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Introduction 

Asset complexity can complicate the accurate valuation of assets, increasing uncertainty about their value, 

and affecting their price, volatility, and liquidity (Brunnermeier and Oehmke, 2009; Carlin, Kogan, and 

Lowery, 2013). The notion of asset complexity has garnered growing attention from academia and 

practitioners alike since the recent global financial crisis. But the focus has been mostly on financially 

structured products – e.g., asset-backed securities (ABS) and collateralized debt obligations (CDO). The 

potential impact of complexity on primary assets has been largely overlooked thus far. In this paper, we 

aim to fill this gap by studying the role of asset complexity in corporate bonds.  

While both corporate bonds and stocks base their payoffs on the same cash flows of the firm, bonds are 

more complex in terms of their contractual provisions. This is because not only bonds may have embedded 

optionality and special features, but also because if multiple bonds for the same firm are outstanding at the 

same time, the value of each one of them depends on the provisions embedded in all the others (e.g., 

Oehmke and Zawadowski, 2017). For example, AT&T had 74 bonds outstanding as of May 2013, and bond 

investors in any of them would have needed to examine all of them to assess real exposure to the firm’s 

credit risk.  

The key issue is that  bond-specific terms on one bond, meant to affect only the bond in question, can 

indirectly change the cash flow rights and protections of the others. Whether a bond is convertible or 

callable may change the amount of cash available to the other bondholders, who must assess the probability 

that such bonds will continue to be around in the foreseeable future. Likewise, the trigger of a covenant on 

one bond may have consequences for the others.1 The ability of the existing covenants to protect new 

bondholders depends on the existence of the bonds to which they are attached.  

1 Consider, for example, a firm with three bonds of differing maturities, each with a different type of covenant. The 
covenant on the first bond restricts the firm from engaging in share repurchases; the covenant on the second restricts 
the firm from engaging in M&As; and the covenant on the third restricts the firm from issuing collateralized debt. 
Clearly, each covenant has positive protective effects for all firm bonds. However, the fact that such covenants exist 
on different bonds with different features – e.g., maturity or collateralization – makes it challenging for bondholders 
to fully grasp the extent of the protection. What will happen if the bond with covenant protection expires? Will the 
bondholders with collateralized assets trigger the violation of covenants if they are breached? This involves a very 
complicated probability assessment analysis of many scenarios. 
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The requirement to consider all bonds can be daunting, especially when each bond has different 

contractual terms (e.g., maturity, rating, coupon, collateral, covenants, embedded options and features, etc.). 

We argue that this tangle of contractual conditions requiring joint analysis of all outstanding bonds 

(henceforth, “bond complexity”) can entail a cumbersome and hard gathering and processing of information, 

which makes it difficult to assess the bond’s value and creates uncertainty about the overall degree of 

property rights of bond investors. Complexity makes it more difficult to use “comparable pricing” – a key 

pricing determinant in corporate credit markets (Murfin and Pratt, 2019). Therefore, we expect that, while 

firms gain flexibility by issuing corporate bonds of varying contractual terms, the ensuing complexity will 

affect the pricing of the bonds.   

In particular, we posit that, in the presence of information incompleteness in the corporate bond market,2 

the degree of corporate bond complexity will negatively affect bond prices because of adverse selection. 

Greater complexity hinders information processing. As a result, bond investors, who are less informed than 

issuers, will demand a discount on bond prices, or higher bond yields (Arora, Barak, Brunnermeier, and Ge, 

2010; Carlin, Kogan, and Lowery, 2013; Duffie and Lando, 2001; Furfine, 2011).  

We argue further that, in equilibrium, the higher uncertainty will induce a “clientele effect,” where 

complex bonds are held mostly by two classes of investors: the most informed investors (those with superior 

information processing skills), and those looking for higher yields. In the latter case, we expect that bond 

complexity allows investors, constrained in their choice of rating and maturity and in terms of their ability 

to leverage, to increase performance. In other words, complexity represents a shield to invest in more risky 

assets while sidestepping the constraints imposed by regulation and mandates defined in terms of traditional 

ratings. Therefore, we expect regulation-constrained bond investors who “reach for high yields” (Becker 

and Ivashina, 2015) to invest in more complex bonds. This is similar in spirit to leverage-constrained fund 

2 See, e.g., Bessembinder, Maxwell, and Venkataraman, 2006; Edwards, Harris, and Piwowar, 2007; Goldstein, 
Hotchkiss, and Sirri, 2007; Bessembinder and Maxwell, 2009; Bao, Pan, and Wang, 2011. 
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managers who invest in higher beta stocks to attain higher returns (the “betting against the beta” 

phenomenon, see Frazzini and Pedersen, 2014). 

We test these conjectures using the sample of (non-financial, non-utility) U.S. companies that issued 

corporate bonds publicly during the 1998-2018 period. Our analysis provides three main empirical findings 

on the link between bond complexity and bond yields, bond ownership, and bond uncertainty. First, we 

document a pricing effect of bond complexity.3 We find the latter to be positively associated with yield 

spreads even after controlling for well-known determinants of yield spreads such as rating, maturity, and 

illiquidity. Specifically, a 1-standard deviation (SD) higher complexity is related to about 17 basis points 

(bps) of higher yield spreads. To put this into context, a one-notch change in credit rating in the same 

regression is estimated to cause a 62-bp increase in bond yields.  

We address any potential endogeneity of our complexity measure by using exogenous shocks in a 

difference-in-differences setting, with two experiments: the founder Bill Gross’s resignation from PIMCO, 

the prominent investment management firm, and the introduction of a new accounting standard, SFAS 160. 

In the first setting, we consider how Bill Gross’s sudden resignation, during 2014Q3, triggered a large fund 

outflow, forcing PIMCO to sell its bonds to meet redemption demands. Given the size of PIMCO, and the 

depth and breadth of its bond market investments, this represented a negative capital supply shock for 

companies invested in PIMCO’s portfolios (Zhu, 2021). The sudden portfolio reshuffling also represented 

an ideal exogenous shock, not related to company-specific characteristics. As a result, we argue that such 

selling pressure should drive down the market price of PIMCO-held bonds, with a larger impact for more 

complex bonds.  

Our empirical results confirm this conjecture. The “treated” firms – i.e., those experiencing high 

PIMCO-related (fire) sales – exhibit increased yield spreads of about 27 bps after the founder’s departure, 

3 We describe our firm-level measure of bond complexity in more detail in the Data section. In brief, it is designed to 
capture heterogeneity in contractual terms across different bonds of the same firm.  
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relative to control firms. Note that the impact is more pronounced for complex bonds, so that a 1-SD higher 

degree of complexity is related to about an 8-bp further increase in yield spreads. 

In our second setting, we exploit the accounting-based shock introduced in 2008 by a new accounting 

standard, SFAS 160, which affected only a subset of (“treated”) firms in our sample.4 The new accounting 

standard mechanically increased the slack of the net worth covenant (Cohen, Katz, Mutlu, and Sadka, 2019). 

This made bond valuation even more difficult due to increased uncertainty about firm behavior and its 

impact on bondholders. Frankel, Lee, and McLaughlin (2010) posit that the economic consequence of SFAS 

160 is as yet uncertain, and tricky for bondholders to understand due to its many costs and benefits. We 

expect such higher valuation difficulty to be amplified by bond complexity. Indeed, while the treated firm’s 

bonds experience a 2-bp increase in yield spreads, the effect is more salient for firms with higher bond 

complexity. Specifically, a 1-SD higher complexity translates into a further 29-bp increase in yield spreads. 

Once we can determine the link between bond complexity and yield spreads, we investigate whether 

and how complexity shapes the bond investor clientele. We begin by focusing on the link between 

complexity and investor informativeness. As we argue, complex bonds entail higher valuation uncertainty, 

and, hence, require a better level of information processing. In equilibrium, we should therefore observe 

that these bonds are held mostly by more informed investors, or those with superior information processing 

skills. We identify such investors using bond fund data from eMAXX with three different criteria: 

investment horizon, portfolio turnover, and portfolio concentration.  

We document that our bond complexity measure is positively and statistically significantly related to 

all the three measures. Specifically, a 1-SD higher degree of complexity is related to a 1.4% increase in 

holding by short-term investors (corresponding to 6% of SD of the variable). For high-portfolio turnover 

investors, the number is 0.4% (3% of SD), and for high-portfolio concentration investors, it is 0.2% (2.9% 

of SD). For comparison, a one-notch downgrade in credit rating is estimated to cause 0.6%, 0.5%, and 0.3% 

4 Financial Accounting Standards No. 160 (SFAS 160) changed the treatment of non-controlling/minority interests in 
a consolidated entity. Prior to SFAS 160, minority interest was reported as debt – either in liabilities or the mezzanine 
section between liabilities and equity. The new regulation allowed firms to report it as equity rather than debt. 
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increases in bond ownership by short-term, high-portfolio turnover, and high-portfolio concentration 

investors, respectively. These results suggest that information processing is costlier for bonds of firms with 

more complex bond structures. Such bonds are therefore less attractive to investors without informational 

advantages. 

As we noted earlier, a second class of investors may also be interested in loading on complex bonds: 

those reaching for yield (RFY) in choosing their investments (Becker and Ivashina, 2015; Choi and 

Kronlund, 2018). By offering yields higher than the ones offered by their peer bonds of similar maturity 

and rating, complex bonds are a good investment class for funds that are constrained in their choice of 

rating and maturity.5 RFY investors may be the more informed ones we mentioned before, or simply less 

informed investors who are willing to take more risk in exchange for higher yields.  

We test this conjecture in two ways. First, we define the RFY for a given bond as the difference between 

the bond’s yield and the average yield of bonds with similar credit ratings and maturity, compute the firm’s 

RFY as the value-weighted average of the RFY of its existing bonds, and document that bond complexity 

is positively related to the firm’s RFY. This evidence suggests that complex bonds are a good investment 

for RFY-incentivized investors as they would prefer higher yields for the given rating and maturity. Next, 

we zoom on the investors and define their desire to reach for yield. In particular, we define the RFY for a 

bond investor as the portfolio holding-weighted average of the RFY of the bonds held by a given bond fund. 

The  bond funds with a strong incentive of the RFY – “high RFY funds” – are the ones with the above 

sample median value of the fund RFY. Then, we calculate the proportion of the firm’s bond held by high 

RFY funds. This bond ownership measure will capture the degree to which RFY-incentivized funds invest 

in a given firm’s bonds. Using this measure, we document that bond complexity increases the bond 

ownership held by high RFY funds.6 Specifically, a 1-SD increase in bond complexity is related to a 21-bp 

5 Indeed, Célérier and Vallée (2017) find that banks use product complexity to cater to yield-seeking investors, 
especially in a low rate environment. 
6 High RFY funds are defined as bond funds for which the value of portfolio holding-weighted average of the RFY 
of the bonds they hold  is above the sample median. 
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higher degree of firm RFY, and a 0.6% higher ownership held by high RFY funds. These results suggest 

that complexity and RFY are related: complex bonds, by offering higher yields relative to others with the 

same rating and maturity, induce those RFY-incentivized investors who value yields highly to invest more 

in them (reaching for complexity, or RFC). 

