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Outcomes-based reimbursement is one active area of theory and practice that supports broader efforts to

improve health value by rewarding provider services with better health outcomes with higher payments.

The design of outcomes-based reimbursement policies involves several choices—the type of contract to use

(e.g., capitation or fee-for-service), on which level to measure outcomes (e.g., population- or provider-level),

and whether to contract with individual providers or with a group of providers. Such choices may involve

economic challenges (including collusion and free-riding) and health-specific challenges (e.g., referrals from

practitioners who support chronic disease management to specialists that treat complications). We present

a parsimonious game-theoretic model that identifies differences in the impact on health, costs, and system

efficiency as a function of potential collusion and free-riding under different reimbursement policies. We give

illustrative numerical experiments calibrated to data from UK pathways for diabetes. Our results indicate

a strong performance of outcomes-adjusted capitation contracts with individual providers using population-

level data. We also provide theory to interpret the performance of contracts in use in the USA and UK.

History : 08/02/2023. Earlier versions: 27/07/2021. 24/05/2017. https://ssrn.com/abstract=2973048.

Economic pressure, public accountability, political will, and new technology that eases the gath-

ering of health outcomes data are some of the reasons behind recent attention to outcomes-based

contracts in health care. Such contracts have been a central part of the recent shift in healthcare

payment models from ones focusing on the volume of care to ones focusing on the value provided by

care (Porter 2010, WEF 2018, ICHOM 2021). The idea behind outcomes-based contracting (also

called pay-for-performance, or P4P) is simple: compensation to care providers should be based on

the health benefits they create. The USA’s Centers for Medicare & Medicaid Services (CMS 2020),

the UK’s National Health Service (UK NHS 2020), and private sector firms (Zhu et al. 2020),

among others, are exploring such contracts.
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Designing an outcomes-based system is a daunting task. The institutions implementing them

have used very different designs (e.g., Eijkenaar et al. 2013, Bastani et al. 2016, Hsieh et al. 2017,

Koff and Lyons 2020), and there is mixed evidence with no consensus as to the best reimbursement

policy (Christianson et al. 2008, Eijkenaar et al. 2013, Burns and Pauly 2018). A patient’s care

pathway often involves several providers, resulting in challenges in designing reimbursement policies

that can align the interests of the providers along the pathway (Cebul et al. 2013).

The presence of multiple providers along the pathway creates a danger of collusion, where

providers jointly make decisions to increase their profit (Rodwin 1995). Collusion often manifests

as demand inducement, also known as kickbacks (McGuire 2000), where one colluding provider uses

referrals to generate additional demand for another (Pauly 1979). Collusion in the form of demand

inducement and kickbacks is widespread in developing markets (Gadre 2015). Despite explicit laws

which deem such practice illegal (e.g., by the Stark Law and Anti-Kickback Statute in the USA),1

collusion does happen in developed markets. Cases of demand inducement collusion have been the

subject of multiple high-profile lawsuits in the US (Woolhandler and Himmelstein 2004, Mannava

et al. 2013, Thornton et al. 2013, Dyer 2015), which resulted in more than $153 million in penal-

ties and settlements in 2021 (US DoJ 2021). Moreover, the laws protecting against collusion in

the USA’s Medicare were updated in 2021, exempting outcomes-based contracts from those laws

(Fanburg et al. 2022). Thus, there exist concerns that the introduction of outcomes-based contracts

could open doors to new opportunities for collusion (US Senate 2016, WEF 2018).

Group contracts2 have been suggested as one way to coordinate care and address possible collu-

sion issues. However, they have well-known limitations of their own. Free-riding is a phenomenon

occurring when the payouts from the group’s joint effort are shared amongst the group (Hölmstrom

1982), resulting in individuals who form the group putting in less effort than optimal (effectively

free-riding on the work of others). Unfortunately, it has also been documented in existing group-

based incentives in healthcare where it has been an impediment to their success (Pauly and Redisch

1973, Christianson et al. 2008, Redding 2022). Thus, free-riding creates an argument against the

use of group contracts. This tension between collusion and free-riding contributes to making the

reimbursement policy design a challenging endeavor.

This context motivates the following two core questions. Should we be worried about collusion in

outcomes-adjusted contracts? If so, can we do something about it by our choice of reimbursement

1 See the United States Code, https://uscode.house.gov/, Title 42, U.S.C. § 1395nn and § 1320a-7b. Regulators
primarily refer to the demand-inducing collusion we study as “kickbacks.” The Anti-Kickback Statute forbids not
only explicit payment in return for referrals, but also any kind of profit sharing agreement, such as profit-sharing or
co-ownership, which would enable one provider to profit from generating demand for another.

2 A single payment to the group is shared by the group’s providers, as in an alliance contract in the UK (Sander-
son et al. 2018), a bundled pay contract in the USA (NEJM Catalyst 2018), or contracts between Medicare and
Accountable Care Organizations which render individual contracts redundant.

https://uscode.house.gov/
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policy? In particular, can these issues be attenuated, if not eliminated, through different combina-

tions of important choices for the design of outcomes-based reimbursement policies (Rosenthal and

Dudley 2006, 2007), including the choice of reimbursement contract (e.g., an outcomes-adjusted

capitation payment for the care of a given population), outcome measurements (e.g., population-

level data or provider-level data) used to adjust the amount reimbursed, and reimbursement struc-

ture (e.g., contracts with providers individually, or with a group of providers).

We formulate a parsimonious game-theoretic model to answer these questions and analyze the

model to identify if or when optimal outcomes can be achieved by a variety of reimbursement

policy choices. We then use diabetes care data from the UK to calibrate the model, address some

important implementation issues, and explore how different classes of contracts currently used in

practice compare to the theoretical optima.

For the first core question, we find below that the answer depends critically on whether specialist

compensation scales with volume. In systems where it does, like the US, we have every reason to

worry as they are vulnerable to collusion, which can make both outcomes and costs significantly

worse. On the other hand, systems where the outcomes adjustment is purely on the level of primary

care, while the specialist compensation is fixed (as in the UK), are virtually immune to collusion.

For the second question, we find below that individual outcomes-adjusted capitation contracts –

a small modification of contracts already used in practice – have the potential to resolve any issues

with collusion, as they can be shown to be both optimal and collusion-proof in the vast majority

of the cases we study.

We also provide theory and discuss implications for the choice of reimbursement policies and

reimbursement structures for both population-level and individual provider-level outcome metrics.

Overview: To improve our understanding of the performance of P4P3 reimbursement policies,

we develop a contracting model for care services in the principal-agent framework. A government

acts as principal and contracts with two health care providers who are responsible for the care of a

population of patients who manage a chronic condition. The government’s objective is to maximize

population health minus the government’s health care expenditure.

In Section 2, we give our parsimonious model of a pathway for the care of patients with a chronic

condition, in which there are two providers: a general practitioner (GP) and a specialist (SP), each

of which chooses their quality of care, with a higher quality of care also carrying a higher cost.

Increased quality of GP care can improve health and reduce the rate of complications that require

SP care. Longer queues for the SP may result in worse health outcomes due to delays in treatment.

3 The term P4P has been used for a variety of variable compensation systems. We focus here on P4P schemes based
on health outcomes rather than other metrics such as adherence to specified processes (Petersen et al. 2006).
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In Section 3, we consider the simplest version of this contracting problem, which we term the

näıve problem, as it ignores the possibility of collusion and free-riding occurring. We show that, in

the absence of free-riding and collusion, two existing contract types (capitation and per-patient) can

achieve the first-best, if the reimbursement amounts are adjusted to take outcomes into account.

Both individual and group contracts can achieve the optimum. Section 4 studies the consequences

of collusion and free-riding if those issues are ignored in contract design. Once these considerations

are taken into account, the first-best outcome can not be attained.

Section 5 gives our main model, where all of the components introduced in previous sections are

united. Collusion and free-riding are endogenous (agents in the model free-ride and collude if it is in

their interest to do so), and the principal designs the contracts with these issues in mind. Here, we

show that (a) for any group contract there are individual contracts that are better, (b) within all

individual contracts based on population health, a relatively simple linear contract is optimal and

collusion-proof. Section 6 shows the size of the effects of reimbursement policies, free-riding, and

collusion on health, costs, and system efficiency. We do so with illustrative computations calibrated

to data about diabetes care in the UK NHS (OBH 2014, Diabetes UK 2019).

The theory in Section 5 and numerical evidence in Section 6 show that disregarding these two

issues in contract design can lead to considerable negative consequences; yet, these consequences

can be mitigated through the choice of reimbursement policy. Our results favor individual outcomes-

adjusted capitation contracts, as a) if free-riding and collusion occur under those contracts, the

negative effects will be smaller than with any other contract type we consider, b) collusion is

highly unlikely to occur: in our numerical results, these contracts are collusion-proof for 100% of

plausible parameter sets. In the optimal contracts we identify, population-level health measurement

is required for capitation contracts, and provider-level measurement is required for per-patient ones.

To the best of our knowledge, our paper is the first in the healthcare operations literature to

examine how the impact of collusion or free-riding depends on the contracts held by the providers.

We also respond to two secondary questions in the outcomes-based incentives debate. One, all of

the contracts we show to be optimal include both penalties and bonuses, not just one or the other.

Two, the optimal contracts we identify use rather large incentives. This is consistent with the UK

NHS’s Quality and Outcomes Framework (QOF, the world’s largest P4P incentive scheme), which

awards outcomes-based bonuses to GPs that are a large part of their total compensation (UK NHS

2020). It is less consistent with USA Medicare’s use of smaller (≤ 7%) outcomes-based incentives.

Section 7 interprets our results relative to some reimbursement policies used in the UK and USA.

Our analytical results suggest that collusion may be of greater concern in applications where the

specialist may hold volume-scaling contracts, as in the USA, while settings like the UK’s QOF,

where only the GP’s contract is outcomes-adjusted, are more resistant to collusion.
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As do all stylized models, our model makes simplifying assumptions. Section 8 shows that our

assumption that provider costs are a known function of their effort can be addressed in practice

by using realized costs with multi-period contracting or yardstick contracts. Another limit is the

structure of our assumed care pathway with a GP for prevention or chronic disease management

and a single specialist. Broader care networks are not yet modeled.

An online companion provides notation, proofs of mathematical claims, a discussion of model

calibration, and model extensions that assess the robustness of our conclusions to some of our

assumptions (allowing for multiple specialists, broader queue regimes, endogenous compliance, the

GP directly affecting health outcomes, biased measures, and a different model of collusion).

1. Related Literature

Our work on outcomes-based reimbursement on care pathways links to literature on contract

theory for multiple service providers, the healthcare operations management literature related to

incentives, and the health economics literature on pay for performance.

We draw upon methods from the principal-agent framework (e.g., Bolton and Dewatripont 2005).

The problem considered is a type of a moral hazard problem (Hölmstrom 1982), which may lead to

free-riding in teams. A challenge of moral hazard in multi-agent situations is the inseparability of

efforts: based on the final results, the principal cannot distinguish which agent exerted effort and

which did not. While the same holds true in our setting, the fact that some patients are treated

by just the GP and not the SP, and vice versa, provides some means to derive information about

provider-specific decisions and thereby design individual rewards.

The use of individual rewards instead of group ones can alleviate free-riding, but introduces

another source of inefficiency: potential collusion between agents (Tirole 1986). Several economics

papers study whether it is beneficial to introduce individual rewards in light of collusion, but do so

in settings with fundamental differences from ours. Laffont and Martimort (1998) study a principal

who hires two agents separately, each producing one component, where one of each component

is needed to form a final product. Collusion between agents is modeled via side contracts which

are proposed and enforced by a third party. Baliga and Sjöström (1998) study a similar setting,

but focus on private information (where one of the agents is better informed about actions of the

other than the principal) and non-transferable utility between the agents limits their ability to use

side-contracts. Rather than enforcing collusion through contracts, agents in our setting may rely

on informal bargaining to split the gains from collusion.

The literature on contracting in multi-tier service systems (Shumsky and Pinker 2003, Lee et al.

2012, Freeman et al. 2017), like our paper, studies contracting when two agents are responsible for

providing a service, but focuses on the first agent’s role as the gatekeeper: the agent either provides
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the service himself (herself) or redirects to the second agent. Only one agent in this model provides

the service. In our paper, patient care results from the joint efforts of both agents.

Our paper fits well with the health care operations management literature that studies incentives

(e.g., Lee and Zenios 2012, Ata et al. 2013, Gupta and Mehrotra 2015, Bastani et al. 2015, 2016,

Zhang et al. 2016, Dai et al. 2017, Andritsos and Tang 2018, Guo et al. 2019, Aswani et al. 2019,

Zhang et al. 2020, So and Tang 2000, Arifoglu et al. 2021, de Vericourt et al. 2021, She et al. 2022,

Suen et al. 2022).

We comment on some papers in this stream to position our work. Jiang et al. (2012) assess

performance-based contracts in access to care, considering how to incentivize providers to provide

an appropriate capacity for outpatient treatment. As we do, they use a principal-agent model with

queueing dynamics, yet there are two distinctions from our work: Jiang et al. (2012) consider a

sole care provider (whereas in this paper, the involvement of multiple providers is a key source

of complexity) and the contracts they study are based on observed waiting times for patients,

rather than health outcomes. Adida et al. (2017) examine the efficiency of Medicare’s bundled

payment and its impact on health compared to the usual fee-for-service. They also consider a two-

tier healthcare provision model, where low quality in primary care results in a higher probability

of complications, requiring costly secondary care. There are differences. Only the primary care

provider is strategic in their model (removing the complexity of a multi-agent system), and queueing

dynamics for referrals are not considered. Unlike us, they consider the providers’ ability to cherry-

pick which patient they will take under their care. In a similar two-agent model to ours, Adida and

Bravo (2019) model a system consisting of a payer who pays an Accountable Care Organization

(ACO) for the treatment of patients, but the ACO outsources advanced treatment of patients to an

external provider, paying them per referral. Ghamat et al. (2021) study a modified model for gain-

sharing agreements between a payer and hospital and care provider, focusing on billing reduction

issues in a study of targets for price and quality. Rajagopalan and Tong (2022) also consider a

GP that provides referrals to an SP. They also consider congestion for the SP and outcomes-based

reimbursement, and they consider partial attribution of efforts to providers. None of the cited

papers in this paragraph and the previous consider free-riding or collusion.

Lastly, the health economics literature on the performance of outcomes-based contracts in prac-

tice is relevant to our work (e.g., Christianson et al. 2008, Eijkenaar et al. 2013, Burns and Pauly

2018). The evidence on the performance of these incentive schemes is mixed, with some success

stories (Hsieh et al. 2017), but also programs that did not result in noticeable improvements, such

as the US Hospital Value-Based Purchasing program (Figueroa et al. 2016, Ryan et al. 2017).
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2. Model of Care Pathway and Effects of Services on Health

Before delving into the contracting problem in Section 3, we give our model of a chronic care

pathway in Section 2.1 and give our model of how operational issues related to care provision and

queueing delays influence health outcomes in Section 2.2.

2.1. Care Pathway Model

The system consists of two health care providers: a general practitioner (GP) and a specialist

(SP). The GP serves as the primary care provider for a population of n people with a chronic

condition and provides periodic ongoing care for the primary condition (e.g., diabetes). Thus, the

GP provides routine checkups, manages symptoms, and prevents complications. The SP provides

acute care for any arising complications (e.g., diabetic neuropathy). If the SP is not immediately

available, patients queue for the first available appointment. After being treated by the SP, patients

continue to receive care from the GP. The primary decision variables we consider are investments

in improving the quality of care made by the GP and the SP, over a time period during which

contracts are to hold (whose duration is selected to be one year for expository purposes).

A fraction φ of patients (such that φn is integer-valued) take advantage of the GP’s services

and benefit from his or her treatment. Patients who so visit the GP are called adherent patients

(clinical adherence in the medical literature, McNabb 1997). The GP’s primary decision variable

is the quality of care for their patients, which we denote by dG ∈ [0,∞). This variable abstracts

a number of smaller decisions, including selecting a frequency of patient visits, the amount and

type of prevention activities, investments in equipment, training, and so forth. Depending on the

quality of GP care, each adherent patient has a probability λ of developing a complication dur-

ing the period, which will then require SP care. Of course, higher quality of care will lead to

fewer complications, which we model as λ(dG)=̇λ̄/(1 + dG), where 0 < λ ≤ 1 is the probability

that complications will occur without the GP’s treatment. Thus, assuming that these events are

independent,4 the number of people who develop complications is a random variable S(dG) ∼

Bin(φn,λ(dG)) + Bin
(
(1−φ)n,λ

)
.

The GP’s costs are given by kG(dG), a twice continuously differentiable, convex, and increasing

function. To ensure an interior solution, we assume that the marginal cost of providing at least a

small amount of treatment is very low, i.e., k′G(0) = 0.

Figure 1 illustrates this pathway. Table EC.1 in the online companion summarizes the notation.

Patients who develop complications require acute care from the SP. If the SP is not immediately

available, patients experience a queueing delay (which may influence outcomes). We model this

4 The independence assumption is not entirely innocuous, as environmental conditions could, in principle, lead to
correlated complications between patients.
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Figure 1 Model of primary care and specialist care service delivery choices and resulting queueing dynamics

that may affect the progression of a chronic condition.

delay by embedding a queueing model and approximating the queueing dynamics. The arrival

process of the S(dG) patients with complications is approximated as a Poisson process, with arrival

rate nφλ(dG) +n(1−φ)λ. We denote the average complication rate across all patients by

Λ(dG)=̇φλ(dG) + (1−φ)λ̄. (1)

The SP makes numerous decisions: the number of appointments per week, nurses staffed, equip-

ment, and so forth. We model these decisions by dS ∈ [0,∞), the SP’s quality of care. As higher

quality of care will lead to the condition being stabilized and possibly resolved more quickly, we

assume that the service rate is proportional to the quality of care: µ(dS)=̇µ+ θdS, where µ is the

basic acceptable service rate and θ is a positive constant. Providing higher quality care is costly

to the SP, with the cost kSF (dS) being a twice continuously differentiable, increasing, and convex

function with k′SF (0) = 0. The function kSF (dS) can also be interpreted as the cost of providing

capacity for care. In either case, kSF (dS) includes all fixed costs incurred by the SP, independent

of the number of patients treated. The SP also bears a variable cost kSV for every patient treated

(disposable materials, diagnostic tests, or medication per patient). The GP can have such variable

costs as well. Because the number of patients under the GP’s care is deterministic in our model,

those costs are included in the cost function kG(dG) without loss of generality.

Assuming the treatment times are exponential and the arrival rate of patients with complications

is homogeneous throughout the year, the queueing dynamics can be approximated by an M/M/1

queue with arrival rate nΛ(dG) (a result of the GP’s decisions) and service rate µ(dS) (a result of

the SP’s decision). Thus, we explicitly model congestion (and queueing) for the SP but not for the

GP. The reason for this is that the GP provides periodic care throughout the year (consisting of

periodic checkups), where the outcomes are insensitive to the timing of these checkups. In contrast,

the SP provides acute care for complications, the treatment of which can be time-sensitive. This



Zorc, Chick and Hasija: Reimbursement Policies for Care Pathways 9

formulation implicitly assumes that a patient with complications can access the SP directly or that

the time needed to obtain a referral is negligible compared to the waiting time to access the SP.

The providers’ quality of care decisions may also affect things beyond the rates of complications

and service. In Appendix C.1, we generalize the model, allowing those decisions to directly impact

the health of patients and patients’ decisions on whether to adhere to treatment. Our main results

are robust to these generalizations.

2.2. Impact of Care on Health

We now describe our model of how this care pathway influences the health of patients. The influence

of the care pathway on health outcomes is modeled with respect to quality-adjusted life years

(QALY) as a measure of health. We compare QALYs and financial results through a willingness to

pay conversion factor (e.g., £20k-£30k per QALY generated in the UK NHS, Claxton et al. 2015).

Patient i’s health state at the beginning of the period of care is modeled by q0
i , the monetary

value of their health capital (Grossman 1972), for i= 1,2, . . . , n. We denote by q0
P =

∑n

i=1 q
0
i the

total (sum) of initial health capital in the population, and by q̄0
P = q0

P/n the average. (When

discussing the health of other patient groups, we will also follow this notational convention, with

a bar denoting the average.) We assume that the average initial health capital of adherent and

non-adherent patients is equal. The health of a patient after a period of care is stochastic: if the

patient develops a complication, their health will experience an immediate decline, this decline will

further increase with time spent waiting for care, and finally, after treatment is completed, some

amount of the lost health will be restored.

Let Qi(dG, dS) be the random variable representing patient i’s health capital at the end of the

period, and let qi be its realization. A patient develops a complication with probability λi(dG),

where λi(dG) = λ(dG) if the patient was treated by the GP or λi(dG) = λ otherwise. If a patient does

not develop a complication, the health state remains constant (qi = q0
i ). If there is a complication,

health declines as a function of the time spent waiting for treatment, which is captured by increasing

function w(t). Once SP treatment is received, a fraction ζ of lost health is restored by the treatment.

We consider ζ to be exogenous here. (We allow for endogenous ζ in Appendix C.1.) Thus,

Qi(dG, dP ) =

{
q0
i (1−w(W (dG, dP ))(1− ζ)) with probability λi,

q0
i otherwise,

where W (dG, dP ) is a random variable with the same distribution as the sojourn times in the system

(which depends on the providers’ decisions, dG and dP ).

Formally, our queue is over a finite time period. For tractability, we use steady-state queueing

metrics to approximate queueing outcomes, and assume the queue has a steady state even with

a minimal quality of care (λµ− n > 0). With this steady-state approximation and the results of



10 Zorc, Chick and Hasija: Reimbursement Policies for Care Pathways

Taylor and Karlin (1998, Ch. IX) for the density of steady-state sojourn times in M/M/1 queues,

the expected health of patient i at the end of the period of care is

EQi(dG, dS) = q0
i

(
1−λi(dG)

∫ ∞
0

(µ(dS)−nΛ(dG))e−(µ(dS)−nΛ(dG))tw(t)(1− ζ)dt

)
. (2)

For now, we assume the health decline is linear, so w(t) = a+ bt, for some b > 0 and a ∈ [0,1).5

Thus, a is the health loss from developing a complication (even if treated immediately), whereas b

is the marginal decline in health over time. Using this form for w(t) yields

EQi(dG, dS) = q0
i

(
1− aλi(dG)(1− ζ)− bλi(dG)(1− ζ)

µ(dS)−nΛ(dG)

)
. (3)

Thus, the expected sum of the health capital in the population (QP =
∑n

i=1Qi) is

EQP (dG, dS) = q0
P

(
1− aΛ(dG)(1− ζ)− bΛ(dG)(1− ζ)

µ(dS)−nΛ(dG)

)
. (4)

We assume the average health capital of the population is such that q̄0
P ≥ kSV . (If this were not

the case, then it would be better not to have any SP treatment at all.)

The expected system efficiency function u (the expected value of the whole population’s health

capital minus the GP’s costs and the SP’s fixed and variable costs) is, therefore:

u(dG, dS) =EQP (dG, dS)− kG(dG)− kSF (dS)−nΛ(dG)kSV . (5)

It will be useful below to discuss the health of patients in different sets. Let G be the set of all

adherent patients (those seen by the GP). Note that |G|= φn. The sum of health capital of the

GP’s patients is then QG(dG, dS) =
∑

i∈GQi(dG, dS). Applying (3) yields

EQG(dG, dS) = q0
Pφ

(
1− aλ(dG)(1− ζ)− bλ(dG)(1− ζ)

µ(dS)−nΛ(dG)

)
. (6)

Similarly, the expected sum of the health of the SP’s patients (EQS) can be derived by separating

the patient pool into the (random) set of those who develop complications (S) and the set of those

who do not (S′). Noting that the SP treats all of the patients with complications but none of the

others, we have QS =QP −QS′ . Taking an expectation and applying (4) gives

EQS(dG, dS) = q0
PΛ(dG)

(
1− a(1− ζ)− b(1− ζ)

µ(dS)−nΛ(dG)

)
. (7)

5 Appendix C.5 shows that our model remains tractable using alternative specifications for w(t) where the integral in
(2) admits a closed-form solution, including the threshold function w(t) = a+1(t≥ T )b, where T is a critical response
time, or an exponential function w(t) = a+ exp(bt) (where the steady state condition becomes λ̄µ−n> b).
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3. Näıve Contracting Problem and the First Best Benchmark

Now we turn our attention to the contracting problem faced by the principal (the government),

whose objective is to maximize the health benefits generated by the system minus its own spending.

We start with the simplest version of this problem in a classical contract theory setup, modeling

all of the challenges discussed in the introduction except collusion and free-riding. Due to the

neglect of these two issues, we will refer to the problem here as the näıve contracting problem. This

model and its analysis are used in Section 4 to explore the consequences of ignoring collusion and

free-riding, and again used to analyze our main model in Section 5, where the principal designs

contracts being mindful that these two issues may occur.

Individual contracts. Consider a principal who contracts with each provider individually. The

principal chooses contracts to offer to the GP and the SP (v1() and v2(), respectively) with the

goal of maximizing total health in the system minus its own costs.

The primary variable of the principal’s interest (qP , a realization of QP ) is unobservable, and so

not contractible. The principal may, however, observe a signal QP (dG, dS), which consists of the

actual population health and independent, zero-mean noise (QP (dG, dS) =QP (dG, dS) + ε, where

E[ε] = 0).6 We assume the distribution of ε is common knowledge.

We may also be interested in estimating the total health of patients seen by the GP, denoted

QG, with related signal QG and realization qG. Analogously, the total health of patients treated

by the SP (QS) may be estimated by an unbiased but noisy signal QS with realization qS. Each

agent’s contract can be based on either the signal of patient health for patients under that agent’s

care (QG and QS, respectively) or the signal of the whole population’s health (QP ).

After the principal offers contracts v1 and v2, the agents evaluate whether they should take the

contract by looking at how much they will make if they accept the contract, and both agents

choose Nash equilibrium quality of care decisions (d̃G, d̃S). For agents to accept the contract, their

profit under equilibrium decisions needs to be at least the same as the value of their outside option

(Vi, i ∈ {G,S}), i.e., of the amount they could earn (perhaps through other employment) if they

reject the principal’s offer. This gives us the näıve individual contracting problem (NICP):

max
Q1∈{QP ,QG},Q2∈{QP ,QS},v1(Q1),v2(Q2)

E
[
QP (d̃G, d̃S)− v1(Q1(d̃G, d̃S))− v2(Q2(d̃G, d̃S))

]
, (8)

subject to d̃G ∈ arg max
dG∈[0,∞)

E
[
v1(Q1(dG, d̃S))− kG(dG)

]
, (9)

d̃S ∈ arg max
dS∈[0,∞)

E
[
v2(Q2(d̃G, dS))− kSF (dS)−S(d̃G)kSV

]
, (10)

VG ≤E
[
v1(Q1(d̃G, d̃S))− kG(d̃G)

]
, (11)

VS ≤E
[
v2(Q2(d̃G, d̃S))− kSF (d̃S)−S(d̃G)kSV

]
. (12)

6 Appendix C.2 identifies the degradation in the contract’s performance if the noise has unknown or uncorrected bias.
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In summary, the principal first offers contracts v1, v2, which the agents accept if the individ-

ual rationality (IR) constraints (11)–(12) hold. After accepting the contracts, the agents make

equilibrium decisions as given by the incentive compatibility (IC) constraints (9)–(10). During the

contract, patients arrive for treatment, as illustrated in Figure 1. At the end of the period, the

number of people who developed complications is realized (s), as are the health signals (qP , qG,

qS). The agents are then paid the stipulated amounts, v1(q1) to the GP and v2(q2) to the SP.

