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Abstract

Most often important decisions involve several unknown attributes. This produces a double
challenge in the sense that both assessing the individual multiattribute preferences and the joint
distribution of the attributes can be extremely hard. In this respect, it would be useful to have
sufficient conditions for the dominance of one random vector over another under dependence un-
certainty, when only partial information on the joint distributions of the two vectors is available,
for instance, when only the marginals or just the first two marginal moments are known. Sufficient
conditions for multivariate stochastic dominance under dependence uncertainty can be obtained
only in very special cases. In this paper we develop sufficient conditions for multivariate almost
stochastic dominance based on marginal distributions of the attributes or just on their means and
variances. To make use of multivariate almost stochastic dominance, preferences are elicited ei-
ther in terms of bounds on marginal utilities or via transfers. We apply the theoretical results to
comparing the efficiency of photovoltaic plants.

Subject classifications: Decision analysis: criteria, theory. Probability: distribution comparisons.
Keywords: multivariate almost stochastic dominance, transfers, sufficient conditions for dominance,
dependence uncertainty, mean and variance.

1 Introduction

1.1 The problem

Often a decision maker faces decisions that depend on multiple uncertain attributes. It is typically
possible to assess some knowledge of the marginal distributions, whereas one cannot expect to get full
knowledge of their joint distribution. In these conditions it is difficult to compare uncertain prospects
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unless the agent’s preferences only depend on the marginal distributions. Moreover, even the exact
elicitation of preferences over fully known multivariate distributions is not an easy task. We consider
a comparison of multivariate prospects where both the distributions of the prospects and the decision
maker’s preferences are only partially specified.

Comparison of uncertain prospects under partially specified preferences is the domain of stochastic
dominance. For instance, first-degree stochastic dominance (FSD) studies conditions under which a
prospect Y is preferred to a prospect X for any decision maker who prefers more to less. This holds
if and only if E[u(X)] ≤ E[u(Y )] for all weakly increasing utility functions u. Although easy-to-check
necessary and sufficient conditions for FSD exist in the univariate case (they amount to a pointwise
comparison of distribution functions), the situation is much more complex in the multivariate case. In
this respect, it would be helpful to have sufficient dominance conditions that are easy to verify without
full knowledge of the multivariate distribution. Such conditions are intrinsically hard to obtain for
multivariate FSD. Among other things, this is due to the fact that FSD itself rarely holds for two
distributions. For instance, two multivariate normals can be ordered according to FSD only if they
have the same covariance matrices.

One possible way out of this conundrum is to restrict the class of admissible preference relations, by
imposing some bounds on marginal utilities. This is multivariate almost stochastic dominance (MASD)
(Tsetlin and Winkler, 2018), a generalization of the univariate almost stochastic dominance (ASD)
defined and studied by Leshno and Levy (2002).

1.2 Our contribution

We consider the problem of comparing two N -dimensional random vectorsX and Y when only partial
information is available concerning the decision maker’s preferences and the information about the
distributions of X and Y is limited to the marginal distributions of the components of these two
vectors. In other words, we consider a stochastic dominance problem under dependence uncertainty,
and we provide sufficient conditions for dominance under various information settings concerning the
marginal distributions.

Sufficient conditions for ASD based on the first two moments are known in the univariate setting.
They are based on bounds of the ratio between the infimum and the supremum of the marginal utility.
We consider two possible generalizations of the univariate results. In the first generalization, the
decision maker’s preferences concern only the various components of the random prospects, separately
taken. In the second generalization, the interaction of the various components is also taken into account.

In the first case, we consider stochastic dominance generated by a class Uγ of utility functions u
parametrized by a vector γ = (γ1, . . . , γN ) ∈ [0, 1]N where γi describes how much the marginal utility
of prospect i can vary. More precisely, γi is the lower bound of the ratio between the infimum and the
supremum of the partial derivative u′i. When γ = (0, . . . , 0) the class includes all increasing functions
and thus reduces to FSD. When γ = (1, . . . , 1) the class includes only affine functions and thus the
preference relation reduces to comparing the means of all uncertain prospects. Preferences that are
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represented by utility functions in this class can also be characterized by preferences for a certain class
of probability transfers that depend on γ. These transfers involve moving probability masses only
along specific directions parallel to the main axes, where we allow a probability of a loss in a certain
prospect as long as it can be overcompensated by a probability of a gain in the same prospect.

When considering dominance conditions for the class Uγ (called γ-dominance), by varying γ ∈
[0, 1]N we interpolate classical FSD and preferences that are based only on mean vectors. Thus we
get a continuum of dominance rules that become weaker and weaker as γ increases. Therefore, it is
clear that—if all means of the prospects are strictly comparable—there exists a γ for which dominance
holds.

In this case we provide sufficient conditions for γ-dominance that only depend on the marginal
distributions of the random vectors X and Y . These conditions are given for the case where the
marginal distributions are completely known and for the case where only their first two moments are
known. The rationale for these conditions is to find a sure prospect δ that γ-dominates X and is
γ-dominated by Y . Clearly the conditions become less strict as γ → (1, . . . , 1). When γ = (0, . . . , 0),
i.e., in the case of FSD, the conditions are satisfied only if the support of Y is strictly above the support
of X.

In many situations even the condition that all means are ordered is not fulfilled, in particular in a
high dimensional setting, but it may still be natural to speak of a version of ASD when most of the
means are ordered and significantly different. Therefore, we consider a second case parametrized by a
scalar γ ∈ [0, 1] and a vector β = (β1, . . . , βN ) ∈ RN+ with the following property: if γ = 0, then this
dominance relation coincides with FSD and if γ = 1 then the corresponding stochastic dominance rule
is the complete ordering obtained by comparing the means of

∑
i βiXi and

∑
i βiYi. In general the βi

can be interpreted as attributes’ weights. In many circumstances, the βi correspond to prices with a
bid-ask spread such that selling and buying prices are βi and γβi, respectively.

In this case the bounds on the marginal utilities are not imposed separately on each coordinate,
but rather in an interconnected way. So the bound on u′i depends on u′j , for all possible i, j. This
translates into a transfer characterization where moving a probability mass in one direction can be
suitably compensated by moving some mass in another direction, often with the already mentioned
interpretation that we can sell one prospect and buy another one with the money we receive.

As we have a complete ordering now for γ = 1, there exists a smallest γ for which stochastic
dominance holds. Now the sufficient conditions for dominance are expressed in terms of a scalar whose
expression involve linear combinations of suitable expectations with weights βi.

As an illustrative example for the second variant, the results are applied to a comparison of pho-
tovoltaic power systems, where the random variables represent the amount of electricity that can be
produced at different times of the day in two photovoltaic plants located in two different locations with
different weather conditions and different sun angles.
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1.3 Related literature

Stochastic dominance (SD) deals with conditions under which a random prospect is preferred to another
by all decision makers whose utility function satisfies some properties. We refer the reader to the
books by Müller and Stoyan (2002) and Shaked and Shanthikumar (2007) for an extensive analysis
of stochastic orders and their properties. Studies of multivariate stochastic dominance (MSD) in an
economic decision context include, for instance, Levy and Paroush (1974), Levhari et al. (1975), Mosler
(1984), Scarsini (1988), and Baccelli and Makowski (1989).

As conditions for FSD are often very restrictive, Leshno and Levy (2002) developed the concept of
univariate ASD where one random prospect is preferred to another by most rational decision makers,
rather than by all of them. This is achieved by neglecting agents whose utility functions are in a sense
extreme. This idea was carried over to the multivariate setting by Tsetlin and Winkler (2018).

In the univariate case, there are also various attempts to interpolate FSD and second-degree stochas-
tic dominance (SSD) (among them Müller et al., 2017, Huang et al., 2020, Mao and Wang, 2020). The
interpolation that we consider here has a different scope and does not refer in any form to risk aversion.