Second, we focus on the link between investors’ reaching for yield and the future return of complex 

bonds. If the tendency of bond funds to invest in complex bonds drives up current prices above the 

fundamental level, we expect the price to revert subsequently. This should lead to lower future returns 

(Frazzini and Pedersen, 2014; Chen and Choi, 2020). And indeed, we document a strong negative 

correlation of bond complexity with future returns. Specifically, a 1-SD higher degree of bond complexity 

for a given quarter is associated with about 4 bps per month of lower bond returns for the subsequent period 

(or 48 bps per annum).  

Overall, these results support the hypothesis that investors who value yields are likely to invest in 

complex bonds. The fact that the results hold even after controlling for rating, maturity, and other bond 

characteristics suggests the investment is not determined solely by a general desire to invest in all high yield 

bonds. Rather, investors more selectively identify those with high yields due to complexity. This may be 

due to existing mispricing induced by lack of information, or by the desire to “hide” their actions behind 

complexity in the valuation of such bonds. 

To confirm that complexity pertains to the difficulty in understanding (and, hence, the greater 

uncertainty/disagreement about) bond values, we provide some direct evidence. First, we attempt to capture 

bond value uncertainty by using two different empirical proxies: bond trading volume (Banerjee and 

Kremer, 2010) and bond holding dispersion across institutional investors (Nozawa, Qiu, and Xiong, 2021). 

We find that our bond complexity measure is positively and statistically significantly associated with both. 

Thus, complex bonds are subject to more disagreement about value among investors. As a result, they are 

traded more frequently and held more unequally among bond investors. More specifically, a 1-SD increase 

in complexity is associated with about an 0.08 higher log trading volume (4% of SD) for a given quarter, 
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and a 0.11 (or one quarter of SD) larger dispersion in institutional investors’ portfolio weights. For 

comparison, a one-notch downgrade in credit rating is estimated to cause about a 0.03 higher log trading 

volume and a 0.02 larger dispersion in investors’ portfolio weights.    

Second, we investigate whether the pricing effect of complexity is stronger during uncertain times, by 

using four proxies for macro uncertainty: global economic policy uncertainty (Baker, Bloom, and Davis, 

2016), real uncertainty, financial uncertainty (Jurado, Ludvigson, and Ng, 2015), and the CBOE volatility 

index, the VIX. We find that bond complexity interacts positively with macro uncertainty regardless of the 

proxy variable used. So the positive association between complexity and yield spreads is amplified during 

uncertain times, or when the value of macro uncertainty is above the sample median. The economic 

magnitude of the coefficients on complexity is two to four times higher during times of uncertainty.   

As a robustness test, we examine the possibility that our complexity measure may pick up the effect of 

the number of bond issues outstanding. In our sample, the two variables are strongly correlated. A higher 

number of bonds indicates a larger dispersion of bondholders, and can affect yield spreads via the channel 

of renegotiation cost (Davydenko and Strebulaev, 2007).7 In order to disentangle these two channels, we 

explicitly control for the number of bond issues, and find that bond complexity remains statistically 

significant with positive coefficients. Thus, complexity is distinct from the pure number of bonds.  

We control further for the Herfindahl index of bond issues’ amount as a direct measure of bondholder 

dispersion. Our results also hold here, suggesting that bond complexity is not a pure proxy for the number 

of bonds. In fact, folk theorem would suggest that a higher number of bonds, by providing more signals, 

should reduce information uncertainty. 

Our paper contributes to the literature in several key ways. First, our work contributes to a growing 

literature on asset complexity in financial markets by documenting the asset pricing implication of 

7 Davydenko and Strebulaev (2007) argue that bondholder dispersion, proxied for by the number of bonds outstanding, 
would increase the failure of renegotiation. It could therefore reduce ex ante the probability of a firm’s strategic default 
and decrease bond yield spreads. 
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complexity on corporate bond prices. We note that one strand of the literature on the contingent claims 

pricing models of corporate bonds (e.g., Brennan and Schwartz, 1977; Jarrow, Li, Liu, and Wu, 2010) 

explores the price effect of bond-specific complexity (e.g., embedded call/put options, convertibility, etc.) 

at the bond level. However, to the best of our knowledge, we are the first to define and examine the 

complexity in bond structure at the firm level. In addition, unlike our paper, prior studies tended to limit 

their attention to structured financial products (Brunnermeier and Oehmke, 2009; Célérier and Vallée, 2017; 

Griffin, Lowery, and Saretto, 2014; Sato, 2014) or to an experimental setting (Carlin, Kogan, and Lowery, 

2013).8

Second, our study is related to the recent literature on debt structure and debt heterogeneity. For 

example, Colla, Ippolito, and Li (2013) and Rauh and Sufi (2010) document that debt structure is 

heterogeneous across firms, and firms tend to specialize in certain types of debt. While these studies 

examine the economic factors that determine debt structure, we focus on the pricing implications. In 

addition, we do not take a firm’s overall debt, but instead focus on one type of debt (corporate bonds), for 

which one might argue that there is less heterogeneity in their structure.  

Third, our paper contributes to the burgeoning literature on how investors reach for yields. In the equity 

market, this has taken the form of investors “betting against beta” (e.g., Frazzini and Pedersen, 2014). In 

the debt market, it is described as “reaching for yield” (e.g., Becker and Ivashina, 2015; Choi and Kronlund, 

2018; Rajan, 2011). The premise of both streams of literature is that investors take more risk than required 

by traditional pricing models – based on, e.g., market returns or ratings and maturity. We link such drives 

for yield to bond complexity. This allows us to identify any “mispricing” with respect to the standard model 

that is related to the degree of complexity of the bond profile within the structure of the claims in the overall 

firm portfolio. 

8  Carlin, Kogan, and Lowery (2013) find that complexity increases uncertainty regarding asset values, which 
exacerbates the adverse selection problem. They conduct an experiment to show that high complexity leads to 
increased volatility, lower liquidity, and decreased trade efficiency. 
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Fourth, by highlighting the important role of bond complexity in explaining institutional demand for 

corporate bonds, we contribute to the literature on corporate bond ownership and investor demand (e.g., 

Dass and Massa, 2014; Greenwood and Hanson, 2013; Massa, Yasuda, and Zhang, 2013). Our results also 

add to the empirical asset pricing literature on the cross-sectional determinants of credit spreads (e.g., 

Collin-Dufresne, Goldstein, and Martin, 2001; Elton, Gruber, Agrawal, and Mann, 2001) by showing 

complexity is an important factor in firms’ credit spreads.  

Lastly, by suggesting that information uncertainty critically affects bond investors, our results have 

important policy implications. We echo the view that standardization of corporate bonds may alleviate 

trading frictions and improve liquidity in corporate bond markets (BlackRock, 2013; Oehmke and 

Zawadowski, 2017). Our findings provide further support for regulators’ proposals to make bonds publicly 

tradable in regulated exchanges, as opposed to privately exchanged over the counter. 

2. Construction of Variables and Sample

Our data come from various databases. The bond issuance information comes from Mergent FISD, and 

includes: maturity, rating, coupon, offering date/amount, as well as various other bond contractual features 

(e.g., covenant, callable, putable, convertible, credit enhancement, etc.). The bond pricing data are 

combined from NAIC and TRACE. Institutional investors’ bond holding data come from Lipper eMAXX.9 

We focus on non-financial straight corporate bonds, and exclude preferred bonds and government-

sponsored enterprise bonds.  

9 The database contains detailed fixed-income holdings for nearly 20,000 entities, including U.S. and European 
insurance firms, U.S., Canadian, and European mutual funds, and leading U.S. banks and public pension funds. It 
provides information on the quarterly holdings of more than 40,000 fixed-income issuers, with USD $5.4 trillion in 
total fixed income at par value. We focus on U.S.-issued corporate bonds held by U.S. institutions. This sample has 
approximately 1,200 institutional investors every quarter, who hold a total face value of approximately USD $1.8 
billion on average. For these institutions, eMAXX reports holdings based on regulatory disclosures to the National 
Association of Insurance Commissioners (NAIC) for insurance companies, and to the Securities and Exchange 
Commission (SEC) for mutual funds, asset managers, and public pension funds. It also reports voluntary disclosures 
by the major private pension funds. A detailed description of the data is provided in Dass and Massa (2014). 
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In the next section, we first outline how we construct our measure of bond complexity, followed by 

our sample construction method. 

2.1 Bond Complexity 

To construct our measure of bond complexity, we begin by constructing variables that capture heterogeneity 

in contractual features across firm bonds. This requires us to identify a firm’s outstanding bonds (i.e., bonds 

that have been issued but have not matured or early redeemed in full yet) on the basis of the FISD table 

called “AMOUNT_OUTSTANDING.” We record each bond’s contractual terms based on the FISD table 

called “ISSUE.” With this information in hand, we can create a dummy variable, Contractual Feature (CF), 

denoted by 𝕀 , for bond contractual feature 𝑘: 

𝕀  =
  1   𝑖𝑓 bond contractual feature k is present/applicable 

  0   𝑖𝑓 bond contractual feature k is absent/not applicable
 ,  (1) 

where 

𝑘 ∈ {𝑟𝑒𝑑𝑒𝑒𝑚, 𝑐𝑎𝑙𝑙, 𝑝𝑢𝑡, 𝑒𝑥𝑐ℎ, 𝑐𝑜𝑛𝑣, 𝑐𝑜𝑣, 𝑒𝑛ℎ, 𝑠𝑒𝑐, 𝑠ℎ𝑜𝑟𝑡, 𝑓𝑜𝑟𝑒, 𝑓𝑖𝑥}, 

𝑘 refers to 11 different major categories of bond contractual features, for which we consider whether a bond 

is (redeem)able, (call)able, (put)able, (exch)angeable, or (conv)ertible. That is, if the bond is callable, the 

indicator variable, 𝕀 , equals 1, or 0 if non-callable. Similar definitions apply to our four remaining 

variables. We also consider the existence of bond (cov)enants, so that 𝕀  equals 1 if the bond has any 

covenant (regardless of its type) in its indenture, or 0 for no covenant at all. We also examine whether a 

bond has credit (enh)ancements (e.g., guarantees, letters of credit, etc.), or 𝕀 = 1.  