The best outcome the principal can hope to achieve in this problem (the first-best) is the one

where agents make decisions that maximize the value generated by the system, and all of this

value is appropriated by the principal. Formally, a decision (d∗G, d
∗
S) which solves the optimization

problem arg maxu(dG, dS) is called first-best, where u(dG, dS) is the system efficiency function in

(5). The contracts (v1, v2) are said to attain the first-best if the decisions induced by those contracts

(d̃G, d̃S) equal the first-best decisions (d∗G, d
∗
S) and the IR constraints (11)–(12) bind.

Prop. 1 shows that the principal has several options available that can achieve the first-best.

Proposition 1 (Optimal individual contracts) There exists an optimal pair of outcomes-

adjusted capitation contracts (vGC , vSC) that achieves the first-best in the NICP. Under these con-

tracts, provider i∈ {G,S} is paid a capitation fee ci, which is paid for every patient in the population

(treated or not), and which is outcomes-adjusted according to the measured population health:

ci(qP ) = fiC + riC(qP − tiC). (13)

The first-best can also be achieved by outcomes-adjusted per-patient contracts (vGP , vSP ), which

award providers a fee pi per patient they treat. This fee is outcomes-adjusted based on the health of

patients treated by that provider: pG(qG) = fGP + rGP (qG− tGP ), pS(qS) = fSP + rSP (qS − tSP ).

In the capitation expression (13), fiC > 0 is the fixed capitation rate, and riC(qP − tiC) is the

outcomes-adjustment reimbursement component where the per-capita rate is increased at rate riC

for any improvements in the population health above the target health threshold tiC (or decreased

when falling short of the health target). Hence, outcomes-adjusted variants of commonly used

contracts are capable of achieving the first-best here. As these contracts achieve the first-best, they

are optimal over the space of all contracts, without restricting the principal’s choice of contracts

to any parametric form. Denoting the optimal capitation (per-patient) contracts by additional

subscript G (P ), the payments to providers under the contracts given in Prop. 1 are

viC(qP ) = nci(qP ), for i∈ {G,S}, (capitation contracts)

vGP (qG) = φnpG(qG), vSP (qS) = spS(qS), (per-patient contracts).
(14)
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Remark 1 The proof of Prop. 1 shows that under the optimal contracts, target health thresh-

olds can be chosen so that tGC , tGP , tSC , tSP < EQP (d∗G, d
∗
S). (For expressions for these thresholds,

see (EC.13),(EC.17),(EC.19), and (EC.21) in Appendix A.1.). A consequence is that equilibrium

outcomes adjustment typically results in bonuses rather than penalties (compared to the base rate).

Group contracts. The principal may also create a single group contract for the two providers.

To examine this, we introduce some additional notation. Let QA be the total health of patients

treated by at least one of the GP or the SP (A for alliance/group), let QA be the related unbiased

signal, and let qA be its realization. (This notation is analogous to QG and QS in Section 3.)

Consider a principal who contracts with one agent who chooses both decision variables (dG, dS).

Instead of the NICP in (8)–(12), this principal solves the näıve group contracting problem (NGCP),

whose solution is characterized by Prop. 2 that follows:

max
Q∈{QP ,QA},v(Q)

E
[
QP (d̃G, d̃S)− v(Q(d̃G, d̃S))

]
, (15)

subject to (d̃G, d̃S)∈ arg max
(dG,dS)∈[0,∞)2

E [v(Q(dG, dS))− kG(dG)− kSF (dS)−S(dG)kSV ] , (16)

E
[
v(Q(d̃G, d̃S))− kG(d̃G)− kSF (d̃S)−S(d̃G)kSV

]
≥ VG +VS. (17)

Proposition 2 (Optimal group contracts) Optimal group contracts are an outcomes-adjusted

capitation contract (vAC) with per-capita fee cA(qP ) = fAC + rAC(qP − tAC), and an outcomes-

adjusted per-patient contract (vAP ) with per-patient fee pA(qA) = fAP + rAP (qA− tAP ). Both con-

tracts achieve the first-best for the NGCP.

The optimal individual contracts in Prop. 1 and the optimal group contracts in Prop. 2 are not

identical. They have the same form but have different parameter values.

4. Consequences of Näıvité

Section 3 presented a näıve contract design that did not account for two potential concerns, free-

riding and collusion. The purpose of this section is twofold. First, it establishes what unintended

consequences can occur as a result of ignoring these concerns if the contracts from Section 3 were

implemented. Second, the models of free-riding in Section 4.1 and collusion in Section 4.2 provide

insights for how to mitigate those concerns, as discussed in Section 5.

4.1. Free-riding in Group Contracts

A group contract reimburses the GP and SP jointly, and the GP and SP share rewards. This type

of contract runs the risk of free-riding. We follow the approach of Hölmstrom (1982) to study free-

riding within a group in our model as follows. Agents in the group split the final payout of their

contract, which they do according to the Nash bargaining solution. Each agent will receive the value
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of their outside option (VG for the GP, VS for the SP) plus an equal split of any reimbursement in

excess of the sum of the values of those options, i.e., VG + VS. Instead of making decisions jointly

(by solving the incentive compatibility constraint (16) in the NGCP), each agent chooses their own

decision individually, and bears the associated cost. Thus, after receiving a contract v(q) from the

principal, instead of making cooperative decisions d̃G, d̃S as given by (16), free-riding agents will

choose d̃FRG and d̃FRS that maximize their own benefit under this reimbursement policy. That is,

they solve the free-riding problem (FRP):

d̃FRG ∈ arg max
dG∈[0,∞)

E
[

1

2

(
v(Q(dG, d̃

FR
S ))−VG−VS

)
+VG− kG(dG)

]
, (18)

d̃FRS ∈ arg max
dS∈[0,∞))

E
[

1

2

(
v(Q(d̃FRG , dS))−VG−VS

)
+VS − kSF (dS)−S(d̃FRG )kSV

]
. (19)

Let d̃FRG,A and d̃FRS,A denote equilibrium decisions of free-riding agents under one of the group

contracts of Proposition 2. When we consider different kinds of organizational issues, we will use

this notation, with superscript standing for the type of organizational issue (in this case, FR for free-

riding and C for collusion) and the additional subscript standing for the contract which the agents

hold (A for alliance/group contract). If a superscript is omitted, that means neither free-riding nor

collusion and present, and thus the decisions are made according to the model in Section 3. If the

additional subscript is omitted, we are talking about decisions under an unspecified contract. We

also let πj(v, dG, dS) denote the expected profit of agent j ∈ {G,S,A} when holding contract v(Q),

for Q∈ {QP ,QG,QS,QA} and making decisions (dG, dS):

πG(v, dG, dS) =E [v(Q(dG, dS))− kG(dG)] , (20)

πS(v, dG, dS) =E [v(Q(dG, dS))− kSF (dS)−S(dG)kSV ] , (21)

πA(v, dG, dS) =E [v(Q(dG, dS))− kG(dG)− kSF (dS)−S(dG)kSV ] . (22)

We formalize the effects of free-riding on the key metrics of interest in Theorem 1.

Theorem 1 (Effects of free-riding) Suppose the GP and SP are given one of the optimal group

contracts from Prop. 2, but act in individual interest by solving the FRP in (18)-(19). The GP and

SP will fail to achieve the first-best. Compared to the first-best:

(i) System efficiency is lower: u(d̃FRG,A, d̃
FR
S,A)<u(d∗G, d

∗
S), with u given by (5).

(ii) Complication rate is higher: Λ(d̃FRG,A)>Λ(d∗G).

(iii) Expected health of patients is lower: EQP (d̃FRG,A, d̃
FR
S,A)<EQP (d∗G, d

∗
S), with EQP given by (4).

(iv) Expected profit of the group is lower: πA(vA, d̃
FR
G,A, d̃

FR
S,A)<πA(vA, d

∗
G, d

∗
S), with πA given by (22).

(v) Expected government expenditure is lower: EvA(QP (d̃FRG,A, d̃
FR
S,A))<EvA(QP (d∗G, d

∗
S)).
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Free-riding incentivizes each agent to decrease their quality of care, compared to the interests

of the group. However, the expected profit of both agents is submodular in (dG, dS) (verified by

taking ∂2/∂dG∂dS of (22)), so one agent decreasing treatment quality incentivizes the other one

to increase theirs. Yet, the effects on the system are consistent with the expectations based on

simpler free-riding models. As can be seen from parts (ii)-(iii) of the theorem, the net effect of free-

riding on health and complication rates is negative. A consequence of that is also lower government

expenditure, as the expenditure is proportional to health benefits created, as shown in part (v).

Any cost savings by the agents due to free-riding appear insufficient to compensate for the lower

income, resulting in lower overall profits for the agents, as shown in part (iv).

4.2. Collusion in Individual Contracts

The concern with individual contracts is that the agents might collude in order to make both of

them better off (Rodwin 1995). This section shows that a type of collusion that can emerge in this

setting is demand inducement, where colluding agents act by generating demand for each other.

A common economic approach for modeling collusion would be to model colluding agents as a

single entity, with the entity making both agents’ decisions to maximize its profits. We study that

approach, an informative “corner case,” in Appendix C.4, but we steer away from it here, because

it would be inconsistent for us to assume that colluding agents are able to perfectly coordinate

(acting as a single entity), whereas formal groups and alliances are not. Moreover, we wish to

compare the negative effects of collusion with those of free-riding. To make such comparisons, we

require a set of assumptions that allows for both behaviors simultaneously.

As our main model of collusion, therefore, we adopt the same assumptions about the behavior of

agents as in Section 4.1. Thus, under collusion, colluding agents share their joint revenue according

to the Nash bargaining solution but are responsible for their individual decisions and costs. Agents

are said to be engaged in collusion if, after being given individual contracts v1(q1), v2(q2), they

do not make the non-cooperative decisions d̃G, d̃S as given by (9)-(10). Instead, they choose d̃CG,

d̃CS to maximize individual profits, knowing that excess revenues will be split via Nash bargaining,

as in the following collusion problem (CP):

d̃CG ∈ arg max
dG∈[0,∞)

E
[

1

2

∑
i∈{1,2}

(
vi(Qi(dG, d̃CS ))−πi(vi, d̃G, d̃S)

)
+πG(v1, d̃G, d̃S)− kG(dG)

]
, (23)

d̃CS ∈ arg max
dS∈[0,∞)

E
[

1

2

∑
i∈{1,2}

(
vi(Qi(d̃CG, dS))−πi(vi, d̃G, d̃S)

)
+πS(v2, d̃G, d̃S)− kSF (dS)−S(d̃CG)kSV

]
. (24)

In the absence of collusion, the proof of Prop. 1 shows that, with optimal contracts, both agents

receive the full value of marginal benefits created by the system. If agents act in their own interest,

such compensation is beneficial, serving the purpose of aligning the agents’ interests. The presence

of collusion, however, creates an incentive to over-treat patients because colluding parties can be
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compensated at a higher marginal rate than the value they create. While the resulting increase in

quality and patient health looks appealing, it comes paired with inefficiently high costs.

If the SP holds a per-patient contract, there is an additional perverse incentive. An SP with such

a contract earns more the more patients he or she has, creating an incentive for a colluding GP to

decrease service quality so as to increase complication rates and generate demand for the SP. Also,

there is an incentive to decrease service quality because of a lack of coordination, as above with

free-riding agents. Lastly, the colluding agents make their decisions in a way that disregards the

SP’s variable costs because those costs depend only on the GP’s decision, yet are borne by the SP.

In the presence of such countervailing effects, not all comparative statics we are interested in

are conclusive. Therefore we adopt a threefold approach. One, conclusive results are presented

in Theorem 2. Two, questions that remain inconclusive are addressed by numerical analysis in

Section 6. Three, Prop. 3 below identifies special cases of the parameter space in which we can

establish results that do not hold in general. Following the notation used in Theorem 1, in the

theorem below, d̃CG,k,j (d̃CS,k,j) stands for the equilibrium decision of a colluding GP (SP) when the

providers hold contracts (k, j)∈ {C,P}2.

Theorem 2 (Effects of collusion) Suppose the GP and SP are given individual contracts as

defined in Prop. 1, but engage in collusion by solving (23)-(24) instead of (9)-(10). Then, the first-

best is not achieved. For every GP contract vGk for k ∈ {C,P}, we can compare outcomes when the

SP holds vSC to ones where the SP holds vSP :

(i) The complication rate is lower under vSC (Λ(d̃CG,k,C)<Λ(d̃CG,k,P )).

(ii) The specialist’s quality of service is lower under vSC (d̃CS,k,C < d̃
C
S,k,P ).

(iii) If k=C, the pop. health is higher under vSC (EQP (d̃CG,k,C , d̃
C
S,k,C)>EQP (d̃CG,k,P , d̃

C
G,k,P )).

The effect is more complex when the GP holds a per-patient contract: GP decisions have a

second-order impact on patients not under the GP’s care (due to the GP’s influence on congestion

for the SP), but the GP’s compensation does not account for the outcomes of those patients.

Prop. 3 gives additional results for special cases. In summary, if the SP’s variable costs are low

enough and the adherence rate is high enough, the second-order effects of the GP’s decision become

negligible, and some contracts are able to eliminate the adverse effects of collusion altogether.

Proposition 3 (Special cases of collusion) If the variable costs of the SP are negligible (kSV =

0), then first-best is achieved under collusion when both agents hold optimal capitation contracts

(vGC for the GP, vSC for the SP in Prop. 1). Moreover, if kSV = 0 and there is full adherence

(φ= 1), then first-best is achieved under collusion when the GP holds a per-patient contract vGP

and the SP holds a capitation contract vSC.
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A variable cost kSV close to zero is more realistic in settings where most costs (such as labor,

equipment, facilities) are fixed, and marginal treatment costs (consumables, etc.) are very inex-

pensive. Full adherence (φ= 1) may hold in some settings, such as for hospitalized patients. But

full adherence might not be realistic in other settings, such as when managing to improve control

of diabetes, especially among young patients (Borus and Laffel 2010, Garćıa-Pérez et al. 2013).

5. Main model: Endogenous Collusion and Free-riding

In Section 3, the principal designed contracts oblivious of the potential free-riding and collusion

issues. If those issues do occur (as in Section 4), it is unsurprising that a contract designed ignoring

them may have degraded performance. Here, we turn our attention to the mindful principal, who

designs contracts with these potential issues in mind, and show potential gains from doing so.

5.1. Mindful Group Contracts

We model free-riding with group contracts using the same approach as in Section 4. The principal

designs the contract v(Q) with the goal of maximizing population health minus the health care

expenditure, knowing that agents under a group contract will experience free-riding. Thus, the

principal’s problem is given by the main (mindful) group contracting problem (MGCP):

max
Q∈{QP ,QA},v(Q)

E
[
QP (d̃FRG , d̃FRS )− v(Q(d̃FRG , d̃FRS ))

]
, (25)

subject to d̃FRG ∈ arg max
dG∈[0,∞)

E
[

1

2

(
v(Q(dG, d̃

FR
S ))−VG−VS

)
+VG− kG(dG)

]
, (26)

d̃FRS ∈ arg max
dS∈[0,∞)

E
[

1

2

(
v(Q(d̃FRG , dS))−VG−VS

)
+VS − kSF (dS)−S(d̃FRG )kSV

]
, (27)

E
[

1

2

(
v(Q(d̃FRG , d̃FRS ))−VG−VS

)
+VG− kG(d̃FRG )

]
≥ VG, (28)

E
[

1

2

(
v(Q(d̃FRG , d̃FRS ))−VG−VS

)
+VS − kSF (d̃FRS )−S(d̃FRG )kSV

]
≥ VS. (29)

Compared to the NICP in Section 3, the principal’s objective (25) is the same. The incentive

compatibility constraints in (26)-(27) are exactly those of the FRP of Section 4.1, as given in (18)-

(19). There are now two participation constraints (28)-(29), as the profit of two agents from the

contract might be uneven, and it needs to be in the interest of both to accept the contract.

For the remainder of the section, we adopt the following technical assumption.

Assumption 1 The SP’s variable costs are strictly positive, kSV > 0. Contracts v() are differen-

tiable and allow for interchanging the order of differentiation and expectation (e.g., v() satisfies

the hypothesis of the dominated convergence theorem).

Theorem 3 (Linear mindful group contracts) Consider the MGCP with group contract v(q)

satisfying Assumption 1 and let d̃G, d̃S be the interior (d̃G, d̃S > 0) decisions that the contract
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induces. Then, there exists a linear outcomes-adjusted capitation contract v†(qP ) that induces the

same decisions (d̃G, d̃S), at an equal or lower cost to the principal.

As a simple consequence of Theorem 3, a linear outcomes-adjusted capitation contract is optimal,

but not necessarily uniquely so. There are also two interesting properties which hold for all group

contracts, not just the optimal ones:

Proposition 4 (Properties of all group contracts)

1. By choosing a group contract, the principal can induce any expected population health in

[EQP (0,0), q0
P ), but not all dG, dS pairs can be induced. Specifically, any inducible dG, dS such

that dG, dS 6= 0 satisfy ∂EQP (dG,dS)

∂dS
/∂EQP (dG,dS)

∂dG
= k′SF (dS)/k′G(dG).

2. For any dG, dS inducible by a group contract, there exist d†G, d
†
S which yield the same

expected population health, at a lower treatment cost, so that EQP (dG, dS) =EQP (d†G, d
†
S) and

E(kG(dG) + kSF (dS) +S(dG)kSV )>E(kG(d†G) + kSF (d†S) +S(d†G)kSV .

Informally, under any group contract, the providers choose inefficiently expensive decisions. The

main issue with all group contracts under free-riding is that the agents will not be inherently

mindful of the externalities they impose on each other. For example, the GP’s decision affects the

expected health of the patients (which can be accounted and incentivized for), but it also affects

the SP’s cost structure: higher demand for the SP increases the SP’s costs. Another way to put it is

that under free-riding, both agents prefer for the work to be executed by the other one even when

they can achieve the same results at a lower cost themselves. A consequence of such behavior (as

demonstrated in Prop. 4) is that any decisions induced by group contracts will be cost-inefficient

ones (and therefore not achieve the first-best).

Proposition 5 (Properties of optimal mindful group contracts)

1. While outcomes-adjusted capitation contracts are optimal both in this model and the näıve one,

those contracts are not identical as they can have different per-capita reimbursement rates.

2. The optimal contract (one that solves the MGCP) does not achieve first-best.

3. If an agent has strictly lower equilibrium costs than the other, he or she extracts positive rent.

A notable similarity between optimal contracts in this setting and ones in the näıve model is that

the same contract type (linear outcomes-adjusted capitation contract) is guaranteed to be optimal.

There is also a notable difference. Despite being the same contract type, these contracts can have

large differences in reimbursement rates. In simulations of Section 6, we see that optimal group

contracts under free-riding typically reward improved health at a rate (rAC or rAP in Prop. 2) which

is roughly twice as high as the näıve ones. This poses a challenge for a principal who is worried that
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free-riding might be an issue, but is not sure how widespread it is. Giving contracts that assume

all will free-ride will also result in distorted incentives if this behavior is not ubiquitous.

The strictly positive rent property (Prop. 5 part 3) adds another layer of additional costs to the

principal, in addition to the inherent cost inefficiency.

5.2. Mindful Individual Contracts

In this section, the idea is to a) endogenize collusion, so that the agents collude if and only if it is

profitable for both of them, and b) have the principal design individual contracts with the idea of

addressing potential collusion in mind. Recall that when colluding, a GP under contract v1(Q1) and

an SP under contract v2(Q2) will choose decisions d̃CG, d̃
C
S which solve the collusion problem (23)-

(24), and if not colluding, they will choose d̃NCG , d̃NCS , which solve the NICP incentive compatibility

constraints (9)-(10). Denote by πCG and πCS expected profit of the two colluding agents, i.e.,

πCG = E
[1

2

∑
i∈{1,2}

(
vi(Qi(d̃CG, d̃CS ))− vi(Qi(d̃NCG , d̃NCS ))

)
+ v1(Q1(d̃NCG , d̃NCS ))− kG(d̃CG)

]
,

πCS = E
[1

2

∑
i∈{1,2}

(
vi(Qi(d̃CG, d̃CS ))− vi(Qi(d̃NCG , d̃NCS ))

)
+ v2(Q2(d̃NCG , d̃NCS ))− kSF (d̃CS )−S(d̃CG)kSV

]
.

Analogously, we can denote the profit of the two agents when not colluding with πNC1 and πNC2 .

We also use the logic notation ∧ and ∨ to denote “and” and “or,” respectively. With this notation,

the main (mindful) individual contracting problem (or MICP) is given by:

max
Q1,Q2∈{QP ,QG,QS}

v1(Q1),v2(Q2)

E
[
QP (d̃G, d̃S)− v1(Q1(d̃G, d̃S))− v2(Q2(d̃G, d̃S))

]
(30)

subject to d̃NCG ∈ arg max
dG∈[0,∞)

E
[
v1(Q1(dG, d̃

NC
S ))− kG(dG)

]
(31)

d̃NCS ∈ arg max
dS∈[0,∞)

E
[
v2(Q2(d̃NCG , dS))− kSF (dS)−S(d̃NCG )kSV

]
(32)

d̃CG ∈ arg max
dG∈[0,∞)

E
[1

2

∑
i∈{1,2}

(
vi(Qi(dG, d̃CS ))− vi(Qi(d̃NCG , d̃NCS ))

)
+v1(Q1(d̃NCG , d̃NCS ))− kG(dG)

] (33)

d̃CS ∈ arg max
dS∈[0,∞)

E
[1

2

∑
i∈{1,2}

(
vi(Qi(d̃CG, dS))− vi(Qi(d̃NCG , d̃NCS ))

)
+v2(Q2(d̃NCG , d̃NCS ))− kSF (dS)−S(d̃CG)kSV

] (34)

(d̃G, d̃S) =

{
(d̃CG, d̃

C
S ) | πCi >πNCi ,∀i∈ {G,S}

(d̃NCG , d̃NCS ) | otherwise
(35)

((d̃G, d̃S) = (d̃CG, d̃
C
S )∧VG ≤ πCG ∧VS ≤ πCS ))∨ (VG ≤ πNCG ∧VS ≤ πNCS ) (36)

Here, (30) is the same objective function as in the other models. (31)-(32) gives the decisions

that the agents will make if they do not collude, which are the same as incentive compatibility

constraints (9)-(10) in the näıve model. (33)-(34) give the decisions that the agents will make if
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they do decide to collude, which correspond to (23)-(24) in the collusion model of Section 4. The

new constraint in (35) states that agents will collude only if it is strictly profitable for them to do

so. We refer to contracts v1 and v2 as collusion-proof if under them (d̃G, d̃S) = (d̃NCG , d̃NCS ), i.e., it

is not profitable for the agents to collude. Lastly, (36) is the new participation constraint, which

states that whatever decisions the agents end up making (collusion or no collusion), the resulting

profit has to be equal to or better than the outside option.

Theorem 4 (Mindful individual contracts for the MICP)

1. The health outcome of optimal group contracts can be replicated at a lower cost by using two

individual linear outcomes-adjusted capitation contracts.

2. Amongst the class of contracts using QP as the signal, linear outcomes-adjusted capitation

contracts are optimal, and they are collusion-proof.

3. If the näıve individual contracts (solutions of the NICP in Section 3) are collusion-proof, they

are also optimal and achieve first-best in this model.

Part 1 of the theorem creates a strong argument against the use of group contracts, because

anything they can accomplish can also be accomplished using individual contracts at a lower cost.

For the intuition behind this result, consider any group contract and the following process of

obtaining a better set of individual contracts. First, find an equivalent outcomes-adjusted capitation

group contract, as in Theorem 3. This capitation contract can be “split in half,” giving each provider

one-half of the group contract’s reimbursement rate for health benefits created. At this point, we

have two individual contracts that jointly induce the same outcome at the same cost as the group

contract we wanted to replicate. However, individual contracts can go one step further, as they

have an additional degree of freedom: the fixed capitation rates can be individually adjusted for

each provider, thereby removing the rent issue of group contracts.

Part 2 of the theorem is an argument for the use of individual linear outcomes-adjusted capitation

contracts, as they are optimal within the class of all contracts using the population health measure

QP as the signal. There remains, however, a possibility that collusion-inducing contracts that use

different signals for different providers could perform better.

Part 3 of the theorem considers the most attractive scenario, where the contracts which solve

the näıve problem are also collusion-proof. If this is true, it is very convenient for the principal,

as it is then sufficient to solve the comparatively simple näıve problem (NICP), which has closed-

form solutions available. It also resolves the dilemma of a principal who is unsure how often do

free-riding and collusion arise, as in this scenario, the same contract (with identical parameters),

is optimal irrespective of whether collusion and free-riding are present or not.
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One key question we will address in the numerical analysis in Section 6 is: how often can we

expect this attractive scenario to arise in practice? We will demonstrate that this scenario occurs

for almost all realistic parameter values, but only if using outcomes-adjusted capitation contracts.

6. Model Calibration and Numerical Analysis

In this section, we numerically explore outcomes-based contracts and the consequences of näıvité

(i.e., using the contracts of Section 3 rather than of Section 5), when the models are calibrated to

data on type 2 diabetes treatment in the UK. We focus on the specialist being an ophthalmologist

who treats diabetic retinopathy. Diabetic retinopathy is one of the most common complications of

diabetes (30% prevalence amongst 2 diabetes patients, Mathur et al. 2017) and the most common

cause of blindness in the working-age population. Our analysis is illustrative over a ‘reasonable

range’ of parameters, and is not intended for detailed policy recommendations.

The goal of this analysis is three-fold. First, to identify the magnitude of deviations that result

from näıvité, as the structural results of Section 4 are only directional. Second, to explore outcomes

in situations where definitive structural results were unavailable in Section 4 – e.g., how per-patient

contracts affect health. Third, to identify the sensitivity of our conclusions to parameter values, as

some results do not hold for all parameter values (notably Theorem 4, part 3).

6.1. Data Modeling

An important characteristic of type 2 diabetes treatment is that the model parameters vary widely

for different settings. E.g., the number of patients per GP (and thus access to care) varies depending

on the geographical region (UK NHS 2016), and adherence rates have high variability over different

geographies and different population segments (Taddeo et al. 2008, Borus and Laffel 2010).

