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In practice, principal-agent relationships often involve opportunities for co-production, potentially giving

rise to different operating modes: single execution, delegated execution, or collaborative execution. We study

the genesis of teams in this context. Specifically, we consider a principal who initiates a new project (e.g., an

entrepreneurial venture) and contemplates whether to partner with an agent, and if so, what share of reward

to offer. We find that principals tend to partner too little; and when they do, they tend to contribute too little.

Hence, the delegated execution operating mode implicitly assumed by canonical principal-agent models is

observed rather rarely in our setting; and it is not because workers collaborate more, but rather because

principals work on their own too much. We also find that the co-productive nature of the relationship may

hurt not only the principal, but also the total value. Specifically, the principal may need to offer the agent

a higher share than in the canonical principal-agent model because of the co-productive nature of the work.

Also, the principal may benefit from having a high cost to avoid being involved in co-production. Lastly, the

co-productive nature of the work may result in lower total value because the principal completely disregards

the agent’s payoff when choosing to work alone. To improve efficiency, we recommend preventing principals

from committing to an effort level before the agent. Higher surplus can also be achieved by mandating the

principal to engage the agent and pay them either all or half of the equity.

Key words : principal-agent, co-production, teams, double moral hazard, contracting, delegation,

entrepreneurship

History : June 29, 2022.

1. Introduction

Many entrepreneurs and professionals are known to under-delegate, potentially limiting the growth

of their venture (Maister 1993, White and White 2011, Yoo et al. 2016). As a notable counterex-

ample, Larry Page, after working alone on a web crawler project called BackRub, approached

Sergei Brin and offered him to join in and scale up the idea, which led to the creation of Google.

Would Google have been so successful or even been created if Page had worked alone or if he had

completely delegated the execution of the idea to Brin?

1
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We study the genesis of teams within a co-productive Principal-Agent (PA) context. We consider

a principal (“she”) who initiates a new project (e.g., an entrepreneurial venture) and contemplates

whether to partner with an agent (“he”) and, if so, how to share the returns. After the team

formation decision is made, the workers simultaneously and non-cooperatively choose how much

effort to put in, resulting in one of the following three operating modes: Single Execution (SE) if

the principal works alone; Delegated Execution (DE) if the agent works alone; and Collaborative

Execution (CE) if they both contribute to the project. This single-task co-productive setting is a

stylized representation of the dynamics that arise in many entrepreneurial ventures (Kamm and

Nurick 1993), co-productive services (Roels 2014, Bellos and Kavadias 2019), innovation (Kavadias

and Sommer 2009, Singh and Fleming 2010, Chan et al. 2021), self-managed teams (Hamel 2011,

Lee and Edmondson 2017), academic research, and patent development, among others. We adopt a

parametric co-production function, which allows efforts to be complementary or substitutable. We

also assume limited liability—and thus no bidirectional fee-transfer payments—and no uncertainty

that could lead to information asymmetry or recourse decisions.

We seek to assess how the equilibrium operating modes differ from the First-Best (FB), which we

take as a proxy for assessing the long-term sustainability of the venture, e.g., from an external stake-

holder’s (for example, an investor’s) perspective. The canonical PA model ignores co-productive

opportunities and implicitly assumes that an agent has been hired to proceed to DE (Holmström

1979). Conversely, the canonical team production setting assumes that a team has been formed to

proceed to CE (Holmström 1982). In contrast, we assume here that the principal may not want to

partner with an agent in the first place and thus operate under SE; but if she does, she may want

to contribute to the execution through CE or abstain from contributing through DE. We seek to

answer the following questions:

• What operating modes emerge in equilibrium and how do they differ from the FB ones?

• Does the co-productive nature of the relationship always result in value creation, relative to

the canonical PA setting? Or could it result in lower value?

• What initiatives could improve efficiency, that is, increase the total payoff? Shall we let the

principal commit to her effort before the agent chooses his? Should an organization deprive

the principal of the decision right to form a team and set incentives?

We obtain the following results. First, principals tend to partner too little with agents. But when

they do, they tend to delegate too much the project execution to them, i.e., to contribute less

than what they should. We thus develop an economic model explaining why professionals and

entrepreneurs tend to under-delegate, but also offer a more nuanced perspective. Delegation is a

two-step process: It involves, first, partnering with a collaborator and, second, taking a passive

role in the project execution. We show that principals do not do enough of the former, but they
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do too much of the latter. Whereas most of the PA literature has looked for ways to control the

agent, we find that a more fundamental problem is to control the principal to lead her to partner

and contribute whenever necessary.

Second, we find that co-production is a double-edged sword, formalizing a conceptualization

of the dual character of value creation/destruction (Echeverri and Sk̊alén 2021). On one hand,

co-production may enhance value creation by giving access to multiple productive resources. Specif-

ically, relative to the canonical PA setting, not only is the agent available to produce, but so is

also the principal. On the other hand, it may impede value creation due to the workers’ strategic

interactions. Specifically, the co-productive nature of the work gives the principal the opportunity

to work alone, even though it might be more efficient if she partnered with the agent. Because the

principal cares only about her own payoff, she ignores the fact that the agent’s payoff—and thus,

the total value—discontinuously drops when switching from CE or DE to SE. Also, a principal

may benefit from having a higher cost to more easily convince the agent to put in more effort. This

is reminiscent of the “lean and hungry” strategy in industrial organization, according to which one

firm underinvests in cost reduction to accommodate entry (Fudenberg and Tirole 1984). Moreover,

the prospect of co-production may lead the principal to offer the agent a higher share of output

than she would do without co-production (as in the canonical PA model) so that the agent does

not expect her to contribute.

Third, we find that it is in general not beneficial to let the principal commit to her effort

level before the agent chooses his effort, even though the principal always prefers to do so (von

Stengel 2010). In fact, it may even result in further value loss if efforts are complementary. What

helps improve efficiency is to deprive the principal of her decision right to choose the mode of

production and set incentives. For instance, an external stakeholder could require an entrepreneur

to seek a partner1 and share equity. In this case, the reward-sharing problem has a very simple

solution: Allocate 100% of the equity to the principal under SE, 100% to the agent under DE, and

50%-50% to both workers under CE. However, this solution remains insufficient for non-standard

projects that require very complementary efforts. In this case, we recommend adopting a different

accounting mechanism, based on full and not fractional counting, as is sometimes done when

assessing researchers’ publication records (Korytkowski and Kulczycki 2019).

2. Literature Review

We contribute to three interconnected streams of literature: the literature on PA models, the

literature on task allocation, and the literature on co-production.

1 As a somewhat related example, the Twitter (now X) users voted in 2022 to request Elon Musk to appoint a CEO
to second him (https://www.npr.org/2022/12/19/1144071661/twitter-musk-poll-ceo).
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Principal-Agent Models. The PA literature typically assumes a default organizational structure

and execution mode. For instance, the canonical PA model (Holmström 1979) assumes that an

agent has been hired to participate in DE; and the canonical team production models (Holmström

1982, Kim and Wang 1998) assume that both the agent and the principal actively collaborate

in CE. These models have been enhanced to encompass multiple tasks (Holmström and Milgrom

1991), providing team members with opportunities for knowledge sharing and helping each other

(Siemsen et al. 2007, Crama et al. 2019), for the project to be executed over multiple periods

(Bonatti and Hörner 2011, Georgiadis et al. 2014, Georgiadis 2014, Rahmani et al. 2017), and for

sequential decision making (Winter 2004). Sticking to the one-task, full-information setting with

simultaneous and sequential choices of effort, we take a step back from these models and investigate

the fundamental issue of team genesis, allowing the principal to work alone (SE) or partner with

an agent, in which case the operating mode can be either DE or CE.

Task Allocation. Like this study, some models in the literature investigate the choice of operating

mode; however, this choice is often restricted to a dichotomous selection between SE and DE. In

particular, the literature on property rights (Grossman and Hart 1986) studies who, between the

principal and the agent, should own a key productive asset. Similarly, the literature on delegation

analyzes who should make a critical decision about a project; see, e.g., Aghion and Tirole (1997),

Prendergast (2002), Bester and Krähmer (2008), Wu et al. (2008), Hutchison-Krupat and Kavadias

(2015). Relatedly, the task allocation literature (Itoh 2001, Hagiu and Wright 2019) investigates

how to allocate a subset of tasks between a principal and an agent. This latter literature typically

assumes a reward-sharing contract, similar to us; it also assumes that at least one task needs to

be allocated to the agent so that the principal never executes the project alone, in contrast to our

setting. More fundamentally, all these streams of literature assume some form of ex-ante allocation

of property or decision rights, whereas we assume here that workers are free to exert effort or

not. Thus, execution modes cannot be decided a priori but instead must emerge in equilibrium;

in particular, the principal may not be able to enforce DE if the agent expects her to collaborate.

Second, these streams of literature generally ignore the possibility for the principal and the agent

to collaborate on a task, i.e., the task allocation is “either-or” and not “and.”

Co-Production. Besides the models of team production (Holmström 1982, Kim and Wang 1998),

co-production has recently been conceptualized within the service-dominant logic (Vargo and Lusch

2004). The fact that the service literature was until recently blind to the fact that customers may be

more than simple service recipients is consistent with our result that principals (service providers)

tend to not engage enough in CE. Lately, this literature has also introduced the concept of value

co-destruction (Echeverri and Sk̊alén 2021). Similarly, we find that the nature of co-production is

in general value-enhancing, but that may sometimes impede the value-creation process.
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The trade-off between solo or collaborative work arises in numerous other applications such as:

entrepreneurship, academic research, service co-production, innovation, team leadership (Rahmani

et al. 2018), franchising (Bhattacharyya and Lafontaine 1995), and joint ventures (Sampson 2007)

among others. We briefly review some of these streams of application.

In entrepreneurship, a lead entrepreneur must decide to either pursue her venture alone or

seek partners to help them supply resources, such as funds (Kamm and Nurick 1993) or simply

time (Yoo et al. 2016) to boost the growth of the venture at the cost of an equity share (Amit

et al. 1990), potentially leading to double moral hazard (Wang and Zhou 2004). In many ventures

and partnerships, an equal equity share is adopted (Bartling and von Siemens 2010, Farrell and

Scotchmer 1988), as we find it is optimal to do under CE. Whether solo founders are more likely

to succeed than multiple founders has been a topic of debate (Greenberg and Mollick 2018).

In co-productive service design, Karmarkar and Pitbladdo (1995) and Bellos and Kavadias (2019,

2021), utilizing a task-allocation model similar to Itoh (2001), investigate whether a service provider

or its customers should perform a task. Considering a single-task model with a Constant Elasticity

of Substitution (CES) co-production function, Roels (2014) characterizes the optimal execution

modes from a system-wide perspective. Using an alternate model of co-production, we contribute to

this service design literature by characterizing the equilibrium execution modes when the choices of

effort and the setting of incentives are decentralized. We find that, while offering opportunities for

co-production is always beneficial under the FB (since more productive resources are available), it

is not necessarily the case under decentralized execution due to the workers’ strategic interactions.

The literature on innovation and creativity has studied, from multiple angles, whether break-

through innovations are more likely to emerge from teamwork, as argued by Wuchty et al. (2007),

Singh and Fleming (2010), and Jones (2021) among others, than from working alone, as argued by

Chan et al. (2021). In particular, Taylor and Greve (2006) find empirically that teams that span

multiple domains of knowledge produce innovations that have more variance in value, but that

individuals are more effective at combining diverse knowledge. Kavadias and Sommer (2009) find

through a numerical study that teams are better suited to solve cross-functional problems whereas

individuals are better suited for specialized problems. Chan et al. (2021) find that individuals are

more likely to work alone than in a team for inventions that are hardly decomposable or more

integral. Ahmadpoor and Jones (2019) report that team output tends toward the lower-impact

member, which is explicable by the substantial complementarity in the tasks each team member

performs. Our analytical results are consistent with these studies: We find that CE is optimal for

projects that involve complementary efforts (e.g., non-standard projects requiring multiple indi-

viduals with different expertise) but that the execution should be carried alone by an individual

(SE or DE) otherwise (e.g., standard projects, which can be efficaciously executed by one person).
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Figure 1 Timeline.

Principal 
decides to 
partner with 
Agent/not

Principal 
decides  share 
to offer Agent

Principal and 
Agent decide 
how much effort 
to exert (CE, DE)

Principal 
decides how 
much effort to 
exert (SE)

Team formation stage Execution stage

Partner

Work 
solo

Note. SE refers to Solo Execution, DE to Delegated Execution, and CE to Collaborative Execution.

3. The Model

We consider a principal who initiates a new project (e.g., an entrepreneurial venture) and is con-

sidering whether to partner with an agent, and if so, how to reward him to induce his effort.

In a team formation stage, the principal chooses to either work solo, in which case she captures

the whole value, or to partner with an agent, in which case she also needs to decide how much

output to share. Then, in an execution stage, efforts are exerted—only by the principal if she

decided to work solo, and potentially by both if they teamed up and are incentivized to do so. The

timeline is depicted in Figure 1.

3.1. Model Components

Let x and y denote the principal’s and the agent’s percentage of time commitment (lying between

0% and 100%) to the project—or effort. Assuming linear costs of effort, let cx > 1 and cy > 1 be

their respective unit costs of effort.

The value of the project is increasing in their joint effort E(x, y), defined as

E(x, y) = kx+ ky+ (1− 2k)xy, (1)

where k ∈ [0,1]. In this functional form, commonly used in the decision-analysis literature (Keeney

and Raiffa 1976, Section 5.4.1), the joint effort is symmetric in x and y, strictly increasing in both

arguments, with E(0,0) = 0 and E(1,1) = 1. In particular, E(x, y) = xy when k = 0, E(x, y) =

(x+ y)/2 when k= 1/2, and E(x, y) = x+ y−xy when k= 1.

Because the cross-derivative ∂2E
∂x∂y

is negative if k > 1/2, zero when k= 1/2, and positive if k < 1/2,

efforts are substitutes when k > 1/2, independent when k = 1/2, and complements when k < 1/2.

Accordingly, we refer to k as the degree of effort complementarity (on an inverted scale). For any

0≤ x, y ≤ 1, E(x, y) is increasing in k; hence, efforts become less efficacious when they are more
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complementary. Typically, standard projects, which can be efficaciously executed by one person

only, are associated with a low value of k, in contrast to less standard projects (Roels 2014).

We model the value of the project—or output—as a logarithmic function of the joint effort, i.e.,

V (E) = V0 + ln(E), (2)

with the base value V0 > 0. For simplicity, we do not consider participation constraints, which turn

out to be immaterial if V0 is large enough.