There exist various necessary conditions for SD based on moments both in the univariate and the
multivariate case (see, e.g., Fishburn, 1980, O’Brien, 1984, O’Brien and Scarsini, 1991). The perspective
we take here is completely different, since we provide sufficient conditions.

There is a vast literature dealing with problems of uncertainty where only partial knowledge of
distributions is known. The partial knowledge of distributions typically involves knowledge of moments
and in the multivariate case uncertainty about the dependence between the components, which we call
dependence uncertainty. The literature on dependence uncertainty has flourished in the recent years,
in particular in the context of bounds for risks in a financial context. Most papers in this stream of
literature consider the Fréchet class of multivariate distributions with fixed univariate marginals and
either optimize some function over this class, or find lower and upper bounds for some functionals of
random vectors whose distribution is in the class. Concerning optimization problems, an early reference
is Meilijson and Nádas (1979), who, motivated by critical path analysis on PERT networks, studied
optimization problems over the class of multivariate distributions with fixed marginals. Different
optimization problems involving dependence uncertainty were studied by Natarajan and coauthors
(see, e.g., Natarajan et al., 2009, Doan and Natarajan, 2012, Mishra et al., 2014, Doan et al., 2015,
Chen et al., 2022, Natarajan, 2022).

Having in mind financial applications, Puccetti and Rüschendorf (2012) provided an algorithm to
compute sharp bounds on the distribution of a function of a random vector in a fixed Fréchet class.
Similar problems were considered in Bernard et al. (2014), Embrechts et al. (2015) and Wang et al.
(2019). Bernard and Müller (2020) provided dependence uncertainty bounds for the energy score and
the Gini mean difference, which play an important role in the context of probabilistic forecasting. Bartl
et al. (2022) provided optimal transport duality results for classes of multivariate distribution functions
when additional information on the joint distribution is assumed and uncertainty in the marginals is
possible. Ghossoub et al. (2022) found bounds for risk measures that can be expressed as nonlinear
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functions of two factors whose marginal distributions (but not their joint distribution) are known. In
the framework of portfolio analysis, Arvanitis et al. (2021) studied stochastic bounding of a portfolio
by another. They looked at conditions under which a set of portfolios contains one portfolio that
stochastically dominates all portfolios in another set; when these conditions are not satisfied, they
looked for approximate bounds, in the spirit of ASD.

In our work we also consider uncertainty in terms of partial knowledge of moments. Important
references for distributionally robust optimization with partial knowledge of moments are, for instance,
Delage and Ye (2010) and Wiesemann et al. (2014). Zhu and Fukushima (2009) considered robust
portfolio management under various assumptions of uncertainty. Bernard et al. (2017, 2018) combined
partial knowledge of moments with dependence uncertainty in a similar context (see also Li et al.,
2018).

Once more we emphasize that the existing literature does not deal with sufficient conditions for
MASD. Our paper fills this relevant gap and provides interesting characterizations that are well-known
for other classes of dominance, such as necessary and sufficient conditions for dominance expressed in
terms of transfers. Here we provide such a characterization both when preferences include and do not
include substitution among different components of the compared random vectors.

1.4 Organization of the paper

Section 2 defines classes of utility functions by bounding the possible changes of marginal utilities,
studies dominance condition based on these classes, and characterizes them in terms of transfers.
Section 3 develops sufficient dominance conditions when the full marginal distributions are given and
when only their means and variances are known. Section 4 considers the second variant of a parametric
class of utility functions, which yields an interpolation between FSD and a complete order; as before, it
characterizes dominance based on this class in terms of transfers and provides sufficient conditions for
dominance. Section 5 presents a case study concerning a decision on investing in photovoltaic power
systems and analyzes real data using the concepts developed in the paper. Concluding comments are
given in Section 6. All proofs can be found in Appendix A.

2 Multivariate almost stochastic dominance

In the univariate case (N = 1), there exist several concepts of almost stochastic dominance that
generalize FSD. One of them is almost first-degree stochastic dominance (AFSD), defined in terms of
bounds on marginal utilities (Leshno and Levy, 2002). We generalize this idea to higher dimensions by
introducing classes of multivariate utility functions with suitable properties. In this section we consider
the most natural generalization of AFSD, which is defined in terms of bounds on marginal utilities
for each attribute separately. In Section 4 we will consider a different generalization that takes into
account also the interplay between different attributes.

Consider a decision maker who assesses N attributes x = (x1, . . . , xN ) with a differentiable utility
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function u : RN → R, where u′i denotes its partial derivative with respect to its i-th argument:

u′i(x) :=
∂u(x)

∂xi
. (2.1)

We now define γ-multivariate almost stochastic dominance (γ-MASD) for N -variate random vec-
tors. Given any class U of utility functions, we can define a stochastic dominance relation X ≤U Y
as

E[u(X)] ≤ E[u(Y )] for all u ∈ U . (2.2)

Definition 2.1. For a given vector γ := (γ1, . . . , γN ) ∈ [0, 1]N , the symbol Uγ denotes the set of utility
functions u such that, for all i ∈ {1, . . . , N}, we have

0 ≤ γiu′i(y) ≤ u′i(x) for all x,y ∈ RN . (2.3)

For γ ∈ [0, 1]N , the random vectorX is dominated by the random vector Y in the sense of γ-MASD
if X ≤Uγ Y . For the sake of simplicity, we write X ≤γ Y instead of X ≤Uγ Y .

Notice that for γi > 0 the condition (2.3) can only hold if the marginal utilities are bounded and
then inequality (2.3) is equivalent to

inf u′i(x)

supu′i(x)
≥ γi. (2.4)

The condition in Eq. (2.4) eliminates utility functions that are too extreme, in the sense that they
are neither too flat nor too steep. In particular we assume that marginal utilities are bounded away
from zero as well as from infinity. Definition 2.1 corresponds to MASD, as defined by Tsetlin and
Winkler (2018), with γi = εi/(1 − εi) for all i ∈ {1, . . . , N}. In the univariate case (N = 1), it
corresponds to AFSD, as defined by Leshno and Levy (2002).

Notice that, if γ ≤ λ componentwise, then Uλ ⊂ Uγ . Therefore X ≤γ Y implies X ≤λ Y and
for γ = 0 we get classical FSD. For the other extreme γ = (1, . . . , 1) we get X ≤γ Y if and only if
E[Xi] ≤ E[Yi] for all i = 1, . . . , N . For all other γ we get a stochastic dominance rule that interpolates
between these two extreme cases.

We have defined a SD rule by a set of utility functions with bounded marginal utilities. As in
the case of FSD, the corresponding preferences can also be characterized via transfers, which may be
easier to explain and use for elicitation of decision makers’ preferences. The idea of using transfers to
characterize SD can be traced back to the seminal paper by Rothschild and Stiglitz (1970), who showed
that increasing risk can be decomposed into a sequence of mean-preserving spreads. The name transfer
for operations such as mean-preserving spreads was originally more common in the related literature on
inequality measurement, where these transfers have the meaning of real transfers of income or wealth
(see Atkinson, 1970). It can be shown for many types of SD that, in the case of distributions assuming
only a finite number of values, the dominance rule holds if and only if one distribution can be obtained
from the other by a sequence of simple transfers. For multivariate FSD Østerdal (2010) showed that
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this holds for increasing transfers, i.e., transfers that shift some probability mass from some point x
to some point y > x, meaning that we have a good transfer to a better situation. For concepts of
ASD one typically also allows for decreasing transfers shifting some probability mass from some point
x to some point y < x as long as this is overcompensated by corresponding increasing transfers. See,
e.g., Müller et al. (2017) for the univariate case or Müller and Scarsini (2012) for the multivariate case
of inframodular transfers. Other related concepts of transfers have been considered in Elton and Hill
(1992) and Kamihigashi and Stachurski (2020). A general theory of transfers has been developed in
Müller (2013). We now show that such a characterization also holds for the multivariate versions of
SD considered in this paper, allowing for some decreasing transfer in some attribute i, as long as this
is overcompensated by a corresponding increasing transfer in exactly the same attribute.