In addition to those seven readily available bond feature categories, we consider four more: (sec)ured, 

(short)-term, (fore)ign currency, or (fix)ed coupons. That is, 𝕀 = 1 if the bond is senior secured, 𝕀 =

1 if the bond’s remaining maturity is less than 5 years, 𝕀 = 1 if the bond is U.S. dollar-denominated, 

and 𝕀 = 1 if the coupon type if “fixed” as opposed to “variable.”     

The resulting bond-level contractual feature indicators (CFs) are then aggregated to construct two firm-

level variables based on the first and second moments of their values across firm bonds. The first is 
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Contractual Feature Index (CFI), denoted by 𝜇, which captures the overall presence of bond features. We 

define it in a similar spirit as the covenant index in Billett, King, and Mauer (2007): We calculate the 

average of the bond’s CFs for each contractual feature category, denoted by 𝜇 , and then sum the averages 

before dividing them by 11: 

μ =
∑  𝜇∈{ , , , , , , , , , , }

11
,  (2) 

where 𝜇  is the mean value of CFs for bond feature category 𝑘 across the firm’s 𝑁 outstanding bonds: 

𝜇 =
∑ 𝕀 ,

𝑁
.  (3) 

The second variable is Bond Complexity (BComp), denoted by 𝜎,  which captures the heterogeneity (or 

variation) of CFs across a firm’s bonds. We define this measure based on the average variance of CFs. We 

calculate the variance of CFs for each contractual feature 𝑘, 𝜎 , among N outstanding bonds, dividing the 

sum of the squares of the deviations of the CFs from their mean by 𝑁. We then compute the average of the 

eleven variances of CFs, and define our bond complexity measure as the square root of the average of 

sample variances of the bond’s CFs, multiplied by 2.10 That is, BComp is given as: 

BComp =  2 𝜎  ,  (4) 

where 

𝜎 =
∑ 𝜎∈{ , , , , , , , , , , }

11
,  (5) 

and 

𝜎 =
∑ 𝕀 , − 𝜇

𝑁
.  (6) 

10 Mathematically, our bond complexity measure is essentially the same as within-group variation, a term used in 
ANOVA tests. Intuitively, it is in a similar spirit as the measure in Oehmke and Zawadowski (2017) that captures the 
overall heterogeneity of contractual features among different bond issues of a given firm. However, their measure 
only exploits six bond characteristics (i.e., putable, callable, convertible, fixed coupon, covenants, and credit 
enhancement), and is constructed differently. It is not a continuous variable like ours, as they employ a dichotomous 
variable to indicate whether the firm’s bonds are homogenous (i.e., where all bonds have the same contractual features 
for all six dimensions) or heterogeneous (i.e., where at least one bond has all six contractual features that are not the 
same). 
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By construction, the value of 𝜎 ranges from 0 to 0.5, since it is the variance of a dichotomous variable 

(0 or 1).11 We multiply 𝜎 by 2 so that BComp will range between 0 and 1. The value of 0 indicates no 

complexity because we have no heterogeneity in contractual terms across bonds, or there exists only one 

bond; the value of 1 indicates the maximum degree of complexity. 

2.2 Sample Construction 

Once we obtain the value for bond complexity (BComp) for all firms in the FISD database for the 1998Q2-

2018Q1 period (except financial or utility firms), we augment the information with other bond 

characteristics in FISD, such as rating and maturity. All are aggregated at the firm level by taking the 

amount-weighted average of bond-level variables. Next, we merge them with the firm’s bond yield spreads. 

These are computed at the firm level using quarter-end prices of corporate bonds in TRACE, NAIC, and 

Treasury bills, and quarter-end institutional bond holdings data in eMAXX, matched on 6-digit CUSIP 

numbers. We are left with 62,341 firm-quarter observations for the 1998Q2-2018Q1 period with non-

missing independent variables. This sample consists of both public and private firms in the U.S. that offered 

public bonds. It will be used for the majority of our empirical analyses.  

Table 1 reports the summary statistics of the variables in our final sample. The mean of the yield spreads 

is 397 bps, and the mean of the yield volatility, measured as the SD of daily yield spreads for a given quarter, 

is 0.84%. The average yield spreads are rather high, due to the presence of private firms in our sample. 

Among the other bond characteristics, the average bond in our sample has a BB+ credit rating, 8 years to 

maturity, is 6.7% coupon-bearing, and with 37% of covenant indices. We see a wide disparity in the number 

of bonds (Bnum ranges from 1 for P5 to 22 for P95), with an average of seven outstanding per firm.  

Our summary statistics are generally in line with those from existing studies using data of public bonds 

issued by U.S. companies (private and public) from Mergent’s FISD (e.g., Badertscher, Givoly, Katz, and 

11 Statistically speaking, 𝜎  is the variance of the Bernoulli variable (𝕀 , ) that attains the maximum value of 0.5 if the 
probability of 𝕀 , = 1 is 0.5 (i.e., whether to have a bond feature is completely random).  
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Lee, 2019; Kovner and Wei, 2014). With respect to our bond complexity measure (BComp), the mean and 

SD are 0.35 and 0.20, respectively. We also observe a wide disparity in complexity across firms (0 for P5 

and 0.61 for P95). Zero bond complexity indicates that the firm only has a single bond outstanding, or that 

there is no heterogeneity in any of the eleven contractual features.  

3. Main Empirical Findings

3.1 Complexity and Bond Yield Spreads 

We begin by focusing on the link between a firm’s bond complexity and the average yield spreads of bonds 

issued by the firm. To this end, we estimate a panel data regression at the firm-quarter level that includes 

both firm- and quarter-fixed effects. We also use firm-level clustered standard errors: 

𝑌𝑆 , = 𝑎 + 𝑏 × 𝐵𝐶𝑜𝑚𝑝 , + 𝒄 × 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 , + 𝛼 + 𝛿 + 𝜀 ,     ,    (7) 

where 𝑌𝑆 ,  is bond yield spreads (in percent) of firm 𝑖 for quarter 𝑡, measured by the value-weighted 

average of yield spreads of all outstanding bonds. A bond’s yield spread is computed as its yield to maturity 

minus that of a Treasury bond with the same maturity. 𝐵𝐶𝑜𝑚𝑝 ,  is our bond complexity measure of firm 

𝑖 for quarter 𝑡. We consider the following set of control variables: Rating, Maturity, Illiquidity, Coupon, 

Size, Age, CovIndex, and CovMiss, all of which are constructed at the firm level by aggregating bond-level 

observations with the value-weighted average: Rating is bond credit ratings,12 Illiquidity is the proportion 

of zero trading days per quarter, Maturity is remaining time to maturity in years, Size is the natural logarithm 

of bond amount (in thousands) outstanding, Coupon and Age are, respectively, bond coupon rates (in 

percent) and bond ages (in log), CovIndex is the covenant index, as in Billett, King, and Mauer (2007),13 

and CovMiss is a dummy variable that equals 1 if CovIndex is missing.  

12 We assign a numerical number to rating notches ranging from 1 to 21, where AAA equals 1, AA+ equals 2, AA 
equals 3, AA- equals 4, and so on. 
13 This is defined as the sum of covenant dummies assigned to each of 15 different categories, where a covenant 
dummy equals 1 if a bond has the given covenant and 0 otherwise. We assign any missing data a value of zero. 
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Table 2 reports the regression results. We observe a strong positive correlation between bond 

complexity and bond yield spreads. This suggests that firms with more complex bond structures (or more 

heterogeneity across bonds) pay higher interest rates. This relationship remains statistically significant, with 

t-statistics ranging from 3.43 to 6.09, even after controlling for the larger number of bond characteristics. 

The economic magnitude of the effect is also sizable: A 1-SD higher complexity is correlated with about a 

17-bp higher yield spread (in the case of Model 5). To put this number into context, we observe in our 

sample that a one-notch change in bond credit ratings is associated with a 62-bp increase in bond yields.  

The estimates for the control variables in Table 2 are largely intuitive, but some deserve further 

explanation. First, Maturity carries a negative coefficient, which seems counterintuitive, but is actually 

consistent with the recent literature on bond rollover risk (e.g., Chen, Xu, and Yang, 2020; Hu, 2010). This 

strand of research attributes such a negative relationship between credit spreads and bond maturity to the 

heightened rollover risk of short-term bonds. Next, a positive coefficient on CovIndex appears at odds with 

the agency theory of covenants (e.g., Smith and Warner, 1979). But it is attributable to the fact that the 

presence of covenants proxies for a firm’s credit risk (Bradley and Roberts, 2015). Finally, we note that the 

effect of bond complexity is diminished, but not subsumed, by the inclusion of Rating, which is highly 

correlated with BComp. That is, although our complexity measure may pick up some effects of credit risk 

(proxied for by Rating) on yield spreads, it still captures a different dimension of bond pricing effects. 

To address the potential endogeneity of bond complexity with respect to bond pricing, and to assess 

whether bond yield-complexity relations are causal or a mere correlation, we use the two quasi-experiments 

discussed earlier. One is the sudden resignation of founder Bill Gross from PIMCO during 2014Q3; the 

other is the introduction of a new accounting standard, SFAS 160, during 2008. For each experiment, we 

estimate the same econometric specifications, or a DiD regression with triple interaction terms included: 

𝑌𝑆 , = 𝑎 + 𝑏  𝐵𝐶𝑜𝑚𝑝 , × 𝑇𝑟𝑒𝑎𝑡 × 𝑃𝑜𝑠𝑡 + 𝑏  𝐵𝐶𝑜𝑚𝑝 , × 𝑇𝑟𝑒𝑎𝑡  

+ 𝑏  𝐵𝐶𝑜𝑚𝑝 , × 𝑃𝑜𝑠𝑡  + 𝑏  𝑇𝑟𝑒𝑎𝑡 × 𝑃𝑜𝑠𝑡  (8) 
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+ 𝑏  𝐵𝐶𝑜𝑚𝑝 , + 𝑏  𝑇𝑟𝑒𝑎𝑡 + 𝑏  𝑃𝑜𝑠𝑡 + 𝒄 × 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 , + 𝛼 + 𝛿 + 𝜀 , ,

where both Treat and Post are dummy variables whose definition are described separately for each 

experiment. We use the same set of control variables as those in equation (7), include firm- and quarter-

fixed effects, and we cluster standard errors at quarter levels. The coefficients of our main interest are 𝑏  

and 𝑏 . 