To account for these differences, we focus not only on point estimates of parameters but also a dis-

tribution of parameters on a plausible range. Tables 1–2 report the considered range of parameters,

sources used to estimate them, and comments about the assumed distribution for sampling param-

eters. Unless otherwise specified, parameters were sampled uniformly over the considered range.

Some of the model’s parameters are functions (the costs kG and kSF ), which we cannot observe

in data directly, but we can observe their realizations. When considering those parameters, we rely

on acceptance sampling to ensure their values are realistic. That is, we start by considering a wide

range of possible values for those parameters. After drawing each parameter set, we test whether

the parameter values are plausible along three dimensions: (a) The cost realizations under first-

best decisions need to be within 1
4
x to 4x of the observed costs reported in the literature (Mitchell

et al. 2012, Diabetes UK 2014), (b) the first-best complication rate cannot be higher than the

complication rates observed in practice (Khalid et al. 2014), (c) the first-best waiting times need
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to be between one day and one year (literature estimates for waiting times range from a few days

to almost a year in different settings). Parameter sets that did not pass these tests were dropped

(6157 parameter sets of 20,000 generated were plausible). Appendix B provides more details.

For each plausible parameter set, optimal näıve contracts were calculated as in Section 3, as

was their performance under collusion and free-riding (as in Section 4), and an attempt was made

to identify the optimal contract in the setting of our main model (Section 5). The results of the

analysis presented use a monetary value of a QALY equal to £30,000. Conclusions based on other

considered values of the monetary values of QALY are similar to the conclusions drawn below.

Table 1 Parameters Related to Initial Population Health and Complications

Parameter Range Considered Estimation Methods and Sources

Population Size Empirical Distribution Full distribution of patients per full-time equivalent GP from the NHS census
of GPs (UK NHS 2019). We sample the number of patients per GP (m) from
this distribution (truncating both 1% tails), then sample n∼Bin(m,6.4%),
where 6.4% is the incidence rate of type 2 diabetes (Diabetes UK 2019).

Initial Avg. Health of
Population

q̄P0 = 7.61 QALY Method of Cutler and Richardson (1998), life expectancy data (Leal et al.
2009, Khalid et al. 2014), quality of life estimates (Clarke et al. 2002).

Monetary Value of
One QALY

QALY∈ [£20k,£100k]. NHS uses £20k to £30k (Claxton et al. 2013), US regulators use $50k to
$100k (Neumann et al. 2014). Some estimates in health economics are even
higher (Neumann et al. 2014). We do not randomly sample this value, as it
is subject to the regulator’s choice. Rather, we conduct the analysis for four
different values: £20k, £30k, £70k, and £100k.

Adherence Rate φ∈ [0.1,1] Currie et al. (2012) find that 61% of patients are adherent. Sub-populations
can have almost full adherence (hospitalized), or low (.1) adherence (ado-
lescents) (Taddeo et al. 2008, Borus and Laffel 2010). We use a triangular
distribution with support [0.1,1] and mode 0.61.

Non-adherent Patient
Complication Rate

λ∈ [3.54%,5.08%] Base incidence of diabetic retinopathy (3.22%, Mathur et al. 2017), adjusted
for non-adherence (Garćıa-Pérez et al. 2013, Currie et al. 2012).

Health Deterioration
Due to Untreated
Complications

b∈ [0.106,0.2] Based on untreated retinopathy progressing to legal blindness in 3.2 years
(Ferris 1993), and the range of estimates for QALY effects of vision loss
(Javitt and Aiello 1996, Rein et al. 2007).

Health Cost of a
Complication

a= b/2 Based on early-stage retinopathy being asymptomatic, but the expected
time to a diagnosis being 6 months after onset.

Health Improvement
from SP Treatment

ζ = 0 The vision loss from retinopathy is irreversible, but successful treatment can
stop further deterioration of vision (NIH 2019).

Table 2 Cost Functions

Parameter Functional form Estimation Methods and Sources

GP’s Cost Function kG(dG) = γ1(dG)γ2 We consider a wide range for the hyper-parameters, specifically γ1 ∈
[1,106] and γ2 ∈ [1,4], which we filter for plausible parameters using
acceptance sampling and realized cost data of Diabetes UK (2014).

SP’s Fixed Costs kSF (dS) = δ1(dS)δ2 We consider a wide range for the hyper-parameters, specifically δ1 ∈
[1,106] and δ2 ∈ [1,4], which we filter for plausible parameters using
acceptance sampling and realized cost data of Mitchell et al. (2012).

SP’s Variable Costs kSV ∈ [£823,£9356] Variable cost range of Mitchell et al. (2012).
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Table 3 Mean of deviation from first-best (with standard error) in a numerical analysis of näıve contracts

Individual Contract Group Contract

(Collusion) (Free-riding)

Metric C,C P,C C,P P,P C or P

Total Population Health (QALY) 0 (0) 0 (0) -1.71 (0.02) -1.69 (0.02) -0.46 (0.00)

Government Expenditure (k£) 0 (0) 0 (0) 71.03 (1.28) 67.00 (1.24) -13.89 (0.11)

Provider Profit (k£) 0 (0) 0 (0) 78.25 (1.31) 74.71 (1.27) -4.54 (0.04)

System Efficiency (k£) 0 (0) 0 (0) -44.10 (0.50) -43.18 (0.49) -4.54 (0.04)

6.2. Numerical Comparison of Contracts

This section summarizes numerical results on the consequences of näıvité, and reports mean values

and standard errors of the main performance metrics under all näıve contracts, as derived in Sec-

tion 3, when those contracts are held by agents of Section 5 (agents which can free ride or collude).

These metrics include total population health (summed over all patients, measured in QALYs),

governmental expenditure, provider profit, and system efficiency. Estimates of expected values

represent the difference in outcome for the given contract scenario from the first-best outcome.

The first and most salient result that can be observed in Table 3 is that there is no deviation from

the first-best whenever the specialist holds a näıve outcomes-adjusted capitation contract. This

can be observed by the 0s in the columns for individual contracts where the second entry is a ‘C’

as compared to a ‘P.’ This is driven by such contracts being collusion-proof for 100% of plausible

parameter sets; thus, they are also solutions to the MICP (Theorem 4). [If we also consider non-

plausible parameter sets, dropped as part of acceptance sampling, collusion can possibly be stable

under outcomes-adjusted capitation contracts (it occurred in 1.3% of cases, data not shown7).]

Even if we focus solely on the (unrealistic) parameter sets which lead to collusion under capitation

contracts, the deviation from the first-best under such contracts is drastically smaller than in any

other scenario considered. The average impact on Total Population Health in the parameter sets

which lead to collusion when both providers hold näıve outcomes-adjusted capitation contracts is

-0.06 QALY, while the increase in Government Expenditure is £485.

The second result which can be observed from the table is that per-patient SP contracts severely

under-perform relative to all other contracts we consider, no matter which of the metrics we use as

the criteria. This can be observed by the numbers in the columns for individual contracts, where

the second entry is a ‘P’ rather than a ‘C.’ Näıve per-patient contracts were collusion-inducing in

83.3% of cases (data not shown). If collusion happens under such contracts, the negative effects it

causes on both health and finances are drastically worse than in any other scenario considered.

7 Such cases required a particular set of circumstances: the GP faced very high costs of improving the complication
rate, to the point of not putting any effort into the quality of care under the first-best (d∗G ≈ 0) and the SP could
improve the health of patients at a much lower cost. Thus, the collusion worked by the SP increasing the quality of
care (but not the GP), with the resulting increase in GP compensation effectively being shared by the providers.
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This is not particularly surprising if we consider how collusion manifests under such contracts:

the income of colluding agents scales with the number of patients who develop complications,

creating an incentive for a colluding GP to reduce the quality of care, which in turn decreases

patient health and increases provider profit and government spending.

Group contracts were shown in Theorem 1 to be inefficient, which is primarily caused by the

providers under them making decisions that are not cost-efficient (see Prop. 4). The column for

Group Contract in Table 3 shows that there is inefficiency, but that the inefficiency is not as bad,

on average, as compared to the inefficiency due to the SP holding a per-patient individual contract

(for example, -4.54 is a better system inefficiency than -44.01 or -43.11). The result is the same

whether the group contract is a C or a P. Thus, if a per-patient contract is required for some reason

for the SP, then it is better to use a group per-patient contract.

Thus, combining this insight with the analytical results of Section 5, all results point in the

direction of individual outcomes-adjusted capitation contracts as the best contract type. They

outperform all group contracts (Theorem 4, part 1), and can be expected to be collusion-proof in

the vast majority of cases, in which case they also solve the MICP (Theorem 4, part 3), which

implies they cannot be outperformed by any other contract. Furthermore, even if the rare situation

arises when collusion can exist under such contracts, its effect is small.

7. Implications for practice

The contracts that emerge as optimal in our model thus far are close variations of ones already

used in practice, but they do not perfectly correspond to any extant medical system. By looking at

properties of entire contract classes (which do include the contracts currently in place) rather than

only optimal contracts, we can identify strengths, weaknesses, and potential focus areas for the

future development of those systems. Section 7.1 examines a setting where outcomes-adjustment is

made for the GP and not the SP, motivated by the UK NHS’s QOF. Section 7.2 analyzes the case

of volume-scaling contracts that are volume adjusted, particularly for an SP, motivated by the US.

7.1. The NHS and Other Systems with Outcomes-adjustment Only for GPs

The UK NHS’s QOF is the world’s largest outcomes-based reimbursement scheme. It defines

outcomes-based bonuses for GPs that comprise a considerable part of GP compensation (UK NHS

2020). Let Gbe the class of all population-health-based contracts for the GP that satisfy Assump-

tion 1. This class allows for a wide variety of outcomes-based contracts for the GP, does not make

any linearity assumptions, and includes all of the capitation contracts we study in the paper.

SPs (consultants) within the NHS have a fixed salary which increases in seniority. Bonuses they

receive are not outcomes-adjusted, but are rewards for additional duties such as teaching or hospital

management.8 Let F be the class of all fixed-compensation contracts for the SP.

8 See also https://www.healthcareers.nhs.uk/explore-roles/doctors/pay-doctors, Accessed Nov 25, 2022.

https://www.healthcareers.nhs.uk/explore-roles/doctors/pay-doctors
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We consider the usual individual contracting problems studied above in both their näıve and

mindful forms, but now restrict the choice of contracts for the GP and SP to Gand F, respectively.

Theorem 5 (Outcomes-adjustment only for the GP) Consider the NICP in (8)-(12) where

the choice of (v1, v2) is restricted to G×F. Then,

(i) A linear optimal (second-best) outcomes-adjusted capitation contract for the GP exists.9

Consider the MICP in (30)-(36) where the choice of (v1, v2) is restricted to G×F. Then,

(ii) The performance, in terms of the principal’s objective function, of any collusion-proof (v1, v2)∈

G×F is bounded from the above by the performance of the optimal NICP contract in (i).

(iii) The performance of a collusion-inducing (v1, v2) ∈ G×F is bounded from the above by the

solution of a modified MICP with no G×Frestriction, and where the providers have to collude.

(iv) Any collusion-inducing (v1, v2) ∈ G×F can only induce decisions (dG, dS) that can also be

induced by group contracts and have been characterized as inefficient by Prop. 4.

(v) For any decision pair (dG, dS) that is inducible by collusion-inducing contracts in G×F, the

participation constraint (36) can be made to bind for both providers.

Part (i) of Theorem 5 solves the NICP. This auxiliary result supports parts (ii) and (iii), which

identify the performance bounds of contracts in G×F, where the optimal NICP contracts form

an upper bound for the collusion-proof contracts.

Parts (iv) and (v) of Theorem 5 speak of the connection between group contracts of the MGCP

and the collusion-inducing contracts in the MICP. Those two contract types share the issue of only

being able to induce actions along an inefficient frontier. However, collusion-inducing contracts

have one advantage over group contracts: the principal can alter each individual’s outside option

(what happens if they do not collude), which cannot be done with group contracts. This gives the

principal an added degree of freedom and allows the principal to prevent the rent that the more

cost-efficient agent is able to extract in group contracts (recall Prop. 5, part 3).

Table 4 extends the experiments in Section 6 to explore the results in Theorem 5. We see that

the bounds of collusion-proof contracts can, in all studied cases, be attained by linear contracts,

and that those contracts exhibit performance that is remarkably close to the first-best (notice the

gap to the first-best is smaller than all cases with deviations reported in Table 3).

Collusion-inducing contracts can perform even better. To see why, consider the form that col-

lusion takes when providers hold contracts in G×F, as they do in the UK. Here, the GP, whose

compensation is outcomes-adjusted, may share some reward with the SP, in return for which the

SP helps improve outcomes. Collusion may even be a misnomer here, it is a case of the system not

9 A second-best contract is a contract that is optimal in the sense that there does not exist any other contract which
can outperform it, yet it does not eliminate all agency frictions like a first-best contract would.
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incentivizing cooperation between providers, so they (inefficiently) create those incentives them-

selves. The inefficient attempts at coordination can be better than no coordination at all.

The bottom line is that it appears that systems like the UK, where outcomes adjustment is

for GPs and not for SPs, need not worry about collusion. It is not hard to make such a system

collusion-proof, but even if collusion occurs, it will take a benign form. Perhaps a more relevant

question for these systems is “can we reap the full benefit of outcomes-based contracting without

incentives for the specialists?” When looking at the diabetes-calibrated model, the gap between the

true optimum and results achievable by a system with fixed SP compensation is remarkably small.

7.2. The USA and Other Systems with Volume-scaling Contracts

In Sections 4 and 6, the property that drives the undesirable performance of individual outcomes-

adjusted per-patient contracts is that SP compensation scales with the volume of patients treated.

This volume-scaling property is hardly unique to reimbursement schemes studied in this paper. All

fee-for-service and per-patient contracts, outcomes-adjusted or not, have this property. Volume-

scaling compensation is prevalent in the US, and is also found in Canada and Australia. As of

2022, 93.3% of US specialists have compensation that is volume-scaling, and the volume-scaling

component makes up the majority (73.7%) of their income (Reid et al. 2022). Medicare’s Merit-

based Incentive Payment System (MIPS) introduced in 2017 is one the largest outcomes-adjusted

systems in the US; yet, under it, the provider compensation is still volume-scaling (Rathi and

McWilliams 2019, Bond et al. 2022).

If compensation scales with demand, one provider can conceivably generate demand for another,

and they can share the spoils. Demand-inducing collusion happens: the U.S. Department of Justice

recovered more than $153 million in settlements and judgments for violations of the Stark Law and

Federal Anti-Kickback Statute (US DoJ 2021).

We now explore the vulnerability to collusion via demand inducement under volume-scaling

contracts, particularly for specialists. A contract is volume-scaling if, keeping the average health of

patients constant, the variable amount it pays is proportional to the number of patients treated.

Table 4 Mean of deviation from first-best (with standard error) in a numerical analysis of the performance

bounds for contracts in G×F established in Theorem 5.

Collusion-Proof Collusion-Inducing

Metric Contracts Contracts

Total Population Health (QALY) -0.14 (0.01) 0.00 (0.00)

Government Expenditure (k£) -0.37 (0.04) 0.01 (0.00)

Provider Profit (k£) 0 (0) 0 (0)

System Efficiency (k£) -3.94 (0.21) -0.01 (0.00)

Bound attainable by linear contracts (% cases) 100% 83%
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Let V be the set of volume-scaling contracts, with v(qS, s) ∈ V if and only if v(qS, s) satisfies

Assumption 1 and there exist constants h ∈ R, r ∈ R+ and a weakly increasing non-zero function

p(q̄S) such that v(qS, s) = h+ rsp(q̄S) (s is the number of patients treated by the SP).

It is useful to define the following equivalence relation: v1 ∼ v2 if there exists a function p(q̄S) and

constants h1, h2 ∈R, r1, r2 ∈R++ such that v1(qS, s) = h1 +sr1p(q̄S) and v2(qS, s) = h2 +sr2p(q̄S).

The relation ∼ partitions V into equivalence classes. Each member of an equivalence class shares

a common way in which reimbursement is outcomes adjusted (p(q̄S)), but members may differ in

the scale of that adjustment (r) and the constant payment (h).

Two of these equivalence classes are of special interest to us. Let VL = {v ∈ V|v ∼ h+ srq̄S};

this is the class of all volume-scaling contracts in which outcomes adjustment is linear in health

(p(q̄S) = q̄S). The optimal näıve per-patient contracts studied earlier in the paper belong to this

class. Similarly, let VC = {v ∈ V|v∼ h+ sr}; this is the class of all volume-scaling contracts which

are not outcomes adjusted (p(q̄S) is a constant).

Theorem 6 (Collusion under volume-scaling SP contracts) Consider the MICP where the

SP contract is chosen from V and let the GP hold v1 ∈ G such that 0< v′1(qS)≤Ω, where Ω∈R.

(i) There exists r∗ ∈R such that for every v2 = h+ srq̄S ∈ VC, (v1, v2) is collusion-inducing and

dGC = 0 if r≥ r∗.

(ii) If E[S(dG)Q̄S(dG, dS)] is decreasing in dG, then for every v2 = h+ srp(q̄S) ∈ VL, (v1, v2) is

collusion-inducing and dCG = 0 if EQS(d̃CG, d̃
C
S )−EQS(d̃NCG , d̃NCS )> 0 and r is sufficiently high.

(iii) If (v1, v2)∈ G× V are collusion-proof and induce (d̃∗G, d̃
∗
S), there exists v∗2 ∈ VL (unique up to

the constant h) such that under (v1, v
∗
2) we have (d̃NCG , d̃NCS ) = (d̃∗G, d̃

∗
S). (v1, v

∗
2) need not be

collusion-proof.

Part (i) addresses the well-known vulnerability to collusion that non-outcomes-adjusted but

volume-scaling SP contracts possess. This vulnerability depends not on how GP compensation is

outcomes-adjusted. If the volume-scaling component of the SP is large, it will induce collusion.

Part (ii) gives conditions under which collusion occurs under all linear volume-scaling contracts.

The dependency on the size of the incentive exists here, as in (i), under two additional conditions.

First, E[S(dG)Q̄S(dG, dS)] needs to be decreasing in dG (meaning the SP needs to be able to benefit

from increased demand). This is universally true if there is no outcomes-adjustment as more volume

leads to more income. With linear outcomes-adjustment, this condition is independent of which

contracts are held, and b being small enough (the condition progressing relatively slowly over time)

is sufficient for it to hold. There is also an opposite effect if the SP compensation is outcomes-

adjusted: the more patients the SP treats, the more expensive it is to maintain the same level of

average outcomes, or conversely, with the same level of care at the SP’s level, outcomes will be
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worse if the number of patients increases (which will be reflected in the income). Second, colluding

introduces inefficiency into the system due to the free-riding effect, so the benefits from colluding

need to outweigh free-riding. This is captured by the EQS(d̃CG, d̃
C
S )−EQS(d̃NCG , d̃NCS )> 0 condition.

Part (iii) explores whether we can do better if we resort to non-linear contracts. In Propositions

1-2 and Theorems 3-4, we saw that the restriction to linear contracts can be made without loss of

optimality in many settings. The same is not the case here. While linear contracts can replicate

what other contracts are doing in the absence of collusion, non-linearity offers an additional tool

to disincentivize collusion by disproportionally penalizing the bad outcomes.

The results on systems with volume-scaling specialist stand in contrast with those of Section 7.1.

Here, a very different form of collusion arises: the SP, whose compensation benefits from increased

demand, shares some compensation with the GP, who lowers the quality of care. This generates

additional demand for the SP. This form of collusion is not benign and typically results in increased

costs and worse outcomes. This is a known issue with volume-scaling contracts without outcomes-

adjustment (which is regulated through laws rather than incentives). The same issue appears to

plague many outcomes-adjusted volume-scaling contracts as well.

For an example of how outcomes-adjustment under volume-scaling contracts can possibly result

in worse outcomes than its absence, notice that even volume-scaling non-outcomes-adjusted con-

tracts (those in VC) can approximate the performance of contracts in F (as r approaches zero,

contracts in V converge to elements of F). Thus, the performance seen of such contracts in the

left columns of Table 4, can be approximated even by conventional volume-scaling contracts by

making r very small and using larger outcomes adjustment purely on the GP level. Yet, Section 6

gives an example of how collusion can make a well-intended volume-scaling outcomes-adjusted

contract perform much worse (see the third and fourth column of Table 3). This occurs because

maximizing the benefit of outcomes-adjustment in the absence of collusion required making the

incentives relatively large, but large incentives lead to more vulnerability to collusion.

8. Implementation challenges and yardstick compatibility

The majority of our analysis above points towards reimbursing providers individually with

outcomes-adjusted capitation contracts. While knowing which contract type to use has value by

itself, implementing the contract in practice also requires optimally setting the contract’s param-

eters. Section 6 and Appendix B demonstrate that most of the required inputs can be retrieved

from publicly available data. Notable exceptions are the shapes of the cost functions kG and kSF .

These functions are required to compute the first-best decisions d∗G and d∗S and expected rewards.

One way to deal with that challenge is to estimate these functions, as in Section 6. But estima-

tion may degrade the performance of the contracts due to estimation errors. In Appendix C.6, we
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conduct a sensitivity analysis of how the performance of our contracts will be impacted by system-

atic misestimation of the cost functions, and show that the consequences will primarily manifest

as a wealth transfer between the principal and the providers, while having little effect on health.

We can avoid these errors and estimation altogether by relying on data that we do have. What

is typically accessible in the data are ex-post cost realizations. Denote the cost realizations by

%G=̇kG(dG), %SF =̇kSF (dS), %SV =̇skSV . Thus we can work under the alternative assumption, which

is also common in the Yardstick literature (Shleifer 1985, Savva et al. 2019, Arifoglu et al. 2021):

Assumption 2 The principal does not know kG, kSF , kSV (thus also d∗G and d∗S) but can observe

and contract on the realized costs.

Most of our results on outcomes-adjusted capitation contracts are replicable under this assumption.

Proposition 6 (Contracts using realized costs) Let Assumption 2 hold and denote by vG

(vS) an outcomes-adjusted capitation contract for the GP (SP) which pays a per-capita fee cG (cS)

for every patient in the population (treated or not), where

cG = q̄P + fG− %SV /n and cS = q̄P + fS,

where fG and fS are any constants that are sufficiently high not to violate the participation con-

straints (11)-(12). Then, these contracts induce first-best decisions in the näıve problem (NICP)

and, if they are collusion-proof, in the main problem (MICP).

Inducing the desired decisions in the providers is not an issue in this framework. On the contrary,

the alignment of incentives between the providers can be more easily accomplished if the realized

costs can be contracted on, as it allows providers to be directly held accountable for the costs that

they are generating. However, the main issue above, and the missing piece needed to attain the

first-best, is that lacking knowledge of the cost functions, the principal is not able to ensure that

the participation constraint is binding (or even not violated).

Realistically, finding values of the fixed pay components (fG and fS) that are sufficiently high so

that the providers participate should should be easy to identify through negotiation with providers.

That process can ensure that participation constraints are not violated, but they are unlikely to be

binding and may result in positive rent. Thankfully, identifying binding values for these constants

also appears to be resolvable. Prop. 7 identifies two ways to do so.

Proposition 7 The two results below hold for variants of the NICP always, but also for the MICP

if the contracts given in Prop. 6 are collusion-proof.
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1. Repeated contracting. Let there be N ≥ 2 periods, such that an identical contracting game is

repeated every period, and there is a common discount factor 1> δ > 0. Consider the principal

who offers the contracts vG and vS as given by Prop. 6 in every period, but adjusts the fixed

pay components fG and fS based on the results of the previous period as follows (the period i

is denoted in the superscript)

f iG = (VG + %i−1
G + %i−1

SV )/n− q̄i−1
P , f iS = (VS + %i−1

SF + %i−1
SV )/n− q̄i−1

P .

Then, the providers choosing the first-best decisions in every period will be the sole subgame

perfect equilibrium, and the participation constraint will be binding (thus, the first-best will be

attained) in every period except the first.

2. Yardstick competition. Let there be M ≥ 2 identical GP-SP pairs, each with a separate pop-

ulation of patients. Denote by %̂−jG the average cost realization of all GPs but the one in the jth

GP-SP pair. Define %̂−jSV , %̂
−j
SF , and ˆ̄q−jP analogously. Then the principal can attain the first-best

by giving all providers a variant of the contracts vG and vS as given by Prop. 6, such that for

every j ∈ {1, ...,M}, fG and fS depend on the average performance of other providers:

f jG = (VG + %̂−jG + %̂−jSV )/n− ˆ̄q−jP , f jS = (VS + %̂−jSF + %̂−jSV )/n− ˆ̄q−jP .

One way to handle repeated contracting, as in the first part of this proposition, is by making the

constants fG and fS in every period such that the participation constraint will be binding if the

providers once again experience costs equal to the historic ones. There exists an opportunity to

game this system: a provider could choose inefficiently high treatment quality, which will increase

their profit in the following period as they will be reimbursed based on the previous period’s

costs. Yet, this opportunity is never worth it (as evident from the equilibrium): this future gain is

insufficiently high to offset the profit loss due to inefficiently high costs in the current period.

Another way to accomplish the same is using yardstick competition within the same contracts.

Rearranging the terms in these contracts above shows that they effectively consist of cost reim-

bursement (based on the cost of other similar providers, not the provider’s own cost) and a variable

component, where the provider j is rewarded at per-capita rate q̄P − ˆ̄q−jP for the health benefits

created in excess of what other providers are creating.

9. Concluding Remarks

We studied two core questions related to the choice of reimbursement policy. Should we be worried

about collusion in outcomes-adjusted contracts? If so, can we do something about it by our choice of

the type of reimbursement contract (capitation or per patient), structure (contract with providers
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individually or with a group of providers), or health outcome data granularity (population or per-

provider)? To answer these questions, we proposed a parsimonious model of a care pathway to

derive both general results and results relevant to systems like that found in the UK, for which we

also provide illustrative numerical results, and in the USA, where these questions are particularly

relevant due to recent exemptions to anti-kickback laws for outcomes-based contracts.

Our analysis suggests that there is reason to worry about collusion when compensation is volume

scaling to those getting referrals (as may be found in the USA). If a volume-scaling system is

required, our analysis suggests two ways in which collusion could still be averted: either by making

the volume-scaling part of compensation a relatively small part of SP income (as may be typical

in the UK), or by penalizing bad outcomes in a non-linear way to the point that the compensation

of SPs is as sensitive to outcomes as it is to volume.

We observed, in an illustrative example based on UK diabetes data, that outcomes-adjusted

capitation contracts with individual providers were almost immune to collusion and free-riding

issues, to the point that a mechanism designer could restrict their attention to just such contracts.

Consequently, they were the only contract type that can be expected to perform optimally in our

application, irrespective of whether collusion and free-riding issues are present or not.

We also found that the choices of contract type and granularity of health outcome measurement

are closely linked. Capitation contracts perform the best when used in conjunction with population-

level health measures, and per-patient contracts perform the best with provider-level measures.