Given two vectors x,y ∈ RN we use the notation x < y to indicate

xi ≤ yi, for i = 1, . . . , N, and x 6= y.

The symbol ei denotes the i-th unit vector of the canonical basis.

Definition 2.2. Consider two discrete cumulative distribution functions F and G with respective mass
functions f and g.

(a) We say that G is obtained from F via an increasing transfer if there exist x1 < x2 and η > 0

such that

g(x1) = f(x1)− η,

g(x2) = f(x2) + η,

g(z) = f(z) for all other values z.

(b) We say that G is obtained from F via a γi-transfer along dimension i if there exist x1,x2,x3,x4 ∈
RN , h, η1, η2 > 0 such that

x2 = x1 + hei, η2(x4 − x3) = γiη1(x2 − x1), (2.5)

and

g(x1) = f(x1)− η1,

g(x2) = f(x2) + η1,

g(x3) = f(x3) + η2,

g(x4) = f(x4)− η2,

g(z) = f(z) for all other values z.

We say that G is obtained from F via a γ-transfer if G is obtained from F via a γi-transfer along some
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dimension i ∈ {1, . . . , N}.

x4

−η

x3

+η

x1

−η

x2

+η

Figure 1: Example of a γ-transfer with γ1 = 2/3, η1 = η2 = η.

Fig. 1 gives an example of γ1-transfer with N = 2, γ1 = 2/3, η1 = η2. This multivariate transfer
is the natural generalization of the univariate (convex or concave) γ-transfer (or equivalently the
univariate AFSD transfer (Müller et al., 2017)). It simply consists of a decreasing transfer from x4 to
x3 which is compensated by an increasing transfer from x1 to x2 concerning the same component i.
It leads to a univariate γ-transfer of the i-th marginal as described in Müller et al. (2017)) and does
not affect any of the other marginals. Notice, however, that this transfer not only changes a marginal,
but also has an effect on the dependence between the components of the random vector.

We can characterize the order ≤γ in terms of this type of probability transfers.

Theorem 2.3. Let the random vectorsX and Y assume only a finite number of values. ThenX ≤γ Y
if and only if the distribution of Y can be obtained from the distribution of X by a finite number of
increasing transfers and γ-transfers.

Theorem 2.3 shows that preferences consistent with γ-MASD can be thought of as preferences for
multivariate γ-transfers.

One may suspect that Theorem 2.3 means that X ≤γ Y is equivalent to Xi ≤γi Yi for each
i ∈ {1, . . . N}. The following counterexample shows that this is not the case.

Example 2.4. Let N = 2 and γ = (1/2, 1/2). Consider the binary random vectors X,X ′,Y ,Y ′
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having the following distributions:

P(X = (0, 0)) = P(X = (5, 2)) =
1

2
, P(X ′ = (0, 2)) = P(X ′ = (5, 0)) =

1

2
,

P(Y = (2, 0)) = P(Y = (4, 2)) =
1

2
, P(Y ′ = (2, 2)) = P(Y ′ = (4, 0)) =

1

2
.

ThenX andX ′ have the same marginal distributions as well as Y and Y ′. With the characterizations
via transfers one can easily see that

X ≤γ Y and X ′ ≤γ Y ′,

but
X 6≤γ Y ′.

For a proof of the last statement consider the following utility function u:

u(x1, x2) = x1 + x2 + max{x1 + x2 − 4, 0}.

All marginal utilities of this function u are bounded between 1 and 2, so we have u ∈ Uγ , but

E[u(X)] = 5 > 4 = E
[
u(Y ′)

]
.

This shows that the ordering ≤γ in general depends not only on the marginal distributions, but on
the whole joint distributions of the random vectors. This was to be expected as it is well known that
an intricate interplay between marginal dominance and dependence is present already in the classical
case of multivariate FSD.

Eliciting a multiattribute utility function is notoriously difficult. However, a decision maker might
feel comfortable answering this question: “For any fair lottery (say, a coin flip), would increasing
attribute i by one unit if the outcome is heads and reducing this attribute by t < 1 units if it is tails
improve this lottery for you or make it worse for you?” This question can be asked for different values
of t. A typical strategy for doing that in decision analysis is to ask the question for a very low value
of t (expecting the decision maker will prefer the lottery) and for a high value of t (expecting that the
lottery will not be preferred). Then values of t higher than the low value and values lower than the
high value can be used to narrow in on an indifference point. This should provide a reasonable estimate
of the indifference point, which is the bound γi for MASD. The decision maker’s preference for γi-
transfers is, by Theorem 2.3, consistent with γ-MASD. Note that preferences that are consistent with
γ-transfers extend, beyond the framework of expected utility, to settings with dependent background
risk (Section 3.4) and with payoffs that are expressed as suprema of expected utilities (Section 5).
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3 Sufficient dominance conditions

In this section we consider sufficient conditions for γ-dominance. Most of the existing literature on
stochastic dominance deals with necessary conditions.

In the whole paper the random vectors X,Y are assumed to have components with finite means
and variances:

µXi
:= E[Xi], µYi := E[Yi], σ2Xi

:= V[Xi], σ2Yi := V[Yi]. (3.1)

3.1 Conditions for γ-dominance when the marginals are known

To better understand the logic that drives our sufficient conditions for γ-dominance, we start consid-
ering the particular case where one of the random vectors is degenerate. In this case the dominance
conditions do not depend on the joint distribution of the other random vector, but only on its marginals.
Therefore the dependence structure has no role. Moreover, in this special case we can obtain explicit
necessary and sufficient dominance conditions.

Proposition 3.1. Assume that the marginal distributions of the components of X are known and that
c is a sure payoff vector.

(a) Let ci ≤ µXi for all i = 1, . . . , N . Then c ≤γ X if and only if

γi ≥
E[(ci −Xi)+]

E[(Xi − ci)+]
, i = 1, . . . , N. (3.2)

(b) Let µXi ≤ ci for all i = 1, . . . , N . Then X ≤γ c if and only if

γi ≥
E[(Xi − ci)+]

E[(ci −Xi)+]
, i = 1, . . . , N, (3.3)

We now provide a sufficient condition forX ≤γ Y for generalX and Y that only uses the marginal
distributions and holds for any dependence structures. The basic idea is to find a constant vector δ
that γ-dominatesX and is γ-dominated by Y . According to Proposition 3.1 we can use any δ between
the means of X and Y if these are ordered. Among all these constant vectors δ, we choose the one
that produces the smallest γ. Using this idea, we can derive the following result.

Theorem 3.2. Assume that the marginal distributions of the components of X and Y are known and
that µXi ≤ µYi for all i = 1, . . . , N . Let δi := inf{x : Fi(x) +Gi(x) ≥ 1} and let

γi :=
E[(δi − Yi)+] + E[(Xi − δi)+]

E[(Yi − δi)+] + E[(δi −Xi)+]
, (3.4)

for i = 1, . . . , N . Then X ≤γ Y .

Notice that δi is just a median of the mixture distribution 1
2Fi+

1
2Gi. Also note that if the supports

of Yi and Xi don’t overlap, then the corresponding γi equals zero.
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Remark 3.3. The condition of Theorem 3.2 is obviously not necessary for dominance. If we consider
the distributions of Example 2.4, we can see that there does not exist a sure vector δ that (1/2, 1/2)-
dominates X and is (1/2, 1/2)-dominated by Y . The same holds for X ′ and Y ′. Nevertheless, we
have

X ≤(1/2,1/2) Y and X ′ ≤(1/2,1/2) Y
′. (3.5)

If the sufficient condition of Theorem 3.2 were satisfied, we would also have X ≤(1/2,1/2) Y
′, which

actually does not hold.