Bill Gross’s sudden departure from PIMCO during 2014Q3 triggered large redemptions from all of 

PIMCO mutual funds. As founder and CIO, Gross had become one of the most famous fixed-income fund 

managers. PIMCO was forced to fire sale their bond holdings to meet the redemption demands. Given the 

size of PIMCO and the depth and breadth of its bond market investments, this represented a negative capital 

supply shock for companies who held bonds in PIMCO’s portfolios. The sudden portfolio reshuffling also 

represented an ideal exogenous shock, not related to company-specific characteristics (as, for example, a 

downgrade of the company). We would expect the shock-induced selling pressure to decrease PIMCO-held 

bonds. Such an impact is more pronounced among complex bonds – because they are more difficult to 

understand and price in a short amount of time.  

In estimating the DiD regression in equation (8), we focus on the subperiod of four quarters before and 

four quarters after Gross’s departure during 2014Q3. Similarly to Zhu (2021), we define treated firms 

(Treat=1) as those whose bonds were overweighted by PIMCO portfolios at the end of 2014Q3, and control 

firms (Treat=0) as those whose bonds were overweighted by Prudential and Vanguard, the second and third 

largest bond investors, respectively, at that time after PIMCO. Our treated (control) firms have 3% of 

outstanding bonds in PIMCO (Prudential and Vanguard combined) portfolios as of the end of 2014Q3.14 

Post is a dummy variable that equals 1 for 2014Q4 to 2015Q3, and 0 for 2013Q3 and 2014Q3.  

14 As Zhu (2021) points out, the selection criterion of at least 3% of bond holdings is used because PIMCO’s market 
share of corporate bonds at the time of Gross’s departure was 3%.  
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Table 3 reports the results in the first three columns. We note several distinct findings. First, PIMCO-

held bonds – for which the supply shock should be the worst – display an increase in yield spreads of about 

37 bps (the interaction term, Treat × Post in Model 1), with statistical significance at the 1% level. This 

finding is in line with Choi, Dasgupta, and Oh (2020), who report a 14-bp increase in CDS spreads for 

PIMCO-held bonds compared to Prudential- or Vanguard-held bonds after Bill Gross’s resignation. More 

important and new, we find this effect is reinforced by the degree of complexity of the bonds, as indicated 

by a positive regression coefficient on the three-way interaction terms, i.e., BComp × Treat × Post (Model 

2). Specifically, a 1-SD higher degree of complexity is related to about an 8-bp further increase in yield 

spreads. Checking the validity of a parallel trends assumption for our DiD setting, we do not observe any 

significant difference in time trends of yield spreads prior to 2014Q3 for complex vs. non-complex bonds 

among treated firms. This is indicated by an insignificant coefficient on Complexity × Treat × Pre in Model 

3. 15 This contrasts with the coefficient on Complexity × Treat × Post, which remains statistically significant

at the 5% level. These results suggest that divergence in yield spreads across complexity only emerges after 

the shock. 

Next, to bolster our experimental result with PIMCO, we consider the introduction of a new accounting 

standard in 2008, SFAS 160. SFAS 160 requires firms to reclassify minority interests as equity rather than 

liabilities, and it increases the net worth covenant slack by raising equity. We argue that these changes make 

it more difficult for the market to assess the value of bonds accurately, due to the increased uncertainty 

about firm behavior and its impact on bondholders. Frankel, Lee, and McLaughlin (2010) find that the 

economic consequence of SFAS 160 is uncertain, and complex for bondholders to understand due to the 

various costs and benefits associated with it. We expect such uncertainty to be greater for firms with more 

complex bond structures. Therefore, all else being constant, we should observe bond yield spreads to widen 

15 A dummy variable we call Pre equals 1 for 2014Q2 and 2014Q3 (i.e., the second half of the pre-resignation period), 
and 0 otherwise. 
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after the adoption of SFAS 160 as compensation for uncertainty-averse bondholders. The increase should 

be more pronounced for bonds of firms with more complex bond structures.  

Estimating the DiD regression in equation (8), we focus on the subperiod of two years before and two 

years after 2008, when SFAS 160 was introduced.16 In line with Cohen, Katz, Mutlu, and Sadka (2019), 

Treat indicates a firm affected by SFAS 160. We define Treat as a time-invariant dummy variable that 

equals 1 if a firm reports a positive minority interest at the end of 2008, and if at least one of its bonds has 

relevant (i.e., net worth) covenants present in its indenture, and 0 otherwise. Post indicates the post-SFAS 

160 period, defined as a dummy variable that equals 1 for 2009 and 2010, and 0 for 2006 to 2008.  

We report the SFAS 160 results in the last three columns of Table 3. Several observations are 

noteworthy. First, we confirm our conjecture that the bond yield spreads of treated firms increase after the 

adoption of SFAS 160 relative to those of control firms. This is shown by a significantly positive coefficient 

on the interaction term, Treat × Post, in Model 4. Specifically, treated firm’s bonds experience a 68-bp 

increase compared to control firms after SFAS 160. Second, and more importantly, we document that the 

pricing impact is more pronounced among firms with more complex bond structures. This is shown by a 

significantly positive coefficient on the three-way interaction term, Complexity × Treat × Post, in Model 5. 

Specifically, the magnitude of the coefficient, 1.43 in Model 5, translates into a 1-SD higher complexity, 

and accounts for a 29-bp higher yield spreads among treated groups.  

Similarly to the PIMCO case, we test for pre-trends of yield spreads between complex vs. non-complex 

bonds among treated firms in order to ensure the validity of a parallel trend assumption for our DiD setting. 

The coefficient on Complexity × Treat × Pre in Model 6 captures (non-)parallel trends in yield spreads for 

treated firms with more complex bonds. The result shows that its coefficient is statistically insignificant. 

16 Financial Accounting Standards No. 160 (SFAS 160) changed the treatment of non-controlling/minority interest in 
a consolidated entity. Before SFAS 160, minority interest was reported as debt (either in liabilities or the mezzanine 
section between liabilities and equity). The new regulation allowed firms to report minority interest as equity. The 
direct effect of this change was to impact the leverage ratios of firms (e.g., Mulford and Quinn, 2008; Leone, 2008; 
Deitrick, 2010; Cohen, Katz, Mutlu, and Sadka, 2016). Moreover, this shock directly affected the “distance to covenant 
violation” for companies with covenants on their bonds.    
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Thus, during the pre-SFAS 160 period, bond complexity does not appear to affect the difference in yield 

spreads between treated and control bonds.  

To summarize, our DiD exercises reveal that the adverse shock to bond prices – the negative capital 

supply shock for PIMCO, and an uncertainty shock for SFAS 160 − is more severe for the bonds of firms 

with complex bond structures. These results corroborate our previous findings that bond complexity makes 

it more difficult for bond investors to understand bond values. Therefore, risk-averse investors are likely to 

react more adversely to these uncertainty shocks.  

3.2 Complexity and the Bond Investor Base 

Thus far, we have provided evidence that the degree of bond complexity of a firm affects the price of its 

bonds. In this section, we turn to the identity of bondholders, and assess whether bond complexity will 

affect the firm’s bond investor base. We are particularly interested in how informed the base is, and whether 

that informativeness is affected by the degree of complexity of the firm’s bond structure. Following the 

literature on lender behavior and information uncertainty (e.g., Sufi, 2007; Byun, Hwang, and Lee, 2011), 

we argue that a complex bond, given its higher valuation uncertainty, creates more space for informed 

investors. We expect that they will hold a higher proportion of its amount. For example, hedge funds and 

mutual funds are better at explicating bond information because they spend resources on processing existing 

public information to create more precise and valuable public information to trade upon (e.g., Kim and 

Verrecchia, 1994; Lin, Massa, and Zhang, 2014).  

We test empirically for a relation between bond complexity and the proportion of informed bondholders, 

constructing the latter using bond fund holding data from eMAXX. We construct three proxy variables: 

ST_Own, HT_Own, and Concen_Own. ST_Own (HT_Own) is defined as the proportion of bond amount 

held by short-term (high-portfolio turnover) bond funds to the total bond amount. These variables are based 

on the standard literature positing that institutional investors with shorter trading horizons tend to be more 

informed (e.g., Yan and Zhang, 2009). We first calculate the proportion of bond amount held by short-term 
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(high-portfolio turnover) funds at the bond level, and then aggregate them at the firm level by taking the 

bond amount-weighted average.17 Concen_Own is defined as the proportion of bond amount held by bond 

funds with high (i.e., above the sample median) portfolio concentration. This is based on the idea that 

informed investors tend to concentrate more of their portfolios in assets for which they have better 

information (e.g., Kacperczyk, Sialm, and Zheng, 2005). We define concentrated funds as the bond fund 

for which the Herfindahl index of its holdings over the bond’s credit rating categories is above the sample 

median. 54% of bonds’ total amount of the average firm in our sample are held by short-term (vs. long-

term) investors, 17% by investors with high (vs. low) portfolio turnover, and 3% by rating-concentrated 

funds. 

Table 4 reports the results for the bond investor base, and shows that complexity is positively correlated 

with having informed bond investors. This holds for all the three definitions of being informed. Specifically, 

a 1-SD higher complexity is related to an increase in proportion of short-term investors’ bond holdings by 

1.4% (corresponding to 6% of SD), to high-portfolio turnover investors’ holdings by 0.4% (3% of SD), and 

to high-portfolio concentration investors’ holdings by 0.2% (2.9% of SD). These findings confirm the 

presence of a clientele effect of bond complexity: the higher the complexity of a firm’s bond structure, the 

more likely its bonds will be held by more informed investors, due to their advantage of being able to 

process information about bonds’ true value.   

Next, we consider a second type of clientele: yield-seeking investors. Bond complexity is a barrier to 

less informed investors, but it can provide a good investment opportunity for those seeking high yields. As 

shown in our baseline results, complexity increases bond yields after controlling for maturity and rating 

class. This implies that many investors who are constrained along those terms, and cannot borrow due to 

capital requirements, could increase performance by investing in complex bonds. In other words, 

17 We include finance companies, hedge funds, investment managers, and mutual funds as short-term institutional 
investors, using the code provided by eMAXX. Notably, it excludes other major bond investors, such as pension funds 
and insurance companies. Bond funds’ portfolio turnover is computed as the lesser of purchases or sales divided by 
average total net assets. High-portfolio turnover funds are defined as the funds for which the value of the portfolio 
turnover is above the sample median. 
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complexity represents a shield with which to invest in more risky assets while sidestepping the constraints 

imposed by regulation and mandates. This is very similar to the intuition of “betting against the beta” (e.g., 

Frazzini and Pedersen, 2014), or the “reaching-for-yield” (RFY) investors (e.g., Becker and Ivashina, 2015). 

We therefore assess whether bond complexity is linked to bond investors’ tendency to reach for yield.  