Although most results were derived using the assumption that the regulator knows the provider’s

cost function, we showed that in absence of this knowledge, the contracts we propose can still be

implemented by using Yardstick competition contracts or with realized cost data over time.

Our analysis relied on a number of assumptions, but also suggested potential areas for further

research. First, we did not model competition between medical providers. As such, our conclusions

more readily apply in settings where local monopolies are present. Second, it may be useful to

extend the model to account for more general pathways or networks of care. Third, our analysis

of the impact of noise is limited due to assumptions that the available signal is unbiased and the

providers are risk-neutral. Fourth, through our use of the classical Nash bargaining solution, we

implicitly assumed that any differences in the bargaining power of providers are reflected in the

value of their outside option. If this assumption is relaxed by allowing for arbitrary bargaining

power, most results hold with mild adaptation, but some of our results no longer hold (notably

Theorem 4). Our model provides a framework for considering these issues.
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Online Companion: Appendices
Table EC.1 summarizes the principal notation used in the main paper. Appendix A formally justifies the

mathematical claims in the main paper. Appendix B describes how literature and analysis were used to select

‘reasonable’ ranges and combinations of parameters for numerical experiments. Appendix C gives several

extensions to the model to assess the robustness of the model to several (but not all) assumptions in the

main paper, including allowing for multiple specialists, broader queue regimes, the effect of the GP on care,

and a different model of collusion.

Appendix A: Proofs of Mathematical Claims

We first establish a few preliminaries. There are several substitutions that will get reused in the proofs:

τ =̇ (1 + dG)/λ̄ (EC.1)

µ =̇ µ+ θdS. (EC.2)

Table EC.1 Summary of notation for patient flows, costs, and health outcomes.

Parameters

n Number of patients with a chronic condition in the target population
q0i Initial (beginning of period) health capital of patient i
q0P Sum of initial health capitals of the whole population
q̄0P Average initial health capital per person in the whole population
φ Proportion of adherent patients

λ Probability that an untreated patient develops a complication
kG(·) GP’s costs of providing treatment
kSF (·) Specialist’s (fixed) costs of providing treatment
kSV Specialist’s variable (per-patient) cost
a Health impact of developing a complication
b Rate of health degradation with an untreated complication per unit of time
ζ Fraction of lost health restored by the SP’s treatment

Decisions

dG Quality of care of the general practitioner (or GP)
dS Quality of care of the specialist (or SP)

Composites which depend on both parameters and decisions

λ Probability that a patient treated by the GP develops a complication
Λ Average complication probability across all patients
µ Specialist’s service rate (with lower bound of µ)

S Number of people who develop complications (RV), or S(dg) to stress the distribution’s dependence on dg
s Realization of S
Qi Health capital of patient i at the end of period (RV)
qi Realization of Qi
Q̄P , Q̄G, Q̄S Average end-of-period health capital of all patients (Q̄P ), GP’s patients (Q̄G), SP’s patients (Q̄S)
q̄P , q̄G, q̄S Realizations of Q̄P , Q̄G, Q̄S , respectively
QP ,QG,QS Sum of end-of-period health capitals of all patients (QP ), GP’s patients (QG), SP’s patients (QS)
qP , qG, qS Realizations of QP ,QG,QS , respectively
QP ,QG,QS Unbiased noisy signals of qP , qG, qS , respectively (E[QP |QP ] =QP ,E[QG |QG] =QG, E[QS |QS ] =QS)
qP ,qG,qS Realizations of QP ,QG,QS respectively
πj(v, dG, dS) Expected profit of the GP (if j =G), the SP (if j = S), or group (if j =A)

when holding contract v() and agent decisions are dG and dS
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Intuitively, these are the inverse of the complication rate and the service rate, which are induced by provider

decisions dG and dS. Notice that (EC.1) and (EC.2) depend only on provider decisions and constants and

establish bijections between possible values of τ and dG (respectively µ and dS). Another useful substitution

is A=̇a(1−ζ), B=̇b(1−ζ). Using these substitutions, we can more concisely restate the elementary functions

of the näıve model as functions of τ,µ instead of dG, dS:

Λ(τ) = φ/τ + (1−φ)λ̄, (EC.3)

EQP (τ,µ) = q0P

(
1−AΛ(τ)− BΛ(τ)

µ−nΛ(τ)

)
, (EC.4)

EQG(τ,µ) = q0Pφ

(
1− A

τ
− B/τ

µ−nΛ(τ)

)
, (EC.5)

EQS(τ,µ) = q0PΛ(τ)

(
1−A− B

µ−nΛ(τ)

)
, (EC.6)

S(τ) ∼ Poisson(nΛ(τ)). (EC.7)

We also introduce one notational convention: for any function f(·) defined on a closed set [f, f ], the

function has only one-handed derivatives at f and f . Throughout, we use the normal derivative notation,

f ′(f) and f ′(f), to denote those one-handed derivatives.

For any function f(·), we use f(·) ↑ x (f(·) ↓ x) to denote that the function is increasing (decreasing) in x.

Denoting τ=̇1/λ̄ and using the substitution (EC.1)-(EC.2) for the cost functions, we have that

kG(τ), kSF (µ) are increasing and convex with k′G(τ) = k′SF (µ) = 0. Thus, for the analysis of claims in Sec-

tions 3–4, the problem of providers deciding on dG and dS is equivalent to them deciding on τ and µ directly.

These substitutions will be of limited use for the main model in Section 5 and the extensions in Appendix C,

due to the more complicated role of dG, dS, and ζ there.

Lemma 1 establishes the sufficiency of first-order conditions (FOCs) for several functions used to prove

the claims from Sections 3–4 below.

Lemma 1 Let assumptions of the care model stated in Section 2 hold. Then, for α0, α1, α2, α3, α4 ≥ 0, the

function f : [0,∞)2→R, with mapping rule

f(dG, dS) = α0EQP (dG, dS) +α1EQG(dG, dS)−α2kG(dG)−α3kSF (dS)−α4kSV nΛ(dG),

is jointly concave. If max{α0, α1}> 0 and max{α2, α3}> 0 then f(dG, dS) has an interior maximum.

Proof of Lemma 1. Let us first demonstrate the joint concavity of EQP as a function of τ and µ, using the

substitution given in (EC.1)-(EC.2). Denote T (τ) = τ(1−φ)+τφ. Then, from (EC.4), we have ∂
∂τ
EQP (τ,µ) =

q0Pφ (A/τ2 +Bµτ2/(µττ −nT (τ))2), ∂
∂µ

EQP (τ,µ) = q0PBττT (τ)/(µττ −nT (τ))2, and the Hessian of EQP is

H(EQP (τ,µ)) =


−2q0Pφ (A(µττ −nT (τ))3 +Bµτ3τ2(µτ +n(φ− 1)))

τ3(µττ −nT (τ))3
−Bq

0
P τ

2φ(µττ +nT (τ))

(µττ −nT (τ))3

−Bq
0
P τ

2φ(µττ +nT (τ))

(µττ −nT (τ))3
− 2Bq0P τ

2τ2T (τ)

(µττ −nT (τ))3

 .
Observe that T (τ) ≥ τ > 1 as φ ∈ (0,1] and τ ≥ τ > 1. Also observe that the steady state con-

dition µ > λn implies both µττ − nT (τ) > 0 and µτ + n(φ − 1) > 0. It follows from these obser-

vations that the leading principal minor is negative (H1,1(EQP (τ,µ)) < 0) and | H(EQP (τ,µ)) |=
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[B(q0P )2τ2φ (Bττ2(µτ(3τφ+ 4τ(1−φ)) +nφT (τ)) + 4AT (τ)(µττ −nT (τ))2)]/[τ(µττ −nT (τ))5]> 0. Conse-

quently, H(EQP (τ,µ)) is negative definite and thus EQP (τ,µ) is jointly concave.

The joint concavity of EQG(τ,µ) can be shown analogously. Because f(τ,µ) is a weighted sum of jointly

concave functions and univariate concave functions, it is jointly concave as well. The existence of an interior

maximum follows from k′G(τ) = k′SF (µ) = 0. The same holds for f(dG, dS) as (EC.1)-(EC.2) are affine and

composition with affine functions preserves (joint) concavity. �

A.1. Proofs for Claims About the Näıve Model in Section 3.

Proof of Prop. 1. The structure of the proof is as follows. We identify a set of necessary conditions that

any differentiable contract which achieves first-best must satisfy. We characterize all linear contracts that

satisfy those conditions in four parts, and then show that those indeed do achieve first-best.

From (5), the first-best decisions (d∗G, d
∗
S) are solutions of the optimization problem

arg max
(dG,dS)∈[0,∞)2

EQP (dG, dS)− kG(dG)− kSF (dS)− kSV nΛ(dG). (EC.8)

Because this objective function is jointly concave and has an interior maximum (from Lemma 1), the first-best

decisions are unique solutions to FOCs

k′G(dG) =
∂EQP (dG, dS)

∂dG
− kSV nΛ′(dG), (EC.9)

k′SF (dS) =
∂EQP (dG, dS)

∂dS
. (EC.10)

Part 1: deriving the optimal capitation contract for the GP (vGC). Assume there exists a linear con-

tract vGC(qP ) = aGC + bGCqP for the GP, under which first-best can be achieved. Then, when hold-

ing this contract, the GP’s best response to the SP choosing d∗S needs to be d∗G such that d∗G ∈
arg maxdG∈[0,∞)E [aGC + bGCQP (dG, d

∗
S)− kG(dG)] .Using Lemma 1, this problem can be replaced by its FOC:

k′G(dG) = bGC
∂EQP (dG, d

∗
S)

∂dG
. (EC.11)

Thus, (dG, dS) = (d∗G, d
∗
S) needs to simultaneously solve (EC.9) and (EC.11). Equating the right-hand sides

(RHS) of those two equations and solving for bGC yields

bGC = 1− kSV nΛ′(d∗G)
∂
∂dG

EQP (d∗G, d
∗
S)

(EC.12)

as the unique solution. For the contract to achieve FB, it is also necessary that the individual rationality

constraint (11) is binding. Therefore, solving E [aGC + bGCQP (d∗G, d
∗
S)− kG(d∗G)] = VG for aGC yields aGC =

VG + kG(d∗G)− bGCEQ(d∗G, d
∗
S) as the unique solution. Setting

rGC =
1

n
+

kSV (µ(d∗S)−nΛ(d∗G))2

q0P (A(µ(d∗S)−nΛ(d∗G))2 +Bµ(d∗S))
, fGC = kG(d∗G)/n, tGC =EQP (d∗G, d

∗
S)− VG

nrGC
, (EC.13)

ensures that vGC(qP ) = aGC + bGCqP = n (fGC + rGC(qP − tGC)).10

10 The optimal contract has an additional degree of freedom between tGC and fGC in identifying the intercept
fiC − riCtiC of the unique solution among linear contracts in (13). So, one can increase the fixed compensation (but
then also increase the target health threshold), while keeping the expected payout to the providers and, thus, contract
performance the same. These focal values for fGC and tGC were chosen to be more in line with existing policies
of a fixed reimbursement component being designed to cover costs. However, if the mechanism designers have any
additional objectives we did not consider, they could potentially be accomplished by optimizing over this degree of
freedom. The other optimal contracts in this proposition have the same property.
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Part 2: deriving the optimal per-patient contract for the GP (vGP ). Assume there exists a linear contract

vGP (qG) = aGP + bGPqG for the GP, under which first-best can be achieved. Then, when holding the afore-

mentioned contract, d∗G ∈ arg maxdG∈[0,∞)E [aGP + bGPQG(dG, d
∗
S)− kG(dG)], a maximization problem that

can be reduced (using Lemma 1) to its FOC:

k′G(dG) = bGP
∂EQG(dG, d

∗
S)

∂dG
. (EC.14)

Thus, (dG, dS) = (d∗G, d
∗
S) needs to simultaneously solve (EC.9) and (EC.14). Denote by EQ̂G(dG, dS) the sum

of expected health of non-adherent patients so that EQP (dG, dS) = EQG(dG, dS) + EQ̂G(dG, dS). Equating

the RHS of those two equations and solving for bGP yields

bGP = 1 +

∂
∂dG

EQ̂G(d∗G, d
∗
S)− kSV nΛ′(d∗G)

∂
∂dG

EQG(d∗G, d
∗
S)

(EC.15)

as the unique solution. For the contract to achieve FB, it is also necessary that the individual rationality

constraint (11) is binding, and therefore, aGP = VG− bGPEQG(d∗G, d
∗
S) + kG(d∗G). Then, set

rGP =

∂
∂dG

EQP (d∗G, d
∗
S)− kSV nΛ′(d∗G)

φn ∂
∂dG

EQG(d∗G, d
∗
S)

, (EC.16)

fGP = kG(d∗G)/(φn), tGP =EQG(d∗G, d
∗
S)− VG

nφrGP
, (EC.17)

to ensure that vGP (qG) = aGP + bGPqG = nφ (fGP + rGP (qG− tGP )).

Part 3: deriving the optimal capitation contract for the SP (vSC). Assume there exists a linear con-

tract vSC(qP ) = aSC + bSCqP for the SP, under which first-best can be achieved. Then, when holding the

aforementioned contract, d∗S ∈ arg maxdS∈[0,∞)E [aSC + bSCQP (d∗G, dS)− kSF (dS)−S(d∗G)kSV ], a maximiza-

tion problem that can be reduced (using Lemma 1) to its FOC:

k′SF (dS) = bSC
∂EQP (d∗G, dS)

∂dS
. (EC.18)

Thus, (dG, dS) = (d∗G, d
∗
S) needs to simultaneously solve (EC.10) and (EC.18). Equating the RHS of those two

equations and solving for bSC yields bSC = 1 as the unique solution. For the contract to achieve FB, it is also

necessary that the individual rationality constraint (12) is binding, which yields, aSC = VS + kSV nΛ(d∗G) +

kSF (d∗S)− bSCEQP (d∗G, d
∗
S). Setting

rSC =
1

n
, fSC = kSV Λ(d∗G) + kSF (d∗S)/n, tSC =EQP (d∗G, d

∗
S)−VS (EC.19)

ensures that vSC(qP ) = aSC + bSCqP = n (fSC + rSC(qP − tSC)).

Part 4: deriving the optimal per-patient contract for the SP (vSP ). Note that, unlike the other expected

health functions, EQS(dG, dS) is concave in dS but not in dG. Assume there exists a linear contract vSP (qS) =

aSP + bSPqS for the SP, under which first-best can be achieved. Then, when holding the aforementioned

contract, d∗S ∈ arg maxdS∈[0,∞)E [aSP + bSPQS(d∗G, dS)− kSF (dS)−S(d∗G)kSV ], a maximization problem that

can be reduced (using Lemma 1) to its FOC:

k′SF (dS) = bSP
∂EQS(d∗G, dS)

∂dS
. (EC.20)
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Thus, (dG, dS) = (d∗G, d
∗
S) needs to simultaneously solve (EC.10) and (EC.20). Equating the RHS of those

two equations and solving for bSP yields bSP = 1 as the unique solution. For the contract to achieve FB,

it is also necessary that the individual rationality constraint (12) is binding, using which yields aSP =

VS + kSV nΛ(d∗G) + kSF (d∗S)− bSPEQS(d∗G, d
∗
S) as the unique solution for aSP . Setting

rSP =
1

nΛ(d∗G)
, fSP = kSV +

kSF (d∗S)

nΛ(d∗G)
, tSP =EQS(d∗G, d

∗
S)−VS, (EC.21)

ensures that vSP (qS) = aSP + bSPqS = nΛ(d∗G) (fSP + rSP (qS − tSP )).

Part 5: sufficiency. Finally, giving the GP either of the contracts vGC or vGP as given in parts 1 and 2 of

this proof, while giving the SP either of the contracts vSC or vSP as defined in parts 3 and 4 of this proof will

result in the following. The GP’s best response to the SP choosing d∗S will be to choose d∗G, as shown in parts

1 and 2 of this proof, while the SP’s best response to the GP choosing d∗G will be to choose d∗S, as shown

in parts 3 and 4 of this proof. Thus, (d∗G, d
∗
S) is a Nash Equilibrium and solves the individual compatibility

constraints (9)–(10). The system efficiency function u, as given by (5), is maximized for (d∗G, d
∗
S), from the

definition of d∗G, d
∗
S. The individual rationality constraints (11)–(12) are binding, as shown in parts 1-4, thus

agents will accept the contracts and all value generated will be appropriated by the principal. Hence all four

of such contract pairs achieve first-best and thus solve the NICP in (8)–(12). �

Proof of Prop. 2. We first derive an expression for EQA. Denote by M the (random) number of patients

who are treated by neither provider. M is distributed according to Bin(n(1−φ),1−λ) as M is equal to the

number of non-adherent patients (n(1−φ)) who do not develop complications (each has a 1−λ probability

of not developing a complication). Wald’s equation gives EM = n(1−λ)(1−φ), applying which to (4) yields

EQA(dG, dS) = EQP (dG, dS)− q0P (1−λ)(1−φ) (EC.22)

From (5), the FB decisions (d∗G, d
∗
S) are solutions to arg max(dG,dS)∈[0,∞)2 u(dG, dS), or equivalently (from

Lemma 1) to FOCs (EC.9) and (EC.10). Equilibrium decisions of a unified provider under group contract v

are given by the incentive compatibility constraint (16). Specifically, for the linear group contracts

vAC(qP ) = aAC + qP and vAP (qA) = aAP + qA, (EC.23)

the objective function in the incentive compatibility constraint (16) differs from the system efficiency function

(5) only by a constant; thus, the set of maximizers is the same. Consequently, a group under such a contract

will make the first-best decisions. The optimal aAC and aAP are then derived from (17) to ensure individual

rationality is binding, which yields aAC = VG + VS + kSF (d∗S) + kG(d∗G) + kSV nΛ(d∗G) − EQP (d∗G, d
∗
S) and

aAP = VG +VS + kSF (d∗S) + kG(d∗G) + kSV nΛ(d∗G)−EQA(d∗G, d
∗
S). Then, set

rAC =
1

n
, fAC =

kSF (d∗S) + kG(d∗G)

n
+ kSV Λ(d∗G), tAC =EQP (d∗G, d

∗
S)−VG−VS,

rAP =
1

n(1− (1− λ̄)(1−φ))
, fAP =

kSF (d∗S) + kG(d∗G) + kSV nΛ(d∗G)

n(1− (1− λ̄)(1−φ))
, tAP =EQA(d∗G, d

∗
S)−VG−VS,

to ensure that vAC(qP ) = aAC +qP = n(tAC + rAC(qP − tAC)) and vAP (qA) = aAP +qA = n(1− (1− λ̄)(1−

φ))(tAP + rAP (qP − tAP )). �
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A.2. Proofs for Claims About Free-riding and Collusion in Section 4.

Lemma 2 serves as the “machinery” behind Theorem 1, using the implicit function theorem to derive how

equilibrium decisions change under free-riding. For the proofs of claims in Section 4, including Lemma 2,

we find it useful to express all functions using the τ,µ substitution given in (EC.1)-(EC.2). The function

f(τ,µ,α) defined in Lemma 2 is constructed so that for α= 0, it is maximized by the first-best decisions, while

for α= 1, it is maximized by the decisions of free-riding agents under contract vA ∈ {vAC , vAP} in Prop. 2.

Lemma 2 Let assumptions of Section 2 hold and define f : [τ ,∞)× [µ,∞)× [0,1]→R with mapping rule

f(τ,µ;α) =

(
1− 1

2
α

)
EQP (τ,µ)− kG(τ)− kSF (µ)− (1−α)nΛ(τ)kSV . (EC.24)

Furthermore, let τ̃(α) and µ̃(α) be functions such that (τ̃(α), µ̃(α)) ∈ arg maxτ,µ f(τ,µ;α). Then, τ̃ ′(α)< 0

and ∂
∂α

(EQP (τ̃(α), µ̃(α)))< 0.

Proof of Lemma 2. Because f is jointly concave in (τ,µ) and has an interior maximum (by Lemma 1), for

any α ∈ [0,1], the sole maximizer of f is the unique solution of FOCs. Thus, by implicit function theorem

τ̃(α), µ̃(α) are well-defined and unique. Denote F1(τ,µ;α)=̇ ∂
∂τ
f(τ,µ;α) and F2(τ,µ;α)=̇ ∂

∂µ
f(τ,µ;α). By

application of implicit function theorem, we can find derivatives of τ̃(α), µ̃(α) by solving

J

[
∂τ̃

∂α

∂µ̃

∂α

]T
=−F, where J =


∂F1

∂τ

∂F1

∂µ

∂F2

∂τ

∂F2

∂µ

 and F =


∂F1

∂α

∂F2

∂α

 ,
with all of the partial derivatives evaluated at (τ̃(α), µ̃(α);α). Cramer’s rule yields τ̃ ′(α) =−Det(J1)/Det(J)

and µ̃′(α) = −Det(J2)/Det(J) with Ji standing for J in which the i-th column is replaced by F. Denote

T = (τ(1−φ) + τφ) and Ψ = µττ −n(τ(1−φ) + τφ) and notice that Ψ> 0 (from steady state condition and

τ ≥ τ), then Det(J1) = φ[2k′′SF (µ)Ψ2 (q0P (AΨ2 +Bµτ2τ2) + 2kSV nΨ2) + (2−α)Bq0P τ
2τ2T (q0P (2AΨ +Bττ) +

4kSV nΨ)]/[4τ2Ψ4]> 0. We also have Det(J)> 0 (from Lemma 1), thus τ̃ ′(α)< 0.

It remains to show that ∂
∂α

(EQP (τ̃(α), µ̃(α))) < 0. Using (4), we have EQP (τ̃(α), µ̃(α)) =

q0P (1−AΛ(τ̃(α))−B/((µ̃(α)/Λ(τ̃(α))−n)) , from which it can be seen that showing Λ(τ̃(α)) ↑ α
and µ̃(α)/Λ(τ̃(α)) ↓ α is sufficient to demonstrate that EQP (τ̃(α), µ̃(α)) ↓ α. From Λ(τ̃(α)) =

(1 − φ)/τ + φ/τ̃(α) we have ∂
∂α

Λ(τ̃(α)) = −φτ̃ ′(α)/τ̃(α)2 > 0 and ∂
∂α

(µ̃(α)/Λ(τ̃(α)) =

τ [τφτ̃(α)µ̃′(α) + (1−φ)τ̃(α)2µ̃′(α) + τφµ̃(α)τ̃ ′(α)]/[−φτ̃(α) + τ̃(α) + τφ]2. Thus,

sgn

(
∂

∂α

(
µ̃(α)

Λ(τ̃(α)

))
= sgn

(
(τφτ̃(α) + (1−φ)τ̃(α)2)µ̃′(α) + τφµ̃(α)τ̃ ′(α)

)
= sgn

(
(τφτ + (1−φ)τ2)

−DetJ2

DetJ
+ τφµ

−DetJ1

DetJ

)∣∣∣
(τ,µ)=(τ̃(α),µ̃(α))

= sgn
(
− τφ

4τ2Ψ4

(
2µφk′′SF (µ)Ψ2 (q0P (aΨ2 + bµτ2τ2

)
+ 2kSV nΨ2)+ 2φ−1bq0P τ

4k′′G(τ)T 2Ψ2

+ b(q0P )2τT (2−α)
(
a(2T + τφ)Ψ2 + 2bµτ2τ2T

)
+ 2bq0P τTkSV n(2(α− 1)τ(φ− 1) + (4− 3α)τφ)Ψ2

))∣∣∣
(τ,µ)=(τ̃(α),µ̃(α))

.

which is negative because Ψ > 0 , T > 0 , α ∈ [0,1] and φ ∈ (0,1], thus ∂
∂α

(µ̃(α)/Λ(τ̃(α))) < 0 and hence

∂
∂α

EQP (τ̃(α), µ̃(α))< 0. �
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Proof of Theorem 1. Observe in the proof of Prop. 2 that the payout of the group will not depend

on which contract type (out of the two given in Prop. 2) the group holds. Thus for the purposes of

this theorem, which of the two contracts does the group hold bears no impact. Using the τ,µ sub-

stitution given by (EC.1)-(EC.2), from (18)–(19), it follows that free-riding agents will choose τ̃FRA ,

µ̃FRA which solve the system τ̃FRA ∈ arg maxτ∈[τ,∞)E [(vA(QP (τ, µ̃FRA ))/2−VG−VS) +VG− kG(τ)], µ̃FRA ∈

arg maxµ∈[µ,∞)E [(vA(QP (τ̃FRA , µ))/2−VG−VS) +VS − kSF (µ)−S(τ̃FRA )kSV ]. Using Lemma 1 and the defi-

nition of vA ∈ {vAC , vAP} given by Prop. 2: both of these objective functions are concave, twice differentiable

and have an interior maximum. Moreover, vA is a linear function, so EvA(QP ) = vA(EQP ) = vA(EQP ).

Thus, the system above can be replaced by its FOCs, given by EQP (τ̃FRA , µ̃FRA )/2 − kG(τ̃FRA ) = 0 and

EQP (τ̃FRA , µ̃FRA )/2−kSF (µ̃FRA ) = 0. By Lemma 1, there is a unique solution of this system: the sole maximizer

of EQP (τ,µ)/2− kG(τ)− kSF (µ) = f(τ,µ,1), where f is the function defined in Lemma 2. Thus, the first-

best decisions are maximizers of f(τ,µ,0) whereas the decisions under free-riding are the maximizers of

f(τ,µ,1). Applying Lemma 2 and using its functions τ̃(α) and µ̃(α) gives τ̃FRA = τ̃(1), µ̃FRA = µ̃(1), τ∗ = τ̃(0),

µ∗ = µ̃(0), thus τ̃FRA < τ∗ and EQP (τ̃FRA , µ̃FRA ) < EQP (τ∗, µ∗) showing parts (ii) and (iii) of the Theorem.

Because (τ∗, µ∗) is the sole maximizer of u(τ,µ) and (τFRA , µFRA ) 6= (τ∗, µ∗), system efficiency decreases under

free-riding, which shows part (i). Analogously, part (iv) follows from (τ∗, µ∗) being the sole maximizer of the

group profit function πA(vA, τ, µ).

Lastly, using aAC derived in the proof of Prop. 2, we have EvA(QP (τ∗, µ∗)) = EQP (τ∗, µ∗) + aAC >

EQP (λ̃FRA , µ̃FRA ) + aAC =EvA(QP (λ̃FRA , µ̃FRA )), which shows part (v). �

Lemma 3 serves the same role for Theorem 2 as Lemma 2 does for Theorem 1, allowing us to see how

decisions made by the agents and population health depend on contract types in the presence of collusion.

The function g(τ,µ;α,β) is constructed so that several functions of interest in the theorem correspond to

specific values of parameters α and β.