3.2 Marginal location-scale families

If the marginal distributions of the vectors that we want to compare have nice properties, then the
bounds in Theorem 3.2 become easier to compute. In particular, if the marginal distributions are
symmetric and belong to a location-scale family, such as normal or uniform, then we can derive easy
explicit formulas for the sufficient bounds in Theorem 3.2, as shown in Proposition 3.4. A univariate
distribution function F is said to belong to the symmetric location-scale H-family if

F (x) = H

(
x− µ
σ

)
, with H(x) = 1−H(−x) for all x ∈ R.

In other words, H is the distribution function of a random variable Z as well as of −Z, and F is
the distribution function of µ + σZ. A particular case of distributions with marginals in a location-
scale family is given by elliptical distributions, such as the multivariate normal, the multivariate t-
distribution, etc. (see, e.g., Cambanis et al., 1981).

Proposition 3.4. Let Fi and Gi belong to the same symmetric location-scale Hi-family and let

ηi(t) :=
E[(Zi − t)+]

E[(t− Zi)+]
, (3.6)

where Zi has distribution function Hi. If

τi =
µYi − µXi

σXi + σYi
,

then, in (3.4), we have γi = ηi(τi).

Remark 3.5. If Y = c, then τi = (µYi − µXi)/σXi and the dominance conditions in Proposition 3.4
are necessary and sufficient.

In the next proposition we deal with sufficient conditions for marginal dominance of Yi over Xi.

Proposition 3.6. Let Fi and Gi belong to the same symmetric location-scale Hi-family and let

γMi := ηi

(
µYi − µXi

|σYi − σXi |

)
, (3.7)
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where ηi is defined as in Eq. (3.6). Then Xi ≤γMi Yi.

It is important to notice that γMi in Eq. (3.7) is smaller than γi in Proposition 3.4. This larger γi is
the price to pay to have sufficient conditions when the covariance matrices are possibly different. This
is relevant, as standard FSD allows the comparison of multinormal random vectors only when they
have the same covariance matrix. If one distribution is degenerate, then γMi and γi are equal.

3.3 Bounds when only means and variances are known

We now consider the case where the marginal distributions of the random vectors X and Y are not
completely specified, but only the means and variances are known. For univariate almost stochastic
dominance this problem was considered by Müller et al. (2021).

Define
ζ(t) :=

1

1 + 2t
(
t+
√
t2 + 1

) . (3.8)

Theorem 3.7. Let the two random vectors X and Y have finite means and variances. Moreover, for
all i = 1, . . . , N , let µXi ≤ µYi and let

τi =
µYi − µXi

σXi + σYi
. (3.9)

If γi = ζ(τi), i = 1, . . . , N, then X ≤γ Y .

As discussed in Müller et al. (2021), these bounds are not sharp. Fig. 2 shows the values of γi as
functions of (µYi−µXi)/(σXi+σYi) when the distributions ofXi and Yi are normal (Proposition 3.4) and
when only their means and variances are known (Theorem 3.7). Notice that for normal distributions
FSD only holds if the covariance matrices are exactly the same, see Müller (2001).

Remark 3.8. If Y = c, where c is a sure vector, then τi in Eq. (3.9) becomes (µXi − ci)/σXi , which
is the Sharpe ratio. Notice that in Eq. (3.3) the right hand side is equal to the Omega ratio ΩXi(ci),
as defined in Shadwick and Keating (2002), whereas in Eq. (3.2) the right hand side is 1/ΩXi(ci). The
connection between univariate ASD, Omega ratio, and Sharpe ratio is discussed in Müller et al. (2021).

3.4 Dependent background risks

In many situations, a decision about a risky project must be made in the presence of other important
uncertainties. Pratt (1988, p. 395) makes this point very nicely: “Most real decision makers, unlike
those portrayed in our popular texts and theories, confront several uncertainties simultaneously. They
must make decisions about some risks when others have been committed to but not resolved. Even
when a decision is to be made about only one risk, the presence of others in the background complicates
matters.”

Many decisions involve some form of background risk that cannot be eliminated. Imagine a depart-
ment in a company that is contemplating a choice between risksX or Y ; the background risk Z would
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depend on projects undertaken by other departments. For other examples, see Tsetlin and Winkler
(2005) and papers cited there. In individual decision making, Z might correspond to health and/or
other environmental variables. In many cases, when the random variables that are being compared and
the background risk are not stochastically independent, the joint distribution of (X,Z) is impossible
to estimate, and even the distribution of Z might be hard to assess. Our bounds make it possible to
handle such situations.

Theorem 3.9. Consider X and Y as in Theorem 3.2, and let γi be given by Eq. (3.4). Let Z
be a K-dimensional multivariate background risk. Let γ = (γ1, . . . , γN , 0, . . . , 0) ∈ RN+K

+ . For any
u( · , · ) ∈ Uγ we have that E [u (X,Z)] ≤ E [u (Y, Z)].

As an illustration, consider univariate X, Y and Z having joint normal distributions with µY > µX .
Then

γM1 = η

(
µY − µX
|σX − σY |

)
is given in Proposition 3.6, and dominance with this γM1 holds for X + Z and Y + Z if X, Y and Z
are independent. In particular, if σX = σY , then Y + Z first-order dominates X + Z, but this result
fails under dependence.
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In general, dominance for X + Z and Y + Z holds with

γ = η

(
µYi − µXi

|σX+Z − σY+Z |

)
,

which in turn depends on correlations between X,Z and between Y,Z. Note, however, that

|σX+Z − σY+Z | ≤ σX + σY .

Therefore Y + Z dominates X + Z for any correlations with γ1 given by Proposition 3.4. Thus, our
sufficient bounds for dominance of Y over X are also sufficient for dominance of Y + Z over X + Z

regardless of the dependence.
As mentioned earlier, our sufficient conditions are based on marginal distributions only, which

makes them especially easy to implement. They are also useful in settings with background risk
(Theorem 3.9), as we can establish dominance of (Y ,Z) over (X,Z) by comparing only marginal
distributions of X and Y .

4 Almost stochastic dominance with substitution

In the univariate case, when γ = 1, we have X ≤γ Y ⇐⇒ E[X] ≤ E[Y ]. This means that there exists
a complete order on the set of random variables with finite expectation. In the multivariate case the
situation is more complicated, due to the fact that RN is not completely ordered, so there is no natural
way to order random vectors by their expectations. In the previous sections we considered a version
of almost stochastic dominance where we got as an extreme case for γ = (1, . . . , 1) an ordering which
holds if and only if E[Xi] ≤ E[Yi] for all i = 1, . . . , N . This means that we cannot compensate a loss in
one prospect by a gain in another prospect, or in other words, there is no possibility of substitution.
Given that substitution is often achievable by selling one good and buying another, we now consider
a second version of almost stochastic dominance with a parameter γ ∈ [0, 1] and a parameter vector β
such that we get a complete ordering based on the weighted expectations E

[∑N
i=1 βiXi

]
when γ = 1

and classical first order stochastic dominance when γ = 0.

4.1 Defining (γ,β)-dominance

To achieve a complete order of random vectors, we consider a new class of utility functions defined in
terms of two parameters: a scalar γ and a vector β. Then we define the corresponding SD relation,
(γ,β)-multivariate almost stochastic dominance ((γ,β)-MASD).

Definition 4.1. For γ ∈ [0, 1] and β ∈ RN+ , let Uγ,β be the class of utility functions u : RN → R such
that

0 < γβi ≤ u′i(x) ≤ βi for all i ∈ {1, . . . , N}. (4.1)
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The random vector X is dominated by the random vector Y in the sense of (γ,β)-MASD (X ≤γ,β Y )
if

E[u(X)] ≤ E[u(Y )], for all u ∈ Uγ,β.

Notice that, for any α > 0, we have X ≤γ,β Y iff X ≤γ,αβ Y . This is coherent with the fact that
two utility functions represent the same preferences if one is proportional to the other one.