We follow Choi and Kronlund (2017) and construct the RFY measure at the bond level, which is then 

aggregated at the firm level. This measure will indicate the extent to which the yield of a firm’s bonds 

deviates from the benchmark yield. More specifically, for firm i, 𝑅𝐹𝑌 ,  is computed as the value-weighted 

average of bond-level RFY (𝑅𝐹𝑌 , , )  across all outstanding bonds of the firm, where 𝑅𝐹𝑌 , ,  is the 

deviation of the yield of the jth bond of firm i from the yield of the benchmark bonds. That is,  

𝑅𝐹𝑌 , ≡ ∑ 𝑤 , , 𝑅𝐹𝑌 , , = ∑ 𝑤 , , 𝑦 , , − 𝑦 , ,   ,  (9) 

where 𝑤 , ,  is the weight of bond 𝑗’s amount to the total amount of all of firm 𝑖's outstanding bonds, 𝑦 , ,  

is the yield of bond 𝑗 of firm i, and 𝑦 , ,  is the benchmark yield applicable to bond 𝑗 of firm i. The 

benchmark yield is the value-weighted average yield of all index-eligible corporate bonds within the same 

rating and maturity category as bond 𝑗 in the FISD database, i.e., all IG (or HY) bonds that satisfy the 

inclusion criteria in the Barclays US Aggregate Bond Index (or Barclays Corporate High Yield Index). A 

higher (positive) value of RFY indicates the given bond offers investors higher yields than its peer bonds 

with similar rating and maturity. 

Next, we define the proportion of firm i’s bond ownership held by the particular investor type who 

reaches for yield (“High RFY Funds”).18 More specifically, we proceed as follows. For each bond j, we 

18 We identify “High RFY Funds” based on the RFY at fund level, where 𝑅𝐹𝑌 ,  is above the sample average. For 
fund k, 𝑅𝐹𝑌 ,  is computed as the holding-weighted average of bond-level RFY (𝑅𝐹𝑌 , , ) across all bonds held by 
the fund for quarter t. That is,   

𝑅𝐹𝑌 , ≡ ∑ 𝑤 , , 𝑅𝐹𝑌 , , = ∑ 𝑤 , , 𝑦 , , − 𝑦 , , ,  (10) 

where 𝑤 , ,  is bond 𝑙’s market weight in fund 𝑘's bond holdings, 𝑦 , ,  is the yield of bond 𝑙 held by fund 𝑘, and 
𝑦 , ,  is the benchmark yield applicable to bond 𝑙 for quarter t. A higher (positive) value of 𝑅𝐹𝑌  indicates a stronger 
tendency of the fund to reach for yield (Choi and Kronlund, 2017). 
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define its ownership held the “High RFY funds” (the proportion of bond amounts held by “High RFY Funds” 

to total amounts outstanding). Then, for each firm i, we compute the value-weighted average of bond-level 

RFY_Own, (𝑅𝐹𝑌_𝑂𝑤𝑛 , , )  across all the outstanding bonds of the firm. This variable, 𝑅𝐹𝑌_𝑂𝑤𝑛 , , 

proxies for the proportion of firm i’s bond ownership held by investors reaching for yield. That is,  

𝑅𝐹𝑌_𝑂𝑤𝑛 , ≡ ∑ 𝑤 , , 𝑅𝐹𝑌_𝑂𝑤𝑛 , , = ∑ 𝑤 , ,
     

 , ,
 ,   (11) 

The higher value of 𝑅𝐹𝑌_𝑂𝑤𝑛 ,  indicates that a firm has a larger base of yield-chasing bond investors, 

potentially because the firm’s bonds offer the higher yield relative to others with the same rating and 

maturity (or, the higher value of 𝑅𝐹𝑌 , ), and hence they are more attractive for those reaching for yield to 

invest in. In our sample, 𝑅𝐹𝑌 ,  (𝑅𝐹𝑌_𝑂𝑤𝑛 , ) has a mean of -0.16 (0.35) and a SD of 5.63 (0.30).  

Once we construct the two measures of RFY (𝑅𝐹𝑌 ,  and 𝑅𝐹𝑌_𝑂𝑤𝑛 , ), we examine their link to bond 

complexity using the following panel regression. We include firm- and quarter-fixed effects and cluster 

standard errors at the firm level:   

𝑅𝐹𝑌 ,  (𝑜𝑟 𝑅𝐹𝑌_𝑂𝑤𝑛 , ) = 𝑎 + 𝑏 × 𝐵𝐶𝑜𝑚𝑝 , + 𝒄 × 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 , + 𝛼 + 𝛿 + 𝜀 , ,        (12) 

where the dependent variable is either 𝑅𝐹𝑌 , , the firm-level RFY measure for firm i, or 𝑅𝐹𝑌_𝑂𝑤𝑛 , , the 

proportion of firm i’s bond amount held by the high RFY fund to total amount outstanding.   

Table 5 reports our results. We find that bond complexity is positively associated with both the firm's 

RFY (𝑅𝐹𝑌 , ) and the proportion of bond amount held by high RFY funds (𝑅𝐹𝑌_𝑂𝑤𝑛 , ). Specifically, a 1-

SD higher bond complexity is correlated with 21-bp higher bond yields relative to other bonds in the same 

rating and maturity (column 1), and a 0.6% higher proportion of bond amount held by high RFY funds 

(column 2). These results suggest that complexity and RFY are related: complex bonds, by offering higher 

yields relative to others with the same rating and maturity, induce those RFY-incentivized investors who 

value yields highly but have regulatory constraints in terms of ratings to invest more in them (reaching for 

complexity, or RFC). The RFY investor’s RFC remains strong after we control for rating, maturity, and 
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other characteristics. This suggests that the investment is determined not just by the desire to invest in all 

high yield bonds, but to more selectively identify those that have such high yields due to their complexity. 

This may be due to the existing mispricing induced by lack of information, as well as to a desire to “hide” 

their actions behind the complexity in the valuation of such bonds. Investors who load on complex bonds 

to reach for yields may be more informed. Or, they may be less informed investors who accept more risk 

in exchange for higher returns. 

Next, we corroborate our result for bond complexity and RFY investors by examining the relation 

between BComp and future bond returns. Our rationale here is that, to the extent that high demand from 

fund investors for complex bonds drives up prices above the fundamental level, they will have lower future 

returns due to the prices reverting over time (Frazzini and Pedersen, 2014). To observe this more clearly, 

we approximate future bond returns, 𝑅 , , as a function of the bond yield, 𝑌 , , and modified duration, 𝐷 ,  

(Campello, Chen, and Zhang, 2008; Chen and Choi, 2020): 

𝑅 , ≈ 𝑌 , − 𝐷 , ∆𝑌 ,               (13) 

Equation (13) shows a negative relationship between bond returns and bond yield changes after holding the 

current yield constant. That is, bond returns will remain the same as the current bond yield (𝑌 , ) if it also 

remains constant (i.e., ∆𝑌 , = 0). But an increase in bond yields (∆𝑌 , > 0) will lead to a reduction in 

returns concurrent with the extent of (positive) duration. As such, to the extent that overpricing (i.e., yields 

being too low) of complex bonds will experience an increase in yields due to a yield correction, their returns 

will decrease, holding the current level of bond yields and duration constant. The more complex the bond, 

the larger the increase in the yield, and hence the lower the return.      

In order to test this conjecture, we regress bond returns on the lagged value of bond complexity, 

controlling for bond yield and duration as well as other control variables in the following panel regression. 

We include firm- and quarter-fixed effects, and cluster standard errors at the firm level: 

𝐹𝐵𝑅𝑒𝑡 , = 𝑎 + 𝑏 𝐵𝐶𝑜𝑚𝑝 , + 𝑐 𝑌𝑖𝑒𝑙𝑑 , + 𝑐 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 , +  𝒆 × 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 , + 𝜀 , ,  (14) 
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where 𝐹𝐵𝑅𝑒𝑡 ,  is future bond returns for a given quarter 𝑡, computed as an average monthly return in 

percentage for the period of quarters 𝑡 + 1  to 𝑡 + 4 . 𝑌𝑖𝑒𝑙𝑑 ,  and 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ,  are the bond yield and 

(modified) duration, respectively, for quarter 𝑡. The results are in Table 5, where we confirm the negative 

association between BComp and FBRet whether to control for duration (Models 3 and 4). Specifically, a 1-

SD higher bond complexity is associated with around 4-bps per month (or 48 bp per annum) lower returns 

in the future.  

3.3 Complexity and Bond Uncertainty 

We have documented the pricing impact of bond complexity and its implication on bond investors. To 

provide greater assurance that our findings relate to valuation uncertainty, we provide further evidence. 

First, we examine whether bond complexity is associated with two different measures of bond uncertainty: 

bond trading volume – a proxy for investors’ disagreement on asset value in the literature (e.g., Banerjee 

and Kremer, 2010) – and dispersion in institutional investor portfolio weights (Nozawa, Qiu, and Xiong, 

2021).19 If complex bonds entail more uncertainty, we expect a positive association between our bond 

complexity measure and those bond uncertainty measures.   

Table 6, Panel A, reports our regression result for the relation between bond complexity and bond 

uncertainty. We confirm that bond complexity is positively and statistically significantly associated with 

all three uncertainty measures. Specifically, a 1-SD increase in complexity is associated with about a 0.08 

(4% of SD) increase in log trading volume (TrdVol) for a given quarter. This implies complex bonds are 

subject to greater disagreement among investors, and are hence traded more frequently. It is also associated 

19 The dispersion of bond investors’ holdings is measured by the coefficient of variation (CV) in portfolio weights 
across bond funds for firm i (Nozawa, Qiu, and Xiong, 2021): 

𝐶𝑉 , =
𝜎 , 𝑤 , ,

𝐸 , 𝑤 , ,

,  (15) 

where 𝑤 , ,  is fund k’s portfolio weights on the bonds issued by firm i in quarter t. If all investors hold well-diversified 
portfolios (e.g., the “bond market portfolio”), the value of CV will be 0, since the weights are equal across investors. 
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with a higher dispersion of investors’ portfolio weights (CV) of 0.11.20  For comparison, a one-notch 

downgrade in credit rating in the same regression is estimated to cause about a 0.03 higher log trading 

volume and a 0.02 larger dispersion in investors’ portfolio weights. 

Next, we compare the impact of bond complexity on yield spreads separately for the period with high- 

vs. low uncertainty. During highly uncertain times, we expect that bond complexity to aggravate the 

difficulty with which resource-constrained investors process information on a firm’s bond. If this is the 

case, we should observe that the pricing impact of bond complexity is more pronounced. Following the 

literature, we consider three different proxy variables to capture uncertainty over time:21 global economic 

policy uncertainty (Baker, Bloom, and Davis, 2016), real and financial uncertainty (Jurado, Ludvigson, and 

Ng, 2015), and the CBOE volatility index, VIX. The results, reported in Panel B of Table 6, show that, 

regardless of which proxy we use, the interaction term between bond complexity and the uncertain time 

indicator, 𝐼  (a dummy that equals 1 for the period when the value of the uncertainty index is above 

the sample median, and 0 otherwise) carries highly significant positive coefficients. Specifically, the pricing 

effect of bond complexity is between two and four times higher for the period with higher macro uncertainty. 