By default, the output is captured by the principal. If she chooses to partner with an agent,

she needs to share the output to induce his effort. Such equity contracts are indeed very common

in new ventures.2 In an intra-organizational setting, output sharing can take the form of a formal

project affiliation (e.g., patent co-authorship, movie credits) with more or less weight assigned

depending on its prominence or recognition (e.g., first vs. second author). For simplicity, we consider

a continuous output share, as is the case for patents (Kaptay 2020). Specifically, we denote by

α ∈ [0,1] the principal’s residual share of output; when α = 1, the principal pursues the project

alone. Accordingly, the principal’s team formation decision reduces to her choice of output share,

depending on whether α= 1 (work solo) or α< 1 (partner with an agent).

We assume no uncertainty. Uncertainty in output can be incorporated into our model as long as it

keeps the analysis tractable (e.g., a multiplicative noise in (1) or an additive noise in (2)). We leave

for future investigation the modeling of uncertainty that could lead to asymmetric information or

trigger recourse decisions.

3.2. Game Formulation

We present the game in reverse order of its timing. First, we consider the execution stage, after

the output share has been offered. For a given α, we assume that both the agent and the principal

choose their effort simultaneously and non-cooperatively:

x∗(α) ∈ arg max
x∈[0,1]

αV (E(x, y∗(α)))− cxx, (3)

y∗(α) ∈ arg max
y∈[0,1]

(1−α)V (E(x∗(α), y))− cyy. (4)

If the principal chooses to work solo in the team formation stage of the game, she sets α= 1; then,

the agent does not contribute, i.e., y∗(1) = 0. Hence, (3)-(4) fully describes the project execution,

irrespective of whether the principal chooses to form a team or not.

Because the workers’ payoffs are concave and their action sets are convex and bounded,

there always exists a pure-strategy Nash equilibrium. Moreover, the game is submodular since

2 Equity contracts with fixed-fee transfers turn out to be second-best optimal (Bhattacharyya and Lafontaine 1995).
However, we assume limited liability, which prevents bidirectional fixed-fee transfers.
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∂2V (E(x,y))

∂x∂y
=−k2/E2 < 0. That is, efforts are strategic substitutes (even if the joint effort (1) involves

complementary efforts, i.e., if k < 1/2).

In principle, there may be multiple equilibria. Let Ψ(α) be the set of pure-strategy Nash equi-

libria, i.e.,

Ψ(α) = {(x∗(α), y∗(α)) s.t. (3)-(4) holds}.

In the case of multiple equilibria, we assume that, consistent with the hierarchical nature of the

relationship, the principal has the decision right to select the one that gives her the highest payoff

Π(α),3 in which

Π(α)
.
= max

(x∗(α),y∗(α))∈Ψ(α)
αV (E(x∗(α), y∗(α))− cxx∗(α). (5)

Next, we consider the team formation stage of the game. Anticipating the equilibrium effort

levels, the principal sets her share of output α∗ to maximize her payoff by solving:

max
α∈[0,1]

Π(α). (6)

Whenever the principal earns the same payoff working alone or with the agent, we assume that

the tie is broken in favor of working alone.

3.3. Operating Modes

For any α, the project operates under one of the following operating modes:

• Single Execution (SE) when the principal works alone, i.e., x∗(α) > 0 and y∗(α) = 0, and

therefore no team is formed; this arises, in particular, when α= 1;

• Delegated Execution (DE) when the principal fully delegates the project execution to the

agent, i.e., x∗(α) = 0 and y∗(α)> 0, as happens in the canonical PA model (Holmström 1979);

this arises, in particular, when α= 0;

• Collaborative Execution (CE) when the principal teams up with the agent and they both con-

tribute to its execution, i.e., x∗(α)> 0 and y∗(α)> 0, as happens in canonical team production

models (Holmström 1982).

3.4. First-Best Benchmark

As a benchmark, we consider the first-best (FB) solution, which optimizes the choice of effort to

maximize the total payoff, i.e., the sum of the principal’s and the agent’s payoffs:

(xFB, yFB) = arg max
x∈[0,1],y∈[0,1]

V (E(x, y))− cxx− cyy. (7)

3 Other equilibrium selection rules are of course possible. The region where multiple equilibria arise turns out to be
relatively thin (see Figure 3), so our main insights are robust to the choice of rule.
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Figure 2 FB operating modes.

Note. Here, V0 = 7 and cy = 3. A low value of k corresponds to a high degree of effort complementarity and vice

versa.

The next proposition characterizes the FB operating modes. Its proof, like all other proofs and

supporting results, appears in the electronic companion. To facilitate the exposition, define the

following solo efforts: x̄S
.
= 1/cx and ȳS

.
= 1/cy; and the following duo efforts when k 6= 1/2:

x̄D
.
=

(1− 2k)− 2kcx +
√

(1− 2k)2 + 4k2cxcy
2(1− 2k)cx

, ȳD
.
=

(1− 2k)− 2kcy +
√

(1− 2k)2 + 4k2cxcy
2(1− 2k)cy

, (8)

and when k= 1/2, x̄D
.
= 1

2cx
and ȳD

.
= 1

2cy
.

Proposition 1. The FB operating modes are:

• CE with xFB = x̄D ∈ (0,1) and yFB = ȳD ∈ (0,1) if either 1− 2k > k |cx− cy| or k = 1/2 and

cx = cy;

• DE with xFB = 0 and yFB = ȳS if k (cx− cy)≥max{0,1− 2k};

• SE with xFB = x̄S and yFB = 0 if k (cy − cx)≥max{0,1− 2k}.

Figure 2 depicts the FB operating modes as a function of the degree of effort complementarity

k and the principal’s unit cost of effort cx. Consistent with the empirical research on innovation

and analytical research on service co-production reviewed in §2, CE is optimal when efforts are

complementary (i.e., non-standard projects requiring multiple individuals) and when the principal

and the agent have comparable costs of effort; moreover, the more complementary the efforts, the

less critical it is that their costs of effort are similar. Otherwise, the project should be executed by

only one person, and the choice between SE and DE is entirely determined by the workers’ relative

efficiencies (costs of effort). We next analyze how the equilibrium operating modes depart from the

FB when the team formation decision is made by the principal and the execution is decentralized.
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4. Analysis

We solve the game by backward induction, considering first the execution stage and then the team

formation stage.

4.1. Effort Choice Game

To characterize the equilibrium efforts, define the following solo efforts,

xS(α)
.
=

α

cx
, (9)

yS(α)
.
=

1−α
cy

, (10)

which respectively correspond to the principal’s (resp., agent’s) optimal effort solving (3) (resp.,

(4)) if the agent (resp., principal) is not putting in any effort, i.e., y = 0 (resp., x = 0). Since

α∈ [0,1] and cx, cy > 1, 0≤ xS(α), yS(α)≤ 1. Note that xS(1) = x̄S and yS(0) = ȳS.

Define also the following duo efforts when k 6= 1/2:

xD(α)
.
=

1

2
xS(α)− k

1− 2k
+

1

2(1− 2k)

√
xS(α)

yS(α)
(xS(α)yS(α)(1− 2k)2 + 4k2), (11)

yD(α)
.
=

1

2
yS(α)− k

1− 2k
+

1

2(1− 2k)

√
yS(α)

xS(α)
(xS(α)yS(α)(1− 2k)2 + 4k2), (12)

and when k = 1/2, xD(α)
.
= 1

2
xS(α) and yD(α)

.
= 1

2
yS(α). Note that (11)-(12) has the same func-

tional form as (8) after replacing xS(α) with x̄S and yS(α) with ȳS.

The next lemma characterizes the equilibrium operating modes for any α, keeping in mind that,

when multiple equilibria exist, the principal selects the one that yields her the highest payoff.

Lemma 1. There exist functions α(k) and α(k), with α′(k)> 0 and α′(k)< 0 and α(k)≤ α(k)

if and only if k≤ 1/2, such that, for any α, the equilibrium operating mode solving (5) is:

• DE with x∗(α) = 0 and y∗(α) = yS(α) if α≤ α(k);

• CE with x∗(α) = xD(α) and y∗(α) = yD(α) if α(k)<α<α(k);

• SE with x∗(α) = xS(α) and y∗(α) = 0 when α≥ α(k) and α>α(k);

The lemma is illustrated in Figure 3. As k increases, the equilibrium operating mode transitions

from CE to either DE or SE since collaboration is less valuable when efforts are more substitutable;

and when α increases, it transitions from DE to potentially CE, and then finally to SE. When

k≥ 1/2, there is a region (depicted with stripes) where all three operating modes are equilibria; in

this case, the principal’s payoff is higher under DE (Lemma EC.3), which will then be the selected

equilibrium in (5). Outside that region, the equilibrium is unique. Within each operating mode,

the characterization of the equilibrium efforts mirrors that of the FB efforts, but with less intensity

since, when α∈ (0,1), xS(α)< x̄S and yS(α)< ȳS, consistent with Holmström (1982).
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Figure 3 Equilibrium operating modes.

Note. Here, V0 = 7, cx = 9, and cy = 3. In the striped region, all three operating modes are equilibria, out of which

the principal selects DE. The function α(k) in Lemma 1 is the increasing upper boundary of the DE region (including

the striped region). The function α(k) is the decreasing boundary between the CE and SE regions when k≤ 1/2 and

the decreasing lower boundary of the striped region when k > 1/2. A low value of k corresponds to a high degree of

effort complementarity and vice versa.

4.2. Team Formation

We next characterize the optimal output share α∗, solving (6). After plugging the equilibrium

efforts into the principal’s payoff function, we can express the principal’s payoff under CE, DE,

and SE as follows:

ΠCE(α)
.
= αV (E(xD(α), yD(α)))− cxxD(α), (13)

ΠDE(α)
.
= αV (E(0, yS(α))), (14)

ΠSE(α)
.
= αV (E(xS(α),0))− cxxS(α). (15)

Using Lemma 1 to determine when each operating mode arises in equilibrium and removing, for

simplicity, the argument from α(k) and α(k), we can then express the principal’s problem (6) as:

α∗ = arg max1[α∈[0,α]]ΠDE(α) +1[α∈(α,α)]ΠCE(α) +1[α∈[α,1]∩(α,1]]ΠSE(α), (16)

in which 1[X] is the indicator function, equal to 1 if X is true, and zero otherwise. Although some

constraint sets are not closed, the maximization problem is well defined (Lemma EC.4).

When V0 is sufficiently large, both workers earn nonnegative profit in equilibrium (and thus,

modeling their participation constraints is irrelevant) and α∗ > 1/2 (see Lemma EC.6). That is,

the principal always seeks to capture at least 50% of the output. While it is efficient (from a FB

perspective) for the principal to capture a large share under SE (indeed, x∗(α∗) = x∗(1) = x̄S =

xFB), it is clearly detrimental under DE (since y∗(α∗)≤ yS(0) = ȳS = yFB). It is also detrimental
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Figure 4 Equilibrium operating modes, optimal output share α∗, and equilibrium efforts.

Note. Here, V0 = 7, cx = 9, and cy = 3. A low value of k corresponds to a high degree of effort complementarity and

vice versa.

under CE since, as we will show in §5.2, the total payoff is maximized under CE when the output

is evenly shared with the agent, i.e., when α= 1/2.

Equation (16) indicates that, for any given operating mode, the principal is constrained in her

optimizing the output share. Although it does not really matter for SE, since it is optimal in that

case for the principal to set α= 1, it may constrain her under DE or CE. In particular, in canonical

PA models, which ignore opportunities for co-production and implicitly assume DE, the principal

is usually free to optimize her output share on [0,1], while here she is restricted to optimize it on

[0, α]. In fact, α may happen to be a local maximum of Π(α). Hence, if arg max[0,1] ΠDE(α)> α,

a canonical PA model may prescribe giving the principal a higher share of output under DE than

what is truly feasible under co-production. The reason for this infeasibility is that the agent does

not exert yS(α) when α> α (as would be assumed in a canonical PA model), because he expects

the principal to contribute to the project execution (accordingly, the agent exerts yD(α)).

This reveals a potential flip side to co-production: While it is in principle beneficial to have access

to more operating modes (CE, DE, SE) than just DE, as more value can be created with more

productive resources, the agent’s anticipation of CE also constrains the principal’s value capture

optimization under DE. That is, under DE, a principal may be worse off because there exists an

opportunity for co-production. To highlight when this happens, we distinguish two cases under

the DE operating mode, depending on whether the principal’s optimization is unconstrained, i.e.,

α∗ <α, which we denote as DEU, or constrained, i.e., α∗ = α, which we denote as DEC.

4.3. Equilibrium Operating Modes

We now characterize the equilibrium operating modes. To convey some preliminary intuition, con-

sider Figure 4, which superimposes on Figure 3 the optimal output share α∗, solving (16) as a
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function k. The regions traversed by α∗ indicate the equilibrium operating modes at α∗ as a func-

tion of k. Specifically, as k increases from 0 to 1, the equilibrium operating mode starts in CE,

then switches to DEC (since it lies at the boundary between DE and CE), and finally jumps to SE.

The equilibrium efforts, depicted in blue using the right vertical scale, are both positive when k

is small (under CE). In this region, the agent’s effort is convex in k, whereas the principal’s effort

is decreasing in k. What explains this behavior is that it is optimal for the principal to give more

output share to the agent as k increases within this region (that is, α∗ decreases in k), while workers

become more efficacious as k increases (i.e., the joint effort function E(x, y), for any given (x, y),

increases in k, as their efforts become less complementary). These two drivers are aligned to induce

the principal to exert less effort as k increases, but are conflicting for the agent, resulting in a

non-monotone behavior of his effort with respect to k. Once the principal’s effort hits zero, it stays

at zero as k keeps increasing, which corresponds to the DEC operating mode. Within that region,

the agent’s equilibrium effort, equal to yS(α∗), is decreasing in k because α∗ = α(k) is increasing

in k. Finally, once the equilibrium operating mode transitions to SE, the agent’s equilibrium effort

drops to zero, whereas the principal’s equilibrium effort jumps to xS(1), which is independent of k

and thus remains constant as k keeps increasing until it reaches 1.

As k increases, the transition from CE to DE or SE is consistent with the FB solution (Figure 2).

The next transition, from DE to SE, contrasts with the FB solution since the choice between DE

and SE is driven not only by the workers’ relative costs (as in the FB solution) but also by their

degree of effort complementarity (unlike the FB solution). This indicates that the decentralization

of the decision making (in both the team formation decision and the project execution) leads to

not only less intense efforts than the FB efforts (Lemma 1), but also different trade-offs in the

choice of operating modes.

Moving beyond this particular example, the next proposition characterizes the equilibrium oper-

ating modes in terms of k and cx. The proposition is illustrated in Figure 5.

Proposition 2. There exist thresholds 1 ≤ c1 ≤ c2 ≤ c3 <∞ and continuously differentiable

functions k1(cx) > 0 and k3(cx) > k2(cx) > 0 with k′1(cx) ≥ 0, k′2(cx) ≤ 0, and k′3(cx) ≤ 0, k1(c1) =

k2(c1), and k1(c2) = k3(c2), such that the equilibrium operating modes at α∗ are as follows.