Lemma 3 Let assumptions of the care model stated in Section 2 hold and define a function g : [τ ,∞)×

[µ,∞)× [1/2,∞)× [0,∞)→R with mapping rule

g(τ,µ;α,β) = αEQP (τ,µ) +βEQG(τ,µ)− kG(τ)− kSF (µ)−nΛ(τ)kSV . (EC.25)

Let τ̃(α,β) and µ̃(α,β) be functions such that (τ̃(α,β), µ̃(α,β)) ∈ arg maxτ,µ g(τ,µ;α,β). Then,

∂
∂β
τ̃(α,β) > 0 and ∂

∂β
(EQP (τ̃(α,β), µ̃(α,β))) > 0. Also, let µ̂(τ,α,β) be a function such that µ̂(τ,α,β) ∈

arg maxµ g(τ,µ;α,β). Then, ∂
∂τ
µ̂(τ,α,β)< 0. Furthermore, if B = 0 or if

α≥ β τ(1−φ)− τφ
τ(1−φ) + τφ

, (EC.26)

then ∂
∂α
τ̃(α,β)> 0 , ∂

∂α
(EQP (τ̃(α,β), µ̃(α,β)))> 0 and ∂

∂τ
EQP (τ, µ̂(τ,α,β))> 0.

Proof of Lemma 3. As g is jointly concave in (τ,µ) and has an interior maximum (by Lemma 1), for

any α and β, the sole maximizer of g is the unique solution of FOCs. Denote G1(τ,µ;α,β)=̇ ∂
∂τ
g(τ,µ;α,β)



ec8 e-companion to Zorc, Chick and Hasija: Reimbursement Policies for Care Pathways

and G2(τ,µ;α,β)=̇ ∂
∂µ
g(τ,µ;α,β). By the implicit function theorem: τ̃(α,β) and µ̃(α,β) are well defined and

unique for every y ∈ {α,β} and we can find the partial derivatives ∂
∂y
τ̃(α,β), ∂

∂y
µ̃(α,β) by solving the equation

J

[
∂τ̃

∂y

∂µ̃

∂y

]T
=−Gy, where J =


∂G1

∂τ

∂G1

∂µ

∂G2

∂τ

∂G2

∂µ

 and Gy =


∂G1

∂y

∂G2

∂y

 ,
with all of the partial derivatives evaluated at (τ̃(α,β), µ̃(α,β);α,β).

Part 1: derivatives w.r.t. α,β. We show the derivatives w.r.t. β, as stated in the Lemma; the

derivatives w.r.t α can be obtained analogously. Denote by Ji(Gy) the matrix J in which the i-th

column is replaced by the vector Gy. Cramer’s rule gives us ∂
∂β
τ̃(α,β) = −Det(J1(Gβ))/Det(J) and

∂
∂β
µ̃(α,β) = −Det(J2(Gβ))/Det(J). Denote T = (τ(1 − φ) + τφ) and Ψ = µττ − n(τ(1 − φ) + τφ) and

notice that Ψ> 0 (from steady state condition and τ ≥ τ), then Det(J1(Gβ)) =−φq0P [Bnq0P τ
2τ2(2A(αT +

βτφ)Ψ + Bττ(α(2T − τφ) + βτφ)) + k′′SF (µ)Ψ2 (AΨ2 +Bτ2τ(µτ +n(φ− 1)))]/[τ2Ψ4] < 0. We also have

Det(J) > 0 because g is jointly concave (Lemma 1). Thus ∂
∂β
τ̃(α,β) > 0. Now we wish to show that

∂
∂β

(EQP (τ̃(α,β), µ̃(α,β)))> 0. From (4), we have

EQP (τ̃(α,β), µ̃(α,β)) = q0P

(
1−AΛ(τ̃(α,β))− B

µ̃(α,β)/(Λ(τ̃(α,β))−n

)
. (EC.27)

From (EC.27) it can be seen that showing Λ(τ̃(α,β)) ↓ β and µ̃(α,β)/Λ(τ̃(α,β)) ↑ β is

sufficient to demonstrate that EQP (τ̃(α,β), µ̃(α,β)) ↑ β. From Λ(τ̃(α,β)) = (1 − φ)/τ +

φ/τ̃(α,β), we have ∂
∂β

Λ(τ̃(α,β)) = −φτ̃(α,β)−2 ∂
∂β
τ̃(α,β) < 0 and ∂

∂β
(µ̃(α,β)/Λ(τ̃(α,β)) =

τ
[
τφτ̃(α,β) ∂

∂β
µ̃(α,β) + (1−φ)τ̃(α,β)2 ∂

∂β
µ̃(α,β) + τφµ̃(α,β) ∂

∂β
τ̃(α,β)

]
/[−φτ̃(α,β) + τ̃(α,β) + τφ]2, thus

sgn

(
∂

∂β

(
µ̃(α,β)

Λ(τ̃(α,β)

))
= sgn

(
(τφτ̃(α,β) + (1−φ)τ̃(α,β)2)

∂

∂β
µ̃(α,β) + τφµ̃(α,β)

∂

∂β
τ̃(α,β)

)
,

= sgn

(
(τφτ + (1−φ)τ2)

−Det(J2(Gβ))

Det(J)
+ τφµ

−Det(J1(Gβ))

Det(J)

)∣∣∣
(τ,µ)=(τ̃(α,β),µ̃(α,β))

,

= sgn
(q0P τφ
τ2Ψ4

(
Bτ4τk′′G(τ)TΨ2 +φ

(
µk′′SF (µ)Ψ2 (AΨ2 +Bτ2τ(µτ +n(φ− 1))

)
+Bττ

(
q0P

(
A(3αT +β(τ(1−φ) + 3τφ))Ψ2 +Bτ2τ

(
T (α+β)(µτ −n(1−φ))

+µτ
(
α(τ(1−φ) +T ) +βτφ

)))
+ 2kSV nTΨ2

)))∣∣∣
(τ,µ)=(τ̃(α,β),µ̃(α,β))

.

Because φ∈ (0,1] gives us (1−φ)≥ 0 and µτ −n(1−φ)≥ µτ −n> 0, the partial derivative above is strictly

positive, and consequently EQP (τ̃(α,β), µ̃(α,β)) ↑ β.

Part 2: properties of µ̂(τ,α,β). As g is concave in µ and has an interior maximum (Using Lemma 1), for

any given α, β, and τ , the sole maximizer of g is the unique solution of its FOC, thus by implicit function

theorem: µ̂(τ,α,β) is well defined and unique and its partial derivative w.r.t. τ is given by

∂

∂τ
µ̂(τ,α,β) =−

∂2

∂µ∂τ
g(τ,µ;α,β)

∂2

∂µ2 g(τ,µ;α,β)

∣∣∣∣∣
µ=µ̂(τ,α,β)

(EC.28)

The denominator above is negative, as g is concave in µ (by Lemma 1). The numerator is given

by ∂2

∂µ∂τ
g(τ,µ;α,β) = −Ψ−3Bq0P τ

2φ(µττ + n(τ(φ − 1) + τφ)), which is negative as (µττ + n(τ(φ − 1) +
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τφ)) > (µττ + n(τ(φ − 1) − τφ)) = Ψ > 0, hence (EC.28) is negative. It remains only to examine if
∂
∂τ
EQP (τ, µ̂(τ,α,β))> 0. From (4), we have

EQP (τ, µ̂(τ,α,β)) = q0P

(
1−AΛ(τ)− B

µ̂(τ,α,β)/Λ(τ)−n

)
,

∂

∂τ
EQP (τ, µ̂(τ,α,β)) =

q0P
(
An2φT 2 +Bτ3τT ∂

∂τ
µ̂(τ,α,β) + ττφµ(−2AnT +Bττ) +Aτ2τ2φµ2

)
τ2(ττµ−nT )2

∣∣∣∣∣
µ=µ̂(τ,α,β)

,

sgn

(
∂

∂τ
EQP (τ, µ̂(τ,α,β))

)
= sgn

(
φΨ

(
AΨ +

Bτ2τ2
(
Bq0P ττ(αT +β(τ(φ− 1) + τφ)) +µk′′SF (µ)Ψ2

)
2Bq0P τ

2τ2(αT +βτφ) + k′′SF (µ)Ψ3

))∣∣∣∣∣
µ=µ̂(τ,α,β)

,

which is strictly positive if B = 0 or if (EC.26) holds as (EC.26) guarantees that (αT +β(τ(φ−1)+τφ)))≥ 0.

Hence, (EC.26) implies ∂
∂τ
EQP (τ, µ̂(τ,α,β))> 0, as does B = 0. �

Proof of Theorem 2. We show all parts of the theorem for the case when the GP holds a capitation

contract (k=C). The proof for the case when the GP holds a per-patient contract (k= P ) is analogous.

From (23)–(24): if the SP holds vSC , colluding agents will make decisions τ̃UCC,C ,µ̃UCC,C

which solve τ̃CC,C ∈ arg maxτ∈[τ,∞)E
[
1
2

∑
i∈{1,2}

(
viC(QP (τ, µ̃CC,C))−Vi

)
+VG− kG(τ)

]
and µ̃CC,C ∈

arg maxµ∈[µ,∞)E
[
1
2

∑
i∈{1,2}

(
viC(QP (τ̃CC,C , µ))−Vi

)
+VS − kSF (µ)−S(τ̃CC,C)kSV

]
. Using expressions for

parameters of vGC , vSC in (EC.13) and (EC.19), the system above is equivalent to

(τ̃CC,C , µ̃
C
C,C)∈ arg max

(τ,µ)∈[τ,∞)×[µ,∞)

1

2
(1 +nrGC)EQP (τ,µ)− kG(τ)− kSF (µ). (EC.29)

Here, rGC is the rate which GP reimbursement is adjusted to outcomes, under the näıve capitation

contract, as given by (13); explicit expression for it is given by (EC.13). Analogously, if the SP

holds vSP , colluding agents will make decisions τ̃CC,P ,µ̃CC,P given by

(τ̃CC,P , µ̃
C
C,P )∈ arg max

(τ,µ)∈[τ,∞)×[µ,∞)

rGCn

2
EQP (τ,µ) +

1

2
EQS(τ,µ)− kG(τ)− kSF (µ). (EC.30)

Applying (EC.6), we have EQP (τ,µ) = (1 − Λ(τ))q0
P + EQS(τ,µ), so (EC.30) is equivalent to

(τ̃CC,P , µ̃
C
C,P ) ∈ arg max(τ,µ)∈[τ,∞)×[µ,∞) ((1 +nrGC)EQP (τ,µ)/2− kG(τ)− kSF (µ)) + Λ(τ)q0

P/2. Here,

the term in brackets is the objective function of (EC.29): a jointly concave function (by Lemma 1)

with a sole interior maximum at (τ̃CC,C , µ̃
C
C,C). The term Λ(τ)q0

P/2 is a univariate, decreasing, and

convex function of τ . Consequently, as the objective function in (EC.29) is a sum of jointly con-

cave and univariate decreasing convex, it either has an interior maximum with τ̃CC,P ∈ (τ , τ̃CC,C) or

a corner maximum in which case τ̃CC,P = τ . In either case τ̃CC,P < τ̃CC,C , showing part (i) of the the-

orem. Because the objective function of (EC.29) is submodular and Λ(τ) is independent of µ, by

Topkis (1978), we have µ̃CC,P > µ̃
C
C,C , showing part (ii). Using the function µ̂ as defined in Lemma 3

when kSV = 0 yields µ̃CC,P = µ̂(τ̃CC,P , (1 +nrGC)/2,0), µ̃CC,C = µ̂(τ̃CC,C , (1 +nrGC)/2,0). Furthermore,

because τ̃CC,C > τ̃
C
C,P and EQP (τ, µ̂(τ, (1 +nrGC)/2,0)) ↑ τ (by Lemma 3), part (iii) follows. �

Proof of Prop. 3. Let kSV = 0 and let both agents hold capitation contracts (vGC for the GP

and vSC for the SP). From (EC.13) we see that kSV = 0 implies rGC = 1/n. From (23)–(24) and the

expressions for vGC , vSC in (EC.13), the decisions under collusion are the solutions of the system:

τ̃CC,C ∈ arg max
τ∈[τ,∞)

EQP (τ, µ̃CC,C)− kG(τ), µ̃CC,C ∈ arg max
µ∈[µ,∞)

EQP (τ̃CC,C , µ)− kSF (µ). (EC.31)
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Applying Lemma 1, this system is equivalent to (τ̃CC,C , µ̃
C
C,C)∈ arg max(τ,µ)∈[τ,∞)×[µ,∞) EQP (τ,µ)−

kG(τ)− kSF (µ), which is just the system efficiency function as given by (5). Thus by definition of

first-best decisions, we have (τ̃CC,C , µ̃
C
C,C) = (τ ∗, µ∗).

Now, consider the situation when the GP holds vGP instead of vGC . If we also have φ = 1,

then from (EC.16), it follows that rGP = 1/n, and from (1), (4), (6) that EQG(τ,µ) = EQP (τ,µ).

Therefore, applying the expressions for vGP , vSC given in Prop. 1 and (EC.16)-(EC.19), we get that

(τCP,C , µ
C
P,C) also solve (EC.31) and thus are equal to (τ ∗, µ∗). �

A.3. Proofs for Claims in Section 5 with Endogenous Free-riding and Collusion.

Proof of Theorem 3. Denote the index of the contract’s metric of choice as i ∈ {P,A}. The

induced GP decision d̃G satisfies the FOC of the first incentive compatibility constraint (26):

∂
∂dG

Ev(Qi(d̃G, d̃S)) = 2k′G(d̃G). As the error term is independent of provider decisions, we can

express the signal as Qi(d̃G, d̃S) =EQi(d̃G, d̃S)+εi, where εi is the stochastic error term. Using this

decomposition, we can rewrite the FOC as E
[
v′(Qi(d̃G, d̃S)) ∂

∂dG

(
EQi(d̃G, d̃S) + εi

)]
= 2k′G(d̃G), or

E
[
v′(Qi(d̃G, d̃S))

]
=

2k′G(d̃G)
∂
∂dG

EQi(d̃G, d̃S)
. (EC.32)

Doing the same for the second incentive compatibility constraint (27) yields

E
[
v′(Qi(d̃G, d̃S))

]
=

2k′SF (d̃S)
∂
∂dS

EQi(d̃G, d̃S)
. (EC.33)

If i= P the performance of this contract can be replicated by a linear contract v†(qP )=̇a+ bqP by

setting b=̇2k′G(d̃G)/ ∂
∂dG

EQP (d̃G, d̃S). Using Lemma 1, such a v† induces the unique solution of the

very same FOCs, and is thus guaranteed to also induce decisions d̃G, d̃S. From (EC.22), we have

∂
∂dG

EQA(dG, dS) =
(

∂
∂dG

EQP (dG, dS)
)

; thus, an identical contract works if i=A.

We can also ensure that this is done at the lowest possible cost to the principal by lowering the

fixed pay a until one of the participation constraints (28)-(29) is binding. Analogously to proof

of Prop. 1, v† can also be expressed as outcomes-adjusted capitation contract so that v†(qP ) =

n (f + r(qP − t)), which is then jointly concave. �

Proof of Prop. 4. Equating the RHS of (EC.32) and (EC.33), it follows that

∂EQP (dG, dS)

∂dS

/∂EQP (dG, dS)

∂dG
= k′SF (dS)/k′G(dG). (EC.34)

Recall that the range of possible expected health outcomes is [EQP (0,0), q0
P ). To show that any

expected health outcome is inducible, we first observe that from incentive compatibility constraints
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(26)-(27) and Lemma 1, it follows that an outcomes-adjusted capitation contract with reimburse-

ment rate r will induce decisions that solve

max
(dG,dS)∈[0,∞)2

rnEQp(dG, dS)− kG(dG)− kSF (dS). (EC.35)

Denote by dG(r) and dS(r) decisions induced by a contract with reimbursement rate r. Trivially, we

have dG(0) = dS(0) = 0. To see what happens when we increase r, we can use the function g defined

in Lemma 3, which equals the objective function of (EC.35) when α = rn, β = 0 and kSV = 0.

From Lemma 3, we have d
dr
EQP (dG(r), dS(r)) > 0 and limr→∞EQP (dG(r), dS(r)) = q0

P ; thus, by

intermediate value theorem, all possible values of EQP (dG, dS) can be attained by adjusting the

value of r.

The cost-efficient way of attaining EQP (d̃G, d̃S) is the solution of the constrained problem

(d†G, d
†
S) ∈ arg min(dG,dS)∈[0,∞)2 kG(dG) + kSF (dS) + kSV nΛ(dG), s.t. EQ(dG, dS) = EQ(d̃G, d̃S). Cost

inefficiency then follows from a contradiction between the KKT conditions of this problem and

(EC.34). �

Proof of Prop. 5. From (EC.32) and (EC.33) and Prop. 4, it follows that the reimbursement rate

of the optimal outcomes-adjusted capitation contract satisfies r= 2k′G(d̃G)/
(
n ∂
∂dG

EQP (d̃G, d̃S)
)

=

2k′SF (d̃S)/
(
n ∂
∂dS

EQP (d̃G, d̃S)
)
, while from the proof of Prop. 2, we have that the optimal reim-

bursement rates of the näıve contracts satisfy rAC = 1/n, rAP = 1/(n(1− (1− λ̄)(1−φ))). Equality

between the two does not hold except in special cases. The non-achievement of first-best then

follows directly from the cost inefficiency shown in Prop. 4, part 2.

To show the rent, denote by v†(qP ) = a+bqP the optimal group contract (following the notation

of Theorem 3), and by d̃G, d̃S the decisions induced by it. From the proof of Theorem 3 (the

step when a is set so that at least one of the participation constraints bind), it follows that a=

VG +VS− bEQP (d̃G, d̃S) + 2max{kG(d̃G), kSF (d̃S) +kSV nΛ(d̃G)}. The statement of the proposition

follows by inserting this expression and v†(qP ) = a+ bqP into the constraints (28)-(29). �

Proof of Theorem 4. Part 1. Let v(qP ) be the optimal group contract. Note that we can assume

without loss of generality that its argument is qP , as any group contract which is a function of

qA can be expressed using (EC.22) as a function of qP instead. Denote by v†(qP ) = a+ bqP the

linear capitation contract which replicates the performance of v(qP ) (as introduced in the proof

of Theorem 3).

Consider now the situation when the following two individual contracts are given to the agents:

v1(qP )=̇aG + b
2
qP for the GP and v2(qP )=̇aS + b

2
qP for the SP (for the moment, aG and aS

are undefined constants). Under these contracts, the incentive compatibility constraints without

collusion (31)-(32) and under collusion (33)-(34) are equivalent, thus the same provider decisions
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will be induced no matter if the agents collude. They are also equivalent to incentive compatibility

constraints in the group problem (26)-(27), when the group holds v†(qP ), so this set of individual

contracts will induce the same decisions as v†(qP ) (thus also v(qP )). Because the induced decisions

are the same irrespective of collusion occurring, then so will be the sum of the agent’s incomes.

Consequently, these contracts will be collusion-proof as there is no way that the same joint income

can be split in such a way to make both of the agents better off when colluding. The constants aG

and aS can be set to make participation constraint (36) binding, which we can do with aG=̇VG +

kG(d̃NCG ) − b
2
EQP (d̃NCG , d̃NCS ) and aS=̇VS + kSF (d̃NCS ) + nΛ(d̃NCG )kSV − b

2
EQP (d̃NCG , d̃NCS ). Finally,

with these aG, aS, the contracts v1(qP ) and v2(qP ) induce the same decisions and outcomes as

v(qP ), but unlike v(qP ) do so in a cost-efficient way, completing part 1 of the theorem.

Part 2. Let v1(qP ) and v2(qP ) be the optimal contracts. We first show that collusion-proof con-

tracts are optimal. Assume v1(qP ) and v2(qP ) are such that the agents will collude under them.

Then, taking partial derivatives of the collusive incentive compatibility constraints (33)-(34) yields

FOCs E[v′G(QP (d̃CG, d̃
C
S )) + v′S(QP (d̃CG, d̃

C
S ))] = 2k′G(d̃CG)/ ∂

∂dG
EQP (d̃CG, d̃

C
S ), and E[v′G(QP (d̃CG, d̃

C
S )) +

v′S(QP (d̃CG, d̃
C
S ))] = 2k′SF (d̃CS )/ ∂

∂dS
EQP (d̃CG, d̃

C
S ). Define individual outcomes-adjusted capitation con-

tracts v̄1(qP )=̇āG+ b̄qP and v̄2(qP )=̇āS + b̄qP where b̄=̇E
[
v′G(QP (d̃CG, d̃

C
S )) + v′S(QP (d̃CG, d̃

C
S ))
]
/2,

āG=̇− b̄EQP (d̃CG, d̃
C
S ) + VG + kG(d̃CG), and āS=̇VS + kSF (d̃CS ) + nΛ(d̃CG)kSV − b̄EQP (d̃CG, d̃

C
S ). In this

notation, d̃CG, d̃
C
S are still the (collusive) decisions induced by the optimal contracts v1(qP ) and

v2(qP ). It is easily verifiable that such defined v̄1(qP ) and v̄2(qP ) will also induce decisions d̃CG, d̃
C
S ,

but will be collusion-proof and cost-efficient. Thus, not only are collusion-proof contracts optimal,

any outcome of collusion-inducing contracts can also be replicated with collusion-proof capitation

ones at the same or lower cost. Completely analogously, it can be shown that the performance of

any optimal collusion-proof contracts can also be replicated by collusion-proof linear capitation

contracts. Thus, collusion-proof linear capitation contracts are optimal in all cases.

Part 3. The näıve contracts are guaranteed to solve the non-collusive incentive compatibility

constraints (31)-(32), as those are equivalent (9)-(10) in the näıve problem. Näıve participation

constraints (9)-(10) imply the MICP participation constraint (36) irrespective of whether collusion

occurs. Additionally, if the contracts are collusion proof, then if (9)-(10) bind, then so does (36).

Finally, constraints (33)-(35) are redundant for collusion-proof contracts. Thus, collusion-proof

solutions of the NICP also solve the MICP, and the same incentive compatibility constraints induce

the same decisions (the first-best ones). Because the participation constraints are binding, first-best

is achieved in the MICP as well. �
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A.4. Proofs for Claims in Section 7 about Implications for Practice.

Proof of Theorem 5. Part (i). Consider the NICP with the restriction (v1, v2) ∈ G×F. Note

that v2 ∈F implies that the objective function (10) is decreasing in dS (compensation is constant,

but increasing quality of care is costly), so d̃S = 0. Because v2 ∈F, it is a constant function; we

commit a slight abuse of notation by denoting that constant by v2 also.

Note that (8) is decreasing in v2. From (12), it follows that v2 = VS +kSF (0)+kSV Λ(d̃G)n, where

VS is the outside option for the SP, as above. Thus we can simplify (8)–(12) to

max
v1∈G

E
[
QP (d̃G,0)− v1(QP (d̃G,0))− kSV Λ(d̃G)n

]
(EC.36)

s. t. d̃G ∈ arg max
dG∈[0,∞)

E [v1(QP (dG,0))− kG(dG)] (EC.37)

VG ≤E
[
v1(QP (d̃G,0))− kG(d̃G)

]
. (EC.38)

Let v†1 ∈ G and denote by d†G the decision it induces. Using the assumption that QP (dG, dS) =

EQP (dG, dS) + ε, where ε is a zero-mean random variable, yields that if d†G > 0, it solves the FOC

E[(v†1)′(QP (d†G,0))](EQP )′(d†G,0)− k′G(d†G) = 0.

For any aC ∈ R, bC = E[(v†1)′(QP (d†G,0))], the linear contract v††1 (qP )=̇aC + bCqP

induces the same decision. Making the constant part of the contract aC=̇VG + kG(d†G) −
E[(v†1)′(QP (d†G,0))]EQP (d†G,0) ensures this linear contract has the lowest possible cost to the prin-

cipal. It will be useful to express v††1 in a form like that in (13) (as an outcome-adjusted capitation

contract). This can be done by setting

fGC = VG + kG(d†G), rGC =E[(v†1)′(QP (d†G,0))], tGC =EQP (d†G,0). (EC.39)

The decisions induced by the optimal contract can also be induced by the linear contract in

(EC.39). This reduces the principal’s problem to max
d
†
G
EQP (d†G,0)− VG − kG(d†G)− nΛ(d†G)kSV .

From Lemma 1, this problem has a concave objective function with an interior solution. Thus, the

optimal d†G is uniquely characterized by the FOC

∂

∂dG

(
EQP (d†G,0)

)
− k′G(d†G)−nΛ′(d†G)kSV = 0. (EC.40)

Part (ii). From (30)-(36), the best collusion-proof contracts solve

max
v1∈G,v2∈R

E
[
QP (d̃G,0)− v1(QP (d̃G,0))− v2

]
(EC.41)

subject to d̃NCG ∈ arg max
dG∈[0,∞)

E [v1(QP (dG,0)− kG(dG)]

d̃CG ∈ arg max
dG∈[0,∞)

E
[1

2

(
v1(QP (dG, d̃

C
S )) + v1(QP (d̃NCG ,0))

)
− kG(dG)

]
d̃CS ∈ arg max

dS∈[0,∞)

E
[1

2

(
v1(QP (d̃CG, dS))− v1(QP (d̃NCG ,0))

)
+ v2− kSF (dS)−S(d̃CG)kSV

]
πNCG ≥ πCG ∨πNCS ≥ πCS

VG ≤ πNCG ∧VS ≤ πNCS
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We now relax the problem by dropping the constraints πNCG ≥ πCG ∨πNCS ≥ πCS . We observe that in

this relaxed problem, the principal’s objective function is decreasing in v2, while the only constraint

affected by v2 is VS ≤ πNCS where πNCS is increasing in v2. Thus, we can assume without loss of

generality that VS = πNCS . This observation reduces the problem in (EC.41) to (EC.36)-(EC.38),

which was solved in part (i) of this proof.

Part (iii). Denote by mMICP the modified MICP in the statement of part (iii). The statement

follows from making two observations. First, if a contract that solves the mMICP is collusion-

inducing, then it also solves the MICP with the (v1, v2) ∈ G×F restriction. Second, if a contract

v1 that solves the mMICP is not collusion-inducing, then there cannot exist a collusion-inducing

contract that outperforms it (otherwise, the other contract would solve the mMICP).

Part (iv) follows from observing that if (v1, v2)∈ G×F are collusion-inducing and would result

in inducing (dG, dS), then vG(qP )=̇v1(qP ) + v2(qP ) satisfies the constraints of the MGCP and

also results in inducing (dG, dS) in that problem. In Prop. 4, all decisions that are inducible in the

MGCP are on the same inefficient frontier (that is characterized by the differential equation in

Prop. 4, part 1).

Part (v) follows by noting that adding or subtracting constant payments to either contract in the

MICP changes not whether the contracts are collusion-proof or which decisions they induce. �

Proof of Theorem 6. We proceed directly, and assume the setup in the hypothesis of the theorem.

Part (i). From the objective function of (32), we have that the SP’s income does not depend on

dS, but the SP’s costs are increasing in dS; thus, providing care of minimal quality is optimal for

the SP (d̃NCS = 0). Inserting d̃NCS = 0 into (31) we notice that d̃NCG does not depend on r.