4. Robustness: Bondholder Dispersion

We have argued and shown that bond complexity captures bond valuation uncertainty arising from the 

heterogeneity of the contractual terms of all outstanding bonds of a firm, dubbed bond complexity. However, 

one may argue that it could also proxy for alternative features of bond structure. For example, since our 

measure of bond complexity is correlated strongly with the number of bond issues outstanding, our results 

may be merely picking up the effect of the number of issues, not necessarily bond feature heterogeneity. In 

20 As a robustness test, we also control for these two disagreement measures (TrdVol and CV) in our baseline regression 
for bond yield spreads. The (untabulated) result shows that the significant effect of bond complexity remains 
unchanged. 
21 The data come from the author’s website, https://www.policyuncertainty.com (global economic policy uncertainty 
index), and https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes (real and financial 
uncertainty index).  
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fact, the number of bond issues could increase the complexity of bond structure mechanically without 

expanding the heterogeneity of bond contractual terms that we aim to capture here. Likewise, the number 

of bonds also captures bondholder dispersion, which in turn can affect bond yield spreads. In the standard 

literature (e.g., Bolton and Scharfstein, 1996), a larger number of bonds represents higher bondholder 

dispersion, making it difficult for bondholders to coordinate renegotiation. As such, firms with more bonds 

outstanding tend to commit to paying debt without strategic default, resulting in lower bond spreads 

(Davydenko and Strebulaev, 2007). 

Therefore, to empirically distinguish bond complexity from bondholder dispersion, we now control for 

two relevant proxies from all of our previous regressions: the number of bond issues (BNum), and 1  the 

Herfindahl index of outstanding bond issues (BHHI).22 The result is reported in Table 7. We find that our 

earlier results of the effect of complexity on yield spreads (Model 1) and bond investor bases (Models 2 to 

5) remain strongly positive and statistically significant, even after controlling for BNum (Panel A) or BHHI

(Panel B). In contrast, neither proxy variable for bondholder dispersion yields consistent results across 

model specifications. For example, only some exhibit significant coefficients, with mixed signs at best.  

We also revisit our results with regard to the conditional effect of complexity on macro uncertainty by 

controlling for either BNum × 𝐼  or BHHI × 𝐼  in order to explore whether our original 

interaction term, BComp × 𝐼𝑈𝑛𝑐𝑒𝑟𝑡𝑖𝑛𝑡𝑦 , will be subsumed (Panel C). The result shows a relatively sharp 

contrast in estimated coefficients. The interaction term between complexity and macro uncertainty 

continues to carry a significantly positive coefficient. But the bondholder dispersion proxies (both BNum 

and BHHI) and macro uncertainty interact negatively. This means that the effect of bondholder dispersion 

on yield spreads diminishes during uncertain times, which is the opposite of the moderating effects by 

macro uncertainty. This result can be interpreted that more bonds imply more information – either because 

22  Herfindahl index =
∑ 𝐵

∑ 𝐵
, where 𝐵  is the face value at the offering of the 𝑗 th bond of firm  𝑖 

(Davydenko and Strebulaev, 2007; Oehmke and Zawadowski, 2017). 
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each bond is a distinct signal, or because companies that issue more bonds are larger and more established 

and therefore better known or followed by the market. Thus, the effect moves in the opposite direction – 

i.e., more bonds should reduce, as opposed to augment, the effect of complexity on bond yield spreads.

Conclusion 

We study how the complexity in the contractual provisions of a company’s bond structure affects bond 

pricing, investor bases, and uncertainty. We argue that bonds differ in their contractual terms (redeemable, 

exchangeable, coupon type, security level, etc.) as well as in which covenants they are subject to. Often, 

each bond of a company carries a different set of contractual features that empowers its owners, but may 

hinder the valuation process of other bond owners. This creates uncertainty about the overall degree of 

investor property rights. We argue further that bond complexity is priced and provides a key dimension of 

choice for asset managers who “reach for yields.” 

We test our hypotheses by focusing on a comprehensive sample of U.S. corporate bonds over the 1998-

2018 period. We document that complexity is positively related to bond yield spreads. The pricing result is 

robust to addressing endogeneity using two different quasi-experiments: founder Bill Gross’s sudden 

resignation from PIMCO, and the introduction of new accounting rule SFAS 160. In both cases, we show 

that the event exogenously increases yield spreads due to heightened bond uncertainty. More importantly, 

the yield spreads of complex bonds are affected the most by these shocks.  

Once we determined a causal link between complexity and bond yield spreads, we focused directly on 

the link between complexity and the identity of bond investor bases. As expected, we document that higher 

complexity, by heightening bond uncertainty, is positively associated with bond ownership by informed 

investors, such as those with short-term investment horizons, high portfolio turnover, and high portfolio 

concentration. We also show that complexity is related to the reaching-for-yield phenomenon of bond 

investors. Thus, complexity increases bond RFY (i.e., a bond’s yield beyond that of peers within the same 

rating and maturity). And complex bonds are more likely to be held by bond funds that exhibit the RFY 
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tendency (i.e., tilting their portfolios toward high-RFY bonds). In other words, complexity increases the 

attractiveness of bonds for RFY investors.  

We also find that complexity brings lower future returns, which can be interpreted as strong demand 

from complexity-seeking investors inflating current bond prices above fundamental levels. These results 

have important implications for our understanding of the RFY phenomenon. It is not necessarily based on 

higher risk taking, but on investments along a specific source of information: complexity. 

Finally, we directly show that complexity increases bond valuation uncertainty, as measured by bond 

trading volume and the dispersion of bond investors’ holdings. This result supports the economic rationale 

that complexity is priced due to heightened uncertainty to which investors are averse. They therefore 

demand a discount off bond prices. Overall, our results highlight that the heterogeneity of bond contractual 

terms makes firms’ bonds more complex and difficult to understand. 
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Appendix A: Construction of Bond Complexity Measure 

Suppose there are 𝑁 ,  (> 1) bonds outstanding for a given quarter t for firm i. For each bond j (𝑗 =

1,2, … 𝑁 ,  ), we consider 11 main contractual features, and convert each feature k (𝑘 = 1,2, … 11) to a 
numerical scale by assigning bond feature dummies 𝕀 , , ,  : 

k Bond Features Presence 𝕀 , , ,  
1 Covenants ‘No’ 

‘Yes’ 
0 
1 

2 Redeemable ‘No’ 
‘Yes’ 

0 
1 

3 Callable ‘No’ 
‘Yes’ 

0 
1 

4 Putable ‘No’ 
‘Yes’ 

0 
1 

5 Exchangeable ‘No’ 
‘Yes’ 

0 
1 

6 Convertible ‘No’ 
‘Yes’ 

0 
1 

7 Credit Enhancement ‘No’ 
‘Yes’ 

0 
1 

8 Secured ‘No’ 
‘Yes’ 

0 
1 

9 Foreign Currency ‘No’ 
‘Yes’ 

0 
1 

10 Short Term (1 <= Maturity < 5) ‘No’ 
‘Yes’ 

0 
1 

11 Fixed Coupon ‘No’ 
‘Yes’ 

0 
1 

Our bond complexity measure for firm i at time t is defined as: 

Complexity , =  2 ×
∑ ∑ 𝕀 , , , − 𝜇 , ,

,

11 × 𝑁 ,

where, 

𝜇 , , =
∑ 𝕀 . , ,

,

𝑁 ,
, 

𝑁 ,  is the number of bonds of firm i outstanding at quarter t, and 𝕀 , , ,  is an indicator function defined as 

1 (or 0) if the 𝑘 -bond contractual feature is present (or absent) in bond j of firm i at quarter t. 
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Table 1 Summary Statistics 

This table presents the summary statistics for the main variables in the sample, which consists of all corporate bonds outstanding for all (except 
financial or utility) firms in the Mergent FISD database for the 20-year period from 1998Q2 to 2018Q1. YS is the value-weighted average of yield 
spreads in percentages of the firm’s outstanding bond issues, where a bond’s yield spread is computed as its yield to maturity minus a Treasury 
bond’s with the same maturity. BComp is the firm-level variable that captures contractual heterogeneities across a firm’s bond issues, and its exact 
definition is presented in the Appendix. Rating is the value-weighted average of credit ratings of the firm’s outstanding bond issues, where we 
assign the numerical number to rating notches ranging from 1 to 21. AAA equals 1, AA+ equals 2, AA equals 3, AA- equals 4, and so on. Illiquidity 
is the value-weighted average of the proportion of zero trading days, and Maturity is the value-weighted average of time to maturities in years of 
the firm’s outstanding bond issues. Coupon and Age is the bond’s coupon rate (in percentage) and bond age (in log). CovInd is the value-weighted 
average of the covenant index (Billett, King, and Mauer, 2007). It is defined as the sum of the covenant dummies assigned to each of 15 different 
categories of covenants, where a covenant dummy equals 1 if covenant protections exist for each category. Covenant Index variables take a value 
of 0 in case of missing data. CovMiss is a dummy variable that equals 1 if Covenant Index variables are missing. FBRet is future bond returns, 
computed using average monthly returns in percentages for quarters t+1 to t+4. ST_Own, HT_Own, and Concen_Own are the proportion of bond 
amounts held by bond funds with short investing horizons, high portfolio turnover, and high rating concentration, respectively, among all 
institutional investors. Short-horizon investors include holdings by annuities/variable annuities, finance companies, hedge funds, investment 
managers, and mutual funds. High turnover investors are bond funds for which the value of portfolio turnover is higher than the sample median. 
Concentrated investors are bond funds for which the value of the Herfindahl index of portfolio holdings across credit rating categories is above the 
sample median. BRFY is computed as the difference between bond yields and the average yield of the benchmark, i.e., bonds with the same credit 
rating and maturity (Choi and Kronlund, 2018). RFY_Own is the proportion of the bond amount held by RFY bond funds, i.e., those for which the 
value of the RFY fund is above the sample median. TrdVol is the log of total trading volume in thousands of the firm’s bonds for a given quarter. 
RSplit is a dummy that equals 1 if any bond has a rating split, i.e., different ratings assigned by S&P and Moody’s. CV is the coefficient of variation 
of portfolio weights across bond funds capturing bond investor disagreement (Nozawa, Qiu, and Xiong, 2021). BNum is the number of a firm’s 
outstanding bond issues. BHHI is 1  the Herfindahl index of outstanding bond issues. FU, RU, and PU indicate financial, real, and policy 
uncertainty, and the VIX is the CBOE volatility index. 𝐼{ } indicates a dummy that equals 1 if the value of the respective uncertainty measure is 
higher than the sample median. All variables are winsorized at the 1% level. 