• If cx < c1, CE if k < k1(cx) and SE if k≥ k1(cx);

• If c1 ≤ cx < c2, CE if k < k2(cx), DEC if k2(cx)≤ k < k1(cx), and SE if k≥ k1(cx);

• If c2 ≤ cx ≤ c3, CE if k < k2(cx), DEC if k2(cx)≤ k ≤ k3(cx), DEU if k3(cx)< k < k1(cx), and

SE if k≥ k1(cx);

• If cx > c3, CE if k < k2(cx), DEC if k2(cx)≤ k≤ k3(cx), and DEU if k3(cx)<k.
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Figure 5 Equilibrium operating modes at the optimal output share α∗.

Note. Here, V0 = 7 and cy = 3. The function k1(cx) in Proposition 2 is the increasing upper boundary of the SE

region. Define c3 such that k1(c3) = 1. The function k2(cx) is the decreasing upper boundary of the CE region and

thus meets k1(cx) at some c1. The function k3(cx) is the decreasing upper boundary of the DEC region, and thus

meets k1(cx) at some c2. The black dashed line represents the boundaries of the FB operating modes (Figure 2). A

low value of k corresponds to a high degree of effort complementarity and vice versa.

Because there is no agency issue under SE (since x∗(α∗) = x∗(1) = xFB), when SE is the FB

operating mode, it also arises in equilibrium. The principal has indeed no incentive to operate

differently since the amount of value created is maximized (given that it is FB) and since she is

able to capture all of it. As a result, SE is more prevalent in equilibrium than in the FB. Figure 5

confirms that the region where SE arises in equilibrium (green) is larger than the one in the FB

solution (as depicted by the dashed line). We conclude that principals tend to operate too often

alone, without forming a team, so as to retain the full ownership of the venture.

When the principal chooses to team up, we observe in Figure 5 that DE may arise in equilibrium

when it would in fact be optimal to operate under CE, but the converse does not hold. This is

because CE is particularly inefficient under decentralized execution due to double moral hazard,

whereas DE only suffers from single moral hazard. Moreover, CE requires that the principal put in

some effort—and is thus associated with a direct cost for the principal—unlike DE. Hence, when

the principal chooses to partner with an agent (which happens too infrequently), she tends to

over-delegate and under-contribute.

In sum, we obtain that, when there are opportunities for co-production, the canonical DE setting

of the PA model often does not arise. Paradoxically, this is not because the two workers end up

co-producing—in fact, we see less CE in equilibrium than in the FB. But it is because the principal

prefers not to partner with an agent in the first place and work solo instead (SE).

As noted earlier, co-production may constrain the principal in her choice of output share under

DE, forcing her to give the agent a higher share 1−α than she would if co-production were not an
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Figure 6 Principal’s payoff

Note. Here, V0 = 7, k= 0.1 and cy = 3.

option (as is assumed in the canonical PA model). In other words, under DEC a principal benefits

from having a higher cost of effort so that the adoption of CE becomes less valuable, forcing the

agent to work alone. Figure 6 confirms that the principal’s payoff Π(α∗) is indeed increasing in

cx under DEC. The same behavior may also arise under CE because a less efficient principal is

less likely to be asked to put in a large effort under CE and can therefore rely more on the agent.

Hence, a higher cost generates a higher payoff, as in Fudenberg and Tirole (1984). (Naturally, the

principal’s payoff is decreasing in cx under SE and constant with respect to cx under DEU.)

Figure 7 compares the equilibrium total payoff (dash-dotted red curve), i.e., V (x∗(α∗), y∗(α∗))−

cxx
∗(α∗)− cyy∗(α∗), to the FB total payoff (solid black curve), i.e., V (xFB, yFB)− cxxFB − cyyFB,

in the top panel and the corresponding (equilibrium or optimal) operating modes in the bottom

panel. We make this comparison for two different values of cx (left and right panels). We observe

that, while the equilibrium total payoff is generally increasing in k (as is the FB total payoff,

which is natural given that efforts become more efficacious as k increases), it exhibits a downward

jump whenever the equilibrium operating mode switches from CE or DE to SE. What explains

this jump is that the principal cares only about her own payoff when choosing to partner or not.

While her payoff evolves continuously as she decides to no longer partner with the agent when

k increases, the agent’s payoff discontinuously drops to zero, resulting in a discontinuous drop in

the total payoff. (This discontinuity in the total payoff only arises when the equilibrium operating

mode switches from CE or DE to SE because the optimal share α∗ is continuous in k when the

equilibrium operating mode switches from DE to CE (or vice versa), resulting in a continuous

evolution (as k changes) of both the principal’s and the agent’s payoffs within these regions.)

From the top panels in the figure, it appears that the optimality loss of operating under SE

rather than under CE or DE, if they are the FB operating modes, can be significant and it is
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Figure 7 Total payoff and operating modes under the FB (dashed black) and in equilibrium under the optimal

output share α∗ (dash-dotted red).

(a) Total Payoff

(b) Operating Modes

Note. Here, cx = 5 (left) and cx = 9 (right), V0 = 7, and cy = 3. A low value of k corresponds to a high degree of effort

complementarity and vice versa.

particularly severe at the point of discontinuity. At this point, the principal is effectively destroying

value through her decision to no longer partner with the agent and work alone. In sum, our analysis

suggests that, while most of the PA literature has focused on controlling the agent, it can be even

more important to find ways to control the principal as we explore next.

5. Toward Improving Efficiency

How do we improve efficiency, i.e., increase the total payoff? We consider three mechanisms. In

§5.1, we change the sequence of effort choice in the execution stage by letting the principal commit

to her effort before letting the agent choose his. A principal always finds it beneficial to move first

(von Stengel 2010), but does it result in a higher total payoff? In §5.2 we discuss the effect of taking

away from the principal the team formation and reward-splitting decision rights while keeping the

project execution decentralized. In §5.3 we briefly discuss moving from fractional to full counting

(Holmström 1982, Korytkowski and Kulczycki 2019).
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5.1. Principal’s Effort Precommitment

In this section, we consider a situation where the principal is able to choose her effort before the

agent and make it observable to him. That is, in the execution stage, (3)-(4) is replaced with

x̂∗(α) ∈ arg max
x∈[0,1]

αV (E(x, ŷ∗(α,x)))− cxx, (17)

ŷ∗(α,x) ∈ arg max
y∈[0,1]

(1−α)V (E(x, y))− cyy. (18)

We denote with a ‘hat’ the quantities that are specific to this sequence of events, to distinguish

them from the base case. Although the equilibrium turns out to be unique in this case, let Ψ̂(α)

denote the set of equilibria so that (5) can be adapted.

As in the base case, we solve the game backward. We first consider the agent’s choice of effort,

then the principal’s, next the resulting equilibrium operating mode for any given α, and finally

the optimization of the output share by the principal. We still ignore participation constraints by

assuming that V0 is large enough (Lemma EC.9). To simplify the exposition, we assume that k > 0.

5.1.1. Effort Choice Game. For any given output share α ∈ [0,1] and principal’s effort

x∈ [0,1), the agent’s equilibrium effort (18) is equal to:

ŷ∗(α,x) = max

(
yS(α)− kx

k+ (1− 2k)x
,0

)
. (19)

Hence, when yS(α)< k/(1− k), the agent has no incentive to exert effort if the principal’s effort

exceeds a particular level x0, defined as:

x0(α)
.
=

kyS(α)

kyS(α) + max{0, k− yS(α)(1− k)}
. (20)

In other words, a high level of effort by the principal demotivates the agent to put in any effort.

We next characterize the principal’s choice of effort (17), anticipating the agent’s best response

(19). On one hand, if the principal exerts an effort greater than x0(α), she anticipates that the

agent will then exert no effort and, therefore, that she will work solo, making it optimal for her to

exert xS(α). On the other hand, if the principal exerts an effort smaller than x0(α), she anticipates

that the agent will put in some effort, and therefore, that there is an opportunity for co-production,

making her exert the following duo effort:

x̂D(α)
.
=

{
xS(α)− k

1−2k
if k < xS(α)

2xS(α)+1
;

0 otherwise.
(21)

Correspondingly, let ŷD(α)
.
= y∗(α, x̂D(α)) denote the agent’s duo effort. Note that when k ≥

xS(α)

2xS(α)+1
, which happens in particular when k≥ 1/2, the principal is not willing to collaborate with

the agent.
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In sum, under SE, (x̂∗, ŷ∗) = (xS(α),0); under DE, (x̂∗, ŷ∗) = (0, yS(α)); and under CE, (x̂∗, ŷ∗) =

(x̂D(α), ŷD(α)). To make CE feasible, we need x̂D(α)> 0 (otherwise CE degenerates into DE) and

x̂D(α)<x0(α) (otherwise, ŷD(α) = 0 and CE degenerates into SE). Similarly, for SE to be feasible,

we need xS(α)≥ x0(α), because otherwise, the agent would want to exert positive effort whenever

the principal exerts xS(α) (i.e., ŷ∗(α,xS(α)) > 0), resulting in CE. Hence, the feasibility of CE

and SE is only guaranteed for certain values of α. In contrast, DE is feasible for any value of α

since it can easily be enforced by setting x= 0. Besides feasibility, the equilibrium operating mode

also needs to be optimal for the principal. Specifically, when the principal has the opportunity

to execute the project alone (i.e., when xS(α)≥ x0(α)), she will evaluate her payoff under SE in

comparison to her payoff if she teams up with the agent, under either CE or DE. The next lemma

formalizes this discussion.

Lemma 2. There exist functions α̂(k) and α̂(k), with α̂(k)≤ α̂(k), α̂(k)′ ≥ 0 and α̂
′
(k)≤ 0, such

that, for any α, the equilibrium operating mode solving (5) (with Ψ̂(α) being the set of equilibria

(17)-(18)) is:

• DE with x̂∗(α) = 0 and ŷ∗(α) = yS(α) if α< α̂(k);

• CE with x̂∗(α) = x̂D(α) and ŷ∗(α) = ŷD(α) if α̂(k)<α< α̂(k);

• SE with x̂∗(α) = xS(α) and ŷ∗(α) = 0 otherwise.

Although the statement of Lemma 2 somewhat parallels that of Lemma 1, the thresholds α̂(k)

and α̂(k) differ from α(k) and α(k). Moreover, x̂D(α) < xD(α) and ŷD(α) > yD(α), so here the

balance of effort under CE shifts from the principal to the agent.

To illustrate Lemma 2, Figure 8 shows the equilibrium operating modes as a function of α

and k. For comparison purposes, the limits of the equilibrium operating modes without effort

precommitment (Figure 3) are also shown (with a dotted red line). Overall, it appears that with

effort precommitment, the SE region shrinks while the DE region becomes larger. This is for the

following two reasons. On one hand, while the equilibrium efforts under DE and SE are independent

of whether the principal precommits to an effort level (Lemma 2) or not (Lemma 1), the principal

can shape the balance of effort under CE to her favor through precommitment. As a result, the

value of teaming increases and the principal will opt less often to work solo, i.e., the SE region

shrinks. On the other hand, DE is feasible for any α: If the principal wants to implement DE, she

simply needs to exert zero effort. This optionality—which was not present when efforts were chosen

simultaneously—creates more opportunity for DE to arise in equilibrium, in case the principal is

unhappy with the payoff she would get otherwise. Taken together, these two drivers result in a

situation with a lower prevalence of SE and a greater prevalence of DE than if the principal did

not precommit to an effort level, for any given α.
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Figure 8 Equilibrium operating modes when the principal precommits to her effort.

Note. Here, V0 = 7, cx = 9, and cy = 3. The function α̂(k) in Lemma 2 is defined as the (weakly) increasing upper

boundary of the DE region. The function α̂(k) is defined as the (weakly) decreasing boundary of the SE region. The

red dotted line represents the boundaries of the equilibrium operating modes without effort precommitment (Figure

3). A low value of k corresponds to a high degree of effort complementarity and vice versa.

5.1.2. Team Formation. We next identify the output share α̂∗ that maximizes the princi-

pal’s payoff (6), anticipating the equilibrium operating modes (17)-(18) characterized in Lemma 2.

Similar to (13)-(15), define Π̂DE(α)
.
= ΠDE(α), Π̂SE(α)

.
= ΠSE(α), and

Π̂CE(α)
.
=

{
αV (E(x̂D(α), ŷD(α)))− cxx̂D(α) if k < 1/2,
−∞ otherwise.

(22)

Accordingly, using Lemma 2 and ignoring the arguments from α̂(k) and α̂(k), we obtain:

α̂∗
.
= arg max1[α∈[0,α̂)]Π̂DE(α) +1[α∈(α̂,α̂)]Π̂CE(α) +1[α∈{α̂}∪[α̂,1]]Π̂SE(α). (23)

Although this formulation involves non-convex and open constraint sets, the optimization problem

(23) is well-behaved (see Lemma EC.8). Moreover, the first two pieces are always maximized in

the interior of their domains; this is unlike the case without effort precommitment, in which the

optimal output share could lie at the boundary between the DE and CE operating modes, giving

rise to a DEC operating mode (see Figure 4). Therefore, the principal is no longer constrained in

her value capture optimization under DE, similar to the canonical PA model. Moreover, it can be

shown that the principal’s payoff decreases in cx under CE (see the proof of Proposition 3), unlike

our base case (see Figure 6). In sum, the co-production opportunities do not impede the efficiency

of CE and DE under effort precommitment.

If the base value V0 is large enough, the optimal output share α̂∗ turns out to be greater than

or equal to 1/2. Therefore, having the principal precommit does not alter the fact that she wants

to capture at least 50% of the total value.
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Figure 9 Equilibrium operating modes with precommitment at the optimal output share α̂∗.

Note. Here, V0 = 7 and cy = 3. The function k̂1(cx) in Proposition 3 is the increasing upper boundary of the SE region.

Define ĉ2 such that k̂1(ĉ2) = 1. The function k̂2(cx) is the decreasing upper boundary of the CE region and thus meets

k̂1(cx) at some ĉ1. The red dotted line corresponds to the equilibrium operating modes without precommitment (after

combining the DEC and DEU regions) depicted in Figure 5. The dashed black line corresponds to the FB operating

modes depicted in Figure 2. A low value of k corresponds to a high degree of effort complementarity and vice versa.

5.1.3. Equilibrium Operating Modes. Building on the former two subsections, we next

characterize the equilibrium operating modes.

Proposition 3. There exist thresholds 1≤ ĉ1 < ĉ2 <∞ and continuously differentiable functions

k̂1(cx)> 0 and k̂2(cx)> 0 with k̂′1(cx)≥ 0 and k̂′2(cx)≤ 0 and k̂1(ĉ1) = k̂2(ĉ1) such that the equilibrium

operating modes at α̂∗ are as follows.