If γ = 1, then we get a complete ordering by comparing E[
∑
βiXi] and E[

∑
βiYi] and for γ = 0 we

get classical FSD. Moreover, if γi = γ for i = 1, . . . , N , then X ≤γ Y implies X ≤γ,β Y for any β.

4.2 Characterization via (γ,β)-transfers

We now consider the stochastic dominance rule of Definition 4.1 and define the corresponding transfers.
As already mentioned, a loss in one attribute can be compensated by a gain in another attribute. We
first discuss why it is sufficient to consider the case of βi = 1 for all i ∈ {1, . . . , N} by changing the
units of measurement.

Notice that βi is a scale factor that depends on the units that are used. Indeed, if ũ : RN → R is a
function such that

0 < γ ≤ ũ′i(x) ≤ 1 for all i ∈ {1, . . . , N}, (4.2)

then the function
u(x1, . . . , xN ) := ũ(β1x1, . . . , βNxN )

fulfills (4.1). Thus, by changing units we can assume, without loss of generality, that u is a function
with the property (4.2), i.e., with the property that all marginal utilities are bounded between γ and 1.
A function u that satisfies (4.2) also satisfies

γu′i(x) ≤ u′j(y) for all x,y and for all i, j. (4.3)

Vice versa, if a function satisfies (4.3), we can define

β := sup
i,x

u′i(x)

and then
γβ ≤ u′j(y) ≤ β for all y and for all j;

thus u/β satisfies (4.2). Hence the functions satisfying (4.3) build the convex cone generated by the
functions satisfying (4.2) and therefore define the same SD rule.

Similarly, the convex cone generated by the functions in Uγ,β is given by the functions satisfying

γβju
′
i(x) ≤ βiu′j(y) for all x,y and for all i, j ∈ {1, . . . , N}.

In the following discussion of transfers we first restrict our attention to the class Uγ,1, i.e., the
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functions that satisfy property (4.2). In contrast to the γ-transfer, we now allow the decreasing
transfer from x4 to x3 concerning component i to also be compensated by an increasing transfer from
x1 to x2 concerning some other component j.

Definition 4.2. Consider two discrete cumulative distribution functions F and G with respective mass
functions f and g. We say that G is obtained from F via a (γ,1)-transfer (along dimensions i, j) if
there exist x1,x2,x3,x4, ε1, ε2 > 0 and η1, η2 > 0 such that, for some i, j ∈ {1, . . . , N},

x2 = x1 + ε1ei, x4 = x3 + ε2ej , η2ε2 = γη1ε1,

and

g(x1) = f(x1)− η1,

g(x2) = f(x2) + η1,

g(x3) = f(x3) + η2,

g(x4) = f(x4)− η2,

g(z) = f(z) for all other values z.

Fig. 3 shows an example of a (γ,1)-transfer with N = 2, ε1 = 1.5, ε2 = 1, γ = 2/3, η1 = η2 = η.
With a proof similar to the proof of Theorem 2.3, we get the following result.

Theorem 4.3. Let the random vectors X and Y assume a finite number of values. Then X ≤γ,1 Y
if and only if the distribution of Y can be obtained from the distribution of X by a finite number of
increasing transfers and (γ,1)-transfers.

Notice that
E[u(X)] ≤ E[u(Y )] for all u ∈ U(γ,β)

is equivalent to

E[ũ(β1X1, . . . , βNXN )] ≤ E[ũ(β1Y1, . . . , βNYN )] for all ũ ∈ U(γ,1).

From this equivalence we get the general (γ,β)-transfers as follows. The expressions only become a
bit more technical.

Definition 4.4. Consider two discrete cumulative distribution functions F and G with respective mass
functions f and g. We say that G is obtained from F via a (γ,β)-transfer if there are i, j ∈ {1, . . . , N}
and exist x1,x2,x3,x4 ∈ RN , ε1, ε2, η1, η2 > 0 such that, for some i, j ∈ {1, . . . , N},

x2 = x1 + ε1ei, x4 = x3 + ε2ej , η2ε2βj = γη1ε1βi,
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Figure 3: Example of (γ,1)-transfer with ε1 = 1.5, ε2 = 1, γ = 2/3, η1 = η2 = η.

and

g(x1) = f(x1)− η1,

g(x2) = f(x2) + η1,

g(x3) = f(x3) + η2,

g(x4) = f(x4)− η2,

g(z) = f(z) for all other values z.

Theorem 4.5. Let the random vectors X and Y assume a finite number of values. Then X ≤γ,β Y
if and only if the distribution of Y can be obtained from the distribution of X by a finite number of
increasing transfers and (γ,β)-transfers.

4.3 Sufficient conditions for (γ,β)-dominance

Sufficient conditions for this version of MASD are very similar to the conditions described in Section 3.
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Theorem 4.6. Assume that the marginal distributions of the components of X and Y are known. Let
δi := inf{x : Fi(x) +Gi(x) ≥ 1} and let

γ :=

∑N
i=1 βi(E[(δi − Yi)+] + E[(Xi − δi)+])∑N
i=1 βi(E[(Yi − δi)+] + E[(δi −Xi)+])

.

If
N∑
i=1

βiµXi ≤
N∑
i=1

βiµYi , (4.4)

then X ≤γ,β Y .

We next address the case where only means and variances are known.

Theorem 4.7. Let the two random vectors X and Y have finite means and variances. Let

γ =

∑N
i=1 βi

(√
(σXi + σYi)

2 + (µYi − µXi)
2 − (µYi − µXi)

)
∑N

i=1 βi

(√
(σXi + σYi)

2 + (µYi − µXi)
2 + (µYi − µXi)

) .
If (4.4) holds, then X ≤γ,β Y .

5 A case study on investments in photovoltaic power systems

A company wants to compare the efficiency of a photovoltaic solar power system in two different
locations. The productivity of a photovoltaic (PV) solar power system depends on solar irradiance,
which varies through the day and depends on latitude and climate. We want to compare the two possible
locations of Rome in Italy and Siegen in Germany, where two of the authors of this paper live. Data
for solar irradiance are publicly available for all locations in Europe from the Copernicus Atmosphere
Monitoring Service CAMS (2019) http://www.soda-pro.com/web-services/radiation/cams-radiation-
service. From this source we downloaded the hourly data for the so-called global horizontal irradiation
(GHI) for the year 2020. For each location we get a sample of 365 vectors of daily GHI data. These
are displayed for the two cities of Rome and Siegen in Fig. 4 with the hourly means shown in red.

Positive values are only possible between 5 a.m. and 10 p.m. so that only 17 hours of the day are
relevant. Therefore we can describe the possible productivity of the PV systems by a random vector
X = (X1, . . . , X17) for Siegen and by a similar random vector Y for Rome, whose distributions we
estimate by the empirical distributions of the data. It is not surprising that the values for Rome are
typically larger than the ones for Siegen as Rome is more than 1000 km south of Siegen and less rainy.
However, we do not have multivariate FSD between the two distributions as not even all hourly means
are larger. This can easily be explained by the fact that in the summer days are longer in the north
and therefore very early in the morning and late in the evening Siegen has a higher (though small)
solar irradiance on average, whereas in the rest of the day Rome has much higher irradiance, as shown
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Figure 4: Global horizontal irradiation in Siegen and Rome.

in Fig. 5. It is quite clear, however, that an investment in Rome should be more profitable as there
is some kind of almost FSD, as these minor effects in the morning and evening should be more than
compensated by the much larger productivity for Rome compared to Siegen in the middle of the day.
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Figure 5: Expected hourly GHI for Siegen and Rome.

We now show that it is reasonable to assume that the expected reward of the decision maker can
be written in form of an expected utility E[u(X)] that fulfills the assumptions of Definition 4.1 for
appropriate parameters and that we can show with the results of Section 4 that X ≤γ,β Y holds for
appropriate parameters. For this illustrative example we make a few simplifying assumptions as the real
world problem is very complex. We assume that the output of the PV system is exactly proportional
to the GHI. The decision maker is assumed to be a so called prosumer, i.e., simultaenously a producer
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as well as a consumer of electricity. For simplicity we assume that the consumption can be described
by a random vector Z that is independent of the production of the PV system. Notice, however, that
with the methods described in this paper, we can also handle situations with dependent background
risk (see Theorem 3.9).

