offline rewards when sampling each treatment
11: θ̂

(w)
j ← θt + σ̂(w)Ẑ . Posterior mean

12: V̂
(w)
j ← (1/ηoff)

∑ηoff

i=1(f̃
θ̂

(w)
j

(X̂i)⊗ X̂i)θ̂
(w)
j . Offline rewards

13: end for
14: end for
15: for all w ∈W do
16: V̂ (w)

avg ← (1/ηon)
∑ηon

i=1 V̂
(w)
j . Trial value estimated through average of offline rewards

17: end for
18: return Wt+1 = arg maxw∈W V̂ (w)

avg . Pick highest estimated value (break ties at random)
19: end function

Figure EC.4 EOC of the fEVI-MC-simple policy for different values of ηon. We fix ηoff = 50.
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fEVI-MC-simple degrades with sample size despite the use of many more replications.

Thus, we prefer the fEVI-MC allocation policy to the fEVI-MC-simple allocation policy,

and have therefore used fEVI-MC in the main paper.

EC.5.4. fEVI-MC-rand

To complement the results of Section 7.4, Figure EC.5 shows the EOC when we combine

Monte-Carlo simulation and randomization in the fEVI-MC-rand allocation policy. Similar

to the results presented in Figure 3b, we do not observe a practically significant difference
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Figure EC.5 EOC of the random instance setting for the fEVI-MC-rand for different values of ε. The fEVI-MC

indices were estimated with ηon = 5 and ηoff = 1.
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between fEVI-MC and fEVI-MC-rand for ε≤ 0.2. We only observe a practically significant

difference when ε= 0.5.

EC.6. Additional Conceptual and Practical Considerations

There are a number of interesting and related theoretical and practical considerations that

may arise for clinical trials or for the contexts in which clinical trials are run. They may

include a delay in observations, which is already in our base model, and the need for addi-

tional randomization, which is treated by our fEVI-rand and fEVI-MC-rand allocation

policies. Additional considerations may include the development of statistical power curves,

heteroskedastic patient outcomes, unknown statistical parameters, link functions for 0-

1 outcomes, longitudinal studies, response-adaptive stopping times, dynamic enrollment

decisions, online rewards, unknown labelings of covariates, and more general post-trial pop-

ulations that correspond to a range of market exclusivity agreements. Some of these are

conceptually straightforward to incorporate to our model, while others are not included in

our base model because they merit a full, in-depth analysis in separate work.

Statistical power curves. Statistical power curves can reassure trial designers and regula-

tory bodies that true effects of a given size have a sufficient probability to be identified.

This is primarily a frequentist concept, whereas our proposed fEVI-type allocation policies

are based on Bayesian methods. Fortunately, power curves can be generated by a sequence

of Monte Carlo simulation experiments (Berry 2006), with each Monte Carlo experiment

generating a probability of detecting a known true effect using a fixed instance setting (see

Section 6), and by varying that known true effect through a range of interest. This is in

line with regulatory guidance for reporting complex adaptive trials (FDA 2019).
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Heteroskedasticity. The variance of patient outcomes conditional on treatments and

patient types, V(Yt |µ,Xt,Wt), might not be constant σ2 in practice. For example, it may

be that the outcomes of all patients receiving treatment w have variance σ2
·,w, or that the

outcome of a patient with covariates x has variance σ2
x,·, or perhaps the variance depends

on the specific patient covariate/treatment combination, σ2
x,w. For these cases, one could

adapt the conjugate normal model in Assumption 3 and the Bayesian inference process in

Appendix EC.1 as follows. Firstly, one would modify Assumption 3 so that

Yt |µ,Xt,Wt
i.i.d.∼ N ((Wt⊗Xt)µ, σ

2
Xt,Wt

)

with each σ2
Xt,Wt

> 0. Secondly, the Bayesian updating would need to be adapted to account

for different variances. For the one-step updating in (6a)-(6b), we would simply replace σ2

in the denominators with σ2
Xt−∆,Wt−∆

. For the preposterior standard deviation σ̃, which we

need to characterize in order to implement the fEVI allocation policy, one would replace

σ2It in (EC.5) with the matrix that has zeros in all non-diagonal entries and has vector

(σ2
X1,W1

, σ2
X2,W2

, . . . , σ2
Xt,Wt

)> as its diagonal.

Unknown patient outcome variance. If the variance of patient outcomes is unknown, then

alternative conjugate models can be used, for example a normal-gamma model (Bernardo

and Smith 1994). Related work on Bayesian sequential learning suggests that the online

updating of estimators of outcome variances and correlations can be pragmatic and useful,

in conjunction with the robust prior manipulations of Section 6 (Powell and Ryzhov 2012,

Xie et al. 2016, Chick et al. 2021).

Link function for 0-1 outcomes. Our base model assumed real-valued observations that can

be well-approximated with a normal distribution with mean rµ(Xt,Wt) = E[Yt |µ,Xt,Wt].

There are also many trials with 0-1 responses, where logistic or other linkage function esti-

mates for the probability of a positive response are employed: e.g., the probability of a pos-

itive response may be given by a link function σ, with P (Yt = 1 |Xt,Wt) = σ(rµ(Xt,Wt)).