• If cx < ĉ1, CE when k < k̂1(cx) and SE when k≥ k̂1(cx);

• If ĉ1 ≤ cx < ĉ2, CE when k < k̂2(cx), DE when k̂2(cx)≤ k < k̂1(cx) and SE when k≥ k̂1(cx);

• If cx ≥ ĉ2, CE when k < k̂2(cx) and DE when k≥ k̂2(cx).

Proposition 3, illustrated in Figure 9, shows that the equilibrium operating modes are quali-

tatively similar to those obtained without precommitment (Figure 5)—with marginally more DE

and marginally less SE. Hence the key dual insight that principals tend to team up too little and

that, when they do, they tend to over-delegate and under-contribute remains valid.

Principals always prefer to precommit (von Stengel 2010), but does precommitment increase the

total payoff? Rarely. Figure 10 develops Figure 7 by comparing the total payoff when the principal

precommits to an effort level (solid green), i.e., V (x̂∗(α̂∗), ŷ∗(α̂∗)) − cxx̂∗(α̂∗) − cyŷ∗(α̂∗), to the

FB total payoff (dashed black line) and the total payoff when efforts are chosen simultaneously

(dash-dotted red line) in the top panel and comparing the respective operating modes in the

bottom panel. (The fourth curve, depicted in solid blue, will be described in the next section.) Our

numerical simulations suggest that precommitment improves efficiency only when the principal’s
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Figure 10 Total payoff and operating modes under the FB (dashed black) and, when efforts are chosen simul-

taneously with an output share α~ (solid blue) or α∗ (dash-dotted red) and when efforts are chosen

sequentially with an output share α̂∗(solid green).

(a) Total Payoff

(b) Operating Modes

Note. Here, cx = 5 (left) and cx = 9 (right), V0 = 7, and cy = 3. A low value of k corresponds to a high degree of effort

complementarity and vice versa.

cost is high (right figure) and the degree of effort complementarity lies in an intermediate (and

very narrow) range of values. Otherwise, it has either a null impact (when efforts are substitutable)

or a negative impact (when efforts are complementary). In particular, precommitment does not

prevent the discontinuous drop in total value when the principal chooses to work alone instead of

partnering with the agent. Thus, precommitment helps little toward improving efficiency. In the

same vein, Smirnov and Wait (2004) find that, in an incomplete contract framework, the mere

possibility of sequential (rather than simultaneous) investments can reduce the total surplus.

We conclude that, in general, it is best for organizations to ban principals to precommit to

specific effort levels, even though they always prefer to do so. This is because precommitment gives

the principal too much power to influence the choice of operating mode, while this decision right

should in fact be taken away from her, which is what we explore next.



Roels et al.: A Co-Productive Principal-Agent Model
22 Article submitted to ; manuscript no.

5.2. System-Wide Optimal Output Share

We next explore the efficiency of depriving the principal of the decision right to form a team and

set the agent’s incentives. For instance, an external stakeholder, caring about the total net value

of the venture, could force a principal to team up with a partner and share her equity.

To assess the efficiency of this mechanism, we consider a situation where, as before, effort choice

is fully decentralized, but the team formation decision—and the resulting output-share setting—is

set to maximize the total payoff:

α~
.
= arg max

α∈[0,1]

V (x∗(α), y∗(α))− cxx∗(α)− cyy∗(α), (24)

where x∗(α) and y∗(α) solve (3)-(4). (We use the circled asterisk superscript to denote the system-

wide perspective in the output-share setting.)

Proposition 4. The system-wide optimal output share α~ is equal to 0 under DE, 1 under SE,

and 1/2 under CE.

The system-wide optimal output share is either 0%, 50%, or 100%, which facilitates the practical

implementation of this mechanism. (Note that this mechanism is not equivalent to restricting the

principal’s choice to α ∈ {0,0.5,1} as the principal would never choose α= 0; the team formation

and reward-splitting decision right should really be taken away from the principal.) Since in the

base model α∗ > 1/2 (conditional on V0 being sufficiently large), this shows that, when the team

formation and reward-splitting decisions are under the control of the principal (as in our base case),

she tends to appropriate too much rent for herself. Although the total payoff naturally increases

under this mechanism, the principal’s payoff decreases (since she is deprived of the decision right

to form a team and to choose α); hence, this mechanism will undoubtedly be met with resistance

by the principal.

Figure 11 displays the equilibrium operating modes at α~ and compares them to those at α∗

(dash-dotted red line, identical to Figure 5) and to the FB operating modes (dashed black line,

identical to Figure 2). Adopting a system-wide perspective when choosing to form a team and to

set the incentives (while keeping the choice of effort decentralized) fully restores the efficiency of

the choice between SE and DE, but still makes CE less prominent than it should be: While both

SE at α~ = 1 and DE at α~ = 0 achieve the FB, CE at α~ still suffers from double moral hazard.

To corroborate this result, Figure 10 compares the total payoff at α~ (solid blue line) to the FB

total payoff (dashed black line) and the equilibrium total payoff at α∗ (dash-dotted red line) in

the top panel and the corresponding operating modes in the bottom panel. Consistent with Figure

11, we observe that when efforts are highly substitutable (high k), as in more standard projects,

full efficiency is achieved under α~. However, when efforts are highly complementary (low k), as in
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Figure 11 Equilibrium operating modes at the system-wide optimal output share α~.

Note. Here, V0 = 7 and cy = 3. The dashed black line corresponds to the FB operating modes depicted in Figure 2.

The dash-dotted red line corresponds to the equilibrium operating modes at α∗ depicted in Figure 5. A low value of

k corresponds to a high degree of effort complementarity and vice versa.

non-standard projects, some substantial inefficiency may remain with decentralized effort choice,

even if the value share is set to α~. This is because the inefficiency caused by CE’s double moral

hazard cannot be eliminated by rebalancing the reward shares (Holmström 1982), even though

the optionality to switch to a different operating mode (SE or DE) mitigates the suboptimality

gap. We conclude that adopting a system-wide perspective on team formation (e.g., through the

involvement of an external stakeholder) always pays off, but its benefit is higher for standard

projects (high k) than for non-standard ones (low k).

5.3. Full Counting

Since neither precommitment nor depriving the principal of her team formation decision right helps

when efforts are complementary (low value of k), we propose in this case to change the accounting

mechanism for rewarding contributions. Instead of splitting the output value among collaborators

(fractional counting), each contributor should receive the full value (full counting), irrespective of

whether they were involved in the project initiation or its execution. Although this solution is not

feasible when the reward is financial, it is conceivable when it relates to credentials, as is sometimes

done when assessing researchers’ publication records (Korytkowski and Kulczycki 2019). Switching

to full counting can resolve the inefficiency associated with double-moral hazard since xS(α)< x̄S

and yS(α)< ȳS for all α∈ (0,1); whereas, xS(1) = x̄S and yS(0) = ȳS.

6. Conclusion and Discussion

In this paper, we study the genesis of teams in a co-productive PA setting. Specifically, we consider

whether a principal prefers to work solo (SE) or form a team with an agent; and in the latter case,
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what incentives to set and whether this gives rise to DE, as in the canonical PA model, or CE.

Our setup involves three sources of inefficiency: the decentralized nature of execution, the sharing

of incentives, and the principal’s desire to capture the value created.

We find that principals tend to work solo more than what they should, and when they part-

ner with an agent, they tend to delegate the project execution too much to them. Hence, while

most of the PA literature has implicitly assumed a DE operating mode, this operating mode is

sidelined, in a co-productive setting—paradoxically, not by CE (which happens too little), but by

SE because of a lack of team formation. This phenomenon is particularly salient when efforts are

highly substitutable (Figure 5).

Many entrepreneurs or partners in professional firms are often reported to under-delegate (Mais-

ter 1993, White and White 2011). Our result is actually more subtle: When an agent is involved,

principals in fact tend to over-delegate and not contribute enough, but the primary issue is that

they tend not to involve an agent in the first place. Our study indicates that, although most of the

PA literature has focused on controlling the agent, a more fundamental problem is to control the

principal to lead her to partner and contribute whenever necessary.

We identify an intriguing duality in co-production. On one hand, co-production may enhance the

value-creation process by enabling the two workers to join forces. On the other hand, it also impedes

the value-creation process by giving too much freedom to the principal to influence the choice of

operating mode without caring about the agent’s payoff. In particular, value is destroyed when

a principal switches from partnering with an agent to working alone (Figure 7). Co-production

also limits the principal’s choice of incentives, making her benefit from having a higher cost of

effort when the agent expects her to contribute (Figure 6). Hence, having more opportunities for

co-production is not necessarily a panacea once we account for the workers’ strategic interactions.

To improve efficiency, we explore three mechanisms. We find that precommitment, even though

it is always beneficial to the principal, has in general a non-positive effect on value creation (with

the exception of when the principal has a large cost of effort and efforts are mildly complementary);

see Figure 10. Depriving the principal of her team formation decision right is always beneficial,

even though principals will always resist; in fact, it fully restores efficiency unless efforts are very

complementary (Figure 10). Therefore, it is important for external stakeholders to take an active

role in the planning stage of the project. What facilitates the implementation of this mechanism

is the simplicity of the system-optimal reward split: 100% to the agent under DE, 100% to the

principal under SE, and 50%-50% under CE (Proposition 4). When efforts are very complementary,

as in non-standard projects, the only solution to achieve full efficiency is to shift the accounting

mechanism from fractional to full counting.



Roels et al.: A Co-Productive Principal-Agent Model
Article submitted to ; manuscript no. 25

Even though the parametric form of the effort function (1) is quite versatile, other production

functions could in principle yield different results. We note, however, that similar FB operating

modes emerge with a CES production function; see Roels (2014). Accordingly, we expect our results

to be robust across various specifications of the value function.

The proposed approach can be extended in numerous ways. First, we ignored the role of uncer-

tainty as potentially leading to information asymmetry (Radner 1993, Aghion and Tirole 1997)

or recourse or affecting a risk-averse agent (Holmström 1979). Second, we could consider other

functional forms of the value function (2), perhaps at the cost of analytical tractability. Third, we

considered a single agent, but the model could easily be extended to account for multiple identical

agents. Future research could investigate the effect of agent heterogeneity on a project’s operating

mode and performance. Fourth, we only considered one task, but one could generalize the approach

to a multi-task setting, perhaps with different degrees of effort complementarity, some of which

potentially pre-assigned to the principal and/or the agent, as in Itoh (2001), Hagiu and Wright

(2019), or Bellos and Kavadias (2021). Relatedly, one could extend the model to span over multiple

periods and adopt a process perspective, perhaps making the distinction between different phases

of execution and characterizing the operating dynamics as the team makes progress or time goes

by, in the same vein as Bonatti and Hörner (2011) or Bellos and Kavadias (2021). Fifth, one could

investigate the performance of ex-post output share allocations, such as bargaining (Bhaskaran and

Krishnan 2009) or making shares proportional to effort contributions (Moyer 2016).

Co-productive PA relationships arise in numerous settings, such as entrepreneurship, research,

service co-production, team leadership, franchising, and joint ventures. We hope that our work will

spur a novel interest in studying the genesis of teams and stimulate the development of mechanisms

to control the principal to partner more often and contribute more.
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Proofs of Statements

Proof of Proposition 1 First, assume that k 6= 1/2. The system ∂(V (E(x, y))−cxx−cyy)/∂x= 0

and ∂(V (E(x, y))− cxx− cyy)/∂y= 0 has two solutions, namely, (x̄D, ȳD) and (x̃D, ỹD) in which

x̃D
.
=

(1− 2k)− 2kcx−
√

(1− 2k)2 + 4k2cxcy
2(1− 2k)cx

and ỹD
.
=

(1− 2k)− 2kcy −
√

(1− 2k)2 + 4k2cxcy
2(1− 2k)cy

.

We show next that the only feasible solution is (x̄D, ȳD). When k < 1/2, x̃D ≥ 0 if and only if

(1 − 2k) − 2kcx ≥
√

(1− 2k)2 + 4k2cxcy, which holds if and only if k(cx − cy) ≥ 1 − 2k > 2kcx,

implying that −cy > cx, a contradiction. When k > 1/2, x̃D ≥ 0 if and only if (1− 2k)− 2kcx ≤√
(1− 2k)2 + 4k2cxcy, which holds if and only if k(cx − cy) ≤ 1− 2k. By symmetry, we find that

ỹD ≥ 0 if and only if k(cy − cx) ≤ 1 − 2k. Together, this implies that x̃D, ỹD ≥ 0 if and only if

k|cx − cy| ≤ 1− 2k, a contradiction since k > 1/2. Hence, the only potentially feasible solution to

the first-order optimality conditions is (x̄D, ȳD).

Note that from (8) it follows that 0< x̄D, ȳD < 1 if and only if 1>k
∣∣∣ cy−cx2k−1

∣∣∣.
We next analyze the Hessian matrix. It has negative diagonal elements. Its determinant is equal

to (1− 2k)f(k,x, y)/(E(x, y))3, where f(k,x, y)
.
= xy+k(x+ y− 4xy) + 2k2(1−x− y+ 2xy). Since

f(k, x̄D, ȳD) > 0 for any k ≥ 0, we obtain (x̄D, ȳD) is a local maximum when k < 1/2 and only a

saddle point when k > 1/2. When k > 1/2, the global maximum needs to be located at the boundary

of the domain of definition, i.e., at either (1/cx,0) or (0,1/cy).

As a result, (x̄D, ȳD) is feasible and a global maximum if only if 1 > k
∣∣∣ cy−cx2k−1

∣∣∣ and k < 1/2, or

equivalently, if and only if 1− 2k > k|cx− cy|. Otherwise, the only candidates for local maxima are

(1/cx,0) and (0,1/cy). In case both are local maxima, comparing the total value achieved at either

one reduces to comparing cx and cy.

If k = 1/2, the system ∂(V (E(x, y))− cxx− cyy)/∂x= 0 and ∂(V (E(x, y))− cxx− cyy)/∂y = 0

has no solution unless cx = cy. Hence if cx 6= cy, the search for the global maximum can be reduced

to comparing (1/cx,0) and (0,1/cy). �

Lemma EC.1. Suppose that k 6∈ {0,1/2} and 0 < xS, yS ≤ 1. If xSyS > k xS−yS
2k−1

, then (1 −

k)xSyS <
ySk

2−xS(1−k)2

2k−1
.