Unfortunately, the multivariate distribution of the consumption vector Z of a company is typically
difficult to assess (see, e.g., Berk et al. (2018) for an attempt to describe electricity demand patterns
of companies by a stochastic model). It is reasonable to assume that it is always possibile to buy
electricity for a price of β per unit and sell it for a lower price of γβ with 0 < γ < 1. In practice,
these prices may also vary with the hour of the day and therefore there would be a price vector β,
but we assume here for simplicity that β is constant. Prosumers have the incentive to consume the
produced electricity themselves as much as possible to avoid the higher cost of β per unit for buying
electricity. Electricity could be sold for the lower price γβ if production exceeds consumption. If this
simple strategy is applied, then, for a given output vector x of the PV system and a consumption
vector z, the payoff is

v(x, z) =

17∑
i=1

βmin{xi, zi}+ γβ(xi − zi)+. (5.1)

For a random consumption vector Z, the expected reward given output vector x is

u(x) := E[v(x,Z)]. (5.2)

In the case of this simple separable utility function the strong positive dependence between the
production in different hours is irrelevant. However, strategic behavior of the prosumer may lead to
a higher payoff. For instance, battery storage could be employed to store the produced electricity, so
that the prosumer could adopt a policy π that allows electricity to be used later instead of being sold
for a cheap price. Therefore, the real value that one gets as expected payoff is much more complicated
and not separable anymore and the dependence structure of the multivariate distribution of X is
relevant. When we have a random electricity consumption and in addition the possibility of using
battery storage, we are not able to give a simple explicit expression for the value of the expected payoff
of an operating policy π. However, it is still true that the marginal utilities are bounded by γβ and β,
so that we have uπ ∈ Uγ,β. Therefore the decision maker with operating policy π prefers the investment
with a production vector Y to the one with production vector X if X ≤γ,β Y . If the prosumer solves
an optimization problem to find an optimal operating policy among all possible operating policies, the
expected value of the PV system has the form V (X) = supπ E[uπ(X)], which may not have the form of
an expected utility anymore as the optimal policy may depend on the random vector X. Nevertheless,
it is still true that X ≤γ,β Y implies V (X) ≤ V (Y ) as the ordering property is preserved by taking a
supremum.

It is also very difficult to determine the complicated dependence structure of the random vector
of GHI data (see, e.g., Müller and Reuber (2022) for an attempt to describe the whole multivariate
distribution of this time series by a stochastic model using time-dependent beta distributions and
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copula models). Therefore the results of Section 4 are useful to obtain bounds for the parameter γ that
ensures X ≤γ,β Y . Approximating the marginal distributions with their empirical counterparts, and
ignoring the dependence structure, from Theorem 4.6 we can derive the value γ = 0.525. Using only
means and variances of the marginals, from Theorem 4.7 we get the value γ = 0.576. The difference
between the two values is comparable to the difference for the values of γi that one obtains for normally
distributed marginals in Section 3, as described in Fig. 5.

Table 1 shows the means, standard deviations, and the corresponding univariate γ for the different
time slots. The numbers in boldface refer to the times when Siegen dominates Rome. One can see that
the value of γ = 0.576 obtained for the multivariate version of the bounds discussed in Section 4 is
about the same size as the bounds that one gets when considering the univariate problem for a single
hour in the most relevant hours in the middle of the day.

Table 1: Expected values, standard deviations and γ’s for different time slots

Expected value Standard deviation γ

time Siegen Roma Siegen Roma

04:00 0.000 0.000 0.000 0.000 -

05:00 1.003 0.199 2.393 0.542 0.582

06:00 15.401 15.744 26.398 25.754 0.987

07:00 50.707 73.894 70.451 87.724 0.747

08:00 115.811 177.978 128.355 157.311 0.649

09:00 197.805 314.928 185.353 204.742 0.553

10:00 275.557 450.991 224.584 232.883 0.473

11:00 336.451 561.013 249.567 248.803 0.418

12:00 387.412 615.468 262.666 260.380 0.429

13:00 419.324 620.697 266.839 263.684 0.476

14:00 399.560 577.937 257.419 252.466 0.504

15:00 348.290 487.155 235.694 234.401 0.558

16:00 279.321 363.207 209.142 212.732 0.674

17:00 193.808 222.166 171.812 176.166 0.850

18:00 114.787 106.833 122.830 113.958 0.935

19:00 52.316 32.758 68.294 47.429 0.714

20:00 14.082 2.432 24.152 5.123 0.460

21:00 0.821 0.000 2.020 0.000 0.453

22:00 0.000 0.000 0.000 0.000 -

In the context of this example the transfers corresponding to the stochastic dominance rule also
have a simple and intuitive interpretation. If the marginal utility of the produced electricity is bounded
by the buying price β and the selling price γβ, then we prefer a scenario where we produce more in
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hour i and less in hour j as long as the lower production in hour j is bounded by a fraction γ of the
higher production in hour i.

6 Conclusions

Stochastic dominance (SD) is a useful concept, especially in a multivariate context, where assessing
multiattribute utility is challenging and different stakeholders might have divergent views. However,
applying multivariate stochastic dominance is difficult for two reasons: First, often distributions cannot
be ranked (e.g., by FSD); this can be overcome by using relaxations like γ-MASD. Second, integral
conditions for multivariate SD do not exist; to overcome this challenge, we develop sufficient condi-
tions for γ-MASD that are based on marginal distributions of the compared alternatives or just on
their means and variances. This makes our conditions very practical, as full assessments of multivari-
ate distributions are very difficult in general and especially difficult when dependence assessment is
concerned.

Another distinction of the multivariate case, compared to the univariate case, is that a real coor-
dinate space is not completely ordered. To attain a version of SD that leads to a complete order in
the boundary case of γ = 1, we need to constrain maximal marginal utilities for different attributes.
Section 4 presents the corresponding definition of (γ,β)-MASD with substitution, its characterization
via transfers, and sufficient conditions for comparing two risky multivariate alternatives.

Within the expected utility framework, γ-MASD and (γ,β)-MASD translate into bounds on
marginal utilities (Definitions 2.1 and 4.1). Alternatively, these preferences can be characterized via
transfers (Definitions 2.2 and 4.4 and Theorems 2.3 and 4.5). Such transfers might be easier to explain
to decision makers and use for elicitation of γ and β.

Section 5 illustrates our approach by comparing two possible locations for photovoltaic power plants,
where standard FSD comparison fails even though it is intuitively clear that FSD holds almost in some
appropriate sense. In that context as well as in many other situations where we can buy and sell
a product on a market, the parameter γ bounding the slope of marginal utilities has a very natural
interpretation in terms of bid-ask spreads.

There is always a tension between a careful comparison and evaluation of available alternatives and
a search for new solutions. With multiple attributes, the former is difficult and laborious. Our results
provide tools for “fast and frugal” screening and evaluation, while properly accounting for tradeoffs and
riskiness. As the world moves more and more towards more complex decision making processes with
multiple objectives (e.g., many environmental, social and governance (ESG) criteria in addition to the
financial performance of a company), such tools, consistent with normative decision analysis, should
become even more in demand.
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A Proofs

Proofs of Section 2

The proof of Theorem 2.3 requires the following lemma.

Lemma A.1. Let u : RN → R be continuously differentiable. Then u ∈ Uγ if and only if

η2(u(x4)− u(x3)) ≤ η1(u(x2)− u(x1)) (A.1)

for all x1,x2,x3,x4 satisfying (2.5) for some i and γi.