N MEAN STD P5 P95 
FBRet (%) 60,836 0.57 1.66 -1.59 3.04 
YS (%) 65,178 3.97 5.00 0.41 11.64 
BComp 65,178 0.35 0.20 0.00 0.61 
Rating 65,178 10.94 4.05 5.00 17.00 
Maturity 65,178 8.01 4.84 2.29 18.05 
Illiquidity 65,178 0.60 0.21 0.27 0.94 
Coupon 65,178 6.70 2.13 3.08 10.25 
Age 65,178 4.59 4.39 0.45 15.11 
Size 65,178 12.86 0.63 11.92 13.95 
CovInd 65,178 0.37 0.18 0.00 0.67 
CovMiss 65,178 0.08 0.25 0.00 1.00 
ST_Own 64,357 0.54 0.23 0.13 0.90 
Concen_Own 64,637 0.03 0.07 0.00 0.17 
HT_Own 64,637 0.17 0.12 0.02 0.41 
BRFY 64,995 -0.16 5.63 -4.97 3.19 
RFY_Own 64,637 0.35 0.30 0.01 0.91 
TrdVol 65,178 13.12 1.87 9.62 15.76 
RSplit 29,218 0.74 0.44 0.00 1.00 
CV 64,562 2.09 1.11 1.05 4.53 
𝐼{ } 65,178 0.39 0.49 0.00 1.00 
𝐼{ } 65,178 0.54 0.50 0.00 1.00 
𝐼{ } 65,178 0.57 0.50 0.00 1.00 
𝐼{ } 65,178 0.38 0.49 0.00 1.00 
BNum 65,178 7.40 8.53 1.00 22.00 
BHHI 65,178 0.68 0.25 0.00 0.93 
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Table 2 Bond Yield Spreads: Baseline Regression 

This table presents the results of panel regressions where we regress yield spreads on bond complexity, along with other control variables. The 
sample is at a firm-quarter level, and it spans 1998Q2 to 2018Q1. YS is the value-weighted average of yield spreads in percentages of a firm’s 
outstanding bond issues, where a bond’s yield spread is computed as its yield to maturity minus a Treasury bond’s with the same maturity. BComp 
is firm-level bond complexity that captures contractual heterogeneities across a firm’s bond issues, and its exact definition is in the Appendix. 
Rating is the value-weighted average of credit ratings of the firm’s outstanding bond issues, where we assign a numerical number to rating notches 
ranging from 1 to 21. AAA equals 1, AA+ equals 2, AA equals 3, AA- equals 4, and so on. Illiquidity is the value-weighted average of the proportion 
of zero trading days, and Maturity is the value-weighted average of time to maturities in years of the firm’s outstanding bond issues. Coupon and 
Age are a bond’s coupon rate (in percentage) and bond age (in log). CovInd is the value-weighted average of the covenant index (Billett, King, and 
Mauer, 2007), defined as the sum of the covenant dummies assigned to each of 15 different categories of covenants. A covenant dummy equals 1 
if covenant protections exist for each category. Covenant Index variables equal 0 in case of missing data. CovMiss is a dummy variable that equals 
1 if Covenant Index variables are missing. t-statistics are in parentheses. Both firm- and quarter-fixed effects are included, and standard errors are 
clustered at the firm level. ***, **, and * represent statistical significance at the 1%, 5%, and 10% levels, respectively. 

Dependent Variable: Bond Yield Spreads (YS) (%) 
(1) (2) (3) (4) (5) 

BComp 1.70*** 0.88*** 0.91*** 0.92*** 0.87*** 
(6.09) (3.43) (3.55) (3.81) (3.56) 

Rating 0.67*** 0.68*** 0.62*** 0.62*** 
(19.49) (19.55) (18.39) (18.41) 

Maturity -0.11*** -0.11*** -0.08*** -0.08***
(-12.76) (-12.88) (-11.97) (-11.87)

Illiquidity 0.61*** 0.19 0.26
(3.54) (1.10) (1.48)

Coupon 0.45*** 0.43***
(12.23) (12.04)

Age 0.01 0.02 
(0.96) (1.18) 

Size 0.07 0.07 
(0.63) (0.63) 

CovIndex 1.12** 
(2.47) 

CovMiss 0.08 
(0.40) 

Constant 3.36*** -2.86*** -3.27*** -6.55*** -6.88***
(33.89) (-7.26) (-7.88) (-4.35) (-4.56)

Observations 64,760 64,760 64,760 64,760 64,760
R-squared 0.639 0.677 0.677 0.684 0.684
Firm FE Yes Yes Yes Yes Yes 
Time FE Yes Yes Yes Yes Yes 
Clustered SE Yes Yes Yes Yes Yes 
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Table 3 Bond Yield Spreads: Quasi-Experiments 

This table presents the results of two quasi-natural experiments: an exogenous shock introduced by the sudden resignation from PIMCO of founder 
Bill Gross during 2014Q3, and the introduction of a new accounting standard, SFAS 160, during 2008. The PIMCO sample focuses on four quarters 
before and four quarters after the event. Treat is a dummy variable that equals 1 if a firm’s bond was held by PIMCO for more than 3% of the total 
amount outstanding during the third quarter of 2014, and 0 if it was held by Prudential or Vanguard for more than 3% of the total amount outstanding 
during 2014Q3. Post is a dummy variable that equals 1 for the period after 2014Q3, and 0 otherwise. Pre is a dummy variable that equals 1 for the 
periods of 2014Q2 and 2014Q3, and 0 otherwise. The SFAS 160 sample focuses on two years before and two years after the event. Treat is a 
dummy variable that equals 1 if a firm has relevant covenants (i.e., covenants stated in terms of equity) and positive minority interest, and 0 
otherwise. Post is a dummy variable that equals 1 for the years after 2008, and 0 otherwise. Pre is a dummy variable that equals 1 for the year of 
2008, and 0 otherwise. YS is the value-weighted average of yield spreads in percentages of a firm’s outstanding bond issues, where a bond’s yield 
spread is computed as its yield to maturity minus a Treasury bond’s with the same maturity. BComp is firm-level bond complexity that captures 
contractual heterogeneities across a firm’s bond issues. Its exact definition is in the Appendix. Included are the same set of control variables as 
those in Table 2. t-statistics are in parentheses. Both firm- and quarter-fixed effects are included, and standard errors are clustered at the quarter 
level. ***, **, and * represent statistical significance at 1%, 5%, and 10% levels, respectively. 

Dependent Variable: Bond Yield Spreads (YS) (%) 
PIMCO SFAS 160 

(1) (2) (3) (4) (5) (6)

Bcomp×Treat×Post 0.39* 0.55** 1.43* 1.68** 
(2.01) (2.53) (1.98) (2.44) 

Bcomp×Treat×Pre 0.28 0.53 
(1.51) (1.11) 

Treat×Post 0.37*** 0.27*** 0.24*** 0.68*** 0.02 0.01 
(5.10) (5.16) (4.52) (4.63) (0.09) (0.04) 

Treat×Pre -0.04 0.02 
(-0.83) (0.07) 

Bcomp×Post -0.08 -0.08 0.08 0.42* 
(-0.75) (-0.63) (0.30) (1.84) 

Bcomp×Pre 0.01 0.70*** 
(0.14) (5.46) 

Bcomp×Treat 0.32 0.23 -1.06 -1.32
(0.76) (0.48) (-1.27) (-1.63)

Bcomp -0.14 -0.15 0.09 -0.17
(-1.49) (-1.29) (0.30) (-0.56)

Constant 3.46* 3.71* 3.70* 4.45*** 4.63*** 4.61***
(2.07) (2.15) (2.13) (3.20) (3.26) (3.26)

Controls Yes Yes Yes Yes Yes Yes 
Observations 2,600 2,600 2,600 5,593 5,593 5,593 
R-squared 0.909 0.909 0.909 0.850 0.850 0.851 
Firm FE Yes Yes Yes Yes Yes Yes 
Time FE Yes Yes Yes Yes Yes Yes 
Clustered SE Yes Yes Yes Yes Yes Yes 
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Table 4 Bond Investor Base: Informed Investors 

This table presents the results of panel regressions where we examine the relation between bond complexity and investor informativeness. The 
sample is at the firm-quarter level, and the period spans 1998Q2 to 2018Q1. ST_Own, HT_Own, and Concen_Own are the proportion of bond 
amount held by bond funds with short investing horizons, high portfolio turnover, and high rating concentration, respectively, among all institutional 
investors. Short-horizon investors include holdings by annuities/variable annuities, finance companies, hedge funds, investment managers, and 
mutual funds. High turnover investors are bond funds for which the value of portfolio turnover is higher than the sample median. Concentrated 
investors are bond funds for which the value of the Herfindahl index of portfolio holdings across credit rating categories is above the sample median. 
BComp is a firm-level variable that captures contractual heterogeneities across a firm’s bond issues, and its exact definition is in the Appendix. 
Rating is the value-weighted average of credit ratings of a firm’s outstanding bond issues, where we assign the numerical number to rating notches 
ranging from 1 to 21. AAA equals 1, AA+ equals 2, AA equals 3, AA- equals 4, and so on. Illiquidity is the value-weighted average of the proportion 
of zero trading days, and Maturity is the value-weighted average of time to maturities in years of the firm’s outstanding bond issues. Coupon and 
Age are the bond’s coupon rate (in percentage) and bond age (in log). CovInd is the value-weighted average of the covenant index (Billett, King, 
and Mauer, 2007), defined as the sum of covenant dummies assigned to each of 15 different categories of covenants, where a covenant dummy 
equals 1 if covenant protections exist for each category. Covenant Index variables equal 0 in case of missing data. CovMiss is a dummy variable 
that equals 1 if Covenant Index variables are missing. t-statistics are in parentheses. Both firm- and quarter-fixed effects are included, and standard 
errors are clustered at the firm level. ***, **, and * represent statistical significance at 1%, 5%, and 10% levels, respectively. 