Proof. We have: xSyS > k yS−xS
1−2k

⇔ k2

xS(1−2k)
< k+ k2

yS(1−2k)
. Since yS ≤ 1, k+ k2

yS(1−2k)
≤ k− 1 +

1
yS

+ k2

yS(1−2k)
= k − 1 + (1−k)2

yS(1−2k)
, k2

xS(1−2k)
< k − 1 + (1−k)2

yS(1−2k)
. Hence if xSyS > k yS−xS

1−2k
, k2

xS(1−2k)
<

k− 1 + (1−k)2

yS(1−2k)
. �
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Lemma EC.2. For any α∈ (0,1), the equilibrium operating modes solving (3)-(4) are:

• If k 6= 1/2:

? CE with x∗(α) = xD(α) and y∗(α) = yD(α) if xS(α)yS(α)>k
∣∣∣xS(α)−yS(α)

2k−1

∣∣∣;
? DE with x∗(α) = 0 and y∗(α) = yS(α) if xS(α) (k+ (1− 2k)yS(α))≤ kyS(α);

? SE with x∗(α) = xS(α) and y∗(α) = 0 if yS(α) (k+ (1− 2k)xS(α))≤ kxS(α).

• If k= 1/2,

? CE with x∗(α) = y∗(α) = xS(α)/2 if xS(α) = yS(α);

? DE with x∗(α) = 0 and y∗(α) = yS(α) if xS(α)≤ yS(α);

? SE with x∗(α) = xS(α) and y∗(α) = 0 if xS(α)≥ yS(α).

When α= 0, the execution is delegated to the agent (DE), i.e., x∗(0) = 0 and y∗(0) = yS(0). When

α= 1, the principal executes the project alone (SE), i.e., x∗(1) = xS(1) and y∗(1) = 0.

Proof. In the proof, we omit the argument α from xD(α), yD(α), xS(α), and yS(α) and we

assume that α∈ (0,1). Note that the derivatives of the principal’s and the agent’s payoff functions

are respectively proportional to xS(k + (1− 2k)y)−E(x, y) and yS(k + (1− 2k)x)−E(x, y). We

consider the following possibilities:

• Suppose there exists an equilibrium with x= 0. The agent’s best response to x= 0 is yS since

it solves ySk=E(0, y) and yS ∈ (0,1). The principal’s best response to y= yS is equal to x= 0

if and only if xS(k + (1 − 2k)yS) ≤ E(0, yS). Hence, (0, yS) is an equilibrium if and only if

xS(k+ (1− 2k)yS)≤ kyS.

• Suppose there exists an equilibrium with x = 1. The agent’s best response to x = 1 is

max{0, yS− k
1−k} since yS− k

1−k solves yS(k+(1−2k)) =E(1, y) and yS < 1. However, note that

if the agent’s best response were y= 0, the principal would respond by setting x= xS, using an

argument symmetric to the one above. So an equilibrium with x= 1 can be achieved only when

yS >
k

1−k , which holds only when k < 1/2. The principal’s best response to y= yS− k
1−k is equal

to x= 1 if and only if xS(k2 +(1−2k)(1−k)yS)≥ (1−k)2yS, or equivalently (given that k < 1

and xS ∈ (0,1)), if and only if xSk
2

(1−k)((1−k)(1−xS)+kxS)
≥ yS. Since k

1−k ≥
xSk

2

(1−k)((1−k)(1−xS)+kxS)
,

this implies that yS >
k

1−k ≥
xSk

2

(1−k)((1−k)(1−xS)+kxS)
≥ yS, a contradiction. As a result, there is

no equilibrium such that x= 1.

• Suppose there exists an equilibrium with x∈ (0,1) and consider the agent’s best response. By

using an argument similar to the one above, there exists no equilibrium such that y= 1. Also

by symmetry, the only equilibrium with x∈ (0,1) and y= 0 is (xS,0), and this happens if and

only if yS(k+(1−2k)yS)≤ kxS. Therefore, we hereon assume that y ∈ (0,1). Because (xD, yD)

is the unique solution to xS(k+ (1−2k)y) =E(x, y) and yS(k+ (1−2k)x) =E(x, y), the only

possible equilibrium such that x∈ (0,1) and y ∈ (0,1) is (xD, yD), and this happens if and only
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if 0<xD < 1 and 0< yD < 1. When k= 1/2, this solution exists if and only if xS = yS; in that

case xD = yD = xS/2 ∈ (0,1). When k 6= 1/2, xD > 0 if and only if xSyS > k xS−yS
2k−1

, yD > 0 if

and only if xSyS >k
yS−xS
2k−1

, xD < 1 if and only if (1−k)xSyS <
xSk

2−yS(1−k)2

(2k−1)
, and yD < 1 if and

only if (1− k)xSyS <
ySk

2−xS(1−k)2

(2k−1)
. By Lemma EC.1, if xD > 0, then yD < 1. By symmetry, if

yD > 0, then xD < 1. Hence, (xD, yD) is an equilibrium if and only if xD > 0 and yD > 0.

Combining all cases leads to the desired result. When α= 0, the derivative of the principal’s payoff

is negative for all x, y. Hence, x∗ = 0. As a result, y∗ = yS. A symmetric argument applies to the

case where α= 1. �

Lemma EC.3. If (3)-(4) has multiple equilibria, the principal’s payoff is always higher under

DE.

Proof. In the proof, we omit the arguments α from xS(α) and yS(α). By Lemma EC.2, multiple

equilibria happen only when α ∈ (0,1), which we assume hereon. The proof proceeds in showing

the following five steps:

1. If there are multiple equilibria, then k≥ 1/2;

2. If k≥ 1/2, CE is an equilibrium if and only if both DE and SE are equilibria;

3. If k≥ 1/2 and CE is an equilibrium, then xS < 2yS;

4. If xS < 2yS, the principal earns more under DE than under SE;

5. If k≥ 1/2 and CE is an equilibrium, the principal earns more under DE than under CE.

If there are multiple equilibria, then k≥ 1/2. Indeed, assume that there exist multiple equilibria

at k < 1/2. If CE is an equilibrium, then, by Lemma EC.2, xSyS(1−2k)>k|xS−yS|. Hence, there

is no DE equilibrium (which holds when xSyS(1− 2k)≤ k(yS − xS) by Lemma EC.2) and no SE

equilibrium (which holds when xSyS(1− 2k) ≤ k(xS − yS)). Suppose next that both DE and SE

are equilibria. Summing up the necessary and sufficient conditions from Lemma EC.2, we obtain

2(1− 2k)xSyS ≤ 0, a contradiction. Hence, if there are multiple equilibria, k≥ 1/2.

If k ≥ 1/2, CE is an equilibrium if and only if both DE and SE are equilibria. If k = 1/2, then

by Lemma EC.2, CE is an equilibrium if and only if xS = yS, i.e., if and only if both DE and

SE are equilibria. Fix k > 1/2 and suppose that CE is an equilibrium. Then, by Lemma EC.2,

(2k− 1)xSyS > k|xS − yS|, which implies that both DE and SE are equilibria. Conversely, if both

DE and SE are equilibria, then CE is an equilibrium as well.
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If k≥ 1/2 and CE is an equilibrium, then xS < 2yS. If k= 1/2, CE is an equilibrium if and only

if xS = yS by Lemma EC.2, and thus xS < 2yS. Fix k > 1/2 and suppose the contrary, i.e., xS ≥ 2yS,

or equivalently 1
yS
≥ 2

xS
> 1 + 1

xS
. When xS ≥ yS, the CE condition simplifies to (2k − 1)xSyS >

k(xS − yS), or, given that 0 < xS, yS < 1, 2k−1
k

+ 1
xS
> 1

yS
. Combining these two inequalities, we

obtain that 2k−1
k

+ 1
xS
> 1

yS
> 1 + 1

xS
, i.e., 2k− 1>k, a contradiction.

If xS < 2yS, the principal earns more under DE than under SE. Since xS < 2yS, ln(xS/yS) <

ln(2)< 1. Therefore, α ln(kxS)− cxxS <α ln(kyS), and so the principal earns more under DE than

under SE.

If k≥ 1/2 and CE is an equilibrium, the principal earns more under DE than under CE. When

k= 1/2 and CE is an equilibrium, xS = yS by Lemma EC.2. Therefore, the principal earns α(V0 +

ln(kxS)) − cx(xS/2) under CE and α(V0 + ln(kxS)) under DE, and the latter is smaller. Con-

sider now k > 1/2. By the logarithm inequality ln(ξ) ≤ ξ − 1 for ξ > 0. Moreover, when k ≥ 1/2,

1
2k

(√(
x2
S(2k− 1)2 + 4k2 xS

yS

)
− (2k− 1)xS

)
< 1 if and only if xSyS(2k−1)>k(xS−yS). As a result

when k > 1/2 and CE is an equilibrium,

ln

(
1

2k

(√
(2k− 1)2x2

S + 4k2
xS
yS
− (2k− 1)xS

))
+

k

xS(2k− 1)

(
1

2k

(√
x2
S(2k− 1)2 + 4k2

xS
yS
− (2k− 1)xS

)
− 1

)
≤
(

1 +
k

xS(2k− 1)

)(
1

2k

(√
x2
S(2k− 1)2 + 4k2

xS
yS
− (2k− 1)xS

)
− 1

)
< 0.

Therefore,

ln(kyS) > ln

(
1

2

(√
(2k− 1)2x2

Sy
2
S + 4k2xSyS − (2k− 1)xSyS

))
−
(

1

2
+

k

xS(2k− 1)
− 1

2xS(2k− 1)

√
x2
S(2k− 1)2 + 4k2

xS
yS

)
.

That is, the principal earns more under DE than under CE. �

Proof of Lemma 1. Combining Lemmas EC.2 and EC.3, we obtain that the equilibrium oper-

ating modes selected by the principal are, when α∈ (0,1):

• CE with x∗(α) = xD(α) and y∗(α) = yD(α) if 1− 2k > k
∣∣∣ 1
xS(α)

− 1
yS(α)

∣∣∣;
• DE with x∗(α) = 0 and y∗(α) = yS(α) if 1− 2k≤ k

(
1

xS(α)
− 1

yS(α)

)
;

• SE with x∗(α) = xS(α) and y∗(α) = 0 otherwise.

When α= 0, the equilibrium operating mode is DE with x∗(0) = 0 and y∗(0) = yS(0). When α= 1,

the equilibrium operating mode is SE with x∗(1) = xS(1) and y∗(1) = 0.
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Define:

α(k)
.
=

{
1
2

+
k(cx+cy)

2(1−2k)
−
√

(1−2k)2+k2(cx+cy)2−2k(cx−cy)(1−2k)

2(1−2k)
if k 6= 1/2,

cx
cx+cy

if k= 1/2,
and (EC.1)

α(k)
.
=

{
1
2
− k(cx+cy)

2(1−2k)
+

√
(1−2k)2+k2(cx+cy)2−2k(cy−cx)(1−2k)

2(1−2k)
if k 6= 1/2,

cx
cx+cy

if k= 1/2.
(EC.2)

From (EC.1) and (EC.2), α(k) ∈ [0,1], α(k) ∈ [0,1], and α(k)≥ α(k) if and only if k ≤ 1/2. More-

over, 1−2k≤ k
(

1
xS(α)

− 1
yS(α)

)
if and only if α≤ α(k); and 1−2k≤ k

(
1

yS(α)
− 1

xS(α)

)
if and only if

α≥ α(k). Hence, when k < 1/2, the equilibrium operating mode selected by the principal is DE if

α≤ α(k), CE if α(k)<α<α(k), and SE if α≥ α(k). And when k ≥ 1/2, it is DE if α≤ α(k) and

SE if α>α(k). Finally from (EC.1) and (EC.2), α′(k)> 0 and α′(k)< 0. �

Lemma EC.4. The maximization problem (16) is well defined, i.e., its maximum exists.

Proof. First, suppose that k < 1/2, i.e., α<α. Since ΠDE(α) = ΠCE(α) and ΠSE(α) = ΠCE(α),

Π(α) is continuous. By Weierstrass’s extreme value theorem, Π(α) attains its maximum on [0,1].

Second, suppose that k ≥ 1/2, i.e., α≥ α. Although Π(α) may experience a discontinuity at α,

ΠSE(α) is increasing in α (if the principal works solo, she is better off capturing the entire value).

Hence, (16) is equivalent to:

α∗ = arg max1[α∈[0,α]]ΠDE(α) +1[α=1]ΠSE(α),

which is well defined by Weierstrass’s extreme value theorem. �

Lemma EC.5. For any ξ ∈ (0,1/4) and k ∈ (0,1/2), the function

F (ξ, k)
.
= ln

(
1

2

(
(1− 2k)ξ+

√
(1− 2k)2ξ2 + 4k2ξ

))
−

(1− 2k)ξ+
√

(1− 2k)2ξ2 + 4k2ξ

2ξ(1− 2k)

is decreasing in k.

Proof. Because

∂F (ξ, k)

∂k
= − 2k

(1− 2k)2
√

(1− 2k)2ξ2 + 4k2ξ
− 2ξ

(1− 2k)ξ+
√

(1− 2k)2ξ2 + 4k2ξ

+
2ξ(2k− (1− 2k)ξ)√

(1− 2k)2ξ2 + 4k2ξ
(

(1− 2k)ξ+
√

(1− 2k)2ξ2 + 4k2ξ
) ,

F (ξ, k) is decreasing in k if and only if√
(1− 2k)2ξ2 + 4k2ξ

(
k

(1− 2k)2
+ ξ

)
≥ ξ k− 4k2− (1− 2k)ξ

1− 2k
.
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If k− 4k2− (1− 2k)ξ ≤ 0, the result holds. Suppose then that k− 4k2− (1− 2k)ξ > 0. In that case,

F (ξ, k) is decreasing in k if and only if

(1− 2k)2ξ2 + 4k2ξ ≥

(
ξ k−4k2−(1−2k)ξ

1−2k

k
(1−2k)2

+ ξ

)2

⇔G(ξ, k)≤ 0,

where G(ξ, k)
.
= ξk2(1 − 2k)2(1 − 4k + 2ξ)2 − (k + ξ − 4(1 − k)kξ)2(ξ + 4k2 − 4k(1 − k)ξ). Since

ξ ∈ (0,1/4) and k ∈ (0,1/2),

∂G(ξ, k)

∂ξ
= −4k(1− 2k)2

(
ξ(1− k)(1− 2k) + 2k2)

)
(2(1− k)− 3ξ(1− 2k))

< −4k(1− 2k)2
(
ξ(1− k)(1− 2k) + 2k2)

)(
2(1− k)− 3

4
(1− 2k)

)
< 0.

Thus, G(ξ, k)<G(0, k) =−4k4 < 0. �

Lemma EC.6. Suppose that cx 6= cy. When V0 ≥ ln (4min{cx, cy} (1 + |cy − cx|)) + 1

1−min
{

cx
cy
,
cy
cx

} ,

the principal’s payoff is positive, the agent’s payoff is nonnegative, and α∗ > 1/2.