Proof. If part: Assume that u fulfills (A.1) for some i and γi. Then

η2(x4 − x3) = γiη1(x2 − x1) =⇒ x3 = x4 − γiη1ei

so (A.1) implies

γi
∂

∂xi
u(x4) = γi lim

η1→0

u(x4)− u(x3)

γiη1
≤ lim

η2→0

u(x2)− u(x1)

η2
=

∂

∂xi
u(x1).

As this holds for arbitrary x1,x4 and the derivatives are assumed to be continuous, by (2.3) we get
u ∈ Uγ .

Only if part: Now assume that u ∈ Uγ is continuously differentiable. Let h := x2 − x1. For
x1,x2,x3,x4 satisfying (2.5) for some i and γi, from η2(x4 − x3) = γiη1(x2 − x1), we get that

x4 − x3 =
γiη1
η2

(x2 − x1).

Thus, from (A.1) we can deduce

η1(u(x2)− u(x1)) =

∫ 1

0

∂

∂xi
u(x1 + th) dt

≥ η1γi
∫ 1

0

∂

∂xi
u

(
x3 + t

γiη1
η2
h

)
dt

= η2
γiη1
η2

∫ 1

0

∂

∂xi
u

(
x3 + t

γiη1
η2
h

)
dt

= η2(u(x4)− u(x3)).

Proof of Theorem 2.3. The proof is based on the duality theory for transfers. Lemma A.1 shows that
Uγ can be described by a set of inequalities, as in Müller (2013, Definition 2.2.1). Therefore it is induced
by the corresponding set of transfers. The proof thus follows from Müller (2013, Theorem 2.4.1).
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Proofs of Section 3

The following lemma is the building block in the proofs of most of the subsequent results in our paper.
The basic idea is that increments of functions u ∈ Uγ can be bounded above and below by separable
piecewise linear utility functions that depend on γ. This fact allows us to find sufficient conditions for
γ-dominance that do not depend on the joint distributions of the random vectors X and Y , but only
on the marginal distributions of their components.

Lemma A.2. Let

vU (x; γ) :=

γx if x ≤ 0,

x if x > 0,

vL(x; γ) :=

x if x ≤ 0,

γx if x > 0.

For any u ∈ Uγ , let bi := supx∈RN u′i(x) and fix some c ∈ RN . Then, for any x ∈ RN , we have

N∑
i=1

bivL(xi − ci; γi) ≤ u(x)− u(c) ≤
N∑
i=1

bivU (xi − ci; γi). (A.2)

An instance of functions vL and vU is shown in Fig. 6.

vL(xi - ci )

vU(xi - ci )

1 2 3 4

-2

-1

1

2

3

Figure 6: Functions vL and vU .

Proof of Lemma A.2. Note that u′i(x) ≤ sup(u′i(x)) = bi and that by inequality (2.4) we have u′i(x) ≥
γibi. By a multivariate first-order Taylor expansion, u(x) − u(c) =

∑N
i=1 u

′
i(y)(xi − ci), where yi is

between xi and ci. Then, using u′i(y) ≤ bi if xi > ci and u′i(y) ≥ γibi if xi < ci provides an upper
bound, whereas using u′i(y) ≥ γibi if xi > ci and u′i(y) ≤ bi if xi < ci provides a lower bound.
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Proof of Proposition 3.1. We prove (a). The proof of (b) is similar. Let u ∈ Uγ and let

bi := sup
x∈RN

u′i(x). (A.3)

Without any loss of generality, assume u(c) = 0. By Lemma A.2 we have

u(x) ≤
N∑
i=1

bivU (xi − ci; γi), (A.4)

where vU (xi − ci; γi) = −γi(ci − xi)+ + (xi − ci)+. This implies

E[u(X)] ≤
N∑
i=1

bi(−γi E[(ci −Xi)+] + E[(Xi − ci)+]) (A.5)

Therefore E[u(X)] ≤ 0 if −γi E[(ci −Xi)+] + E[(Xi − ci)+] ≤ 0 for all i = 1, . . . , N .
Notice that −γi E[(ci−Xi)+]+E[(Xi− ci)+] ≤ 0 is equivalent to Xi ≤γi ci. This proves the if part.
Now we prove the only if part. Consider a sequence of utility functions

un(x) =
N∑
i=1

bi,nvU (xi − ci; γi)+ ∈ Uγ (A.6)

such that limn→∞ bj,n = 0 for j 6= i and bi,n ≡ 1 for all n.
If X ≤γ c, then E[un(X)] ≤ un(c) = 0. This implies −γi E[(ci −Xi)+] + E[(Xi − ci)+] ≤ 0 for all

i = 1, . . . , N , i.e., Xi ≤γi ci, for all i = 1, . . . , N .

Proof of Theorem 3.2. Given u ∈ Uγ , let bi = sup(u′i(x)), and without loss of generality, assume
u(δ) = 0. By Lemma A.2 we have

N∑
i=1

bivL(xi − δi; γi) ≤ u(x) ≤
N∑
i=1

bivU (xi − δi; γi).

First, we show that, for i = 1, . . . , N , for any δi we have

E[vL(Yi − δi; γi)] = E[vU (Xi − δi; γi)]

for γi defined as in Eq. (3.4). This follows from

E[vL(Yi − δi; γi)] = −E[(δi − Yi)+] + γi E[(Yi − δi)+)],

E[vU (Xi − δi; γi)] = −γi E[(δi −Xi)+] + E[(Xi − δi)+],

and the definition of γi.
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Therefore, from inequality (A.2) it follows that

E[u(Y )] ≥
N∑
i=1

bi E[vL(Yi − δi; γi)] =
N∑
i=1

bi E[vU (Xi − δi; γi)] ≥ E[u(X)]

holds for arbitrary δi. We want to choose δi such that γi is as small as possible. As

γi =
E
[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

]
E
[
(Yi − δi)+

]
+ E

[
(δi −Xi)+

] =
E
[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

]
µYi − δi + E

[
(δi − Yi)+

]
+ δi − µXi + E

[
(Xi − δi)+

] ,
we have to minimize E

[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

]
with respect to δi. The right derivative is

∂+

∂δi

(
E
[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

])
= E

[
1[δi−Yi≥0]

]
− E

[
1[Xi−δi≥0]

]
= Gi(δi)− 1 + Fi(δi).

Therefore, δi is minimized for δi = inf{x : Fi(x) +Gi(x) ≥ 1}.

vL(xi - ci )

vU(xi - ci )
f (xi ) g(xi )

1 2 3 4

-2

-1

1

2

3

Figure 7: The variable Yi γ-dominates the constant ci, which in turns dominates the variable Xi.

In Fig. 7, for some γ, the variable Yi dominates ci and ci dominates Xi.

Proof of Proposition 3.4. In this case we can solve for δi from Theorem 3.2:

Fi(δi) +Gi(δi) = 1 ⇐⇒ H

(
δi − µXi

σXi

)
+H

(
δi − µYi
σYi

)
= 1

⇐⇒ H

(
δi − µXi

σXi

)
= H

(
µYi − δi
σYi

)
⇐⇒ δi − µXi

σXi

=
µYi − δi
σYi

⇐⇒ δi =
µXiσYi + µYiσXi

σXi + σYi
.
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Hence

γi =
E
[
(Yi − δi)+

]
+ E

[
(δi −Xi)+

]
E
[
(δi − Yi)+

]
+ E

[
(Xi − δi)+

] =
σYi E

[
(Z − τi)+

]
+ σXi E

[
(Z − τi)+

]
σYi E

[
(τi − Z)+

]
+ σXi E

[
(τi − Z)+

] = η(τi).

The proof of Proposition 3.6 is along the lines of Müller et al. (2017, example 2.11).