We continue by demonstrating that if r is sufficiently high, collusion will lead to the GP making

corner decision d̃CG = 0. Dropping the constant terms from (33) yields

d̃CG ∈ arg max
dG∈[0,∞)

1

2
E
[
v1(QP (dG, d̃

C
S ) + rnΛ(dG)

]
− kG(dG). (EC.42)

Using 0< v′1 ≤Ω and the joint concavity of EQP established in Lemma 1, the slope of the objective

function in (EC.42) is no greater than Ω(∂EQP (dG,0))/(∂dG) + rnΛ′(dG) = Λ′(dG)
(
rn−Ωq0

P

(
A+

Bµ(0)/(µ(0)−nΛ(dG))2
))

. Thus, for r≥ r†=̇ΩqP0 (A+Bµ(0)/(µ(0)−nΛ(0))2)/n, the objective of

(EC.42) is decreasing, so d̃CG = 0. This immediately implies that d̃CS is independent of r for all r≥ r†.
To show that a contract pair (v1, v2) is collusion-inducing, we also need to demonstrate that both

the GP and the SP are better off under collusion. From (34), when r ≥ r†, colluding changes the

SP’s profit by

1

2
E
[
v1(QP (0, d̃CS ))− v1(QP (d̃NCG ,0)) + rn(Λ(0)−Λ(d̃NCG ))

]
+kSF (d̃CS )− kSF (0) + kSV n(Λ(0)−Λ(d̃NCG )).
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Here, the only term that depends on r is rn(Λ(0)−Λ(d̃NCG )), so the function is linearly increasing

in r and thus unbounded. It follows that the SP is better off colluding for all sufficiently high r.

Similarly, from (33), it follows that colluding changes the GP’s profit by

1

2
E
[
v1(QP (0, d̃CS ))− v1(QP (d̃NCG ,0)) + rn(Λ(0)−Λ(d̃NCG ))

]
+ kG(0)− kG(d̃NCG ),

which is also linearly increasing in r, so the same conclusion applies.

Part (ii). As in part (i) of this proof, we examine the GP’s choice under collusion as given by (33).

Taking an additional step that uses the property that EQP (dG, dS) =EQS(dG, dS) + q0
P (1−Λ(dG))

allows us to obtain that dGC = 0 if r ≥ r††=̇[Ω(A+Bµ(d̃CS )/(µ(d̃CS )− nΛ(0))2]/[q0
P −A−B/µ(d̃CS )].

Then, from (34), when r≥ r††, colluding changes the SP’s profit by

1

2
E
[
v1(QP (0, d̃CS ))− v1(QP (d̃NCG ,0)) + r(QS(0, d̃CS )−QS(d̃NCG , d̃NCS ))

]
+kSF (d̃CS )− kSF (d̃NCS ) + kSV n(Λ(0)−Λ(d̃NCG )).

If EQS(d̃CG, d̃
C
S )−EQS(d̃NCG , d̃NCS )> 0 and r is sufficiently high, this expression will be positive, thus

collusion profitable for the SP. The profitability of collusion for the GP under these two conditions

follows analogously.

Part (iii). Recall (32) and consider substituting v2 with v∗2(qS)=̇h∗2 + r∗2qS, where

r∗2=̇(∂E[v2(QS(d̃∗G, d̃
∗
S))])/(∂dS). This results in the decision d̃NCS = d̃∗S.

Uniqueness up to the constant h∗2 follows from interior decisions that linear contracts induce

being uniquely characterized by the FOCs of the objective functions. Consequently, (31) is the same

under the two different contracts. This implies d̃NCG = d̃∗G. Notice, however, that d̃CG and d̃CS may

change with this change of contracts, and thus, so can the property of being collusion-proof. �

A.5. Proofs for Claims in Section 8 with Realized Costs or Yardstick Competition.

Proof of Prop. 6. Decisions made by agents holding a contract are determined by the incentive

compatibility (IC) constraints (9)-(10). Inserting the contracts vG and vS into these constraints

yields and taking partial derivatives yields FOCs that are equivalent to the FOCs (EC.9)-(EC.10),

which determine the first-best decisions. Applying Lemma 1, the decisions induced by the contract

are uniquely determined by the FOCs; thus, the contract achieves the first-best. The same holding

in MICP if the contracts are collusion-proof then follows from equality between non-collusive IC

constraints in the MICP and the IC constraints in the NICP. �

Proof of Prop. 7. Part 1. We show this part by backward recursion. Consider the last period

N . As fNG and fNS are independent of provider decisions in this period, Prop. 6 applies and the

providers will choose d∗G, d∗S. In the next to last period (N − 1), the providers’ decisions affect not

only the current period’s payout but also the next one, thus they will choose decisions that solve
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dN−1
G ∈ arg max

dG∈[0,∞)

fN−1
G +EQP (dG, d

N−1
S )−nΛ(dG)kSV − kG(dG)

+ δ
(
−EQP (dG, d

N−1
S ) +VG +nΛ(dG)kSV + kG(dG) +EQP (d∗G, d

∗
S)−nΛ(d∗G)kSV − kG(d∗G)

)
,

dN−1
S ∈ arg max

dS∈[0,∞)

fN−1
S +EQP (dN−1

G , dS)−nΛ(dN−1
G )kSV − kS(dS)

+ δ
(
−EQP (dN−1

G , dS) +VS +nΛ(dN−1
G )kSV + kS(dS) +EQP (d∗G, d

∗
S)−nΛ(d∗G)kSV − kS(d∗S)

)
.

In both of the expressions above, the first line is the current (N − 1) period payout, whereas the

second line is for period N . Rearranging terms and dropping constants (which have no bearing on

arg max) yields dN−1
G ∈ arg maxdG∈[0,∞)(1− δ)

(
EQP (dG, d

N−1
S )−nΛ(dG)kSV − kG(dG)

)
and dN−1

S ∈

arg maxdS∈[0,∞)(1− δ)
(
EQP (dN−1

G , dS)−nΛ(dN−1
G )kSV − kS(dS)

)
, which is by Lemma 1 equivalent

to the first-best system. Thus, the providers will choose the first-best decisions in period N − 1.

Inserting dN−1
G = d∗G and dN−1

S = d∗S into the profit calculation for period N also yields that both

participation constraints are binding in period N . The statement of the proposition follows by

repeating the same argument recursively for each preceding period.

Part 2. For j ∈ {1, ..,M}, denote by qj
P the realized population health of the population of

patients served by the j-th GP-SP pair, and denote by %jG, %jSV , and %jSF the cost realizations

within that pair. Suppose now all providers are given outcomes-adjusted capitation contracts with

per-capita rates

q̄j
P + f jG− %

j
SV /n (for GP j), q̄j

P + f jS (for SP j). (EC.43)

If f jG and f jS are independent of decisions made by provider pair j (djG and djS), then Prop. 6

applies and all providers making first-best decisions d∗G, d
∗
S will be in equilibrium under those con-

tracts. The remaining step needed to achieve the first-best is to construct f jG and f jS so that the

participation constraints bind, while preserving the property that f jG and f jS are independent of

decisions of provider pair j. Taking an expectation of (EC.43) conditional on the providers making

first-best decisions yields the expected equilibrium profits of GP j and SP j respectively: πjG =

E
[
QP (d∗G, d

∗
S) +nf jG−S(d∗G)kSV

]
−kG(d∗G), πjS =E

[
QP (d∗G, d

∗
S) +nf jS −S(d∗G)kSV

]
−kSF (d∗S). Set-

ting these equal to the value of the providers’ outside option and solving for f jG and f jS yields

Ef jG = VG/n+ Λ(d∗G)kSV + kG(d∗G)/n−EQP (d∗G, d
∗
S)/n, (EC.44)

Ef jS = VS/n+ Λ(d∗G)kSV + kSF (d∗S)/n−EQP (d∗G, d
∗
S)/n. (EC.45)

Here, the principal cannot simply set f jG and f jS to be equal to the RHS of these two equations,

as the principal lacks knowledge of the cost functions as well as d∗G and d∗S. However, following

the idea of yardstick competition, the principal can exploit the property that for all provider



e-companion to Zorc, Chick and Hasija: Reimbursement Policies for Care Pathways ec17

pairs other than the j-th, d∗G and d∗S are also equilibrium decisions. Thus, in equilibrium, we have

E%̂−jG = kG(d∗G), E%̂−jSF = kSF (d∗S), E%̂−jSV = nΛ(d∗G)kSV , and E ˆ̄q−jP =EQP (d∗G, d
∗
S)/n.

Consequently, for every provider in pair j, we can define f jG and f jS by

f jG=̇(VG + %̂−jG + %̂−jSV )/n− ˆ̄q−jP , f jS=̇(VS + %̂−jSF + %̂−jSV )/n− ˆ̄q−jP ,

which then ensures that (EC.44) and (EC.45) hold while preserving the property that f jG and f jS

do not depend on the decisions of provider pair j. Thus, the participation constraints are binding,

and the contract achieves first-best. �

Appendix B: Methodology of the Numerical Analysis

This section provides additional detail on how the plausible range was derived for each of the

model’s parameters. We first discuss how ranges of certain observable parameters were assessed

for an example related to type 2 diabetes in the UK. We then discuss challenges associated with

assessing cost functions. All numeric optimization used Mathematica’s native NArgMax routine.

Note that parameters that may have a reasonable value when considered individually might not

be reasonable when considered in combination with other parameters. For this reason, we then

describe and use an acceptance-sampling algorithm designed to assess whether parameters, taken

together, are reasonably consistent with observed data.

Number of patients. The complete distribution of the number of patients per full-time equiv-

alent (FTE) GP is available from the NHS census of GPs in the UK (full data available from UK

NHS 2019). This distribution has a mean of 2218, a median of 1866, and a standard deviation

of 2127. However, it includes several outliers, most notably practices that have 0 patients and a

few practices with an extremely high number of patients per FTE GP (more than 60,000). In

order to eliminate these outliers, we use a truncated version of this distribution where the top 1%

and bottom 1% have been removed. The full histogram of the resulting distribution is given in

Figure EC.1.

We draw the total number of patients under the GP’s care, including the ones without diabetes,

from this distribution and denote that variable as m. The national rate of type 2 diabetes incidence

is 6.4% (Diabetes UK 2019). To find the number of diabetes patients under a GP’s care, we use a

draw from n∼Bin(m,6.4%).

Health capital. One of our primary metrics of interest is the initial population health capital

(q̄0
P ), which measures the “present monetary value of a person’s health,” averaged over all members

of the population, as per Grossman (1972). For each individual person, we measure health capital

using the method of Cutler and Richardson (1998) as the expected discounted sum (with discount

rate r) of their remaining years of life weighted by the quality of life in those years, and multiplied
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Figure EC.1 Histogram of the number of patients per FTE GP (including non-diabetic patients)

by the monetary value of one QALY. From Khalid et al. (2014), the average age of type 2 diabetes

patients is 64.9 years. Based on Leal et al. (2009), the residual life expectancy of type 2 diabetes

patients with moderate risk factors at 65 is 11.5 years. From Clarke et al. (2002), the mean quality

of life of type 2 diabetes patients is 0.77. We use the discount rate of r= 0.03, as in many related

papers, including Cutler and Richardson (1998). This gives us qP0 =
(∑10

i=0
0.77
1.03i

+ 0.77
2×1.0311

)
QALY≈

7.61 QALY as an estimate of an average type 2 diabetes patient’s health capital. Note that, as in

Clarke et al. (2002), this is a (possibly biased) approximation; a better estimate could be acquired

if the distribution of residual life was known rather than just the expectation.

Monetary Value of One QALY. The UK has used cost-effectiveness thresholds of £20,000 to

£20,000 per QALY. US regulators typically use a valuation between $50,000 to $100,000 for one

QALY (Neumann et al. 2014). The empirical study of Lee et al. (2009) estimates the implied value

of one QALY at approximately $129,000, based on the current treatment practices for end-stage

renal patients in the US.

We do not randomly sample this parameter, as it is subject to the regulator’s choice. We primarily

use the £30,000 value (it is used for all the figures in the main text). However, to check robustness,

we also conducted the numerical analysis for four different values of this choice: £20,000, £30,000,

£70,000 (≈ $84,000 at January 2023 exchange rates), and £100,000 (≈ $120,000). Our results

are qualitatively consistent across these choices, which is due to the relatively simple role of this

parameter: it is a linear scaling parameter for health in the objective function. Whenever possible,

we report the health-related results in terms of QALY instead of monetary terms to reduce the

reliance on this measure.

Adherence rate. Non-adherence rates vary greatly in the literature depending exactly on how

non-adherence is defined (McNabb 1997). Currie et al. (2012) find that 39% of patients are non-

adherent if we consider clinical non-adherence (appointment no-shows), but only 4.4% if we look
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at medication non-adherence (not taking prescribed medicine). Clinical non-adherence is the one

which corresponds better to our model, because these are the patients who miss out on benefiting

from a GP’s treatment. More so, specific sub-populations can have vastly different adherence rates.

Hospitalized patients have virtually full adherence as appointment no-shows are not an issue, and

adherence to the medication regime is ensured by the nurses. On the other hand, adolescents have

an exceedingly low adherence rate, which can go as low as 0.1 (Taddeo et al. 2008, Borus and Laffel

2010). To ensure that we consider the full range of possible adherence values, while still having

more parameter sets with moderate adherence, we draw the adherence rate φ from a triangular

distribution with support [0.1,1] and mode 0.61 (the point estimate for clinical adherence rate).

Complication rates. Mathur et al. (2017) study the 338,390 type-2 diabetes patients in the

UK’s Clinical Practice Research Datalink (representative of the whole population) and find the

yearly probability of developing retinopathy to be 3.22%. However, they do not take adherence

into account. Currie et al. (2012) find that clinically non-adherent patients have 10% higher mor-

tality while medication-non-adherent ones have 30% higher. Garćıa-Pérez et al. (2013) find that

medication non-adherent patients have 38%− 58% more hospitalizations. We use the extremes of

these estimates (10%-58% higher) combined with a baseline complication rate of 3.22% (Mathur

et al. 2017) to get the bounds for λ. The calculation [110% ∗ 3.22%,158% ∗ 3.22%] yields λ ∈

[3.54%,5.08%].

Service level. The lower bound for the service level (µ) can be found from the steady state

condition µ > nΛ(0). We ensure the steady state condition holds by setting the lower bound at

1% over the strict bound when λ̄ is at the highest level in our parameter set (λ̄ = 5.08%), i.e.,

µ= 1.01nΛ(0) = 1.01nλ̄= n ∗ 5.1308%.

The health impact of complications. The effect of blindness on quality of life is debated

(and depends on the person’s ability to adjust) with estimates ranging from 34% to 64% loss of

QALY (Javitt and Aiello 1996, Rein et al. 2007), we use W ∈ [0.34,0.64] to denote this value and

will consider the entire range. Untreated diabetic retinopathy will progress to legal blindness in an

estimated 3.2 years (Ferris 1993),11 from which we have b=W/3.2. While early-stage retinopathy

is asymptomatic, we use a= b/2 to reflect the expected time to initial diagnosis of 6 months (NHS

conducts yearly retinopathy screening for diabetes patients).

Cost functions. There is good data availability on the realized costs of treating diabetes in the

UK. Managing a single diabetes patient without complications costs ∼ £550 per year (Diabetes

UK 2014). For retinopathy, there are two main treatment options: 1) laser therapy (pan-retinal

11 In the absence of treatment, vision continues deteriorating even after the onset of legal blindness, progressing to
total blindness eventually, with a QALY loss of 74% (Rein et al. 2007).
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laser photocoagulation), which costs £823 for the treatment itself and £1112 for the ophthalmolo-

gist services, and 2) Ranibizumab (monoclonal antibody fragment, injected directly into the eye),

costing £7422 for the medicine itself (10 injections), and £2149 for the ophthalmologist services

(cost data from Mitchell et al. 2012). These treatments are also sometimes combined with total

material costs of £7503 and ophthalmologist costs of £1853.12

This still leaves us with two challenges for calibrating costs. The first challenge is separating the

variable from the fixed costs for the specialist. While the cost of drugs administered is certainly

variable, physician time likely reflects both fixed and variable costs. We address this by modeling

their sum and checking if the sum is reasonable. The other challenge is determining the shape of

the cost function from the realized costs. We consider the range of variables costs in [£823,£9356];

the bottom of this range is the material cost of the cheapest treatment option (laser therapy),

while the upper end of the range is the cost of the most expensive treatment option (laser plus

ranibizumab) including ophthalmologist costs. We assume that the cost functions are scaled power

functions (kG(dG) = γ1(dG)γ2 , kSF (dS) = δ1(dG)δ2).

Parameter plausibility check. The question here is how to find a reasonable range for the

hyper-parameters γ1, γ2, δ1, δ2. The parameter ranges are set to the wide range of γ1, δ1 ∈ [1,106] and

γ2, δ2,∈ [1,4], after which the following three plausibility checks are conducted: i) verifying whether

the first-best complication rates under such parameters are really lower than the complication

rates observed in the literature (Khalid et al. 2014), ii) verifying that waiting times for treatment

under first-best are at least somewhat consistent with the waiting times in the literature (literature

estimates range from a few days to several months, so parameter sets resulting in waiting times of

more than a year or less than a day are deemed to be unrealistic), and iii) lastly, we verify that

the costs under the first-best are no more than a factor of 4 away from the observed realized costs

(Mitchell et al. 2012). Parameter draws that did not fit these criteria were dropped.

Algorithm 1 presents the simulation algorithm that we used to generate random samples of the

values of all parameters for the model, to drop samples that do not meet plausibility checks such

as those described in the preceding paragraph, and to assess the performance of each contract. For

numerical comparisons reported in this paper, 20,000 parameter sets were generated, out of which

13,843 were dropped due to failing the plausibility checks, leaving 6,157 plausible parameter sets

for analysis. Performance statistics for each contract were computed for results in the main paper

and online companion (unless specified otherwise). If we look at the commonalities of dropped

12 There is additional complexity with treatment options as two more options exist. One option is the use of intraocular
corticosteroid drugs, including implants that slowly release them. The other option is ocular surgery (vitrectomy).
Furthermore, two other drugs can be used in place of ranibizumab: aflibercept and bevacizumab (Maniadakis and
Konstantakopoulou 2019).



e-companion to Zorc, Chick and Hasija: Reimbursement Policies for Care Pathways ec21

Algorithm 1 Simulate Scenarios for Assessing Contract Performance

procedure Sample parameters; perform plausibility check; assess contracts

Set size; (number of parameter sets/scenarios to sample)

Set QALY; (the monetary value of one QALY)

Set GPdistrib; (the distribution of patients per FTE GP, imported from NHS data UK NHS (2019))

for i= 1 to size do

Step 1: draw pseudo-random parameter values from specified distributions

m←Random from GPdistrib; n←Random from Bin(m,0.064); λ←Random[3.54%,5.08%];

φ←Random from Triangular(0.1,0.61,1); γ1←Random[1,106]; γ2←Random[1,4];

δ1←Random[1,106]; δ2←Random[1,4]; kSV ←Random[823,9356]; b←Random[0.106,2];a← b/2;

Step 2: define costs and minimum treatment intensity needed to guarantee steady state

µ← 1.01n ∗ 5.08%; kG(dG)← γ1(dG)γ2 ; kSF (dS)← δ1(dS)δ2 ;

Step 3: conduct a plausibility check for the generated parameter set

Find (d∗G, d
∗
S) by numerically maximizing the function u(dG, dS) given by (5);

if λ∗ > 0.0322 or 1/(µ(d∗S)−nΛ(d∗G))< 1/365 or 1/(µ(d∗S)−nΛ(d∗G))> 1 or kG(d∗G)<n550/4 or

kG(d∗G)>n550 ∗ 4 or kSV nΛ(d∗G) + kSF (d∗S)<nΛ(d∗G)1935/4 or kSV nΛ(d∗G) + kSF (d∗S)>

nΛ(d∗G)9356 ∗ 4 then

drop the parameter set from consideration and goto Step 1;

Step 4: find equilibrium decisions for each possible scenario of näıvite consequences

(d̃FRG,A, d̃
FR
S,A) are found as the intersection of best response functions (18) and (19);

for each j ∈ {C,P}, l ∈ {C,P} do

find (d̃CG,j,l, d̃
C
S,j,l) by numerically maximizing the best responses of colluding agents (23)-(24);

Step 5: Get performance metrics for each possible scenario of näıvite consequences

Total population health EQP (dG, dS), given by (4), evaluated at decisions generated in Step 4;

System efficiency u(dG, dS), given by (5), evaluated at Step 4 decisions;

Profit of providers, from sum of obj. functions in (9)–(10), evaluated at Step 4 decisions;

Government expenditure, from the objective function of (8) for individual contracts ((15) for group

contracts), minus EQP (dG, dS), both evaluated at Step 4 decisions;

Compute statistics over all size runs for each reimbursement scenario

parameter sets, the main one appears to be an overly steep function for the GP’s costs, which

would then fail two checks: it would cause GP costs that far exceed £550 per patient, and it would

cause a higher complication rate in the first-best than is observed in practice.

Appendix C: Other Extensions

We now present several variations and extensions of our model in order to assess the sensitivity of

conclusions to assumptions of the model and to explore the scope of applicability of the results.

In Appendix C.1, we consider provider decisions directly impacting the health of their patients, as
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well as patients endogenously deciding on whether to be adherent. In Appendix C.2, we relax our

assumption that measures of health are unbiased. In Appendix C.3, we extend our model to include

multiple complications and multiple specialists who treat them. In Appendix C.4, we consider a

different model of collusion: colluding agents making decisions jointly as a single decision maker. In

Appendix C.5, we consider which results can be replicated without having an explicit expression

for population health available. Some interesting special cases in Appendix C.5 are different spec-

ifications for the health impact of treatment delay (the w(t) function) and a change of queueing

discipline to GI/G/1 under heavy traffic. Appendix C.6 numerically tests the sensitivity of optimal

contracts to misestimation of the cost functions. Finally, Appendix C.7 proves mathematical claims

regarding those variations and extensions.

One result of these extensions is the apparently remarkable robustness of some of our conclusions:

the beneficial properties of outcomes-based capitation contracts appear to hold throughout these

extensions. However, this analysis also points out two important limitations. First, the performance

of conventional contract types is likely to be underestimated in our model, as we do not model

non-monetary drivers of physician behavior such as reputation or altruism. Second, we encounter

a lack of tractability if we make the providers risk-averse (thus sensitive to the variance of noise),

or if we make the noise term correlated with provider decisions. Thus, the effect of noise is likely

deeper and more nuanced in reality than in our model, posing a direction for further research.

C.1. Other Effects of Provider Decisions

In our model, we focus on the complication rate, the service rate and, the resulting queueing

dynamics as the main effect of the provider decisions. However, it is reasonable to expect that

quality of care has effects along other dimensions as well. Thus, here we consider other potential

consequences of provider decisions, and how this complexity affects the model.

Firstly, the quality of GP care could affect the health of patients directly, not only through the

complication rate. Secondly, the quality of SP care can influence the amount of health generated

by specialist care, not just the service rate µ. Thirdly, dG could impact the adherence decisions of

the patients. We model these three additional effects by introducing alternative assumptions:

Assumption C.1.1 GP care directly improves health: at the end of the period, the health capital

of each adherent patient is improved by a factor ω(dG), an increasing, twice differentiable function.

Assumption C.1.2 The amount of health capital restored by the SP depends on the quality of SP

care: the factor ζ is replaced by ζ(dS), an increasing, twice differentiable function.

Assumption C.1.3 The adherence rate is a function of the quality of GP care: the constant

adherence rate φ is replaced by φ(dG), a twice differentiable function.
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Note that it is not clear if φ(dG) is monotonic, and if so, with which slope, as there are arguments

to be made for both directions. On the one hand, patients should be more likely to adhere the more

health benefit they derive from treatment (suggesting φ(dG) ↑ dG). On the other hand, there is

evidence that more rigorous treatment is associated with lower adherence (suggesting φ(dG) ↓ dG),

due to the increased effort needed from the patient (Schectman et al. 2002, Borus and Laffel 2010).

There is both theoretical and empirical evidence of a trade-off between speed and quality of care

in healthcare (Anand et al. 2011, Kc and Terwiesch 2011, Alizamir et al. 2013). We do not directly

model this trade-off, but rather assume that the specialist will be able to optimally resolve the

trade-off, with higher dG implying both higher service rate µ(dS) and health improvement ζ(dS).

The main effect of this more nuanced model is on the expected health of patients, which is now:

EQP (dG, dS) =q0Pφ(dG)ω(dG)

(
1−λ(dG)a(1− ζ(dS))− bλ(dG)(1− ζ(dS))

µ(dS)−n(φ(dG)(λ(dG)− λ̄) + λ̄)

)
+ q0P (1−φ(dG))

(
1− λ̄a(1− ζ(dS))− bλ̄(1− ζ(dS))

µ(dS)−n(φ(dG)(λ(dG)− λ̄) + λ̄)

)
. (EC.46)

We can similarly rewrite the expected health of the GP’s patients and the SP’s patients as

EQG(dG, dS) = q0Pφ(dG)ω(dG)

(
1− aλ(dG)(1− ζ(dS))− bλ(dG)(1− ζ(dS))

µ(dS)−n(φ(dG)(λ(dG)− λ̄) + λ̄)

)
,(EC.47)

EQS(dG, dS) = q0P (φ(dG)λ(dG)ω(dG) + (1−φ(dG))λ̄)

×
(

1− a(1− ζ(dS))− b(1− ζ(dS))

µ(dS)−n(φ(dG)(λ(dG)− λ̄) + λ̄)

)
. (EC.48)

We also introduce one technical assumption needed to keep this model tractable:

Assumption C.1.4 EQP (dG, dS) is increasing and (jointly) concave.

The assumption enables us to continue to use first-order conditions to optimize, and it is a

relatively weak assumption. It assumes that the health of patients increases in the quality of care,

and that the efforts to improve health have diminishing marginal returns.

Notice that this alternative set of assumptions only changes our model of the care pathway and

how it affects health; it does not alter the formulation of any of the contracting problems in the

paper. With this in mind, most of the main results of the paper will replicate in this setting. (Proofs

for all formal statements in Section C are given in Section C.7.)

Theorem C.1.1 Let Assumptions C.1.1, C.1.2, and C.1.4 hold. Then, Propositions 1 and 2, as

well as Theorems 3 and 4, still hold as stated. The same is true if Assumption C.1.3 also holds, but

with one limitation: in Theorems 3 and 4.1, contracts that use qA as a signal cannot be replicated.

Thus, the key insights from the näıve and main models are the same as in the main paper. What

does not replicate in this setting are the directions of deviations of the sub-optimal contracts, as

those now suffer from numerous countervailing effects.
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C.2. Biased Measures of Health

Our model assumes the existence of an unbiased measure of health. Here, we will examine the

consequences of such an assumption being violated. Recall, the measure of population health is

QP =QP + εP , where QP is the deterministic actual population health, and εP is the noise term,

which is a zero mean random variable. So, consider the following alternative assumption:

Assumption C.2.1 For every i ∈ {P,G,S,A}, the measurement noise εi has a nonzero expecta-

tion (Eεi = bi 6= 0). None of the decision makers in the model are aware of this bias.