For example, the logistic model has σ(a) = 1/(1 + e−a) and the probit model has σ(a) =

Φ(a). Wang et al. (2016) show how to do so for contextual learning in a setting that allows

the probability of successful outcomes to depend on characteristics of the treatment and

of the patient separately, but do not explicitly consider predictive covariates (in the lan-

guage of our work). Their work nonetheless seems to provide a direct method to adapt the

predictive/prognostic linear model for real-valued outcomes here to logistic, probit, and

other models for 0-1 outcomes.
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Longitudinal studies and surrogate measures. The current work presumes that outcomes

are observed after a specific duration of time. That duration, together with the rate of

recruitment of the trial, provide the parameter ∆ that represents the number of patients

in the pipeline. Here, we consider short to medium term delays, during which a small to

moderate number of patients are recruited, so that there is time to adapt the response to

incoming data before the trial ends. In some studies, monitoring data might be available

before the final primary outcome is observed, such as in longer-term survival studies. It is

therefore of interest to incorporate surrogate measures or data arriving through time that

correlate with final outcomes before they are fully observed. Techniques of Anderer et al.

(2022) would be promising for incorporation in this context.

Adaptive stopping times. The analysis above assumed a known, fixed sample size T , as

is commonly done in related simulation optimization literature (Frazier et al. 2008, 2009,

Ryzhov et al. 2012). This is convenient for asymptotic analysis. There is practical interest

in trials whose sample size is response adaptive (e.g., Berry 2011, Williamson et al. 2017,

Pallmann et al. 2018, Villar and Rosenberger 2018, Rojas-Cordova and Bish 2018, Wang

and Yee 2019, Chick et al. 2021). The base model in Section 2 can have a response-adaptive

duration by allowing T to be a stopping time, by defining Vt(k) in the first line of (11)

for arbitrary t= 0,1, . . ., and by allowing G(Kt) to be selected at each time t in the first

line of (11) to represent the trial’s conclusion at time T = t (in addition to the treatment

choice options in that equation). We would make similar changes to the definition of the

fEVI-index in (12) to be valid for arbitrary t= 0,1, . . .. Key to implementation in practice

would be an efficient tool to compute a stopping time. See Chick et al. (2021), Eckman

and Henderson (2022) for related work on computing stopping rules.

Dynamic enrollment decisions. The main model assumes that T trial participants arrive

sequentially, and the cost of enrollment is not explicitly modeled. Our model of sequential

enrollment assumes that all patients that arrive are enrolled, yet is compatible with the

implicit modeling of the selection of T trial participants as part of a larger stream of patients

that might be eligible for the trial. Not each patient would bring the same expected value

of information if enrolled. For example, if the reward for each treatment is well known for

type A patients, but not well known for type B patients, then it may be useful to wait until

the next type B patient arrives to make an enrollment in the trial, rather than enrolling

more type A patients. To this end, it may therefore be of interest to model the variable
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cost for each trial participant, and compare that variable cost with the expected value of

information of enrolling that patient in the trial.

Online rewards. The main model in Section 2 assumes offline rewards. We note that

the bandit literature (Auer 2002) typically focuses on online rewards, the R&S literature

focuses on offline rewards (Kim and Nelson 2006, Chick 2006), and stoppable bandits

(Glazebrook 1979) can maximize the sum of online and offline rewards. In our context,

online rewards would be the cumulative expected outcomes of patients enrolled in the trial,∑T
t=1 rµ(Xt,Wt). Online rewards may be particularly relevant for rare diseases (Williamson

et al. 2017, Alban et al. 2022), and can be included in our model by adding rµ(Xt+1,Wt+1)

to each treatment option in the first line of (11).

Related work that does not consider covariates (Ryzhov et al. 2012, Chick et al. 2017)

suggests that Bellman’s equation in (11) would still give an optimal policy for the cases of

online rewards and adaptive stopping times. Moreover, Ryzhov et al. (2012) suggests an

effective heuristic for online rewards, and Chick et al. (2021) suggests it may be useful to

explore multi-step, multi-arm, lookahead indices for stopping times. A fuller exploration

of these topics merits further work.

Unknown labeling. Our base model assumes the labeling is known, corresponding to an

assumption that it is known which covariates are potentially predictive (e.g., through bio-

logical hypothesis) and which are prognostic (through medical experience). The inference

of which factors are potentially predictive is also of interest (e.g., Bastani and Bayati 2020).

This is related to the problem of model selection. Krishnamurthy and Athey (2022) dis-

cuss model selection from a set of nested models, but the set of model labelings may be

more related to partially ordered sets rather than a pure nesting of models (for example,

a covariate might be prognostic or not, as well as predictive with respect to different sets

of treatments or not). Carranza et al. (2022) also account for predictive and prognostic

effects, in the language of the current paper, and suggest that model selection is an area

for separate further work, to which we concur. Possible implementations of model selec-

tion to infer an unknown labeling include model selection using criteria such as fractional

Bayes factors, AIC and BIC (O’Hagan 1997, Kadane and Lazar 2004), variable selection

using Lasso (Bastani and Bayati 2020), and the spike and slab approach and its varia-

tions (Malsiner-Walli and Wagner 2018).
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Market exclusivity. Our base model assumes a fixed post-trial population. This allowed us

to assume P = 1 in (2), and allowed for a simplification of several results. This assumption

may be reasonable for some health technology assessments, but might not be reflective of

some forms of market exclusivity where the patent protection period is fixed, so that market

access occurs for a shorter period of time if the trial is run longer. This does not pose a

problem for a trial of fixed duration such as in our base model. If the trial’s sample size

and duration is a (random) stopping time, then the model could be adapted by allowing

the post-trial population to be decreasing in T , for example P (T ) = P · (1−T/H) for some

fixed maximum patent protection horizon H, and relevant population size P . This would

involve replacing the terminal reward G(k) of (9) with an expected reward on stopping at

time T = t under this specific model of patent protection,

Gfixed patent horizon(Kt, t) = P · (1− t/H)E[max
w̃

(w̃⊗ X̃1)θt+∆ |Kt],

and allowing for the flexibility to stop as in the adaptive stopping time extension above.

This modeling may allow for theoretical and computational results. See Alban et al. (2022)

for further discussion of these issues.
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