Proof. We consider two cases, depending on whether k is smaller than 1/2 or not. In both cases,

we show that α∗ > 1/2 and Π(α∗)> 0.

Case 1: k < 1/2. Using (16), let αDE
.
= arg maxα∈[0,α] ΠDE(α), αCE

.
= arg maxα∈(α,α) ΠCE(α),

and αSE
.
= arg maxα∈[α,1] ΠSE(α). Thus, α∗ ∈ {αDE, αCE, αSE}. Let us first state the first-order

optimality conditions: ΠDE(α) is concave with Π′DE(α) = V (0, yS(α)) − α
1−α ; ΠSE(α) is con-

vex with Π′SE(α) = V (xS(α),0). Applying the envelope theorem and the equilibrium condition

E(xD(α), yD(α)) = yS(α)(k+ (1− 2k)xD(α)), we obtain:

Π′CE(α) = V (E(xD(α), yD(α))) + cy
α

1−α
y′D(α),

where

y′D(α) = − 1

2cy

1 +
(1− 2k)yS(α) + 2k2

αxS(α)(1−2k)√
(1− 2k)2(yS(α))2 + 4k2 yS(α)

xS(α)

 .

Since y′D(α)<− 1
cy

when k < 1/2, Π′CE(α)< Π′DE(α), i.e., α could be a local maximum of Π(α),

and Π′CE(α)<Π′SE(α), i.e., α cannot be local maximum of Π(α).

We next show the result by considering three cases, depending on whether α and α are smaller

or greater than 1/2:
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• When α≥ 1/2, i.e., k ≥ 1
2(1+cx−cy)

(which implies that cx > cy given that k < 1/2), and when

V0 ≥ ln (4min{cx, cy} (1 + |cy − cx|)) + 1

1−min
{

cx
cy
,
cy
cx

} ,

Π′DE(1/2) = V (E(0, yS(1/2))−
1
2

1− 1
2

= V0 + ln(kyS(1/2)))− 1

≥ V0 + ln

(
1

4cy(1 + cx− cy)

)
− 1≥ 1

1− cy
cx

− 1> 0.

Because ΠDE(α) is concave, αDE >
1
2
. Since αCE ≥ αDE, αCE ≥ 1/2, and the same applies

to αSE. Therefore, α∗ > 1/2. Since V (E(0, yS(1/2))> 1 and ΠDE(αDE)≥ΠDE(1/2), Π(α∗)≥
ΠDE(αDE)> 1/2> 0.

• When α < 1/2 < α, i.e., when (i) either cx ≤ cy or k < 1
2(1+cx−cy)

and (ii) either cy ≤ cx or

k < 1
2(1+cy−cx)

, which can be combined into requiring that k < 1
2(1+|cx−cy |) , and when V0 ≥

ln (4min{cx, cy} (1 + |cy − cx|)) + 1

1−min
{

cx
cy
,
cy
cx

} ,

Π′CE(1/2) = V (E(xD(1/2), yD(1/2))) + cy

1
2

1− 1
2

y′D(1/2)

= V0 + ln

(
1

2
f(k;xS(1/2)yS(1/2))

)
− f(k;xS(1/2)yS(1/2))

2xS(1/2)yS(1/2)(1− 2k)

> V0 + ln

(
1

2
f

(
1

2(1 + |cx− cy|)
;xS(1/2)yS(1/2)

))
−
f
(

1
2(1+|cx−cy |) ;xS(1/2)yS(1/2)

)
2xS(1/2)yS(1/2)

(
1− 1

1+|cx−cy |

)
= V0− ln (4min{cx, cy} (1 + |cy − cx|))−

1

1−min
{
cx
cy
,
cy
cx

} ≥ 0,

where f(k; ξ)
.
=
√

(1− 2k)2ξ2 + 4k2ξ+(1−2k)ξ and the inequality follows from Lemma EC.5.

Using (13) and (11)-(12), ΠCE(α) can be reexpressed as ΠCE(α) = αF (α) + cxk
1−2k

, where

F (α)
.
= V0 + ln

(
1

2
f(k;xS(α)yS(α))

)
− f(k;xS(α)yS(α))

2xS(α)yS(α)(1− 2k)
.

Note that F (α) = F (1 − α). Since ΠCE(αCE) ≥ ΠCE(1/2) by optimality of αCE and since

F (1/2) > 0 when k < 1
2(1+|cx−cy |) and V0 ≥ ln (4min{cx, cy} (1 + |cy − cx|)) + 1

1−min
{

cx
cy
,
cy
cx

} ,

F (αCE) > 0. As a result, αCE ≥ 1/2 as otherwise ΠCE(1 − αCE) − ΠCE(αCE) = (1 −
2αCE)F (αCE)> 0, a contradiction. Furthermore, αCE > 1/2 since Π′CE(1/2)> 0; as ΠDE(α) is

concave, Π′DE(α)>Π′CE(α), and Π′CE(1/2)> 0, we also have that αDE > 1/2. Finally, because

α> 1/2, we obtain that αSE > 1/2. As a result, α∗ > 1/2. Since F (1/2)> 0 and ΠCE(αCE)≥
ΠCE(1/2), Π(α∗)≥ΠCE(αCE)> cxk

1−2k
> 0.

• When α≤ 1/2, i.e., k ≥ 1
2(1+cy−cx)

(which implies that cy > cx given that k < 1/2), and when

V0 ≥ ln (4min{cx, cy} (1 + |cy − cx|)) + 1

1−min
{

cx
cy
,
cy
cx

} ,

ΠSE(αSE) ≥ ΠSE(1) = V (E(xS(1),0)− 1

≥ V0 + ln

(
1

2cx(1 + cy − cx)

)
− 1≥ cx

cy − cx
+ ln(2)> 1/2.
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Let α̂CE
.
= arg maxα∈[0,α] ΠCE(α). Since [0, α] ⊂ (α,α), ΠCE(αCE) ≤ ΠCE(α̂CE). Since

ΠDE(α) = ΠCE(α) and Π′CE(α) < Π′DE(α) for any α, ΠDE(αDE) ≤ ΠCE(α̂CE). If α̂CE =

0, ΠCE(α̂CE) = 0 < ΠSE(αSE). If α̂CE solves Π′CE(α) = 0, then V (xD(α̂CE), yD(α̂CE)) <

α̂CE
1−α̂CE

, and therefore, ΠCE(α̂CE)<
α̂2
CE

1−α̂CE
< 1

2
<ΠSE(αSE). Finally, if α̂CE = α, ΠCE(α̂CE) =

ΠSE(α̂CE) ≤ max{ΠSE(0),ΠSE(1)} = ΠSE(1). Hence, α∗ = αSE = 1 > 1/2 and Π(α∗) =

ΠSE(1)> 1/2> 0.

Case 2: k≥ 1/2. We consider two cases, depending on whether α is smaller or greater than 1/2.

• When α ≥ 1/2, i.e., k ≥ 1
2(1+cx−cy)

, and when V0 ≥ ln (4min{cx, cy} (1 + |cy − cx|)) +

1

1−min
{

cx
cy
,
cy
cx

} , similar to the argument above when k < 1/2, we obtain that Π′DE(1/2) > 0.

Because ΠDE(α) is concave, we obtain that αDE >
1
2
. Since αSE ≥ αDE, αSE ≥ 1/2. Therefore,

α∗ > 1/2. Since V (E(0, yS(1/2))> 1 and ΠDE(αDE)≥ΠDE(1/2), Π(α∗)≥ΠDE(αDE)> 1/2>

0.

• When α < 1/2, i.e., k < 1
2(1+cx−cy)

(which implies that cy > cx given that k ≥ 1/2) and when

V0 ≥ ln (4min{cx, cy} (1 + |cy − cx|))+ 1

1−min
{

cx
cy
,
cy
cx

} , we obtain that ΠSE(αSE)≥ΠSE(1) = V0−

ln(2cx)− 1≥ ln(2(1 + cy− cx)) + cx
cy−cx > ln(2)> 1

2
. Similar to the case with k < 1/2 above, we

obtain that α∗ = αSE = 1> 1/2 and Π(α∗) = ΠSE(αSE)> 1/2> 0.

Finally, we show that the agent earns nonnegative payoff at α∗. If α∗ = αSE, α∗ = 1, and therefore

the agent earns zero. If α∗ = αDE, the agent earns (1 − αDE)(V (0, yS(αDE)) − 1). Since αDE >

1/2, αDE is such that Π′DE(αDE) ≥ 0, i.e., V (0, yS(αDE)) ≥ αDE
1−αDE

. Therefore, the agent’s payoff

is bounded from below by (1 − αDE)(V (0, yS(αDE)) − 1) ≥ 2αDE − 1 > 0. If α∗ = αCE, which

happens only when k < 1/2, the agent earns (1− αCE)V (xD(αCE), yD(αCE))− cyyD(αCE). Since

αCE ∈ (α,α), αCE solves Π′CE(αCE) = 0, which implies that V (xD(αCE), yD(αCE)) > αCE/(1 −

αCE). Moreover, yD(α)≤ yS(α) for any α∈ (α,α). Hence, the agent’s payoff is bounded from below

by (1−αCE)V (xD(αCE), yD(αCE))− cyyD(αCE)>αCE− cyyS(αCE) = 2αCE−1> 0, where the last

inequality holds because αCE > 1/2. �

Proof of Proposition 2. The first part consists in building Figure 5 by looking at it vertically,

for any given k, and showing that, in the most general case, we observe the following transitions as

cx increases: SE, then CE, then DEC (i.e., with α∗ = α), and finally DEU (i.e., with α∗ <α), with

no direct transition from CE to DEU. The second part looks at the figure horizontally, by building

the functions k1(cx), k2(cx), and k3(cx), and showing that they are monotone, as specified in the

statement.
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Part A: Vertical perspective. Fix k. This part proceeds in two steps: First, we characterize the

derivatives of the principal’s payoff with respect to cx within each equilibrium operating mode

(SE, CE, DEC, and DEU). Second, we show that, at the boundary between any two regions (e.g.,

between SE and CE), operating one way dominates the other as cx increases. This establishes that

there is at most one crossing between any two regions.

A.1 Derivatives of the principal’s payoff within each operating mode. We extend the definitions

of ΠCE(α), ΠDE(α), and ΠSE(α) in (13)-(15) by formally introducing a dependence on cx. We

consider in turn the total derivatives of each of these three functions with respect to cx, assuming

that the corresponding operating mode arises in equilibrium.

Using (16), denote αCE
.
= arg supα∈(α,α) ΠCE(α) and αDE

.
= arg maxα∈[0,α] ΠDE(α).

First, suppose that SE is the equilibrium operating mode, i.e., α∗ = 1. Then,

dΠSE(α∗(cx), cx)

dcx

∣∣∣
α∗=1

=
d

dcx
(V0 + ln(kxS(1))− cxxS(1)) =− 1

cx
. (EC.3)

Second, suppose that CE is the equilibrium operating mode (which can only hap-

pen when k < 1/2), i.e., α∗ = αCE ∈ (α,α). Then, Π′CE(α∗) = 0. Moreover, by (3)-(4),

∂ (α∗V (xD, yD)− cxxD)/∂x= 0 and ∂ ((1−α∗)V (xD, yD)− cyyD)/∂y = 0. Using these results and

applying the law of total derivative to (13), we have:

dΠCE(α∗(cx), cx)

dcx

∣∣∣
α∗=αCE

=
∂

∂cx
(α∗V (E(xD(α∗), yD(α∗))− cxxD(α∗))

= cy
α∗

1−α∗
y′D(cx)−xD(α∗).

Next, we establish both a lower and an upper bounds. For the lower bound, first note that inspecting

(12) reveals that yD(α) decreases in xS(α). Accordingly, since yS(α) does not depend on cx and

xS(α) decreases in cx by (9), y′D(cx)> 0. Hence,

dΠCE(α∗(cx), cx)

dcx

∣∣∣
α∗=αCE

>−xD(α∗)>−xS(α∗)>−1/cx. (EC.4)

For the upper bound, first note that

dΠCE(α∗(cx), cx)

dcx

∣∣∣
α∗=αCE

= cy
α∗

1−α∗
y′D(cx)−xD(α∗)

= −
(

1

2
xS(α∗)− k

1− 2k

)
− 1

2(1− 2k)

xS(α∗)yS(α∗)(1− 2k)2 + 2k2√
(yS(α∗))2(1− 2k)2 + 4k2 yS(α∗)

xS(α∗)

,

and the right-hand side is decreasing in xS(α∗). Moreover, 1/xS(α∗) < (1− 2k)/k + 1/yS(α∗) by

Lemma 1. After replacing xS(α∗) with 1/ ((1− 2k)/k+ 1/yS(α∗)) in the right-hand side of the last

equality, we obtain

dΠCE(α∗(cx), cx)

dcx

∣∣∣
α∗=αCE

= −
(

1

2
xS(α∗)− k

1− 2k

)
− 1

2(1− 2k)

xS(α∗)yS(α∗)(1− 2k)2 + 2k2√
(yS(α∗))2(1− 2k)2 + 4k2 yS(α∗)

xS(α∗)

<
k2

(1− 2k)((1− 2k)yS(α∗) + 2k)
. (EC.5)
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Third, suppose that DE is the equilibrium operating mode, i.e., α∗ = αDE by (16). Since ΠDE(α)

is independent of cx, arg maxα∈[0,1] ΠDE(α) is independent of cx. On the other hand, α′(cx)≥ 0 by

(EC.1). Hence, when α∗ = αDE, there exists a threshold value ĉx such that αDE(cx) = α(cx) for

cx ≤ ĉx and αDE(cx)<α(cx) for cx > ĉx. Accordingly, when cx > ĉx, i.e., under DEU,

dΠDE(α∗(cx), cx)

dcx

∣∣∣
α∗=αDE

= 0, (EC.6)

whereas when cx ≤ ĉx, i.e., under DEC,

dΠDE(α∗(cx), cx)

dcx

∣∣∣
α∗=αDE

=
∂ΠDE(α(cx), cx)

∂α

dα(cx)

dcx
≥ 0. (EC.7)

A.2 Crossings between equilibrium operating modes. Consider the boundaries between regions

where different operating modes are equilibria.

• CE-SE: Suppose that (when k < 1/2), for some c̃x, α
∗(c̃x) ∈ {1, αCE(c̃x)}, ΠSE(1, c̃x) =

ΠCE(αCE(c̃x), c̃x), and ∂ΠCE(αCE, c̃x))/∂α= 0. By (EC.3) and (EC.4), dΠSE(αSE(cx),cx)

dcx

∣∣∣
α∗=1

=

−1/cx <
dΠCE(αCE(cx),cx)

dcx

∣∣∣
α∗=αCE

. Then, for any ε > 0, there exists a δ > 0 such that |α∗(c̃x −

ε)−αCE(c̃x)|> δ and |α∗(c̃x + ε)− 1|> δ. That is, a transition from SE to CE is possible as

cx increases, but not the opposite.