Here, we can derive the following.

Proposition C.2.1 Let Assumption C.2.1 hold. (i) The contract offered by the principal, the deci-

sions made by providers, and the health of patients all remain the same for every contracting

problem in the paper (NICP and NGCP in Section 3, MICP in Section 5.2, MGCP in Section 5.1).

(ii) There is a wealth transfer between the principal and the agents. If the contract uses the con-

tractible variable Qi, where i ∈ {P,G,S,A}, the wealth transfer favors the agent if bi > 0 or the

principal if bi < 0.

Lack of awareness about the bias is essential to its existence as it would be easy to de-bias the

measure of health if b was known. Yet, being unaware of the bias, both the principal and the agents

make their decisions as if the bias did not exist. The sole impact of the bias takes effect when the

measures of health are realized, and results in under-payment of the agents (in case of a negative

bias) or over-payment (in case of a positive one).

Also worth considering is the situation where the agents are aware of the bias, but the principal

is not. This can arise if the agents have more direct information about data measurements.

Remark C.2.1 If the agents are aware of the bias, Prop. C.2.1 holds, but the agent will reject

the contract if bi < 0. This follows from the same proof as Prop. C.2.1, by noticing that the agent’s

incentive compatibility constraint does not change as the arg max of EQP (dG, dS) and EQP (dG, dS)

is the same (they differ only by a constant); however, the participation constraint is violated any

time bi < 0.

Thus asymmetric knowledge of the bias can cause either contract failure (if it leads to rejection)

or a wealth transfer from the principal to the agents.
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C.3. Multiple Complications and Specialists

In our desire for parsimony, we model a single specialist who treats complications. Reality is more

complex than the model. For example, diabetes has several possible complications (e.g., diabetic

retinopathy, nephropathy, neuropathy) that may require different specialists. Most of our results

will extend in a relatively straightforward way – with the same proof structures still working – if

there are multiple complications and multiple specialists who treat them. The exception to this

is Theorem 4, where complexity arises in a multi-specialist situation about who could potentially

collude with whom. The theorem still replicates (see Theorem C.3.2), but requires assumptions

about the formation of collusive coalitions.

Consider a model that uses the following alternative assumption.

Assumption C.3.1 There are k specialists, each of which treats a set of possible complications

(they are indexed by i∈ {1, .., k}). These sets are mutually exclusive. Each set of complications has

a different rate at which it occurs (thus λi(dG),λi,Λi(dG)), different health impact (ai, bi), different

cost of treatment (kSV i, kSFi(·)), and different time needed to treat (µi). To ensure well defined

probabilities, we assume
∑k

i=1 λi ≤ 1.

This has a direct impact on the health of patients, where the health of patients needs to be

recalculated in accordance with Assumption C.3.1. Denote by dS the vector of specialist decisions

(dS=̇(dS1, ..., dSk)). Then, we have

EQP (dG,dS) = q0
P

(
1−

k∑
i=1

(
aiΛi(dG)(1− ζ) +

biΛi(dG)(1− ζ)

µi(dSi)−nΛi(dG)

))
(EC.49)

EQG(dG,dS) = q0
Pφ

(
1−

k∑
i=1

(
aiλi(dG)(1− ζ) +

biλi(dG)(1− ζ)

µi(dSi)−nΛi(dG)

))
(EC.50)

EQSi(dG,dS) = q0
PΛi(dG)

(
1− ai(1− ζ)− bi(1− ζ)

µi(dSi)−nΛi(dG)

)
. (EC.51)

Assumption C.3.1 affects not only the care pathway, but the whole contracting problem

(unlike the relatively elegant analysis of Section C.1). Denote by vS(vS1(Q1), vS2(Q2), ..., vSk(Qk))

the vector of contracts offered to the different specialists, where Qi ∈ {QP ,QSi}. Similarly

denote by d̃S=̇( ˜dS1, ˜dS2, ..., ˜dSk) the vector of specialist decisions in the equilibrium, and by

d̃S(dSi)=̇( ˜dS1, ˜dS2, ..., dSi, ..., ˜dSk) the vector of specialist decisions where only specialist i deviates

from the equilibrium, making decision dSi. Then, the NICP in this setting is:

max
vG(Q0),Q0∈{QP ,QG},vS

E

[
QP (d̃G, d̃S)− vG(Q0(d̃G, d̃S))−

k∑
i=1

vSi(Qi(d̃G, d̃S))

]
(EC.52)
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subject to d̃G ∈ arg max
dG∈[0,∞)

E
[
vG(Q0(dG, d̃S))− kG(dG)

]
(EC.53)

d̃Si ∈ arg max
dSi∈[0,∞)

E
[
vSi(Qi(d̃G, d̃S(dSi))− kSFi(dSi)−Si(d̃G)kSV i

]
, ∀i∈ {1, .., k}

(EC.54)

VG ≤E
[
vG(Q0(d̃G, d̃S))− kG(d̃G)

]
(EC.55)

VSi ≤E
[
vSi(Qi(d̃G, d̃S))− kSFi(d̃Si)−Si(d̃G)kSV i

]
, ∀i∈ {1, ..., k}. (EC.56)

An analogue of Prop. 1 holds here:

Proposition C.3.1 (Optimal näıve individual contracts) There exists an outcomes-

adjusted capitation contract that is optimal and achieves first-best. Under this contract, the

provider is paid a capitation fee cj, which is paid for every patient in the population, irrespective of

whether that person receives treatment (here j ∈ {G,S1, S2, ..., Sk}). This fee is outcomes-adjusted

according to the measure of health at the population level:

cj(qP ) = fjC + rjC(qP − tjC). (EC.57)

The first-best can also be achieved by outcomes-adjusted per-patient contracts, which award

providers a fee pj per every patient they treat. Here, the per-patient fee is outcomes-adjusted based

on the health of patients treated by that provider: pj(qj) = fiP + riP (qj − tjP ).

The two contract types can also be combined, giving some providers a capitation contract, while

the others receive a per-patient one; this combination also achieves the first-best. (Closed-form

expressions for optimal values of all the parameters are given in Appendix C.7.)

We can also reconsider and solve the NGCP in this setting:

max
Q∈{QP ,QA},v(Q)

E
[
QP (d̃G, d̃S)− v(Q(d̃G, d̃S))

]
(EC.58)

subject to (d̃G, d̃S)∈ arg max
(dG,dS)∈[0,∞)k+1

E

[
v(Q(dG,dS))− kG(dG)−

k∑
i=1

(kSFi(dSi) +Si(dG)kSV i)

]
(EC.59)

E

[
v(Q(d̃G, d̃S))− kG(d̃G)−

k∑
i=1

(
kSFi(d̃Si) +Si(d̃G)kSV i

)]
≥ VG +VS. (EC.60)

Solutions to this problem are characterized by Prop. C.3.2.

Proposition C.3.2 (Optimal näıve group contracts) Optimal group contracts are an

outcomes-adjusted capitation contract (vAC) with per-capita fee cA(qP ) = fAC + rAC(qP − tAC),

and an outcomes-adjusted per-patient contract (vAP ) with per-patient fee pA(qA) = fAP +rAP (qA−
tAP ). Both contracts achieve the first-best. (Closed-form expressions for optimal values of all the

parameters are given in Appendix C.7.)
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We can also consider group contracting situations with endogenous free-riding (MGCP), by

using the Multilateral Nash Bargaining solution (Bennett 1987). Applying the Multilateral Nash

Bargaining, the revenue from the contract is split in the following way: each agent takes away the

value of their outside option, and the remainder is split equally amongst the providers. This gives

us the MGCP for this setting:

max
Q∈{QP ,QA},v(Q)

E
[
QP (d̃FRG , d̃FRS )− v(Q(d̃FRG , d̃FRS ))

]
, (EC.61)

subject to d̃FRG ∈ arg max
dG∈[0,∞)

E

[
1

k+ 1

(
v(Q(dG, d̃

FR
S ))−VG−

k∑
i=1

VSi

)
+VG− kG(dG)

]
, (EC.62)

∀i∈ 1, ..., k : d̃FRSi ∈ arg max
dSi∈[0,∞)

E

[
1

k+ 1

(
v(Q(d̃FRG ,dS(dSi))−VG−

k∑
i=1

VSi

)
+VSi− kSFi(dSi)−Si(d̃FRG )kSV i

]
,

(EC.63)

E

[
1

k+ 1

(
v(Q(d̃FRG , d̃FRS ))−VG−

k∑
i=1

VSi

)
+VG− kG(d̃FRG )

]
≥ VG, (EC.64)

∀i∈ 1, ..., k : E

[
1

k+ 1

(
v(Q(d̃FRG , d̃FRS ))−VG−

k∑
i=1

VSi

)
+VSi− kSFi(d̃FRSi )−Si(d̃FRG )kSV i

]
≥ VSi.

(EC.65)

Under this setup, we can derive an analogue of Theorem 3:

Theorem C.3.1 (Group contracts) Let v(q) be a differentiable contract and let d̃G, d̃S be the

interior decisions that it induces. Then there exists a linear outcomes-adjusted capitation contract

v†(qP ) such that it induces the same decisions (d̃G, d̃S), at an equal or lower cost to the principal.

The problem of contracting with individual providers who can possibly collude (MICP) does not

extend in such a straightforward way, and will require some additional modeling choices. There are

two questions that arise.

The first question is, how will a coalition of colluding providers split the gains from the collusion?

For group contracting, this question was easily resolved as it was just a straightforward application

of multilateral Nash Bargaining. This is because the providers faced a binary choice: either they

accept the contract or they will receive their outside option. If we want to consider collusive

agreements, the outside option is no longer a fixed value (e.g., VSi) but instead depends on what

other collusive agreements can be formed. In the spirit of trying to maintain generality while

preserving tractability, we model it in the following way.

Denote the set of colluding providers by C ⊆ {S1, S2, ..., Sk}∪{G}. The colluding providers will

split revenue from collusion in the following way: each provider l ∈C will take from the revenue a

constant al(C), and the remaining revenue will be split amongst the provider so that each provider
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receives fraction 1/|C| of the remainder. (Here, |C| is the cardinality of the set C, i.e., the number

of agents in the collusive coalition.)

Note that this definition is a generalization of Multilateral Nash Bargaining (Bennett 1987),

which is, in turn, a generalization of the classical model of Nash.

Thus, the decisions of all providers when there is a coalition C are given by an analogue of

our main collusion problem (CP). Define S0 =G to ease notation in the summation for cases of

collusive coalitions that include the GP. The CP for this setting is:

d̃G ∈

arg maxdG∈[0,∞)E
[

1
|C|
∑
Si∈C

(
vSi(Qi(dG, d̃S))− aSi(C)

)
+ aG(C)− kG(dG)

]
if G∈C

arg maxdG∈[0,∞)E
[
vG(Q0(dG, d̃S))− kG(dG)

]
otherwise

d̃Si ∈ arg max
dSi∈[0,∞)

E

[
1

|C|
∑
Si∈C

(
vSi(Qi(d̃G, d̃S))− aSi(C)

)
+ aSi(C)− kSFi(dSi)−Si(d̃G)kSV i

]
,∀i≥ 1|Si ∈C

d̃Si ∈ arg max
dSi∈[0,∞)

E
[
vSi(QSi(d̃G, d̃S(dSi))− kSFi(dSi)−Si(d̃G)kSV i

]
,∀i≥ 1|Si 6∈C

The second question that arises is, which collusive coalition is going to form? This is a core

question in cooperative game theory, but also an open one, with multiple approaches and solution

concepts (Kahan and Rapoport 2014). However, the results we are interested in proving are not

sensitive to how the process of coalition formation works, so we do not need to constrain ourselves

to a particular solution concept. Thus, let us define the abstract coalition formation function

cf(vG,vS) 7→C,

which maps the contracts given to the providers to the coalition that will form under those contracts

(possibly an empty set). Denote by πl(vG,vS,C) the profit of provider l under contracts vG,vS and

coalition C – this vector is given by the solution of the CP above. The only assumption we make

about cf is that the members of the resulting coalition are better off under the coalition than on

their own, or formally

∀l ∈ cf(vG,vS) : πl(vG,vS,cf(vG,vS))≥ Vl, (EC.66)

where for at least one member of C, this inequality is strict. With this in mind, we can formulate

the MICP for this setting:

max
vG(Q0),Q0∈{QP ,QG},vS

E

[
QP (d̃G, d̃S)− vG(Q0(d̃G, d̃S))−

k∑
i=1

vSi(Qi(d̃G, d̃S))

]
(EC.67)

subject to C = cf(vG,vS) (EC.68)

if G∈C : d̃G ∈ arg max
dG∈[0,∞)

E

[
1

|C|
∑
Si∈C

(
vSi(Qi(dG, d̃S))− aSi(C)

)
+ aG(C)− kG(dG)

]
(EC.69)
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if G 6∈C : d̃G ∈ arg max
dG∈[0,∞)

E
[
vG(Q0(dG, d̃S))− kG(dG)

]
(EC.70)

∀i≥ 1|Si∈C : d̃Si ∈ arg max
dSi∈[0,∞)

E

[
1

|C|
∑
Si∈C

(
vSi(Qi(d̃G, d̃S))− aSi(C)

)
+ aSi(C)− kSFi(dSi)−Si(d̃G)kSV i

]
(EC.71)

∀i≥ 1|Si 6∈C : d̃Si ∈ arg max
dSi∈[0,∞)

E
[
vSi(QSi(d̃G, d̃S(dSi))− kSFi(dSi)−Si(d̃G)kSV i

]
(EC.72)

∀i∈ {0,1, .., k} : πSi(ṽG, ṽS ,C)≥ VSi (EC.73)

Here, we will refer to contracts such that cf(vG,vS) = ∅ as collusion-proof contracts. Finally, with

the setup complete, we are in a position to derive the analogue of Theorem 4 for this setting:

Theorem C.3.2 (Individual contracts)

1. The health outcome of optimal group contracts – the ones solving (EC.61)-(EC.65) – can

be replicated at a lower cost, by using k + 1 individual linear outcomes-adjusted capitation

contracts instead.

2. If the näıve individual contracts (as given in Proposition C.3.1) are collusion proof, they are

also optimal and achieve first-best in the MICP given by (EC.67)-(EC.73).

The above is not a complete replication of Theorem 4; what is missing is part 2 of Theorem 4.

Thus, the theoretical optimally of individual contracts replicates in this setting, but linear cap-

itation contracts might not be the optimal ones. However, this setting also gives rise to some

potentially interesting properties about coalitions that can form.

Proposition C.3.3 For all the individual contracts (vG,vS) given in Prop. C.3.1, it holds that

either G∈ cf(vG,vS), or cf(vG,vS) = ∅.

Essentially, any collusive coalition needs the GP to be part of it. The reason for this is different

for different contract types. Consider a coalition consisting of specialists only.

If they hold per-patient contracts, the specialists are not able to affect each other’s compensation

directly due to them treating non-overlapping patient pools.

Under optimal capitation contracts, every specialist receives the full marginal benefits created for

the system (from the optimal reimbursement rates in the proof of Prop. C.3.1). If the coalition was

able to perfectly coordinate, this would create an incentive to over-treat patients as the coalition

would receive more than the full marginal returns (see Section C.4 for details); however, the free-

riding effect exactly counteracts this incentive to over-treat, creating a situation where the marginal

benefits for the specialist are the same irrespective of him or her being part of the coalition.
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C.4. Coordinated Collusion in Individual Contracts

A classical economic approach to modeling collusion is to consider colluding agents that make

decisions as a single agent that maximizes the sum of the two profits. In our main model, we did

not follow this approach, as we wanted a consistent set of assumptions that would give rise to both

collusion and free-riding. The result of our assumptions is that collusive agreements are equally

inefficient as formal alliances, with both suffering from free-riding issues.

While our belief is that the classical way of modeling collusion is less realistic for the situation

at hand, there is no technical obstacle to modeling it in that way – actually, the classical modeling

approach improves tractability. So, it might be a useful exercise to also explore how things change

under that approach, which we do in this section. At the very least, it paints a picture of the

most extreme results that could happen under collusion. We will refer to this type of collusion as

coordinated collusion.

After being given individual contracts vG(q1), vS(q2), agents engaged in coordinated collusion

will not make the non-cooperative equilibrium decisions (d̃G, d̃S) given by (9)–(10), but instead

choose d̃CCG , d̃CCS to maximize their joint benefit by solving the coordinated collusion problem (CCP):

(d̃CCG , d̃CCS )∈ arg max
(dG,dS)∈[0,∞)2

E [vG(Q1(dG, dS)) + vS(Q2(dG, dS))− kG(dG)− kSF (dS)−S(dG)kSV ] .

(EC.74)

The way colluding agents deviate from the first-best will depend on which contracts they have.

Theorem C.4.1 formalizes the effects of these deviations, and the results of the theorem are sum-

marized in Table EC.2.

Theorem C.4.1 (Coordinated collusion) Suppose the GP and SP are given individual con-

tracts in Prop. 1, with the GP holding either contract vGk where k ∈ {C,P}, and the SP holding

vSC. If such agents engage in coordinated collusion by solving the CCP in (EC.74), then the GP

and SP will fail to achieve first-best and (i) System efficiency u is lower, (ii) complication rate is

lower, (iii) expected population health is higher, (iv) expected joint profit of agents is higher, (v)

expected government expenditure is higher. If the SP holds the per-patient contract vSP instead of

the capitation contract vSC, then coordinated collusion will fail to achieve first-best and will result

in (vi) lower system efficiency, and (vii) higher expected joint profit of agents. Coordinated collu-

sion when the SP holds the per-patient contract vSP compared to coordinated collusion when he or

she holds the capitation contract vSC results in (viii) higher complication rate, (ix) higher service

rate, and (x) lower expected population health when the GP holds vGC.

In the absence of collusion, the proof of Prop. 1 showed that, with optimal contracts, both agents

receive the full value of marginal benefits created by the system. If agents act in their own interest,
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Table EC.2 Summary of findings about the effects of Coordinated Collusion

FB vs (vGk,vSC) FB vs (vGk,vSP ) (vGk,vSC) vs (vGk,vSP )

System efficiency (u) > >
Expected population health (EQP ) < >[1]

Complication rate (Λ) > <
Service rate (µ) <
Joint profit of agents (πG +πS) <
Government expenditure (vG + vS) < <

FB denotes first-best. < (>) denotes that the corresponding metric is higher (lower), e.g., > in the first column
first row denotes that the system efficiency u is higher in FB than if the agents hold contracts vGk,vSC . Empty
fields are inconclusive. [1] This holds only if k=C.

such compensation is beneficial, serving the purpose of aligning the agents’ interests. The presence

of collusion, however, creates an incentive to over-treat patients because colluding parties can be

compensated at a higher marginal rate than the value they create. If the SP holds a capitation

contract, Theorem C.4.1 shows that this effect exists and is independent of the type of contract

held by the GP. While increased treatment intensity and health might look appealing, note that

it comes paired with increased health care costs and decreased system efficiency.

If the SP holds a per-patient contract, the same incentive to over-treat patients noted above is

still present; however, there is an additional perverse incentive in play. An SP with such a contract

earns more the more patients he or she has, creating an incentive for a colluding GP to decrease

treatment intensity so as to increase complication rates and generate demand for the SP.

Theorem C.4.1 also gives conclusive results for coordinated collusion when the SP holds a per-

patient contract. However, several of the performance comparisons between the first-best solution

and the solution under coordinated collusion are inconclusive in this case, due to the countervailing

effects that cause intractability when making comparisons with first-best performance. We can

identify which contract type results in more severe effects on patients, and give these results in

parts (viii)-(x) of the theorem.

Part (x) of Theorem C.4.1 holds in general only if the GP holds a capitation contract. The reason

for that lies in the fact that the GP holding a per-patient contract adds another layer of complexity.

If the GP holds that contract, the colluding parties’ payout depends on the health of all of their

patients, but they earn a higher marginal return from improving the health of the GP’s patients

than for other ones.

This distortion of incentives will be stronger the lower the adherence rate φ is, as rGP is decreasing

in φ. Intuitively, the mechanism behind this behavior of rGP in φ is that the GP’s treatment helps

even the patients he or she is not treating due to reducing congestion for the SP. The optimal GP

reimbursement needs to take these second-order effects into account, and it is higher if there are

more people that benefit from these effects (low φ).
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C.5. Robustness of conclusions on Outcomes-adjusted Capitation Contracts

An important technical characteristic of several of our proofs about the properties of outcomes-

adjusted capitation contracts is that the proofs are not reliant on having the closed-form expression

for population health in (4) available, only that the function EQP satisfies some basic properties.

Thus, we consider the setting where:

Assumption C.5.1 Instead of the model of queueing dynamics and impact of care on health as

given by Section 2, assume only that EQP (dG, dS) is increasing, jointly concave, and twice differ-

entiable.

Theorem C.5.1 Let Assumption C.5.1 hold. Then,

1. The part of Proposition 1, which speaks of individual outcomes-adjusted capitation contracts,

still holds. Specifically, there exists an outcomes-adjusted capitation contract that is optimal

(in the NICP) and achieves first-best. For i∈ {G,S}, under this contract, provider i is paid a

capitation fee ci, which is paid for every patient in the population, irrespective of whether that

person receives treatment. This fee is outcomes-adjusted according to the measure of health on

the population level:

ci(qP ) = fiC + riC(qP − tiC).

2. Proposition 2 and Theorems 3 and 4 still hold as stated.

Thus under Assumption C.5.1, basically all of our insight about the performance of outcomes-

based capitation contracts still holds. This has far-reaching implications because many possible

generalizations of our model are just specific cases of Assumption C.5.1.

The only limitation of this general setting is that the consequences of ignoring free-riding and

collusion in contract design (Section 4) and the numerical analysis (Section 6) are reliant on having

an explicit expression for EQP available.

If we look at (3), we can easily consider more complicated ways in which EQP could be deter-

mined, such as a) non-linear impact of treatment delays on health (w(t)), b) queueing disciplines

other than M/M/1, and c) referral process having an impact on treatment delays. All of these

could be included without impacting the key insight, as long as they do not destroy the structural

properties contained in Assumption C.5.1.

Remark 2 For an example of a non-linear effect of treatment delay that satisfies this assumption,

consider a model where w(t)=̇a+ 1(t≥ T )b, where T is a critical response time. Then, inserting

w(t) into (2) and solving the integral yields

EQP (dG, dS) = q0
P (1− aΛ(dG)(1− ζ)− bΛ(dG)(1− ζ) exp(−T (µ(dS)−nΛ(dG)))) .
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Here, the joint concavity of EQP (dG, dS) follows directly from the convexity of Λ(dG) and linearity

of µ(dS) by applying the rules for the preservation of convexity under compositions (Boyd and

Vandenberghe 2004, p. 86). Thus, Assumption D7 holds in this setting.

For a less straightforward example, we can use the heavy traffic approximations (Kingman 1961,

Whitt 1993) to show that our results extend to GI/G/1 queues under heavy traffic, as follows.

Proposition C.5.1 (GI/G/1 heavy traffic queue) Let the arrival process of patients with

complications be partially specified by the mean number of arrivals Λ(dG) and a constant coefficient

of variation of inter-arrival times cvA. Similarly, let the SP’s service time be distributed according

to a distribution with mean µ(dS) and a constant coefficient of variation cvS. Then, under heavy

traffic (µ(dG)→+ nΛ(dg)) the expected population health is

EQP (dG, dS)≈ q0
P

(
1−Λ(dG)a−

(
cv2

A + cv2
S

2

nΛ2(dG)

nΛ(dG)a−µ(dS)
+ 1

)
b

µ(dS)

)
. (EC.75)

Furthermore, such EQP (dG, dS) satisfies Assumption C.5.1, and Theorem C.5.1 holds in this set-

ting.

C.6. Estimation of Cost Functions

As discussed in Section 8, if the cost function of the providers is unknown, one option for the

principal is to resort to estimation of this function. This approach introduces the possibility of

estimation errors.

Here, we conduct a sensitivity analysis of how the performance of our contracts will be impacted

by systematic underestimation or overestimation of cost functions, using the setting of Section 6 for

illustration. Suppose that all cost parameters are misestimated by a factor η (so that the principal

incorrectly believes the costs functions are (1 + η)kG(·), (1 + η)kSF (·), (1 + η)kSV and optimizes

accordingly). Figure EC.2 reports the effects of such misestimation.

In order to generate Figure EC.2, we considered the potential effect of misestimating the

cost functions systematically high or low. For the purpose of this illustration, 200 parameter

sets and related metrics were generated using the same algorithm as in Section 6. For each

generated parameter set, 8 additional scenarios were considered (for cost misestimations η ∈

{−40%,−30%,−20%,−10%,10%,20%,30%,40%}). For every one of those scenarios, the param-

eters of the outcomes-adjusted capitation contracts in Prop. 1 were calculated according to the

misestimated cost values. For calculating provider decisions that the misestimated contract would

induce, we do not have a closed-form solution available, nor can the problem be reduced to numer-

ical optimization. Our approach was to compute these decisions by exploiting the property of

Nash equilibrium that if a sequence of mutual exploitation converges, the point of convergence
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will be an equilibrium. This was a computationally demanding process and the reason why only

200 parameter sets were used for this illustration. Population health, system efficiency, and gov-

ernment expenditure were calculated for each of these misestimated contracts using the decisions

they induce. Finally, for other values of η ∈ [−40,%,40%], values were numerically approximated

using Mathematica’s native InterpolatingFunction method.

(a) Change in population health (b) Change in government expenditure

Figure EC.2 Change in population health and government expenditure as a result of cost misestimation by η.

The full line is the mean, while dotted lines are the 5th and 95th percentile.

For the most part, the cost functions and the first-best decisions only show up in the computation

of the fixed part of the capitation rate, i.e., fGC and fSC in Prop. 1. Yet, it is the variable part of

the compensation scheme (rGC and rSC) that completely drives the providers’ decisions, whereas

the fixed part merely serves to ensure the providers’ participation in the system. The variable

compensation of the SP is not dependent on these inputs, and the variable compensation of the GP

only has a single additive component, which depends on the first-best decisions d∗G and d∗S, while

having no direct dependency on kG and kSF . Consequently, such misestimation of kG and kSF will

hardly impact the decisions being made by providers, and thus, also the health of patients.

The consequences of misestimation will primarily manifest as a wealth transfer between the

principal and the providers, as can be seen in panel (b) of Figure EC.2, which has no bearing on

the ystem efficiency or the health of patients. Overestimation of costs can result in a significant

cost increase to the principal. Underestimation can result in contracts that break the providers’

participation constraint, which will cause them to be rejected.

C.7. Proofs of Mathematical Claims in Appendix C.