Dependent variable: ST_Own 
(1) 

HT_Own 
(2) 

Concen_Own 
(3) 

BComp 0.07*** 0.02*** 0.01** 
(4.98) (3.02) (2.43) 

Rating 0.01*** 0.01*** 0.00*** 
(5.70) (10.57) (4.93) 

Maturity 0.00*** -0.00** -0.00***
(3.87) (-2.24) (-5.77)

Illiquidity -0.05*** -0.02*** -0.00
(-6.27) (-5.69) (-0.13)

Coupon 0.00 0.00** -0.00*
(0.01) (2.49) (-1.70)

Age -0.01*** -0.00*** 0.00**
(-11.52) (-7.94) (2.46)

Size 0.03*** 0.01*** 0.00
(4.77) (2.80) (1.63)

CovIndex -0.12*** -0.04*** -0.04***
(-4.96) (-4.16) (-4.04)

CovMiss 0.02 0.00 -0.02***
(1.16) (0.19) (-4.78)

Constant 0.23*** 0.06* -0.03
(3.08) (1.78) (-0.84)

Observations 63,977 64,233 64,233 
R-squared 0.569 0.375 0.612 
Firm FE Yes Yes Yes 
Time FE Yes Yes Yes 
Clustered SE Yes Yes Yes 
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Table 5 Bond Investor Base: Yield-Seeking Investors 

This table presents the results of panel regressions where we examine the relation between bond complexity and investors’ reaching-for-yield. The 
sample is at the firm-quarter level, and its period spans 1998Q2 to 2018Q1. RFY is computed as the difference between bond yields and the average 
yield of the benchmark, i.e., bonds with the same credit rating and maturity (Choi and Kronlund, 2018). RFY_Own is the proportion of the bond 
amount held by RFY bond funds, i.e., those for which the value of fund RFY is above the sample median. FBRet is future bond returns computed 
using average monthly returns in percentages for quarters t+1 to t+4. BComp is a firm-level variable that captures contractual heterogeneities across 
a firm’s bond issues, and its exact definition is in the Appendix. Rating is the value-weighted average of credit ratings of the firm’s outstanding 
bond issues, where we assign the numerical number to rating notches ranging from 1 to 21. AAA equals 1, AA+ equals 2, AA equals 3, AA- equals 
4, and so on. Illiquidity is the value-weighted average of the proportion of zero trading days, and Maturity is the value-weighted average of time to 
maturities in years of the firm’s outstanding bond issues. Coupon and Age are the bond’s coupon rate (in percentage) and bond age (in log). CovInd 
is the value-weighted average of covenant index (Billett, King, and Mauer, 2007), defined as the sum of covenant dummies assigned to each of 15 
different categories of covenants, where a covenant dummy equals 1 if covenant protections exist for each category. Covenant Index variables equal 
0 in case of missing data. CovMiss is a dummy variable that equals 1 if Covenant Index variables are missing. Yield is the bond yield in percentages 
and Duration is the bond’s modified duration. t-statistics are in parentheses. Both firm- and quarter-fixed effects are included, and standard errors 
are clustered at the firm level. ***, **, and * represent statistical significance at 1%, 5%, and 10% levels, respectively.

Dependent Variable: RFY (%) RFY_Own FBRet (%) 
(1) (2) (3) (4)

BComp 1.07*** 0.03** -0.21** -0.22**
(2.93) (2.44) (-2.03) (-2.13)

Rating -0.12*** 0.00*** -0.00 -0.00
(-2.77) (3.84) (-0.46) (-0.43)

Maturity -0.05*** 0.00 0.00 0.06***
(-5.46) (0.18) (1.09) (5.72)

Illiquidity 0.43 0.00 0.21*** 0.23***
(1.34) (0.21) (2.98) (3.24)

Coupon 0.49*** 0.02*** -0.01 -0.04***
(10.34) (16.40) (-0.71) (-2.81)

Age -0.04** -0.00** -0.01 -0.00
(-2.00) (-2.03) (-1.42) (-0.81)

Size 0.04 0.00 0.01 0.03 
(0.31) (0.59) (0.17) (0.73) 

CovIndex 0.99* -0.01 -0.10 -0.10
(1.71) (-0.43) (-0.52) (-0.53)

CovMiss 0.31 0.01 -0.07 -0.07
(1.18) (0.83) (-0.65) (-0.70)

Yield 14.45*** 13.97*** 
(17.72) (17.06) 

Duration -0.11***
(-6.04)

Constant -3.18 0.12* -0.38 -0.33
(-1.62) (1.84) (-0.70) (-0.60)

Observations 64,579 64,233 53,826 53,826 
R-squared 0.259 0.756 0.396 0.398 
Firm FE Yes Yes Yes Yes 
Time FE Yes Yes Yes Yes 
Clustered SE Yes Yes Yes Yes 
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Table 6 Bond Uncertainty 

This table presents the results of panel regressions where we examine the relation between bond complexity and bond uncertainty. TrdVol is the 
log of total trading volume in thousands of a firm’s bonds for a given quarter. CV is the coefficient of variation of portfolio weights across bond 
funds capturing bond investor disagreement (Nozawa, Qiu, and Xiong, 2021). FU, RU, and PU indicate financial, real, (Jurado, Ludvigson, and 
Ng, 2015), and policy uncertainty (Baker, Bloom, and Davis, 2016). The VIX is the CBOE volatility index. 𝐼{ } indicates a dummy that equals 1 if 

the value of the respective uncertainty measure is higher than the sample median. BComp is a firm-level variable that captures contractual 
heterogeneities across a firm’s bond issues, and its exact definition is in the Appendix. Included are the same set of control variables as those in 
Table 2. t-statistics are in parentheses. Both fund- and quarter-fixed effects are included, and standard errors are clustered at the firm level. ***, **, 
and * represent statistical significance at the 1%, 5%, and 10% levels, respectively. 

Panel A Bond Uncertainty 

Dependent Variables: TrdVol CV 
(1) (2) 

BComp 0.41*** 0.54*** 
(4.44) (5.57) 

Controls Yes Yes 
Observations 53,957 64,160 
R-squared 0.428 0.333 
Firm FE Yes Yes 
Time FE Yes Yes 
Clustered SE Yes Yes 

Panel B Macro Uncertainty 

Dependent Variables: Bond Yield Spreads (YS) (%) 

Uncertainty Index: 
(1) 

Policy 
Uncertainty 

(2) 
Real 

Uncertainty 

(3) 
Financial 

Uncertainty 

(4) 

VIX 

BComp ×  𝐼  1.74*** 
(3.96) 

0.72** 
(2.39) 

1.70*** 
(3.59) 

1.93*** 
(4.56) 

BComp 0.37 0.68*** 0.51* 0.47* 
(1.40) (2.72) (1.93) (1.84) 

Controls Yes Yes Yes Yes 
Observations 64,760 64,760 64,760 64,760 
R-squared 0.684 0.684 0.684 0.685 
Firm FE Yes Yes Yes Yes 
Time FE Yes Yes Yes Yes 
Clustered SE Yes Yes Yes Yes 
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Table 7 Bond Complexity and Bondholder Dispersion

This table presents the results of panel regressions where we control for the effect of bondholder dispersion proxied for by BNum and BHHI. BNum is the number of a firm’s outstanding bond issues. BHHI 
is 1  the Herfindahl index of outstanding bond issues. YS is the value-weighted average of yield spreads in percentages of the firm’s outstanding bond issues, where a bond’s yield spread is computed as 
its yield to maturity minus a Treasury bond’s with the same maturity. BComp is a firm-level variable that captures contractual heterogeneities across a firm’s bond issues, and its exact definition is in the 
Appendix. ST_Own, HT_Own, and Concen_Own are the proportion of bond amounts held by bond funds with short investing horizons, high portfolio turnover, and high rating concentration, respectively, 
among all institutional investors. Short-horizon investors include holdings by annuities/variable annuities, finance companies, hedge funds, investment managers, and mutual funds. High turnover investors 
are bond funds for which the value of portfolio turnover is higher than the sample median. Concentrated investors are bond funds for which the value of the Herfindahl index of portfolio holdings across 
credit rating categories is above the sample median. RFY_Own is the proportion of the bond amount held by RFY bond funds, i.e., those for which the value of RFY funds (Choi and Kronlund, 2018) is 
above the sample median. FU, RU, and PU indicate financial, real, (Jurado, Ludvigson, and Ng, 2015), and policy uncertainty (Baker, Bloom, and Davis, 2016). The VIX is the CBOE volatility index. 
𝐼{ } indicates a dummy that equals 1 if the value of the respective uncertainty measure is higher than the sample median. Included are the same set of control variables as those in Table 2. t-statistics are in 
parentheses. Both firm- and quarter-fixed effects are included, and standard errors are clustered at the firm level. ***, **, and * represent statistical significance at the 1%, 5%, and 10% levels, respectively. 

Panel A Number of Bond Issues 

Dependent Variable: YS STOwn HTOwn ConcenOwn RFYOwn 
(1) (2) (3) (4) (5) 

BComp 0.76*** 0.07*** 0.01** 0.02*** 0.02** 
(3.09) (5.48) (2.42) (3.43) (2.11) 

BNum 0.01** -0.00** 0.00 -0.00*** 0.00** 
(2.25) (-2.28) (0.26) (-2.70) (2.22) 

Panel B Herfindahl Index of Bond Issues 

Dependent Variable: YS STOwn HTOwn ConcenOwn RFYOwn 
(1) (2) (3) (4) (5) 

BComp 0.50** 0.09*** 0.01*** 0.03*** 0.03** 
(1.97) (6.31) (2.64) (4.75) (2.06) 

BHHI 0.61** -0.05*** -0.00 -0.02*** 0.00 
(2.55) (-3.83) (-0.72) (-4.32) (0.26) 
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Panel C Effect of Macro Uncertainty 

Dependent Variable: Bond Yield Spreads (YS) (%) 
(1) 

Policy 
Uncertainty 

(2) 
Real 

Uncertainty 

(3) 
Financial 

Uncertainty 

(4) 

VIX 

(5) 
Policy 

Uncertainty 

(6) 
Real 

Uncertainty 

(7) 
Financial 

Uncertainty 

(8) 

VIX 

BComp ×  𝐼  2.67*** 
(5.49) 

1.03*** 
(3.09) 

2.97*** 
(5.57) 

2.90*** 
(6.17) 

3.25*** 
(6.39) 

1.20*** 
(3.34) 

3.42*** 
(5.90) 

3.01*** 
(6.01) 

BNum ×  𝐼  -0.03***
(-5.05)

-0.01***
(-2.82)

-0.05***
(-5.46)

-0.04***
(-4.72)

BHHI ×  𝐼  -1.01***
(-3.96)

-0.33**
(-2.26)

-1.22***
(-4.93)

-0.77***
(-3.72)

BComp 0.03 0.50* 0.10 0.13 -0.49* 0.19 -0.16 -0.10
(0.10) (1.94) (0.38) (0.49) (-1.77) (0.71) (-0.59) (-0.36)

BNum 0.03*** 0.02*** 0.04*** 0.04*** 
(3.21) (2.71) (5.87) (5.48) 

BHHI 1.25*** 0.78*** 1.07*** 0.90*** 
(4.48) (3.22) (4.20) (3.64) 