Proof of Proposition 3.6. The following condition for γMi -dominance in location-scale models can be
found in Müller et al. (2017, bottom of page 2940):

γMi =

∫ ∞
−∞

(Gi(x)− Fi(x))+ dx∫ ∞
−∞

(Fi(x)−Gi(x))+ dx
=

∫ ∞
−∞

(
H

(
x− µYi
σYi

)
−H

(
x− µXi

σXi

))
+

dx∫ ∞
−∞

(
H

(
x− µXi

σXi

)
−H

(
x− µYi
σYi

))
+

dx
. (A.7)

The two distribution functions Fi and Gi single-cross at a point δi such that

δi − µXi

σXi

=
δi − µYi
σYi

, (A.8)

which implies
δi =

µYiσXi − µXiσYi
σXi − σYi

. (A.9)

Notice that, for x < δi, the distribution with a larger variance takes larger values than the other one.
Moreover, integrating by parts, we get the well-known equalities:∫ δi

∞
Fi(x) dx = E

[
(δi −Xi)+

]
,

∫ ∞
δi

Fi(x) dx = E
[
(Xi − δi)+

]
. (A.10)

Therefore, when σYi > σXi , Eq. (A.7) becomes

γMi =

∫ δi

−∞

(
H

(
x− µYi
σYi

)
−H

(
x− µXi

σXi

))
dx∫ ∞

δi

(
H

(
x− µXi

σXi

)
−H

(
x− µYi
σYi

))
dx

=
E
[
(δi − Yi)+

]
− E

[
(δi −Xi)+

]
E
[
(Yi − δi)+

]
− E

[
(Xi − δi)+

] . (A.11)

Since
E
[
(δi − Yi)+

]
= E

[
(δi − µYi − σYiZ)+

]
= σYi E

[(
δi − µYi
σYi

− Z
)

+

]
, (A.12)
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we have

δi − µYi
σYi

=
1

σYi

(
µXiσYi − µYiσXi

σYi − σXi

− µYi
)

=
1

σYi

(
µXiσYi − µYiσXi − µYiσYi + µYiσXi

σYi − σXi

)
=

1

σYi

(
µXiσYi − µYiσYi

σYi − σXi

)
=

µXi − µYi
σYi − σXi

.

(A.13)

This implies that

E
[
(δi − Yi)+

]
= σYi E

[(
µXi − µYi
σYi − σXi

− Z
)

+

]
. (A.14)

Applying a similar argument to the other components in Eq. (A.11), we obtain

γMi =

E
[(

µXi
−µYi

σYi−σXi
− Z

)
+

]
E
[
Z −

(
µXi
−µYi

σYi−σXi

)
+

] . (A.15)

A similar derivation holds for σYi > σXi .

Proof of Theorem 3.7. The proof uses ideas that are similar to the ones in the proof of Theorem 3
in Müller et al. (2021). Fix arbitrary δ, consider u ∈ Uγ , and let bi = sup (u′i(x)). Without loss of
generality assume u (δ) = 0. By Lemma A.2,

N∑
i=1

bivL(xi − δi; γi) ≤ u(x) ≤
N∑
i=1

bivU (xi − δi; γi).

We need to show that, for some appropriate δi and γi, E[vL(Yi − δi; γi)] ≥ E[vU (Xi − δi; γi)] for i =

1, . . . , N . With the same tedious but straightforward calculation as in the proof of Theorem 3 in Müller
et al. (2021), we can establish that the smallest possible choice for γi is obtained by choosing

δi =
µXiσYi + µYiσXi

σXi + σYi

and
γi =

1

1 + 2t
(
t+
√
t2 + 1

)
for

t =
µYi − µXi

σXi + σYi
.
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Proof of Theorem 3.9. The proof is similar to the proof of Theorem 3.2. We get

N∑
i=1

bivL(xi − δi; γi) ≤ u (x, z)− u (δ, z) ≤
N∑
i=1

bivU (xi − δi; γi),

and thus

E [u (Y, Z)] ≥
N∑
i=1

biE [vL(Yi − δi; γi)] + E [u (δ, Z)]

=
N∑
i=1

biE [vU (Xi − δi; γi)] + E [u (δ, Z)]

≥ E [u (X,Z)] .

Proofs of Section 4

Proof of Theorem 4.6. As in Lemma A.2, we get for Uγ,β

N∑
i=1

βivL(xi − δi; γ) ≤ u(x)− u(δ) ≤
N∑
i=1

βivU (xi − δi; γ).

Therefore, as in Theorem 3.2, a sufficient condition for E[u (Y )] ≥ E[u (X)] is

N∑
i=1

βi E[vL(Yi − δi; γ)] ≥
N∑
i=1

βi E[vU (Xi − δi; γ)],

which is equivalent to

γ ≥
∑N

i=1 βi
(
E
[
(Xi − δi)+

]
+ E

[
(δi − Yi)+

])∑N
i=1 βi

(
E
[
(δi −Xi)+

]
+ E

[
(Yi − δi)+

]) .
Proof of Theorem 4.7. Assume that (4.4) holds. Fix arbitrary δ, consider u ∈ Uγ,β, and without loss
of generality set u (δ) = 0. As in Lemma A.2, it follows that

N∑
i=1

βivL(xi − δi; γ) ≤ u (x) ≤
N∑
i=1

βivU (xi − δi; γ).

It is sufficient to show that for some δ we have

N∑
i=1

βi E[vL(Yi − δi; γ)] ≥
N∑
i=1

βi E[vU (Xi − δi; γ)]
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for any X and Y such that (3.1) holds. As in the proof of Theorem 3 in Müller et al. (2021), we get

E[vL(Yi − δi; γ)] ≥ γ (µYi − δi)− (1− γ)
1

2

(
δi − µYi +

√
σ2Yi + (µYi − δi)

2

)
and

E[vU (Xi − δi; γ)] ≤ γ (µXi − δi) + (1− γ)
1

2

(
µXi − δi +

√
σ2Xi

+ (µXi − δi)
2

)
.

Thus, we need to find some γ such that

N∑
i=1

βi

(
γ (µYi − δi)− (1− γ)

1

2

(
δi − µYi +

√
σ2Yi + (µYi − δi)

2

))

≥
N∑
i=1

βi

(
γ (µXi − δi) + (1− γ)

1

2

(
µXi − δi +

√
σ2Xi

+ (µXi − δi)
2

))

for some δ. Following Müller et al. (2021, Theorem 3), we choose

δi =
µXiσYi + µYiσXi

σYi + σXi

,

so that
µYi − δi
σYi

= ti and
µXi − δi
σXi

= −ti, where ti =
µYi − µXi

σXi + σYi
.

Then the equation for γ becomes

N∑
i=1

βi

(
γσYiti − (1− γ)

1

2

(
−σYiti + σYi

√
1 + t2i

))

=
N∑
i=1

βi

(
γ (−σXiti) + (1− γ)

1

2

(
−σXiti + σXi

√
1 + t2i

))
,

which is equivalent to

γ

N∑
i=1

βiti (σYi + σXi) = (1− γ)
1

2

N∑
i=1

βi

(
−σXiti − σYiti + (σXi + σYi)

√
1 + t2i

)
.

Define

∆ =

N∑
i=1

βiti (σYi + σXi) =

N∑
i=1

βi(µYi − µXi).

Then (
γ + (1− γ)

1

2

)
∆ = (1− γ)

1

2

N∑
i=1

βi (σXi + σYi)
√

1 + t2i ,
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or equivalently,

(1 + γ) ∆ = (1− γ)

N∑
i=1

βi (σXi + σYi)
√

1 + t2i .

This yields

γ =

∑N
i=1 βi (σXi + σYi)

√
1 + t2i −∆

∆ +
∑N

i=1 βi (σXi + σYi)
√

1 + t2i

.

Alternatively, we can express γ as

γ =

∑N
i=1 βi

(√
(σXi + σYi)

2 + (µYi − µXi)
2 − (µYi − µXi)

)
∑N

i=1 βi

(√
(σXi + σYi)

2 + (µYi − µXi)
2 + (µYi − µXi)

) .
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