Proof of Theorem C.1.1. The proof follows the steps of Propositions 1 and 2 as well as Theorems

3 and 4, with the following key differences. In all situations where Lemma 1 was guaranteeing the

existence of interior optimum and sufficiency of first-order conditions, the same holds in this setting
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as well, but by virtue of Assumption C.1.4. In Proposition 1, the closed-form expressions for the

reimbursement rates of the optimal individual contracts for the GP, given in (EC.13) and (EC.16),

are no longer correct. The correct values follow from inserting (EC.46),(EC.47), and (EC.48) into

(EC.12) and (EC.15). In Proposition 2, if Assumption C.1.1 holds, then φ can no longer be used

in computing the optimal reimbursement rate as φ(dG) is endogenous and not contractible. In that

case, the same result can be obtained by replacing the φ in (EC.23) and all of the following equa-

tions with φ(d∗G). In Theorem 3, the identity ∂
∂dG

EQA(dG, dS) =
(

∂
∂dG

EQP (dG, dS)
)

, does not hold

under Assumption C.1.3; this is what prevents the results of Theorems 3 and 4.1 from completely

replicating in this setting. �

Proof of Prop. C.2.1. Notice that due to lack of knowledge about the bias, the problems NICP,

NGCP, MICP, MGCP remain exactly as they are. However, the outcome of those problems does

not. The true outcome of the contract is given by replacing Qi with Qi + εi in both the principal’s

and the agent’s payout functions. The property that positive bias favors the agents (and negative

favors the principal) then follows from the observation that it is necessary for the optimal contract

to be increasing in realized health. �

The following Lemma is an analogue of Lemma 1 (from Appendix A) for application to the

setting with multiple complications and specialists in Section C.3.

Lemma C.7.1 Let Assumption C.3.1 hold and let αj ≥ 0,∀j ∈ {0, ...,2k + 2}. The function f :

[0,∞)k+1→R, with mapping rule

f(dG,dS) = α0EQP (dG,dS)+α1EQG(dG,dS)−α2kG(dG)−
k∑
i=1

(αi+2kSFi(dSi) +αk+i+2kSV inΛi(dG)) ,

is jointly concave. If max{α0, α1} > 0 and max{αj|j ∈ {2, .., k + 2}} > 0, then f(dG,dS) has an

interior maximum.

Proof of Lemma C.7.1. Denote by EQi
P (dG, dSi) (resp. EQi

G(dG, dSi)) the expected health of all

patients (resp. the GP’s patients) in a model where only the i-th set of complications and the i-th

SP exist. We can then rewrite (EC.49)-(EC.50) as

EQP (dG,dS) =−(k− 1)q0
P +

k∑
i=1

EQi
P (dG, dSi), EQG(dG,dS) =−(k− 1)q0

Pφ+
k∑
i=1

EQi
G(dG, dSi).

Applying Lemma 1, all of the summands above are concave, thus so are EQP (dG,dS) and

EQG(dG,dS). The existence of interior maximum then follows from k′G(0), k′Si(0) = 0,∀i∈ {1, ..., k}.
Proof of Prop. C.3.1. The structure of the proof follows the one of Prop. 1. The first-best

decisions (d∗G,d
∗
S) are solutions of the optimization problem

arg max
(dG,dS)∈[0,∞)k+1

EQP (dG,dS)− kG(dG)−
k∑
i=1

(kSFi(dSi) + kSV inΛi(dG)) . (EC.76)
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As this objective function is jointly concave and has an interior maximum (from Lemma C.7.1),

the first-best decisions are unique solutions to FOCs

k′G(dG) =
∂EQP (dG,dS)

∂dG
−

k∑
i=1

kSV inΛ′i(dG), (EC.77)

k′SF (dSi) =
∂EQP (dG,dS)

∂dSi
,∀i∈ {1, ..., k}. (EC.78)

Part 1: deriving the optimal capitation contract for the GP (vGC). Assume there exists a linear

contract vGC(qP ) = aGC + bGCqP for the GP, under which the first-best can be achieved. Then,

when holding the aforementioned contract, the GP’s best response to SP decisions d∗S needs to be

d∗G, i.e., d∗G ∈ arg maxdG∈[0,∞) E [aGC + bGCQP (dG,d
∗
S)− kG(dG)], which can be replaced by its FOC

(using Lemma C.7.1):

k′G(dG) = bGC
∂EQP (dG,d

∗
S)

∂dG
. (EC.79)

Thus, (dG,dS) = (d∗G,d
∗
S) needs to simultaneously solve (EC.77) and (EC.79). Equating the RHS

of those two equations and solving for bGC yields

bGC = 1−
∑k

i=1 kSV inΛ′i(d
∗
G)

∂
∂dG

EQP (d∗G,d
∗
S)

(EC.80)

as the unique solution. For the contract to achieve FB, it is also necessary that the individual

rationality constraint (EC.55) is binding, thus solving a binding (EC.55) for aGC yields aGC =

VG + kG(d∗G)− bGCEQ(d∗G,d
∗
S) as the unique solution. Setting

rGC =
1

n
−
∑k

i=1 kSV iΛ
′
i(d
∗
G)

∂
∂dG

EQP (d∗G,d
∗
S)
, fGC = kG(d∗G)/n, tGC =EQP (d∗G,d

∗
S)− VG

nrGC
, (EC.81)

ensures that vGC(qP ) = aGC + bGCqP = n (fGC + rGC(qP − tGC)).

Part 2: deriving the optimal per-patient contract for the GP (vGP ). Assume there exists a linear

contract vGP (qG) = aGP + bGPqG for the GP, under which the first-best can be achieved. Then,

when holding the aforementioned contract, d∗G ∈ arg maxdG∈[0,∞) E [aGP + bGPQG(dG,d
∗
S)− kG(dG)],

a maximization problem that can be reduced (using Lemma C.7.1) to its FOC:

k′G(dG) = bGP
∂EQG(dG,d

∗
S)

∂dG
. (EC.82)

Thus, (dG,dS) = (d∗G,d
∗
S) needs to simultaneously solve (EC.77) and (EC.82). Equating the RHS

of those two equations and solving for bGP yields

bGP =

∂
∂dG

EQP (d∗G,d
∗
S)−

∑k

i=1 kSV inΛ′i(d
∗
G)

∂
∂dG

EQG(d∗G,d
∗
S)

(EC.83)
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as the unique solution. For the contract to achieve FB, it is also necessary that the individual

rationality constraint (EC.55) is binding and, therefore, aGP = VG− bGPEQG(d∗G,d
∗
S)+kG(d∗G). Set

rGP =

∂
∂dG

EQP (d∗G,d
∗
S)−

∑k

i=1 kSV inΛ′i(d
∗
G)

φn ∂
∂dG

EQG(d∗G,d
∗
S)

, (EC.84)

fGP = kG(d∗G)/(φn), tGP =EQG(d∗G, d
∗
S)− VG

nφrGP
, (EC.85)

to ensure that vGP (qG) = aGP + bGPqG = nφ (fGP + rGP (qG− tGP )).

Part 3: deriving the optimal capitation contracts for the i-th SP (vSCi). Assume there

exists a linear contract vSCi(qP ) = aSCi + bSCiqP for the i-th SP , under which

the first-best can be achieved. Then, when holding the aforementioned contract, d∗Si ∈

arg maxdSi∈[0,∞) E [aSCi + bSCiQP (d∗G,dS)− kSFi(dSi)−Si(d∗G)kSV i], a maximization problem that

can be reduced (using Lemma C.7.1) to its FOC:

k′SFi(dSi) = bSCi
∂EQP (d∗G,dS)

∂dSi
. (EC.86)

Thus, (dG,dS) = (d∗G,d
∗
S) needs to simultaneously solve (EC.78) and (EC.86). Equating the RHS

of those two equations and solving for bSCi yields bSCi = 1 as the unique solution. For the contract

to achieve FB, it is also necessary that the individual rationality constraint (EC.56) is binding,

from which we get aSCi = VSi + kSV inΛi(d
∗
G) + kSFi(d

∗
Si)− bSCiEQP (d∗G,d

∗
S). Setting

rSCi =
1

n
, fSCi = kSV iΛi(d

∗
G) + kSFi(d

∗
Si)/n, tSCi =EQP (d∗G,d

∗
S)−VSi (EC.87)

ensures that vSCi(qP ) = aSCi + bSCiqP = n (fSCi + rSCi(qP − tSCi)).

Part 4: deriving the optimal per-patient contract for the i-th SP (vSPi). Note EQSi(dG,dS) is

concave in dSi but not in dG. Assume there exists a linear contract vSPi(qS) = aSPi + bSPiqSi for

the i-th SP, under which the first-best can be achieved. Then, when holding the aforementioned

contract, d∗Si ∈ arg maxdSi∈[0,∞) E [aSPi + bSPiQSi(d∗G,dS)− kSFi(dSi)−Si(d∗G)kSV i], a maximization

problem that can be reduced (using Lemma C.7.1) to its FOC:

k′SFi(dSi) = bSPi
∂EQSi(d

∗
G,dS)

∂dSi
. (EC.88)

Thus, (dG,dS) = (d∗G,d
∗
S) needs to simultaneously solve (EC.78) and (EC.88). Equating the RHS

of those two equations and solving for bSPi yields bSPi = 1 as the unique solution. For the contract

to achieve FB, it is also necessary that the individual rationality constraint (EC.56) is binding,

using which yields aSPi = VSi + kSV inΛi(d
∗
G) + kSFi(d

∗
Si)− bSPiEQSi(d

∗
G,d

∗
S) as the unique solution

for aSPi. Setting

rSPi =
1

nΛi(d∗G)
, fSPi = kSV i +

kSFi(d
∗
Si)

nΛi(d∗G)
, tSPi =EQSi(d

∗
G,d

∗
S)−VSi, (EC.89)
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ensures that vSPi(qSi) = aSPi + bSPiqSi = nΛi(d
∗
G) (fSPi + rSPo(qSi− tSPi)).

Part 5: sufficiency. Finally, giving the GP either of the contracts vGC or vGP as given in parts 1

and 2 of this proof, while giving every SP either of the contracts vSCi or vSPi (where i is the SP’s

index), as defined in parts 3 and 4 of this proof, will result in the following. GP’s best response to

the SP choosing d∗S will be to choose d∗G, as shown in parts 1 and 2 of this proof, while the i-th SP’s

best response to the GP choosing d∗G will be to choose d∗Si (and the best response will not depend

on what other specialists are deciding), as shown in parts 3 and 4 of this proof. Thus, (d∗G,d
∗
S) is a

Nash Equilibrium and solves the individual compatibility constraints (EC.53)–(EC.54). The system

efficiency function is maximized for (d∗G,d
∗
S), from the definition of the first-best. The individual

rationality constraints (EC.55)–(EC.56) are binding, as shown in parts 1-4; thus, agents will accept

the contracts, and all the value generated will be appropriated by the principal. Hence all such

contract pairs achieve the first-best and thus solve the NICP in (EC.52)–(EC.56). �

Proof of Prop. C.3.2. Proof follows the structure of Prop. 2. We first derive an expression for

EQA. Denote by M the (random) number of patients who are treated neither by neither the GP

nor any of the SPs. Thus, M is distributed according to Bin(n(1− φ),1−
∑k

i=1 λi) as M is equal

to the number of non-adherent patients (n(1− φ)) who do not develop complications (each has

a 1−
∑k

i=1 λi probability of not developing a complication). Using Wald’s equation gives EM =

n(1−
∑k

i=1 λi)(1−φ), applying which to (EC.49), we obtain

EQA(dG,dS) =EQP (dG,dS)− q0
P (1−

k∑
i=1

λi)(1−φ). (EC.90)

The first-best decisions (d∗G, d
∗
S) are solutions to the optimization problem (EC.76), or equiv-

alently (from Lemma C.7.1) to FOCs (EC.77) and (EC.78). Equilibrium decisions of a unified

provider under group contract v are given by the incentive compatibility constraint (EC.59).

Specifically, for the linear group contracts vAC(qP ) = aAC + qP and vAP (qA) = aAP + qA, the

objective function in the incentive compatibility constraint (EC.59) differs from the system effi-

ciency function–the objective of (EC.76)–only by a constant, thus the set of maximizers is the

same. Consequently, a group under such a contract will make first-best decisions. The optimal

aAC and aAP are then derived from (EC.60) to ensure individual rationality is binding, which

yields aAC = VG + kG(d∗G) +
∑k

i=1 (VSi + kSFi(d
∗
Si) + kSV inΛi(d

∗
G))− EQP (d∗G,d

∗
S) and aAP = VG +

kG(d∗G) +
∑k

i=1 (VSi + kSFi(d
∗
Si) + kSV inΛi(d

∗
G))−EQA(d∗G,d

∗
S). Then, set

rAC =
1

n
, fAC =

kG(d∗G) +
∑k

i=1 (kSFi(d
∗
Si) + kSV inΛi(d

∗
G))

n
, tAC =EQP (d∗G,d

∗
S)−VG−

k∑
i=1

VSi,

rAP =
1

n(1− (1−
∑k

i=1 λi)(1−φ))
, fAP =

kG(d∗G) +
∑k

i=1 (kSFi(d
∗
Si) + kSV inΛi(d

∗
G))

n(1− (1−
∑k

i=1 λi)(1−φ))
,
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tAP =EQA(d∗G,d
∗
S)−VG−

k∑
i=1

VSi,

to ensure that vAC(qP ) = aAC +nqP = n(tAC + rAC(qP − tAC)) and vAP (qA) = aAP +n(1− (1−∑k

i=1 λi)(1−φ))qA = n(1− (1−
∑k

i=1 λi)(1−φ))((tAP + rAP (qP − tAP ))). �

Proof of Theorem C.3.1. Denote the index of the contract’s metric of choice as j ∈ {P,A}. The

induced GP decision d̃G satisfies the FOC of the first incentive compatibility constraint (EC.62):

∂

∂dG
Ev(Qj(d̃G, d̃S)) = (k+ 1)k′G(d̃G).

As the error term is independent of provider decisions, we can express the signal as Qj(d̃G, d̃S) =

EQj(d̃G, d̃S) + εj, where εj is the stochastic error term. Thus, we can rewrite the FOC as

E
[
v′(Qj(d̃G, d̃S))

∂

∂dG

(
EQj(d̃G, d̃S) + εj

)]
= (k+ 1)k′G(d̃G),

E
[
v′(Qj(d̃G, d̃S))

]
=

(k+ 1)k′G(d̃G)
∂
∂dG

EQj(d̃G, d̃S)
. (EC.91)

Doing the same for the other k incentive compatibility constraints, as given by (EC.63), yields

E
[
v′(Qj(d̃G, d̃S))

]
=

(k+ 1)k′SFi(d̃S)
∂

∂dSi
EQj(d̃G, d̃S(dSi))

,∀i∈ {1, .., k}. (EC.92)

If j = P , the performance of this contract can be replicated by a linear contract v†(qP )=̇a+ bqP

by setting b=̇(1 + k)k′G(d̃G)/ ∂
∂dG

EQP (d̃G, d̃S). Using Lemma C.7.1, such v† is going to induce the

unique solution of the very same FOCs, and is thus guaranteed to also induce decisions d̃G, d̃S.

From (EC.90), we have that ∂
∂dG

EQA(dG,dS) = ∂
∂dG

EQP (dG,dS), thus identical contract works

even if i=A. We can also ensure that this is done at the lowest possible cost to the principal by

lowering the fixed pay component a until one of the participation constraints (EC.64)-(EC.65) is

binding. Analogously to proof of Prop. C.3.1, v† can also be expressed as an outcomes-adjusted

capitation contract so that v†(qP ) = n (f + r(qP − t)). �

Proof of Theorem C.3.2.

Part 1. Let v(qP ) be the optimal group contract. Note that we can assume without loss of generality

that its argument is qP , as any group contract that is a function of qA can be expressed using

(EC.90) as a function of qP instead. Denote by v†(qP ) = a+bqP the linear capitation contract that

replicates the performance of v(qP ) (as introduced in the proof of Theorem C.3.1). Then, consider

the situation when the following individual contracts are given to the agents: vG(qP )=̇gG+ b 1
|C|qP

for the GP and vSi(qP )=̇gSi + b 1
|C|qP for the SPs (for the moment, gG and gSi-s are undefined

constants). Observe that under these contracts, the incentive compatibility constraint for each
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provider – as given by (EC.69)-(EC.72) – is the same irrespective of that provider’s membership

in the collusive coalition; thus, this set of contracts will induce the same decisions, no matter

which coalition forms. The incentive compatibility constraints are also equivalent to incentive

compatibility constraints in the group problem (EC.62)-(EC.63), when the group holds v†(qP ),

so this set of individual contracts will induce the same decisions as v†(qP ) (thus also v(qP )).

Because the induced decisions are the same, irrespective of which coalition forms, then so will be

the sum of all agent’s incomes, and consequently, these contracts will be collusion-proof as there is

no way that the same joint income can be split in such a way to make both of the agents better off

when colluding. The constants gG and gSi can be set to make the participation constraint (EC.73)

binding. Finally, with these gG, gSi in mind, the contracts vG and vS induce the same decisions

and outcomes as v, but unlike v, do so in a cost efficient way, completing part 1 of the theorem.

Part 2. The näıve contracts solve the non-collusive incentive compatibility constraints (EC.70),

(EC.72), because those are equivalent to constraints (EC.53)-(EC.54) in the näıve problem. Näıve

participation constraints (EC.55)-(EC.56) imply the MICP participation constraint (EC.73) irre-

spective of whether collusion occurs. Additionally, if the contracts are collusion-proof, then if

(EC.55)-(EC.56) are binding, then so is (EC.73). Finally, constraints (EC.69) and (EC.71) are

redundant for collusion-proof contracts. Thus, collusion-proof solutions of the NICP also solve the

MICP, and the same incentive compatibility constraints induce the same decisions (the first-best

ones). Because the participation constraints are binding, first-best is achieved in the MICP as

well. �

Proof of Prop. C.3.3. For the per-patient contracts, the statement follows immediately from

noticing that the compensation of each specialist does not depend on the actions of another. For

capitation contracts, the statement follows from inserting the optimal capitation contracts given by

(EC.89) into the MICP and noticing the resulting equivalence between the incentive compatibility

constraints (EC.71) and (EC.71). �

Proof of Theorem C.4.1. The proof uses the τ,µ substitution as given in (EC.1)-(EC.2), and

is done in two parts, first for the effects of collusion when the SP holds a capitation contract vSC ,

then for per-patient contract vSP .

Part 1: SP holds vSC. Without collusion, the agents will make first-best decisions (τ ∗, µ∗), which

follows from Prop. 2. By definition of first-best decisions, (τ ∗, µ∗)∈ arg maxτ,µEQP (τ,µ)−kG(τ)−

kSF (µ)−kSV nΛ(τ). Equivalently (τ ∗, µ∗)∈ arg maxτ,µ g(τ,µ; 1,0), with g given by Lemma 3. Apply-

ing Lemma 3 and using its notation for τ̃(α,β) and µ̃(α,β) gives us τ ∗ = τ̃(1,0), µ∗ = µ̃(1,0).

Under coordinated collusion, the agents will choose decisions (τ̃CC , µ̃CC) that maximize

joint profits, as given by (EC.74). If the GP holds the capitation contract vGC as given by
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Prop. 1, the optimization problem given by (EC.74) is equivalent to (τ̃CCC,C , µ̃
CC
C,C) ∈ arg maxτ,µ(1 +

nrGC)EQP (τ,µ)− kG(τ)− kSF (µ)− kSV nΛ(τ) = arg maxτ,µ g(τ,µ; 1 + nrGC ,0), thus by Lemma 3:

τ̃CCC,C = τ̃(1 + nrGC ,0) > τ̃(1,0) = τ ∗ and EQP (τ̃CCC,C , µ̃
CC
C,C) = EQP (τ̃(1 + nrGC ,0), µ̃(1 + nrGC ,0)) >

EQP (τ̃(1,0), µ̃(1,0)) =EQP (τ ∗, µ∗).

Analogously, if the GP holds the per-patient contract vGP as given by Prop. 1, the optimization

problem given by (EC.74) is equivalent to (τ̃CCP,C , µ̃
CC
P,C)∈ arg maxτ,µEQP (τ,µ) + rGPnφEQG(τ,µ)−

kG(τ)− kSF (µ)− kSV nΛ(τ) = arg maxτ,µ g(τ,µ; 1, rGPφn), thus by Lemma 3: τ̃CCP,C = τ̃(1, rGPφn)>

τ̃(1,0) = τ ∗ and EQP (τ̃CCP,C , µ̃
CC
P,C) = EQP (τ̃(1, rGPφn), µ̃(1, rGPφn)) > EQP (τ̃(1,0), µ̃(1,0)) =

EQP (τ ∗, µ∗), which completes the proof for parts (ii) and (iii) of the theorem.

Part (i) of the theorem follows from λ(τ̃CCP,C)< λ(τ ∗) and λ(τ̃CCC,C)< λ(τ ∗) as (τ ∗, µ∗) is the sole

maximizer of system efficiency function u (by Lemma 1). Likewise, agents’ joint profit is higher

under collusion because the decisions under collusion are the sole maximizers of the joint profit func-

tion as shown above, showing part (iv) of the theorem. Let (τ̃CC , µ̃CC)∈ {(τ̃CCC,C , µ̃CCC,C), (τ̃CCP,C , µ̃
CC
P,C)}.

Because u(τ̃CC , µ̃CC)<u(τ ∗, µ∗) and EQP (τ̃CC , µ̃CC)>EQP (τ ∗, µ∗), from (5), we have

E
[
kG(τ̃CC) + kSF (µ̃CC) + kSV S(τ̃CC)

]
>E [kG(τ ∗) + kSF (µ∗) + kSV S(τ ∗)] ,

that is: the agents’ total costs go up under collusion. Because the agents’ joint profit increases under

collusion despite the increased cost, it can only be due to contract payouts (and thus government

expenditure) being higher under collusion, showing part (v) of the theorem.

Part 2: SP holds vSP . We show parts of the theorem (vi)-(x) for the case when the GP holds

a capitation contract (k = C); the case when the GP holds a per-patient contract (k = P ) is

analogous.

From (EC.74): if the GP holds contract vGC , then agents engaged in coordinated collusion will

make decisions τ̃CCC,P ,µ̃CCC,P , which solve

arg max
(τ,µ)∈[1/λ,∞)×[µ,∞)

E [vGC(QP (τ,µ)) + vSP (QS(τ,µ))− kG(τ)− kSF (µ)−S(τ)kSV ] . (EC.93)

Using (4), (7), the expressions for vGC , vSP in Prop. 1, and the notation of Prop. 1, the objective

function above can be decomposed:(
(1 + bGC)EQP (τ,µ)− kG(τ)− kSF (µ)− kSV nΛ(τ)

)
+ aGC + aSP + q0P

φ

τ
+ q0P

1−φ− τ
τ

. (EC.94)

The term in brackets of (EC.94) is equal to g(τ,µ,1+bGC ,0) as defined in Lemma 3, a jointly con-

cave function with an interior maximum (applying Lemma 1), which is maximized at (τ̃CCC,C , µ̃
CC
C,C),

as shown in Part 1 of this proof. The term
φq0P
τ

is a univariate, decreasing and convex function

of τ , while the remaining terms in (EC.94) are constants. Consequently, as the objective function

is a sum of jointly concave and univariate decreasing convex functions, it either has an inte-

rior maximum with τ̃CCC,P ∈ (τ , τ̃CCC,C) or a corner maximum, in which case τ̃CCC,P = τ . In either case
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τ̃CCC,P < τ̃CCC,C , showing part (viii) of the theorem. By Topkis (1978), we have µ̃CCC,P > µ̃CCC,C , showing

part (ix). To show part (vi), it is sufficient to demonstrate that (τ̃CCC,P , µ̃
CC
C,P ) 6= (τ ∗, µ∗) as (τ ∗, µ∗)

is the sole maximizer of system efficiency function u (by Lemma 1). Assume τCCC,P = τ ∗, then

from (EC.94), we have µ̃CCC,P ∈ arg maxµ(1 +nrGC)EQP (τ ∗, µ)− kSF (µ), whereas from (5), we have

µ∗ ∈ arg maxµEQP (τ ∗, µ)− kSF (µ). Applying Lemma 3 and using its notation gives µ̃CCC,P = µ̃(1 +

nrGC ,0)> µ̃(1,0) = µ∗, thus (τ̃CCC,P , µ̃
CC
C,P ) 6= (τ ∗, µ∗). Note from (20) and (21) that (EC.93) is equiva-

lent to arg max(τ,µ)∈[1/λ,∞)×[µ,∞) πG(vGC , τ,µ)+πS(vSP , τ,µ). Then, part (vii) of the theorem follows

from the fact that (τ̃CCC,P , µ̃
CC
C,P ) maximizes (EC.93) but (τ ∗, µ∗) does not. Applying the function µ̂ as

defined in Lemma 3 gives us: µ̃CCC,P = µ̂(τ̃CCC,P ,1 +nrGC ,0) and µ̃CCC,C = µ̂(τ̃CCC,C ,1 +nrGC ,0). Part (x)

of the theorem then follows from τ̃CCC,C > τ̃
CC
C,P and EQP (τ, µ̂(τ,1 +nrGC ,0)) ↑ τ (by Lemma 3). �

Proof of Proposition C.5.1. Here, we find it useful to express waiting times and health as

functions of inter-arrival time τ=̇1/(nΛ(dG)) = φλ̄/(1 +dG) + (1−φ)λ̄ and service rate µ=̇µ(dG) =

µ+ θdS instead of dG and dS. Then, using the heavy traffic approximation of Kingman (1961), it

follows that the expected waiting time in the queue is

EW (τ,µ)≈ cv2
A + cv2

S

2

1

µτ − 1

1

µ
,

from where the Hessian of EW (τ,µ) is

H(EW (τ,µ)) =


µ(cv2

A + cv2
S)

(µτ − 1)3

τ(cv2
A + cv2

S)

(µτ − 1)3

τ(cv2
A + cv2

S)

(µτ − 1)3

(3µτ(µτ − 1) + 1)(cv2
A + cv2

S)

µ3(µτ − 1)3

 .
Here we can use the steady state condition (µτ − 1> 0) to see that the leading principal minor is

positive (H1,1(EW (τ,µ))> 0) and that |H(EW (τ,µ))|= (cv2
A + cv2

S)2(2µτ − 1)/(µ2(µτ − 1)5)> 0,

thus the Hessian is positive definite, and hence, EW (τ,µ) is jointly convex. Thus, noting that we

need to add the expected service time to the waiting time to arrive at the sojourn time, we can

express the expected average population health as

EQP (τ,µ) = q0
P

(
1− a

nτ
− b

nτ
EW (τ,µ)− b

µnτ

)
. (EC.95)

Finally, the expression for EQP (dG, dS) in (EC.75) follows from (EC.95) by revering the τ,µ sub-

stitution and the concavity of EQP (dG, dS) follows from the rules for the preservation of concavity

under compositions (Boyd and Vandenberghe 2004, p. 86). �
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