• DE-SE: Suppose that for some c̃x, α
∗(c̃x) ∈ {1, αDE(c̃x)} ΠSE(1, c̃x) = ΠDE(αDE(c̃x), c̃x).

by (EC.3), (EC.6), and (EC.7), dΠSE(αSE(cx),cx)

dcx

∣∣∣
α∗=1

= −1/cx < 0 ≤ dΠDE(αDE(cx),cx)

dcx

∣∣∣
α∗=αDE

.

Then, for any ε > 0, there exists a δ > 0 such that |α∗(c̃x− ε)−αDE(c̃x)|> δ and |α∗(c̃x + ε)−

1|> δ. That is, a transition from SE to DE is possible as cx increases, but not the opposite.

• CE-DE: Suppose that (when k < 1/2), for some c̃x, α∗(c̃x) ∈ {αDE(c̃x), αCE(c̃x)},

ΠDE(αDE(c̃x), c̃x) = ΠCE(αCE(c̃x), c̃x), and ∂ΠCE(αCE, c̃x))/∂α= 0. Since ΠDE(α) is concave

and Π′CE(α)<Π′DE(α) (see the proof of Lemma EC.6) and ΠCE(α(c̃x)) = ΠDE(α(c̃x)), either

αCE(c̃x) = α(c̃x) or αDE(c̃x) = α(c̃x) (or both equalities are true). Hence, if ΠCE(αCE(c̃x), c̃x) =

ΠDE(αDE(c̃x), c̃x), we must have αCE(c̃x) = αDE(c̃x) = α(c̃x), i.e., there is no direct transition

between CE and DEU. Hence, this case is about the boundary between CE and DEC. More-

over, CE cannot be an equilibrium since αCE(c̃x) 6∈ (α(c̃x), α(c̃x)). Hence, unlike the cases of

CE-SE and DE-SE, in which two operating modes could simultaneously be equilibria, in this

case, either CE is an equilibrium or DEC is an equilibrium, but not both at the same time.

Fix cx and suppose that CE is an equilibrium; i.e., Π(α∗(cx), cx) = ΠCE(αCE(cx), cx) >

ΠDE(α(cx), cx). Then, applying the implicit function theorem to 1/xS(α) = (1 − 2k)/k +
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1/yS(α), using the fact that Π′CE(α)≥ 0 whenever CE is the equilibrium operating mode, i.e.,

V0 + ln(kyS(α)) +αy′D(α)/yS(α)≥ 0, and using (12), (EC.1), and (EC.5), we obtain

dΠDE(α(cx), cx)

dcx

∣∣∣
α∗=αCE>α

=
∂ΠDE(α(cx), cx)

∂α

dα(cx)

dcx

=

(
V0 + ln(kyS(α))− α

1−α

) 1

α
(

1
cx(xS(α))2

+ 1
cy(yS(α))2

)


≥
(
−αy

′
D(α)

yS(α)
− α

1−α

) 1

α
(

1
cx(xS(α))2

+ 1
cy(yS(α))2

)


=
k2

(1− 2k)((1− 2k)yS(α) + 2k)
>
dΠCE(α∗(cx), cx)

dcx

∣∣∣
α∗=αCE

.

Accordingly, a transition from CE to DEC is possible as cx increases, but not the opposite.

• DEC-DEU: As discussed above, there exists a threshold value ĉx such that αDE = α for cx ≤ ĉx
and αDE <α for cx > ĉx. Hence as cx increases, a transition from DEC to DEU is possible, but

not the opposite.

Hence, for any given k, the most general transition pattern (assuming no empty region), as cx

increases, is first SE, then CE, then DEC (i.e., with α∗ = α), and finally DEU (i.e., with α∗ < α),

with no direct transition from CE to DEU.

Part B. Horizontal perspective. Next, we vary k and show that the boundaries between regions

are continuous and monotone. We again proceed in multiple steps. First, we show the boundaries

between any pair of regions (whenever they exist) are continuous and monotone using the implicit

function theorem. Next, we show whether these are increasing or decreasing, focusing first on k2(cx)

and k3(cx), and then on k1(cx). Finally, we define the thresholds c1, c2, and c3.

B.1 Continuity and monotonicity. To do so, we further extend the definitions ΠCE(α), ΠDE(α),

ΠSE(α) in (13)-(15) by formally introducing a dependence on cx and k. For any ĉx, suppose

that there exists a value of k̂ that solves ΠCE(αCE(ĉx, k̂), ĉx, k̂) = ΠSE(1, ĉx, k̂). We study the

behavior of this solution when cx changes locally around ĉx. Because both ΠSE(1, cx, k) and

ΠCE(αCE(cx, k), cx, k) are continuously differentiable in cx and k, the implicit function theorem

yields that whenever ΠCE(αCE(ĉx, k̂), ĉx, k̂) = ΠSE(1, ĉx, k̂), there exists a continuously differen-

tiable function kSE−CE(cx) such that kSE−CE(ĉx) = k̂. Moreover, kSE−CE(cx) is monotone since, as

shown above, the equilibrium operating mode transitions as cx increases from SE to CE, but not

the other way around. A similar argument can be applied to the transitions between SE and DEC;

SE and DEU; CE and DEC; and DEU and DEC.
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B.2 Functions k2(cx) and k3(cx) are decreasing. Let k2(cx)
.
= kDEU−DEC

(cx) and k3(cx)
.
=

kCE−DEC
(cx). When k = 0, CE is the only possible equilibrium operating mode since

ΠCE(αCE(cx,0), cx,0) = αCE(V0 + lnxS(αCE)yS(αCE)−1)>−∞= ΠSE(1, cx,0) = ΠDE(α, cx,0) for

all α and cx. Hence, kCE−DEC
(cx) must be decreasing (on its domain); otherwise, since the equi-

librium operating mode transitions from CE to DEC as cx increases (but not the opposite), there

would exist a value ĉx such that ΠDE(α(cx,0), cx,0)>ΠCE(αCE(cx,0), cx,0) for all cx ≥ ĉx, a con-

tradiction.

Consequently, kDEU−DEC
(cx) is also decreasing on its domain. Otherwise, there would exist a

direct transition from CE to DEU, which is also a contradiction.

Accordingly, k′2(cx)≤ 0 and k′3(cx)≤ 0.

Moreover, kDEU−DEC
(cx) and kCE−DEC

(cx) cannot cross each other for otherwise there would

be a direct boundary between CE and DEU. Since CE is the only equilibrium at k = 0 and since

kDEU−DEC
(cx) and kCE−DEC

(cx) do not cross each other, k3(cx)>k2(cx)> 0 for all cx ≥ 1.

B.3 Function k1(cx) is increasing. Let k1(cx) be the boundary of SE with all other equilibrium

operating modes. Since kDEU−DEC
(cx) and kCE−DEC

(cx) do not cross, kSE−CE(cx) turns, as cx

increases, first into kSE−DEC
(cx) and then kSE−DEU

(cx).

Using a similar argument to the one characterizing kCE−DEC
(cx), we obtain that kCE−SE(cx) is

increasing on its domain. Otherwise (since the equilibrium operating mode transitions from SE to

CE as cx increases, but not the opposite) there would exist a value ĉx such that ΠSE(α(cx,0), cx,0)≥

ΠCE(αCE(cx,0), cx,0) for all cx ≤ ĉx, a contradiction.

We next show that kSE−DEU
(cx) is increasing on its domain. By definition,

ΠSE(1, cx, kSE−DEU
(cx)) = ΠDE(αDE(kSE−DEU

(cx)), cx, kSE−DEU
(cx)), in which αDE(kSE−DEU

(cx))

solves Π′DE(αDE, cx, kSE−DEU
(cx)) = 0, i.e., V (0, yS(αDE)) + αDE(∂V (0, yS(αDE))/∂y)y′S(α) = 0,

or equivalently, V (0, yS(αDE)) − αDE/(1 − αDE) = 0. Therefore, V0 + ln(kSE−DEU
(cx)/cx) − 1 =

α2
DE/(1−αDE); i.e., kSE−DEU

(cx) = cx exp (1 +α2
DE/(1−αDE)−V0). Since αDE is independent of

cx, we obtain that k′SE−DEU
(cx) = exp(1 +α2

DE/(1−αDE)−V0)> 0.

Hence, both kCE−SE(cx) and kSE−DEU
(cx) are increasing. Therefore, kSE−DEC

(cx) must also be

increasing; otherwise, kCE−SE(cx) and kSE−DEU
(cx) would not be differentiable when they intersect

with kSE−DEC
(cx), a contradiction.

In summary, k′1(cx)≥ 0. Since CE is the only equilibrium at k= 0, k1(cx)> 0 for all cx ≥ 1.

B.4 Thresholds. Finally, define the thresholds c1 as the intersection between k1(cx) and k2(cx),

c2 as the intersection between k1(cx) and k3(cx), and c3 as the interesection between k1(cx) and 1.

�
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Lemma EC.7. For any given output share α∈ [0,1] and principal’s effort x∈ [0,1), the agent’s

equilibrium effort (18) equals

ŷ∗(α,x) = yS(α)− kx

k+ (1− 2k)x
(EC.8)

if x< x0(α), and zero otherwise.

Proof. After relaxing the constraint that y ≤ 1, (18) simplifies to

maxy≥0 (1−α) ln(E(x, y))− cyy. The first-order optimality conditions are:

(1−α)(k+ (1− 2k)x)

E(x, y)
− cy ≤ 0, y≥ 0,

[
(1−α)(k+ (1− 2k)x)

E(x, y)
− cy

]
y= 0. (EC.9)

Because the objective function is strictly concave and the constraint is linear, Conditions (EC.9)

are necessary and sufficient. The solution is unique and can be expressed, using (1) and (10), as

ŷ∗ = max
{

0, yS(α)− kx
k+(1−2k)x

}
. Because α ∈ [0,1] and cy > 1, yS(α)< 1, and thus ŷ∗ < 1. Hence

ŷ∗ is also optimal when the constraint y≤ 1 is explicitly stated. Because d
dx

(
yS(α)− kx

k+(1−2k)x

)
=

−k2
(k+(1−2k)x)2

< 0, dŷ∗/dx < 0. If yS(α)≥ k
1−k , ŷ∗ ≥ 0 for all x ∈ [0,1]; otherwise, there exists a value

x0 ∈ [0,1) such that ŷ∗ > 0 if x < x0 and ŷ∗ = 0 if x≥ x0. Combining both cases leads to (20) so

that, when x< 1, ŷ∗ = yS(α)− kx
k+(1−2k)x

if x< x0(α) and ŷ∗ = 0 if x≥ x0(α). �

Proof of Lemma 2. Throughout the proof, we omit the arguments α and from ŷ∗(α,x), x̂∗(α),

xS(α), yS(α), x̂D(α), and x0(α). By Lemma EC.7, ŷ∗(x) = yS− kx
k+(1−2k)x

when x≤ x0 and ŷ∗(x) = 0

otherwise. Define [a, b]
.
= ∅ if a > b and (a, b] = [a, b)

.
= ∅ if a≥ b. Accordingly, the principal’s effort

choice problem in (6) simplifies to

x̂∗ = arg max

{
max
x∈[0,x0)

αV

(
E

(
x, yS −

kx

k+ (1− 2k)x

))
− cxx, max

x∈[x0,1]
αV (E(x,0))− cxx

}
.

Because yS − kx
k+(1−2k)x

≥ 0 if and only if x ≤ x0 and V (E(x, y)) is increasing in y,

αV
(
E
(
x, yS − kx

k+(1−2k)x

))
− cxx≥ αV (E(x,0))− cxx if and only if x≤ x0.

When α= 0, x̂∗ = 0. By Lemma EC.7, ŷ∗(x) = yS. When α= 1, yS = 0; therefore, x0 = 0. Hence,

x̂∗ = arg maxx∈[0,1]αV (E(x,0))− cxx= xS.

Finally, suppose that α ∈ (0,1). The function αV (E(x,0)) − cxx is strictly concave in

x ∈ [0,1] and maximized at xS. Because α ∈ (0,1) and cx > 1, xS ∈ (0,1). The function

αV
(
E
(
x, yS − kx

k+(1−2k)x

))
−cxx is (convexly) decreasing in x∈ [0,1] if k≥ 1/2 and strictly concave

in x∈ [0,1] otherwise. In either case, it is maximized at x̂D as defined by (21), and x̂D ≤ xS.

1. When x̂D = 0:

(a) If xS <x0, x̂∗ = 0.

(b) If xS ≥ x0, then x̂∗ = xS if αV (E(xS,0))− cxxS ≥ αV (E (0, yS)) and x̂∗ = 0 otherwise.
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2. When 0< x̂D <x0:

(a) If xS <x0, x̂∗ = x̂D.

(b) If xS ≥ x0, x̂∗ = xS if αV (E(xS,0))− cxxS ≥ αV
(
E
(
x̂D, yS − kx̂D

k+(1−2k)x̂D

))
− cxx̂D and

x̂∗ = x̂D otherwise.

3. When x̂D ≥ x0, then x̂∗ = xS.

Accordingly, DE (i.e., x̂∗ = 0) arises when x̂D = 0 and either xS < x0 or αV (E(xS,0)) −

cxxS < αV (E (0, yS)), i.e., ln
(
xS(α)

yS(α)

)
< 1. Note that, since αV

(
E
(
x, yS − kx

k+(1−2k)x

))
−

cxx ≥ αV (E(x,0)) − cxx if and only if x ≤ x0, xS < x0 implies that αV (E(xS,0)) −

cxxS < αV
(
E
(
xS, yS − kxS

k+(1−2k)xS

))
− cxxS ≤ maxx∈[0,x0)αV

(
E
(
x, yS − kx

k+(1−2k)x

))
− cxx =

αV (E (0, yS)). Hence, DE arises when x̂D = 0 and αV (E(xS,0)) − cxxS < αV (E (0, yS)), i.e.,

ln
(
xS(α)

yS(α)

)
< 1.

Similarly, we obtain that CE (i.e., x̂∗ = x̂D > 0 and ŷ∗ > 0) arises when 0< x̂D < x0 and either

xS < x0 or αV (E(xS,0)) − cxxS < αV
(
E
(
x̂D, yS − kx̂D

k+(1−2k)x̂D

))
− cxx̂D, i.e., ln

(
k

(1−2k)yS(α)

)
<

k
(1−2k)xS(α)

. Note that, since αV
(
E
(
x, yS − kx

k+(1−2k)x

))
− cxx ≥ αV (E(x,0)) − cxx if and only

if x ≤ x0, xS < x0 implies that αV (E(xS,0)) − cxxS < αV
(
E
(
xS, yS − kxS

k+(1−2k)xS

))
− cxxS ≤

αV
(
E
(
x̂D, yS − kx̂D

k+(1−2k)x̂D

))
− cxx̂D. Hence, CE arises when 0 < x̂D < x0 and αV (E(xS,0)) −

cxxS <αV
(
E
(
x̂D, yS − kx̂D

k+(1−2k)x̂D

))
− cxx̂D. However, the requirement that x̂D <x0 is redundant

since when x̂D ≥ x0, αV (E(xS,0)) − cxxS ≥ αV
(
E
(
x̂D, yS − kx̂D

k+(1−2k)x̂D

))
− cxx̂D. In sum, CE

arises when 0< x̂D and ln
(

k
(1−2k)yS(α)

)
< k

(1−2k)xS(α)
.

In all other cases, SE (i.e., x̂∗ = xS) is the equilibrium.

Denote

α̂(k)
.
= supD(k)

.
=

{
α : x̂D(α) = 0 and ln

(
xS(α)

yS(α)

)
< 1

}
.

This function is well defined for all k since x̂D(0) = 0 and ln
(
xS(0)

yS(0)

)
< 1, i.e., D(k) 6= ∅. Moreover,

since ln
(
xS(1)

yS(1)

)
> 1, D(k) is bounded from above. Accordingly, 0≤ α̂(k)< 1.

Since x̂′D(α)≥ 0 and
(

ln
(
xS(α)

yS(α)

))′
> 0, α1 < α̂⇒ α2 < α̂ for any α2 ≤ α1. Hence, D(k) is convex.

Accordingly, DE is an equilibrium for all α < α̂(k) and not an equilibrium otherwise (i.e., the

equilibrium operating mode is then either CE or SE).

We next show that α̂′(k) ≥ 0. Suppose, for some k1, ln
(
xS(α1)

yS(α1)

)
< 1 with α1

.
= α̂(k1). Because

x̂D(α) is weakly decreasing in k and
(

ln
(
xS(α)

yS(α)

))
is independent of k, α̂(k) ≥ α1 for all k ≥ k1.

Since ln
(
xS(0)

yS(0)

)
< 1 and given that α̂(0) = 0, α̂(k) is thus increasing for all k.

Next, denote

α̂(k)
.
= supC(k)

.
=

{
α : x̂D(α)> 0 and ln

(
k

(1− 2k)yS(α)

)
<

k

(1− 2k)xS(α)

}
.
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Unlike α̂(k), α̂(k) is defined only on a restricted set of values of k. In particular, C(k) = ∅ when

k ≥ 1/2 by (21). When C(k) 6= ∅, since x̂D(0) = 0 for any k, α̂(k)> 0; and since ln
(

k
(1−2k)yS(1)

)
>

k
(1−2k)xS(1)

, α̂(k)≤ 1.

Next, we show that CE is an equilibrium if and only if α̂(k) < α < α̂(k). We do so in two

parts, by first showing that C(k) is convex and then showing that α̂(k) = inf C(k) whenever

C(k) 6= ∅. For the first part, note that x̂′D(α) ≥ 0 and ln
(

k
(1−2k)yS(α)

)
− k

(1−2k)xS(α)
is increasing.

Hence, α1 < α̂ and α2 < α̂⇒ λα1 + (1 − λ)α2 < α̂ for any λ ∈ [0,1]. For the second part, note

that ln
(
xS(α)

yS(α)

)
< 1⇒ ln

(
k

(1−2k)yS(α)

)
< k

(1−2k)xS(α)
(since both ln

(
xS(α)

yS(α)

)
and ln

(
k

(1−2k)yS(α)

)
−

k
(1−2k)xS(α)

are increasing in α and ln
(

k
(1−2k)yS(α̃)

)
< k

(1−2k)xS(α̃)
at α̃ = cxe/(cxe + cy)). That is,

α≤ α̂(k)⇒ ln
(

k
(1−2k)yS(α)

)
< k

(1−2k)xS(α)
. This result combined with the fact that x̂′D(α)≥ 0 com-

pletes the proof.

Finally, because x̂D(α) is weakly decreasing in k and ln
(

k
(1−2k)yS(α)

)
− k

(1−2k)xS(α)
is increasing

in k whenever x̂D > 0, C(k) shrinks in k, i.e., α̂
′
(k)≤ 0. Since α̂(0) = 1, the function α̂(k) is well

defined over [0, k̂] for some k̂ < 1/2. To extend the domain of definition, one can define α̂(k) as

equal to α̂(k) whenever C(k) is empty. �

Lemma EC.8. When V0 is sufficiently large, the maximization problem (23) is well defined, i.e.,

its maximum exists.

Proof. First, when V0 is large enough, Π̂SE(α) is increasing; therefore, if SE emerges as the

equilibrium operating mode, α̂∗ = 1. Accordingly, the team formation decision reduces to comparing

Π̂SE(1) to the payoff the principal could obtain under CE or DE by setting α∗ < 1.

Second, as shown in the proof of Lemma 2, DE is feasible if x̂D(α) = 0 and CE is feasible

if x̂D(α) > 0, so the choice between DE and CE reduces to comparing α to a threshold α̂
.
=

min{1, kcx/(1− 2k)} if k < 1/2 and α̂
.
= 1 otherwise. Accordingly, (23) is equivalent to

α̂∗ = arg max1[α∈[0,α̂]∩[0,1)]Π̂DE(α) +1[α∈(α̂,1)]Π̂CE(α) +1[α=1]Π̂SE(α). (EC.10)

Although some feasible sets remain half-open, note that Π̂DE(α̂) = Π̂CE(α̂), Π̂SE(1) >

max{Π̂DE(1), Π̂CE(1)}, and limα→1 Π̂′DE(α)< 0 and limα→1 Π̂′CE(α)< 0; so they can be closed with-

out loss of generality, i.e., (EC.10) is equivalent to

α̂∗ = arg max1[α∈[0,α̂]]Π̂DE(α) +1[α∈[α̂,1]]Π̂CE(α) +1[α=1]Π̂SE(α).

By Weierstrass’ extreme value theorem, each piece is well defined. �
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Lemma EC.9. When V0 ≥ 1+ln (4cy(1 + cx)), the principal’s payoff is positive, the agent’s payoff

is nonnegative, and α∗ ≥ 1/2.

Proof. Consider (EC.10). Since Π̂′′DE(α) =−(2−α)/(1−α)2 < 0, Π̂DE(α) is strictly concave.

Since Π̂′′CE(α)≤ 0 if and only if 2α2 − 4α+ 1≤ 0, Π̂CE(α) is convex for all α ∈ [0,1−
√

2/2] and

concave for all α ∈ [1 −
√

2/2,1]. Moreover, limα→1 Π̂′DE(α) < 0 and limα→1 Π̂′CE(α) < 0. When

α̂ < 1, Π̂CE(α̂) = Π̂DE(α̂) and Π̂′CE(α)≤ Π̂′DE(α) if and only if α≤ α̂. This is because

Π̂′DE(α) = V0 + ln(kyS(α))− α

1−α
, Π̂′CE(α) = V0 + ln((1− 2k)xS(α)yS(α))− α

1−α

and k ≥ (1− 2k)xS(α) if and only if α≤ α̂. Hence, Π̂(α) is continuously differentiable over [0,1).

Therefore, when 1−
√

2/2> α̂, α̂∗ 6∈ (α̂,1−
√

2/2]. As a result,

α̂∗ ∈ {α̂DE, α̂CE,1} (EC.11)

with

α̂DE
.
= arg max

0≤α≤α̂
Π̂DE(α) and α̂CE

.
= arg max

max
{
α̂,1−

√
2

2

}
<α≤1

Π̂CE(α). (EC.12)

Because Π̂DE(α) and Π̂CE(α) are concave over their respective domains of interest, the first-order

optimality conditions are necessary and sufficient to identify α̂DE and α̂CE.

We show that α̂∗ ≥ 1/2 and Π̂(α̂∗)> 0 by considering two cases, depending on the value of α̂.

• Suppose first that α̂≥ 1/2, i.e., k≥ 1
2(cx+1)

. When V0 ≥ 1 + ln(4cy(cx + 1)),

Π̂′DE(1/2) = V0 + ln(kyS(1/2))−
1
2

1− 1
2

≥ V0 + ln

(
yS(1/2)

2(cx + 1)

)
− 1≥ ln (1) = 0.

Therefore, α̂DE ≥ 1/2 by concavity of Π̂DE(α). By definition, α̂CE ≥ α̂ ≥ 1/2. Hence, α̂∗ ≥

1/2. Finally, because Π̂DE(α̂DE) ≥ Π̂DE(1/2) = (1/2) (V0 + ln(kyS(1/2))) ≥ 1/2 > 0, Π̂(α̂∗) ≥

Π̂DE(α̂DE)> 0.

• Suppose next that α̂ < 1/2, i.e., k < 1
2(cx+1)

. When V0 ≥ 1 + ln(4cy(cx + 1)),

Π̂′CE(1/2) = V0 + ln(xS(1/2)yS(1/2)(1− 2k))−
1
2

1− 1
2

> V0 + ln

(
xS(1/2)yS(1/2)

(
1− 1

cx + 1

))
− 1≥ 0.

Therefore, α̂CE > 1/2 by concavity of Π̂CE(α) over [1−
√

2/2,1]. We next show that α̂∗ 6= α̂DE

by considering two cases.

? When Π̂′DE(α̂)> 0, Π̂′DE(α)> 0 for all α ≤ α̂ since Π̂DE(α) is concave; hence, α̂DE = α̂.

Therefore, Π̂CE(α̂CE)≥ Π̂CE(α̂) = Π̂DE(α̂) = Π̂DE(α̂DE), i.e., α̂∗ ∈ {α̂CE,1}.
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? When Π̂′DE(α̂) ≤ 0, either α̂DE solves Π̂′DE(α) = 0 or α̂DE = 0; in either case, V0 +

ln(kyS(α̂DE))≤ α̂DE/(1− α̂DE). Because α̂DE ≤ α̂ < 1/2, V0 + ln(kyS(α̂DE))< 1. Hence,

Π̂DE(α̂DE) = α̂DE (V0 + ln(kyS(α̂DE))) < α̂DE ≤ α̂. On the other hand, Π̂CE(α̂CE) ≥
Π̂CE(1/2) = (1/2)× (V0 + ln((1− 2k)/(4cxcy))− 1) + cxk/(1− 2k)> α̂, where the second

inequality holds because k < 1
2(cx+1)

and V0 ≥ 1+ln(4cy(cx+1)). As a result, Π̂DE(α̂DE)<

Π̂CE(α̂CE) and α̂∗ ∈ {α̂CE,1}.
Hence, α̂∗ ∈ {α̂CE,1} and therefore α̂∗ > 1/2. Because Π̂CE(α̂CE) > Π̂CE(1/2) =

(1/2) (V0 + ln(xS(1/2)yS(1/2)(1− 2k))− 1) + cx
k

1−2k
> cx

k
1−2k

≥ 0, Π̂(α̂∗)≥ Π̂CE(α̂CE)> 0.

In summary, we obtain that α̂∗ ≥ 1/2 and Π̂(α̂∗) > 0. We next show that the agent’s equi-

librium payoff is nonnegative. When α̂∗ < 1, α̂∗ solves the first-order optimality conditions

(V (E(x̂∗, ŷ∗(α̂∗, x̂∗))) = α̂∗

1−α̂∗ ) and ŷ∗(α,x) = yS(α)− kx/(k+ (1− 2k)x); accordingly, the agent’s

equilibrium payoff equals (1− α̂∗)V (E(x̂∗, ŷ∗(α̂∗, x̂∗)))− cyŷ∗(α̂∗, x̂∗) = α̂∗ − cyŷ∗(α̂∗, x̂∗) = 2α̂∗ −
1 + cy

kx̂∗

k+(1−2k)x̂∗ ≥ 0. When α̂∗ = 1, the agent’s payoff equals zero. �

Proof of Proposition 3. The proof is similar to the proof of Proposition 2, and we omit the

details. Let α̂CE
.
= arg maxα∈(α̂,α̂) Π̂CE(α) and α̂DE

.
= arg maxα∈[0,α̂) Π̂DE(α). We extend the defini-

tions of Π̂DE(α), Π̂CE(α), and Π̂SE(α) to formally introduce a dependence on cx. Suppose first that

CE is the equilibrium operating mode, which can only happen when k < 1/2, i.e., α∗ ∈ (α̂, α̂). By

the envelope theorem, we obtain that ∂Π̂CE(α∗(cx), cx)/∂cx = k/(1−2k)−xS, which is strictly neg-

ative since x̂D(α∗)> 0, and larger than −1/cx. Suppose next that DE is the equilibrium operating

mode, i.e., α∗ ∈ [0, α̂). Then, ∂Π̂DE(α∗(cx), cx)/∂cx = 0. Finally, suppose that SE is the equilibrium

operating mode, i.e., α∗ = 1. Then, ∂Π̂SE(α∗(cx), cx)/∂cx = −1/cx. Combining these results, we

obtain that, for any given k, the most general transition pattern (assuming no empty region), as

cx increases, is first SE, then CE, and finally DE.

Similar to the proof of Proposition 2, we can then show that the boundaries between these

regions are monotone, using the implicit function theorem. Note that the boundary between the SE

and the DE regions, defined as the set of solutions to Π̂SE(1, cx, k) = Π̂DE(α̂DE(k, cx), k, cx) for any

cx, and denoted as k̂DE−SE(cx), is increasing in cx. Also, similar to the proof of Proposition 2, we

find that when k= 0, CE is the only possible equilibrium operating mode as the profit associated

with the other regions tends to −∞. Hence, the boundary k̂2(cx) between the CE and DE region

must be decreasing in cx while the boundary k̂1(cx) between the CE and the SE regions must be

increasing in cx. Combining these results completes the proof. �

Proof of Proposition 4. The cases when the equilibrium operating modes are SE and DE are

trivial. Suppose the equilibrium operating mode is CE. Plugging (11)-(12) into (24), we obtain:

V0 +
1

2
+
k(cx + cy)

1− 2k
+ ln

 2k2√
(1− 2k)2 +

4k2cxcy
α(1−α)

− (1− 2k)

−
√

(1− 2k)2 +
4k2cxcy
α(1−α)

2(1− 2k)
.
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Taking the derivative with respect to α yields:

(1− 2α)cxcyk
2

(
1− 2k+

√
(1− 2k)2 +

4k2cxcy
α(1−α)

)
(1−α)2α2(1− 2k)

√
(1− 2k)2 +

4k2cxcy
α(1−α)

(√
(1− 2k)2 +

4k2cxcy
α(1−α)

− (1− 2k)

) ,
which is positive when α< 1/2, zero at α= 1/2, and negative when α> 1/2. Hence setting α~ = 1/2

is optimal under CE. �


