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Abstract

As the costs of generating and transmitting information fall, the main bottlenecks in

communication networks are becoming the human receivers, who are overloaded with

information. For networks of targeted communication, this paper discusses the meaning

of information overload, provides a theoretical treatment of its causes, and examines

mechanisms for allocating the attention of receivers. Mechanisms for allocating atten-

tion include surcharges on communication and auctions. These mechanisms increase

the cost of sending messages and shift the task of screening messages from the receivers

to the senders. This shift may benefit both the receivers and the senders because the

senders know the contents of the messages whereas the receivers do not. We show

that, if the communication cost is low, then an increase in the communication cost

benefits most (but not all) receivers. The increase benefits all the senders if either the

extra cost is a tax that is redistributed to them as lump-sum transfers or the senders’

information about the receivers is sufficiently accurate.
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1 Introduction

The physical resources for communication, such as data networks and the postal service,
are scarce. Attempts have always been made to allocate these resources efficiently through
price mechanisms. However, human communication is not merely the transmission of bits
from one computer to another; information must go from brain to brain. The cost of physical
communication resources has fallen so much that the relatively scarce resource is now the
human attention needed to process and understand information. For example, compare the
cost of mailing a working paper to a colleague with the opportunity cost of the time it takes
your colleague to read and understand your paper. Yet human attention is not priced in
networks.

Should it be? Human attention is not a passive resource; rather, each person controls
the allocation of her attention to the information she receives. Since information is freely
disposable, the mere fact that people receive more information than they can process does
not mean they receive too much.

Nevertheless, complaints about information overload are common. This paper provides
an interpretation of information overload such that “nearly rational” decision makers can
be made worse off by receiving more information. The decision makers are limited in their
ability to process information and are forced to search among messages—without knowing
their content, of course—if they receive more than they can process. An increase in the
amount of information can be detrimental if it is accompanied by a decrease in the average
value of the information. We construct a model of networked communication—messages are
targeted to individual receivers based on imperfect demographic data—in which precisely
this link between quantity and quality arises endogenously as the outcome of strategic
interaction between senders; this link due to the fact that human attention is an unpriced
resource.

Consider in more detail this last point. If there were only a single sender, then she
would not choose to overload any receivers, preferring to decide herself which messages
receivers process rather than having receivers do so blindly, just as a single sender would
not overload an e-mail network to the point that messages are dropped. However, when
there are multiple senders, information overload is an externality between the senders, as
each sender’s messages crowd out messages of other senders. Thus, inadequate screening
by senders arises because the physical cost of generating and transmitting information no
longer rations access to receivers’ attention.

Our analysis is via a simple model in which there is a one-time, one-way flow of infor-
mation from several senders to a large population of receivers, and in which communication
is targeted in the sense that senders can send their messages to any subset of receivers. An
example is the communication from firms to consumers via targeted advertising, such as di-
rect mail, e-mail, and fax. Targeted communication contrasts with untargeted or broadcast
communication; in the latter, messages are sent either to all receivers or to none. The web,
billboards, and television are means of untargeted communication.

What differentiates our model theoretically from a standard commons game is that we
consider a large population of unpriced resources—corresponding to the large population of
receivers—and derive our main new insights from the aggregate properties of the equilibria
and the relation to the imperfect marketing data of the senders. In our treatment of mech-
anisms for allocating attention, we do not restrict attention to ones that treat each receiver
independently, decomposing the problem into many independent resource pricing problems.
Such mechanisms, in which senders are charged a different cost for each receiver they target,
are excessively complex to implement. Instead, we consider the effects of uniform changes in
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communication costs, either as exogenous technological parameters or as the result of taxes.
Some of our main results are that, if transmission costs are low enough, then (a) the senders
unanimously benefit from the imposition of a tax on their communication if the revenues are
returned to them as lump-sum transfers and (b) if the senders’ marketing data are accurate
enough then they unanimously benefit from an increase in communication costs even if the
extra costs are not reimbursed.

We began this introduction by discussing information overload as a complaint of re-
ceivers, yet we have shifted the point of view to that of the senders. One of the messages of
this paper is precisely that information overload is a consequence of the strategic interac-
tion among senders of messages and that they also are directly harmed by their collective
overexploitation of the receivers’ attention. To focus on this strategic interaction, we model
the receivers passively and do not study the complex screening methods they might use to
cope with information overload.

However, we can still draw conclusions from the model about the welfare properties of
the equilibria from the point of view of the receivers. The interests of senders and receivers
do not coincide perfectly, but they do coincide in part. A sender benefits from having a
receiver process a message only if the message influences the actions of the receiver—and
this is precisely when the message also benefits the receiver. Thus, when senders reduce
their screening and send messages they believe unlikely to interest the receivers, the receivers
find that they are searching among messages that are more numerous but of less interest
on average. Using this link, we are able to show that, if the senders’ transmission cost is
low enough, then the aggregate welfare of receivers rises with this cost even though some
receivers (those about whom the senders have inaccurate information) are better off with a
lower communication cost. The message of this paper is supported by a recent laboratory
experiment by Kraut et al. (2000), who found that charging for e-mail can increase the
effectiveness of communication.

We begin the paper with a literature review in Section 2. Than a game with costly
targeted communication is introduced in Section 3. In Section 4, we show that the game
has an equilibrium and we illustrate the game with a few examples. In Section 5, we show
that the total payoffs of the senders are often not maximized because senders communicate
too much. We then consider mechanisms for alleviating this inefficiency: in Section 6, we
study pricing and bidding mechanisms that are tailored to each receiver type; in Section
7, we consider whether efficiency can be achieved by using surcharges that are uniform
across receivers. In Section 8, we examine how the payoffs of the senders vary with the
cost of communication in a neighborhood of zero. The welfare of receivers is taken up in
Section 9, followed by concluding remarks in Section 10. Appendix A describes a primitive
model of receivers and of the information that senders have about them, which supports the
reduced-form used in the body of the paper; Appendix B contains all the proofs.

2 Literature review

Research on information overload is scattered in the fields of computer and information
science, marketing, law, psychology, and economics. The research found by the author has
various objectives and various approaches, all distinct from those of this paper. Here is an
incomplete review.

Researchers in information science are interested in developing computer-mediated com-
munication systems to increase the efficiency of information screening by receivers in order
to reduce the relative scarcity of attention in electronic networks. For example, Malone
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et al. (1987) and Lai et al. (1988) developed the so-called “Information Lens” and “Object
Lens” systems.

In a brief essay, Denning (1982) called attention to the problem of information overload.
He also suggested several ways of restricting communication in order to reduce information
overload, such as setting up different paths for different types of mail, restricting access
to mailboxes to specifically authorized users, setting up private mailboxes with unlisted
addresses, and allocating attention by bids attached to each message, denominated in real
or funny money. Only the bidding mechanism is discussed in this paper. Hiltz and Turoff
(1985) counter that the task of screening should shift from senders to receivers, rather than
in the opposite direction. However, their worry is primarily with inflexible restrictions on
communication; they allow that, as a last resort, usage-sensitive pricing could be used to
discourage electronic junk mail.

As discussed in Section 1, information overload is a problem because senders screen too
little and so receivers end up poorly informed. If senders cannot selectively screen (e.g., if
the messages are sent by nature), then there is no benefit to reducing the flow of information
to receivers. This statement is true, however, only if people can ignore incoming messages
and do not systematically err by processing too many messages. Psychologists study the
ability of humans to ignore incoming messages, see, for example, Libowski (1975).

In the marketing literature, Jacoby et al. (1974), Malhotra (1982), and Keller and Staelin
(1987) have experimentally tested the following hypothesis: consumers choose to process
too much information and thus may benefit from unselective restrictions on their access to
information. Flaws in this research have been pointed out by critics such as Grether et al.
(1986) and Meyer and Johnson (1989). This literature has ignored the inverse relationship
between the quantity and quality of information that we study in this paper.

Legal scholars are interested in the practical implications of information overload for
disclosure laws, contract complexity, and disclaimers. An extensive discussion, drawing on
economic theory, can be found in Schwartz and Wilde (1983).

In our model, the receivers can be viewed as searching among their messages; hence the
model is related to the economics literature on consumer search. Our model and results
are different from those of that literature, however. Consumer welfare may decline in some
search models when there are more firms in the market, but this is because equilibrium prices
rise. In Satterthwaite (1979), this occurs because the market is for a differentiated reputation
good—the larger the market is, the more costly it is to obtain several referrals about the
quality and price of any one product. This makes demand less elastic. In Stahl (1989),
the market is for a homogeneous good and consumers search only for price information. A
population of consumers with zero search costs keeps prices from the monopolistic price,
which would prevail if search were costly for all consumers (Diamond (1971)), but the
effect of this population on each firm’s price strategy diminishes as the number of firms
rises. A similar phenomenon occurs in Rosenthal (1980). In our model, the terms of the
opportunities offered by senders are fixed exogenously, but the receivers’ welfare may decline
when the senders stop screening and when receivers are thus less likely to learn about the
opportunities in which they are interested.

A leading interpretation of our model is as advertising (although the price competition
is not included in the model). Butters (1977) studies competition between advertisers, but
this competition is via prices rather than for the buyers’ attention. Identical firms sell a
homogeneous good to identical consumers. Each buyer processes all the advertisements she
receives and then purchases at the lowest advertised price. In various extensions, Stegeman
(1991) makes the consumers heterogeneous, Robert and Stahl (1993) add consumer search
as a supplementary information channel, and Stahl (1994) generalizes various assumptions
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on consumer demand and producers’ costs. Grossman and Shapiro (1984) study a similar
model, also with no limits to consumer attention, in which products and consumer prefer-
ences are differentiated. A decrease in advertising costs may reduce profits of the firms, but
this is because it heightens price competition rather than because it reduces the effectiveness
of communication (as in our model); a reduction in the advertising cost always increases
total surplus.

3 Model

The first key aspect of communication that we want to capture is the informational
difference between a sender of a message, who costlessly knows its contents but is not fully
informed about the interests of potential receivers, and a receiver, who costlessly knows
his or her own interests but is not fully informed about the contents of messages without
first processing them. The second key aspect is the externality between senders of messages
as they compete for the scarce attention of receivers. Furthermore, we want to study a
network in which communication is targeted rather than broadcast, meaning that messages
are sent to individual receivers and that one of the decisions made by senders is whom to
target—based on imperfect information about the receiver’s interests.

We construct a model that brings these points to the forefront. Communication takes
place once and is unidirectional. A finite number n > 1 of senders, indexed j = 1, . . . , n,
transmit messages to a large population of receivers. We use male pronouns for senders and
female for receivers. Each sender has a single message. It is unstructured, which means that
(a) it can be read either in its entirety or not at all and (b) a receiver cannot distinguish
between messages when choosing which to read. Each message informs a receiver of an
opportunity or recommendation, which we call simply an offer. The terms of the offer are
fixed. Hence, a sender’s only decision is choosing whom to send messages to. A receiver is
not aware of a sender’s offer unless she receives and processes his message. A senders’ payoff
increases as a function of the number of receivers who receive, process, and respond to his
message.

Before imposing additional simplifying assumptions, we note the following examples:

1. Senders are organizers of seminars in a university and receivers are faculty and stu-
dents. Each organizer can send an announcement about the seminar he is organizing
to anyone in the university through the intramural mail or by e-mail. The organizer’s
status depends on the number of attendees.

2. Senders are safety groups in a firm and receivers are employees. Each group can send
a recommendation to the employees, using intramural mail or e-mail, about the safety
hazards it is responsible for. The groups are evaluated by the safety records.

3. Senders are firms and receivers are consumers. Each firm offers a transaction with
exogenously given terms. For example, the transaction might be the sale of a product
at an exogenously given price. Each firm can send any set of consumers a description
of the transaction, a web address, an order form, or a toll-free number through the
mail. The firm’s profits depend on how many consumers accept the transaction.

The last example of firms and consumers fits the model well, so we borrow terminology from
it.

Senders decide simultaneously whom to target. Each receiver then receives between 0
and n messages. She can process up to m messages costlessly but cannot process more.



Van Zandt : Information Overload in a Network of Targeted Communication 5

So that information overload is potentially a problem, we assume 1 ≤ m < n. Because
messages are indistinguishable when they arrive and cannot be partially processed, each
message received is processed with equal probability. In particular, a receiver who receives
l messages processes all of them if l ≤ m and processes each one with probability m/l

otherwise.

This particular search technology is a minor simplification (as compared to sequential
search in which a cost is paid for each message processed). More important is our assump-
tion (standard in the screening literature) that messages are unstructured, which precludes
screening based on partial processing of messages. Such screening is an important mech-
anism for dealing with information overload. However, as much as such screening merits
study and is important for a measurement of the effects studied in this paper, it does not
alter the qualitative points that we make. Each decision by a receiver of whether to process
other parts of a message is still made based on partial information about the content and
relevance of these parts. For examples, when searching through working papers, being able
to read titles in order to decide whether to read abstracts, abstracts in order to decide
whether to read introductions, and so on, is a structured search process that improves com-
munication but does not eliminate the possibility that we choose not to read papers that,
ex-post, we would have been happy to have read, or that we read papers that, ex-post, we
wish we had not bothered with.1

After processing up to m messages, the receiver either responds to a message if interested
or does not. Whether a receiver is interested in a message does not depend on what other
messages she processes. Thus, senders are competing only for the attention of the receiver
and not directly with the other offers.

Particularly in the advertising scenario in which senders are firms, the design of the offers
(for example, the design and pricing of products) and the direct competitive interaction
when the offers are substitutes or complements are interesting issues. We abstract from
them because they have been well studied in models without information overload and are
not essential to the competition for attention. The interaction between price competition
and competition for attention is left for future research.

The most intricate part of our model is our treatment of receivers and of the senders’
information about them. We use a reduced form that is motivated informally here and is
derived from a primitive model described in Appendix A. Senders cannot perfectly observe
which messages a receiver would be interested in. They have common beliefs about this
based on, for example, demographic and marketing data. We call these beliefs about a
receiver her type and represent them by t ∈ [0, 1]n, where t = 〈t1, . . . , tn〉 and tj is the
probability that the receiver is interested in sender j’s message. Thus, if sender j sends one
of the l messages received by a receiver of type 〈t1, . . . , tn〉, then the probability that the
receiver reads j’s message is min{1,m/l} and the probability that she also responds to it is
tj(min{1,m/l}).

Let T ≡ [0, 1]n be the set of types. The distribution of types in the population is given
by a measure γ on T , normalized so that γ(T ) = 1. We have in mind a large population,
so we typically assume that γ is dispersed in some sense. If the demographic characteristics
are good indicators of the interests of receivers, then γ places greater mass near the corners
of T , where a type is an n-tuple of 0s and 1s and hence the receiver’s interests are known.
Otherwise, γ is concentrated around its mean. If each receiver is interested in one and

1The article “There’s still no quick fix for dumping the e-mail junk”, by Rob Pegararo (International

Herald Tribune, 24 July 2000, p. 19), observes that even software filters are imperfect at screening out junk

mail: “They cannot catch everything. Worse, yet, sometimes they go too far, trashing the things you do

want to see.” They are even worse at letting through just the “junk mail” that would be of interest.
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Figure 1. Illustration of the senders’ information. There are two senders, a basketball

equipment retailer and a golf equipment retailer. Each receiver plays either basketball

or golf, depending only on her income and height. The receivers’ income and heights are

distributed uniformly on [$0, $100K]×[150cm, 200cm]. The division between basketball

and golf players is shown in the upper row for three cases. The senders know the

receivers’ incomes but not their heights. The support of the induced distribution

γ on [0, 1]2 is drawn in the lower row. For the left-hand division, income is partly

informative and γ is uniform on the simplex ∆1. For the middle division, income is

uninformative and γ is concentrated on 〈1/2, 1/2〉. For the right-hand division, income
is fully informative and γ is concentrated on 〈1, 0〉 and 〈0, 1〉.

only one message, then the entire mass of γ is on the (n − 1)-dimensional unit simplex
∆n−1. This special case is used for some graphical examples because the set of types has
one less dimension. Figure 1 contains an illustration of the link between γ and the senders’
information; see also Appendix A.

We require that each sender treat receivers of the same type the same way, targeting all
or none of them. This is not a strong restriction, given the dispersion of types; senders can
divide up a pool of receivers by dividing up similar types rather than dividing up receivers
of the same type. Given this restriction, a typical pure strategy for a sender j is a Borel
subset Xj of T , where Xj is the set of types that the sender targets. We let B be the set
of Borel subsets of T , which thus denotes each sender’s set of pure strategies. A strategy
profile for the senders is denoted X = 〈X1, . . . , Xn〉 ∈ Bn.

The following notation keeps track of how many senders communicate to a given receiver
type. Given a strategy profile X = 〈X1, . . . , Xn〉, let X−j ≡ 〈X1, . . . , Xj−1,Xj+1, . . . , Xn〉.
For t ∈ T , let Xj(t) = 1 if t ∈ Xj and Xj(t) = 0 otherwise; that is, Xj(·) denotes the
indicator function of Xj . Define also #X(t) ≡ ∑n

j=1 Xj(t) and #X−j(t) ≡ ∑
i�=j Xi(t).
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Hence, #X(t) is the number of senders who target t, and #X−j(t) is the number of senders
other than j who target t.

If a receiver processes a message in which she is interested, then she accepts the offer and
the sender is said to have made a “sale”. The expected sales of sender j given a strategy
profile X are

σj(X) ≡
∫

Xj

tj(min {1,m/#X(t)}) dγ(t) .(1)

Invoking informally a law of large numbers and assumptions that the marketing data are
unbiased and errors across receivers are i.i.d., we treat expected sales as also realized sales
in order to simplify the discussion. We assume that sender j earns a surplus sj > 0 per
transaction, so j’s gross payoff given X, before discounting communication costs, is sjσj(X).

Sending messages may be costly for a sender because it requires resources such as en-
velopes, paper, or bandwidth; these costs are nearly proportional to the number of receivers
targeted. The sender also has fixed costs of preparing the original copy of the message and
obtaining the mailing lists and marketing data. We disregard these fixed costs. We assume
that the cost per message sent is the same for all senders and receivers. Let c be this cost
per message, so that the cost of targeting types B ∈ B is cγ(B). The net payoff of sender j
given X and c is then

πj(X; c) ≡ sjσj(X)− cγ(Xj) .

Each communication cost c ≥ 0 thus defines a game Γc in normal form in which the
players are the n senders, each sender’s strategy set is B, and sender j’s payoff function is
πj( · ; c). By an equilibrium for Γc, we mean a pure-strategy Nash equilibrium. Our task is
to examine how the equilibria of Γc depend on c.

4 Equilibrium

Each sender’s surplus is linear in sales, the cost of communication is linear in the number
of messages sent, and sales to a receiver depend only on the messages sent to that receiver.
Therefore, the game Γc can be decomposed into independent single-receiver games. This is
proved in Proposition 4.2 after developing necessary notation and definitions.

For t ∈ T , let Γc(t) be the single-receiver game for type t. This is the game in normal
form in which: (a) there are n players; (b) each player’s strategy set is {0, 1}, where 0
means “not send” and 1 means “send”; and (c) player j’s payoff, given the strategy profile
x ≡ 〈x1, . . . , xn〉 ∈ {0, 1}n, is

uj(x; c, t) ≡
{
sjtj(min{1,m/#x})− c if xj = 1,

0 if xj = 0.

(Here #x denotes the number of messages sent, i.e. the cardinality of {i | xi = 1}.) For
example, if n = 2 and m = 1, then the payoff matrix for Γc(t) is

Sender 2
not send send

Sender
1

not send 0 , 0 0 , s2t2 − c

send s1t1 − c , 0 1
2s1t1 − c , 1

2s2t2 − c
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c

0 1
t2 (= 1 − t1)

ρ

ρ/2

Both send

Firm 1 sends
Firm 2 sends

c = s1t1

c = s2t2

ρ =
s1s2

s1 + s2

Multiple

Figure 2. Equilibrium as a function of type and communication cost, assuming n = 2,

m = 1, supp(γ) = ∆1, and s1 = (3/4)s2. The horizontal axis indicates t2 (equal to

1 − t1) and the vertical axis indicates c. In the region , only sender 1 sends a

message; in the region , only sender 2 sends a message; in the region , both

send a message; and in region , there are two equilibria in which one and only

one of the senders sends a message. In the blank region, there is a unique equilibrium

in which no messages are sent.

The game Γc(t) is similar in structure to a costly-entry oligopoly game or to a commons
game with only two actions: “exploit” and “not exploit”. In particular, each player’s payoff
from sending a message (exploiting the resource) is decreasing in the number of other players
who send a message and is independent of the identities of these players. Consequently, each
single-receiver game has a pure-strategy equilibrium, as stated in Proposition 4.1. (All proofs
are in Appendix B.)

Proposition 4.1 For all c ≥ 0 and t ∈ T , Γc(t) has a pure-strategy equilibrium.

Figure 2 shows the equilibria of Γc(t) as a function of c and t (for particular values of
the other parameters).

The aggregate game Γc is similar to an oligopoly game with costly entry and many inde-
pendent markets or to a commons game with many independent resources to be exploited.
A sender’s payoff in Γc given a strategy profile X ≡ 〈X1, . . . , Xn〉 is equal to the average of
its payoffs in the games Γc(t) given 〈X1(t), . . . , Xn(t)〉. That is,

πj(X; c) =
∫

T

uj(X1(t), . . . , Xn(t); c, t) dγ(t) .
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Proposition 4.2 then follows easily.

Proposition 4.2 Let c ≥ 0. A strategy profile 〈X1, . . . , Xn〉 is an equilibrium for Γc if and
only if, for γ-a.e. t ∈ T , 〈X1(t), . . . , Xn(t)〉 is a pure-strategy equilibrium for Γc(t).

Corollary 4.1 Γc has an equilibrium for all c ≥ 0.

To find an equilibrium of Γc for the example in Figure 2, we choose a measurable selection
of the correspondence to equilibria of Γc(t).

For points in the boundaries dividing the regions in Figure 2, the set of equilibria of the
game Γc(t) consists of the equilibria for the bordering regions. It is convenient to be able to
ignore such multiplicities. Assumption 4.1 gives the collection of such points zero mass. It
specifically gives zero mass to certain (n − 1)-dimensional subspaces of T , although not to
the (n− 1)-dimensional simplex. This assumption is maintained for the rest of the paper.

Assumption 4.1 For all i, j ∈ {1, . . . , n} such that i 
= j, for all a ∈ R+, and for all b ∈ R,

γ{t ∈ T | tj = ati + b} = 0 .

Two strategies are said to be equivalent if their symmetric difference is γ-null. Two
strategy profiles are said to be equivalent if, for each sender, the sender’s strategies in the two
profiles are equivalent. The term “unique”—whether applied to strategies, strategy profiles,
or equilibria—means “unique up to equivalence”. For example, Assumption 4.1 implies
that Γc has a unique equilibrium in the example in Figure 2 if either c ≤ s1s2/2(s1 + s2)
or c ≥ s1s2/(s1 + s2), because then Γc(t) has a unique equilibrium for γ-a.e. t ∈ T (since γ

has no mass points).

We conclude this section by stating a useful implication of Assumption 4.1: each sender
has a unique best response X∗

j (X−j ; c) to any strategy profile Xj of the other senders.

Proposition 4.3 Let j ∈ {1, . . . , n} and c ≥ 0. Let X−j ≡ 〈X1, . . . , Xj−1,Xj+1, . . . , Xn〉 ∈
Bn−1 be a profile of strategies for senders other than j. Then sender j has a unique best
response to X−j given c. That is, maxXj∈B πj(Xj ,X−j ; c) has a solution and it is unique
up to equivalence. Denote this solution by X∗

j (X−j ; c).

5 Strategies that maximize the senders’ total payoffs

We can evaluate the outcomes of this communication game from the point of view of the
senders, of the receivers, or of both. When receivers are overloaded with information, they
feel victimized by the senders—ask anyone how they feel about the companies that send
junk postal and electronic mail. However, senders are also hurt by information overload
because the receivers’ attention is not going to those senders who value it the most. In
Sections 5–7, we focus on the senders.

The following notation is useful. For t ∈ T and j ∈ {1, . . . , n}, define sender j’s valuation
of t’s attention to be sjtj and denote it by vj(t). It equals j’s expected gross payoff in the
game Γc(t) conditional on the receiver’s processing his message. For l ∈ {1, . . . , n}, let vl(t)
be the lth highest valuation of t’s attention; this is, if the senders are numbered such that
v1(t) ≥ · · · ≥ vn(t), then vl(t) = vl(t).

We observe that there is a unique strategy profile Y c that maximizes the total net payoffs
of the senders in the game Γc. We call Y c the efficient strategy profile, keeping in mind that
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Y c
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Figure 3. Efficient communication (from point of view of senders) as a function of

type and communication cost, assuming n = 2, m = 1, supp(γ) = ∆1, s1 = (3/4)s2.

Sender 1 sends a message in the left-hand region Y c
1 delineated by the heavy line, and

sender 2 sends a message in the right-hand region Y c
2 .

efficiency is with respect to only the senders’ payoffs. The profile Y c is defined as follows.
It has no information overload; instead, for γ-a.e. t ∈ T , type t is targeted by the m senders
with the highest valuations, except those whose valuations do not exceed c. This condition
defines a unique strategy profile of the aggregate game because the n senders have distinct
valuations for γ-a.e. t ∈ T (due to Assumption 4.1). Sender j’s strategy in this profile is

Y c
j ≡ {

t ∈ T
∣∣ vj(t) ≥ max {c, vm(t)}} .

The boundaries of Y c are drawn in Figure 3 for the example illustrated in Figure 2, in
which γ is concentrated on ∆1. When the communication cost c is less than or equal to ρ =
s1s2/(s1+s2), sender 2 optimally targets those receivers lying to the right of s1/(s1+s2) in
the figure and sender 1 optimally targets those lying to the left of s1/(s1+s2). Compare this
with the equilibrium shown in Figure 2. When the communication cost is zero, each sender
communicates to all receivers (the dominant strategy) and all receivers are overloaded. As
the communication cost increases from zero, the set of receivers who receive more messages
than they can process decreases as each sender stops communicating to receivers who are
unlikely to be interested in his message; however, there is still more communication than
in Y c for any communication cost less than ρ/2. When the communication cost reaches
ρ/2, the two senders partition the set of receivers efficiently in equilibrium. When the
communication cost is between ρ/2 and ρ, there are multiple equilibria. In any equilibrium,
the two senders still partition the set of receivers and hence receivers are not overloaded.
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Furthermore, Y c is one of the equilibria. However, there exist other inefficient equilibria.
When the communication cost is greater than ρ, Y c is the unique equilibrium.

The two main ideas (familiar from commons games) that this example illustrates are:
(a) there may be too much (but not too little) communication in equilibrium because the
senders’ messages have a negative externality on each other—each sender’s message crowds
the other messages; and (b) the communication cost is a natural rationing mechanism, so
excessive communication arises in equilibrium only when the communication cost is too
low. We summarize these ideas formally in Proposition 5.1. Part 1 says that the total
communication in equilibrium is greater than or equal to the total communication given
Y c. Part 2 says that if senders other than j adopt the strategies Y c

−j , then sender j wants
to target at least the receivers in Y c

j and perhaps others. Part 3 says the strategy profile
that maximizes the senders’ profits is an equilibrium if and only if the communication cost
is high enough.

Proposition 5.1

(1) Let c ≥ 0 and let 〈X1, . . . , Xn〉 be an equilibrium for Γc. Then
∑n

j=1 γXj ≥ ∑n
j=1 γY

c
j .

(2) Let c ≥ 0 and let j ∈ {1, . . . , n}. Then Y c
j ⊂ X∗

j (Y
c
−j ; c).

(3) Y c is an equilibrium for Γc if and only if c ≥ m
m+1

(
ess supt∈T vm+1(t)

)
.

6 Type-dependent mechanisms for allocating attention

If we can allocate attention using a mechanism that treats each receiver type inde-
pendently, then we have a family of independent mechanism design problems. Standard
mechanisms for solving a tragedy of the commons can then be used to support Y c.

For example, suppose the mechanism designer has the same information as the senders.
Then the designer can use a price mechanism P : T → R+ so that the surcharge on targeting
B ⊂ T is

∫
B
P (t) dγ. This defines a game Γ(c,P ) in which each sender’s strategy set is B

and sender j’s payoff, given X ∈ Bn, is sjσj(X)− ∫
Xj

(c+ P (t)) dγ.

To make Y c(t) an equilibrium in the game Γc(t), we need to add a surcharge that is just
large enough to deter the sender with the (m+ 1)th highest valuation of t’s attention from
sending a message, given that m other senders also send messages. This condition holds
when vm+1(t) − c − P (t) ≤ 0, so we define P (t) = max

{
0, vm+1(t)− c

}
. Then Y c is an

equilibrium for Γ(c,P ).

There are two problems with such a mechanism. First, in order to determine P , the post
office or network manager must know the descriptions of the senders and the marketing
data. Second, it is burdensome to implement: to bill the senders it must keep track not
only of the bulk quantity of each sender’s messages but also of the identities or demographic
characteristics of the receivers. With this information and accounting, the network could
support Y c simply by deciding which messages get delivered and to whom.

If we ignore the complexity of the mechanism and consider only the possibility that
the senders’ parameters and marketing data are their private information, then we can use
a simple bidding mechanism to allocate the m channels of each receiver. (Using bids to
allocate attention was suggested, for example, by Denning (1982).) For a typical receiver,
this is a multiunit private-value auction in which each sender wants at most one unit of
the attention. The cost of the transmission channels must be zero so that every sender will
submit a bid for each receiver; hence, assume in the rest of this section that c = 0.
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We consider a uniform-price auction as in Vickrey (1961). Each sender writes a bid on
each message it sends. For each receiver, the network delivers the messages addressed to her
that have the m highest strictly positive bids, choosing randomly in case of a tie. It charges
to each sender whose message is delivered the value of the (m+ 1)th highest bid, or 0 if no
more than m messages are sent to the receiver. Then each sender’s strategy set is the set
of measurable bidding functions from T into R+. It is a dominant strategy for player j to
bid his true valuation vj(t). In this dominant-strategy equilibrium, player j’s messages are
delivered to receivers in Y 0

j and the amount paid by the winners for the attention of type t

is vm+1(t). Recall that when c = 0, vm+1(·) is the receiver-dependent price defined earlier
in this section for supporting Y c.

Presumably receivers could also process the bids at some cost. If the screening in this
bidding game were decentralized in this way, then the outcome would be different because
receivers could use their information about their own interest when screening. A discussion of
screening by receivers and using bidding or other mechanisms to induce truthful structuring
of messages is left for other research. Let us simply note that senders do attach implicit
bids to their messages as signals about the importance of their messages. For example, an
advertiser might offer a free sample or a sweepstakes if the receiver reads an advertisement.

7 Allocating attention through uniform surcharges

Both the type-dependent price mechanism and the bidding mechanism are complex to
design and execute. Therefore, we consider what can be achieved using a surcharge on com-
munication that is the same for all types of receivers. It is no longer possible to decompose
the model into independent games for the different types. We say that a surcharge p ≥ 0
supports Y c if Y c is an equilibrium of the game Γ(c+p).

Propositions 7.1 and 7.2 show that often, but not always, there is no surcharge that
supports Y c when it is not an equilibrium for Γc. The negative result in Proposition 7.1
is because Y c

j contains receivers who are “marginal” for a sender j. That is, for arbitrarily
small ε > 0, there is t ∈ Y c

j such that sjtj − c < ε. Any strictly positive surcharge on
communication for sender j causes that sender to stop targeting some of these receivers.
Thus, a surcharge cannot be used to support Y c. This is illustrated in Figure 4.

(As usual, by the support of γ we mean the smallest closed set B ⊂ T such that γ(B) = 1;
we denote it by supp(γ). It is the intersection of all closed sets that have measure 1 and it
also has measure 1. Furthermore, any non-empty and relatively open subset of supp(γ) has
strictly positive measure.)

Proposition 7.1 Let c ≥ 0. Assume that Y c is not an equilibrium for Γc. There is no
surcharge that supports Y c if either

(1) supp(γ) = T , or

(2) ∆n−1 ⊂ supp(γ) and either m > 1 or sj ≤ c for some j.

When supp(γ) = ∆n−1 and m = 1, there may not be any marginal receivers; so, if small
enough, a surcharge does not induce senders to drop receivers whom they should target in
the efficient profile. The difficulty is that, in order to support Y c, a surcharge must be large
enough to eliminate information overload. Proposition 7.2 delineates the parameter values
for which these two requirements can be reconciled.
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Figure 4. Efficient versus equilibrium communication as a function of type, for n = 2,

m = 1, supp(γ) = [0, 1]2, s1 = s2 = 1, and c = 2/5. In the efficient strategy profile,

sender 1 sends to types in the region and sender 2 sends to types in the region

. In equilibrium, both senders also send a message to types in the region .

This overloading can be eliminated by a surcharge, but then the senders will no longer

target receivers lying close to the lower left-hand blank square.



Van Zandt : Information Overload in a Network of Targeted Communication 14

Proposition 7.2 Assume supp(γ) = ∆n−1 and m = 1. Let c ≥ 0 and suppose that Y c is
not an equilibrium for Γc. Then there is a surcharge that supports Y c if and only if either

(1) n = 2;

(2) n = 3 and s−1
i + s−1

j ≥ s−1
k for all distinct i, j, k; or

(3) n = 4 and s1 = s2 = s3 = s4.

In this case, the surcharge
(∑n

k=1 s
−1
k

)−1 − c supports Y c.

8 Sales and payoffs when the communication cost is low

This section performs a comparative statics exercise: How do the senders’ sales and net
payoffs depend on the cost of communication in a neighborhood of zero? Our answer is
summarized in Proposition 8.1, the most important result in this paper.

This exercise has two interpretations. In the first, we consider the cost of communication
to be a resource cost rather than an artificially imposed surcharge. We ask whether senders
benefit from a fall in the cost of communication when this cost is already low. The answer
is that the fall in the cost of communication actually reduces all senders’ sales; furthermore,
if the senders’ marketing data are sufficiently accurate, it can even reduce all senders’ net
profits even though they save on communication costs. This highlights the role that the
communication cost plays in rationing receivers’ attention.

In the second interpretation, we interpret the cost of communication to be a surcharge,
presuming that the resource cost of communication is negligible. We ask whether senders
benefit from an increase in the surcharge. The answer is that an increase in the surcharge
increases all senders’ sales and hence all senders can benefit if the tax is redistributed
as lump-sum payments; furthermore, if the senders’ marketing data are good enough, all
senders’ net payoffs can increase even if the surcharge is not returned to them. Thus,
although the message of the preceding section is that uniform surcharges on communication
cannot generally support efficient communication strategies, we show in this section that
the optimal uniform surcharge is strictly positive if the resource cost of communication is
low enough.

To quantitatively aggregate sales and payoffs over receiver types, we assume the existence
of certain marginal densities for γ (but we do not simply assume that γ has a density, because
this would preclude supp(γ) = ∆n−1).

Assumption 8.1

(1) For all j ∈ {1, . . . , n}, the marginal distribution of tj has a continuous density fj such
that fj(0) > 0.

(2) For all i, j ∈ {1, . . . , n} such that i 
= j, there is a continuous version of E[ti |tj ] such
that E[ti |tj = 0] > 0.

(3) If n > 2, then there is some k such that, for all i, j ∈ {1, . . . , n} such that i 
= j and
for all t̄ ≥ 0, γ{t ∈ T | ti ≤ t̄ and tj ≤ t̄} ≤ kt̄2.

Proposition 8.1 shows that each sender’s equilibrium sales are strictly increasing in the
cost of communication in a neighborhood of zero and that, if senders have accurate enough
information about the receivers, then payoffs are also strictly increasing in a neighborhood
of zero. Because there may be multiple equilibria, we must characterize lower and upper
bounds on payoffs. A pictorial version is given in Figure 5.



Van Zandt : Information Overload in a Network of Targeted Communication 15

Slope at c = 0: at least
1

n−1

∑
i�=j s

−1
i fi(0)E[tj |ti = 0]

Sales
$

c

Slope at c = 0: at least
sj

n−1

∑
i�=j s

−1
i fi(0)E[tj |ti = 0]− 1

Net payoff
$

c

Figure 5. Total sales and net payoffs for a sender as a function of the communication

cost.

Proposition 8.1 Let j ∈ {1, . . . , n}. For c ≥ 0, let Σ+
j (c) be the maximum sales, let Σ−

j (c)
be the minimum sales, let Π+

j (c) be the maximum net payoff, and let Π−
j (c) be the minimum

net payoff for sender j in any equilibrium of Γc. Then the following statements hold.

(1) Σ+
j , Σ

−
j , Π

+
j , and Π−

j are well-defined continuous functions.

(2) Σ+
j (0) = Σ−

j (0) and Π+
j (0) = Π−

j (0).

(3) There is a continuously differentiable lower bound Bj : R+ → R+ on Σ−
j such that

Bj(0) = Σ−
j (0) and

B′
j(0) =

1
n− 1

∑
i�=j

1
si
fi(0)E[tj |ti = 0] > 0 .

(4) There is a continuously differentiable lower bound B̂j : R+ → R+ on Π−
j such that

B̂j(0) = Π−
j (0) and

B̂′
j(0) = sj

1
n− 1

∑
i�=j

1
si
fi(0)E[tj |ti = 0] − 1 .

Hence, if

1
n− 1

∑
i�=j

1
si
fi(0)E[tj |ti = 0] >

1
sj

,(2)

then B̂′
j(0) > 0.

Proposition 8.1 is illustrated in Figure 6 for n = 2, m = 1, and s1 = s2. The equilibria
are drawn for a small communication cost c > 0. Each regions is labeled according to which
senders target the receivers in that region. If instead c = 0 then both senders target all
receivers. When the cost of communication increases from 0 to c, sender 1 loses some sales
because he stops targeting receivers in the region labeled “2”. However, this loss in sales is
negligible because these receivers are unlikely to be interested in his message anyway. On
the other hand, sender 1’s sales to receivers in the region labeled “1” increase because sender
2 stops targeting these receivers. As long as E[t1 |t2 ≤ 2c/s2 ] > 0, many of these receivers
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Figure 6. An illustration of why an increase in communication costs from 0 raises

sales, for n = 2, m = 1, and s1 = s2. See the explanation following Proposition 8.1.
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are likely to be interested in sender 1’s message, and the mass of receivers in this region is
strictly positive if f2(0) > 0. In this case, the increase in sales is not negligible and is greater
than the previously mentioned decrease in sales. If the net increase in sales produces an
increase in revenues that is greater than the increase in the cost of communication, then the
sender’s payoff also increases.

The more accurate the marketing data, the more mass is concentrated near the vertices
of T and thus the more the senders’ sales and payoffs increase when information overload is
reduced. On the other hand, if the mass is concentrated near the mean of γ, then there is
little benefit to reducing information overload. Although senders know the contents of their
messages, they are good screeners only to the extent that they have information about the
receivers.

9 Receiver welfare and the cost of communication

We have not modeled the receivers’ behavior explicitly, but we can at least say that
a receiver benefits from a recommendation or offer if and only if she accepts it. This
circumstance is also precisely when the sender benefits.

Increasing the cost of communication never leads to a Pareto improvement for receivers.
When a sender restricts his communication, he stops targeting those receivers who, according
to the marketing data, are not likely to be interested in his message. However, because the
marketing data are not perfect, some of these receivers would be interested in the message;
they end up worse off because they do not receive it.

For example, suppose that there is one record club for rock music and another for classical
music. If direct-mail advertising is not free, then the classical club may not target 14-year-
old males because most are interested only in rock music. Yet some of these receivers prefer
classical to rock; they would be better off choosing randomly between the mailings for rock
and classical music rather than only receiving mail from the rock club.

However, the mass of such receivers is small. Most receivers who are no longer targeted
by the classical club are interested in rock music, and they benefit from being sure that the
mail they process is from the rock club. This difference in numbers is more pronounced the
better is the senders’ information about receivers.

Suppose that aggregate receiver welfare is measured in the following way. For each
recommendation or offer j, there is a receiver surplus ωj (measured in dollars or utils)
that represents the benefit to a receiver who adopts the recommendation or offer. Receiver
welfare, given the strategy profile X, is the total receiver surplus and is equal to

W (X) ≡
n∑

j=1

ωjσj(X) .

If the weights ω1, . . . , ωn are proportional to the per-unit payoffs s1, . . . , sn, then receiver
welfare is proportional to the total gross payoffs of the senders. We then say that the interests
of the senders and of the receiver coincide. If the cost of transmission channels is zero, then
the gross payoffs equal the net payoffs and the bidding mechanism discussed in Section 6
supports the strategies that maximize receiver welfare.

Even if the interests of senders and of receivers diverge, receiver welfare can be increased
by raising the cost of communication and thereby reducing information overload. According
to Proposition 8.1, if the cost of communication is initially low and if, for each sender j,
there is a distinct sender i such that fi(0) > 0 and E[tj |ti = 0] > 0, then there is an increase
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in the cost of communication that leads to an increase in the sales of each sender and thus
to an increase in receiver welfare.

On the other hand, if the cost of communication is high, senders may communicate
too little because they alone bear the cost of communication and they do not take receiver
welfare into account. Suppose that the welfare of receivers and the payoffs of senders are
comparable and that we define total welfare (given X) to be

W ′(X) ≡
n∑

j=1

(sj + ωj)σj(X)− cγ(Xj) .

Suppose also that the cost of communication is so high that, although some receivers receive
mail, no receivers are overloaded and some receivers receive fewer than m messages. Then
the strategy profile that maximizes the senders’ total net payoffs is an equilibrium, but total
welfare can be increased by expanding the scope of communication. This would be a reason
to subsidize communication or to shift the cost of communication from senders to receivers
when the cost of communication is high.

10 Remarks

The cost of transmission channels serves to allocate receiver input channels in commu-
nication networks. As these costs fall, the receiver input channels become relatively more
scarce and receivers are overloaded with information. We showed in Sections 8 and 9 that,
in the absence of mechanisms for allocating the attention of receivers, all senders and many
receivers in a network of targeted communication may become worse off when the cost of
transmission channels falls.

This should not discourage efforts to reduce the cost of such channels; rather, it should
encourage the design and adoption of mechanisms for allocating attention. We have studied
how price and bidding mechanisms can increase the efficiency of communication. Our results
suggest, for example, that one way to reduce the burden of sorting through junk mail is
to increase the postal rate for bulk mail. Advertisers will then target consumers more
selectively, which may both increase their sales and benefit the consumers.

Of course, this paper models only a specific class of networks under fairly severe restric-
tions. For example, in our model, the messages were homogeneous. In practice, a mail
network handles personal letters, solicited bulk mail, unsolicited commercial bulk mail, and
unsolicited non-profit bulk mail. Since any correspondence can pass for a personal letter,
the price of bulk mail cannot exceed the first-class rate for personal letters. There is no
reason to increase the cost of sending a personal letter, since the sender has already incurred
a large cost in writing it. There is no reason to increase the cost of solicited communication,
because the receiver has already made an informed decision to allocate his attention to the
message. The inability of the network to differentiate perfectly among these types of mail
constrains the feasibility of mechanisms.

Messages were not structured in our model. The allocation of attention when messages
are structured is particularly interesting when senders can lie or use deceptive structuring,
such as writing “Regional Weather Alert” on an advertisement for roofing or having the
words “pay to the order of” appear in the address window. We need mechanisms that
induce truthful, structured messages. The bidding mechanism discussed in Section 6 is an
example.
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A Demographic data and types

This appendix describes a more primitive model of the receivers and the information
the senders have about them. Because the purpose is to provide intuition rather than a
mathematical framework to be used elsewhere in the paper, we consider a finite model. The
model with a large dispersed population of receivers and types of receivers is meant to be
an approximation of this finite model.

There is a finite set A of receivers. The senders have a common mailing list, which gives
the name and address of each receiver. The mailing list also gives demographic information
such as age, sex, race, place of residence, job title, and magazine subscriptions. Let D be
the finite set of possible demographic characteristics. Let Z: A → D be a function that
specifies the characteristic of each receiver.

The senders also have marketing data, which gives the correlation between these char-
acteristics and the interest in the senders’ messages. Specifically, let Aj ⊂ A be the set of
receivers who are interested in j’s message. For d ∈ D, let

δj(d) ≡ #(Aj ∩ Z−1(d))
#Z−1(d)

.

Here, δj(d) is the proportion of those receivers with demographic characteristic d who are
interested in j’s message. Sender j can estimate δj(d) by sampling the population of receivers
in Z−1(d), such as with marketing surveys.

Let δ(d) = 〈δ1(d), . . . , δn(d)〉 and let T ≡ [0, 1]n be the set of types. Then δ:D → T . Let
M :A → T be the composition δ ◦Z. Receiver a’s type is M(a). The number of receivers of
type t ∈ T is γ(t) ≡ #M−1(t). The proportion of receivers of type 〈t1, . . . , tn〉 interested is
sender j’s message is exactly tj .

If the demographic characteristics are good indicators of the interests of the receivers,
then γ places greater mass near the corners of T . Otherwise, γ places greater mass near
〈#A1/#A, . . . ,#An/#A〉. If each receiver is interested in one and only one message, then
γ puts positive weight only on points in ∆n−1.

B Proofs

Proof of Proposition 4.1. We use the following structure of the game: (a) each player
has a fixed payoff of 0 from not sending a message and (b) each player’s payoff from sending
a message is decreasing in the number of other players who also send a message but does
not depend on the identities of those players.

Let c ≥ 0 and t ∈ T . For j ∈ {1, . . . , n}, let lj ∈ {0, 1, . . . , n} be such that sending a
message is a best response for player j in Γc(t) if and only if at most lj − 1 other players
send messages. Specifically,

lj ≡ max
{
l = 0, 1, . . . , n

∣∣ l = 0 or sj tj(min{1,m/l})− c ≥ 0
}
.

Renumber the players if necessary so that l1 ≥ · · · ≥ ln. Let k be the highest numbered
player j for whom it is optimal to send a message given that players 1, . . . , j − 1 also send
a message. Specifically,

k ≡ max{j = 0, 1, . . . , n | j = 0 or lj ≥ j}

Let x be the strategy profile such that players 1, . . . , k send messages and the remaining
players do not. That is, xj = 1 for j = 1, . . . , k and xj = 0 for j = k + 1, . . . , n. For players
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j = 1, . . . , k, we have lj − 1 ≥ k − 1; hence each finds it optimal to send a message given
that k− 1 other players do so as well. For players j = k+1, . . . , n, we have lj − 1 < k since
k is defined such that lk+1 < k+1; hence each finds it optimal to not send a message given
that k other players do so. Therefore, x is an equilibrium of Γc(t). �

Proof of Proposition 4.2. For all j ∈ {1, . . . , n},

(3)
∫

T

uj

(
X1(t), . . . , Xn(t); c, t

)
dγ(t)

≥
∫

T

uj

(
X1(t), . . . , Xj−1(t),X ′

j(t),Xj+1(t), . . . , Xn(t); c, t
)
dγ(t)

for every X ′
j ∈ B if and only if, for γ-a.e. t ∈ T , Xj(t) solves

max
xj∈{0,1}

uj

(
X1(t), . . . , Xj−1(t), xj ,Xj+1(t), . . . , Xn(t); c, t

)
.

�

Proof of Corollary 4.1. Let c ≥ 0. For all t ∈ T , let Ec(t) ⊂ {0, 1}n be the set of
equilibria for Γc(t). By Proposition 4.1, Ec(t) is non-empty. Since the payoffs in Γc(t) depend
continuously on t, the graph of the correspondence Ec: T → {0, 1}n is closed. Therefore,
Ec has a measurable selection 〈X1(·), . . . ,Xn(·)〉. By Proposition 4.2, 〈X1, . . . , Xn〉 is an
equilibrium. �

Proof of Proposition 4.3. Let j ∈ {1, . . . , n}, let c ≥ 0, and let X−j ≡ 〈X1, . . . , Xj−1,

Xj+1, . . . , Xn〉 ∈ Bn−1 be a profile of strategies for senders other than j. Let X−
j (resp.,

X+
j ) be the set of types t for whom j has a strict (resp., weak) incentive to send a message,

given c and X−j(t). That is,

X−
j ≡ {

t ∈ T
∣∣ sj tj

(
min{1,m/(#X−j(t) + 1)}) > c

}
X+

j ≡ {
t ∈ T

∣∣ sj tj
(
min{1,m/(#X−j(t) + 1)}) ≥ c

}
.

Then X−
j and X+

j are both best responses. Furthermore, for any best response Xj ∈ B,
X−

j ⊂
a.s.

Xj ⊂
a.s.

X+
j (where B ⊂

a.s.
B′ means that γ-a.e. element of B is in B′). The symmetric

difference between X−
j and X+

j is

X+
j \X−

j =
{
t ∈ T

∣∣ sj tj
(
min{1,m/(#X−j(t) + 1)}) = c

}
⊂

n⋃
l=m

{t ∈ T | tj = (l/m)(c/sj)} .

Assumption 4.1 implies that γ{t ∈ T | tj = (l/m)(c/sj)} = 0 for l = m, . . . , n, so γ(X+
j \

X−
j ) = 0. Hence X−

j and X+
j , and any other best response Xj , are equivalent. �

Lemma B.1 and Corollary B.1 are used in the proofs of Propositions 5.1 and 7.2. Recall
that, for l ∈ {1, . . . , n} and t ∈ T , vl(t) is the lth-highest valuation sjtj of t’s attention.

Lemma B.1 Let p ≥ 0 and t ∈ T . Then Y c(t) is an equilibrium of Γc+p(t) if and only if

v#Y c(t)(t)− (c+ p) ≥ 0 ,(4)
m

m+ 1
vm+1(t)− (c+ p) ≤ 0 .(5)



Van Zandt : Information Overload in a Network of Targeted Communication 21

Proof. Equation (4) means that the lowest valuation sender who should send to type t

according to Y c(t) finds it profitable to do so, given that his message will be processed for
sure. Equation (5) means that the highest valuation sender who should not be sending to
type t according to Y c(t) does not find it profitable to do so, given thatm senders are already
sending messages. These two conditions are necessary and sufficient when #Y c(t) = m.
If instead #Y c(t) < m, then vm(t) ≤ c and so equation (5) is trivially satisfied while
equation (4) is necessary and sufficient. �

Corollary B.1 Let t ∈ T . Then Y c(t) is an equilibrium for Γc(t) if and only if m
m+1v

m+1(t) ≤
c.

Proof. Consider Lemma B.1 for p = 0. Equation (4) becomes v#Y c(t)(t)−c ≥ 0; this holds
because of the efficiency of Y c. The necessary and sufficient condition is thus equation (5),
which becomes m

m+1v
m+1(t) ≤ c. �

Proof of Proposition 5.1. Part (1). Let X be an equilibrium if Γc. We show that for
γ-a.e. t ∈ T , #X(t) ≥ #Y c(t). Let t be such that 〈X1(t), . . . , Xn(t)〉 is an equilibrium for
Γc(t); this holds γ-a.e. according to Proposition 4.2. If at least m messages are sent in this
equilibrium (i.e., if #X(t) ≥ m), then #X(t) ≥ #Y c(t) since #Y c(t) ≤ m (receivers are
never overloaded in the efficient strategy profile). Suppose instead that #X(t) < m. Then
each sender’s message is processed for sure, as would also be the case if one more sender
sent a message. Assume that sjtj 
= c for each j, which holds for γ-a.e. t ∈ T . Then sender
j sends a message in this equilibrium if and only if sjtj > c. This is true also for the efficient
strategy profile when this inequality holds for at most m senders. Hence, #X(t) = #Y c(t).

Part (2). Let t ∈ Y c
j . Then (a) #Y c

−j(t) ≤ m−1 and (b) sjtj > c. Condition (a) implies
that j’s message to t would certainly be processed if sent; condition (b) implies that j’s best
response is therefore to send t a message. Hence, t ∈ X∗

j (Y
c
−j ; c).

Part (3). This follows directly from Corollary B.1. �

Proof of Proposition 7.1. Suppose Y c is not an equilibrium of Γc. Let p > 0. There is
a sender j for which sj > c, since otherwise Y c is a profile of empty sets and is an equilibrium
for Γc. Then define

U ≡ {
t ∈ T

∣∣ p > vj(t)− c > 0 and vj(t) > vm+1(t)
}
.(6)

The set U consists of types t ∈ T such that Y c(t) is not an equilibrium of Γc+p(t): the
conditions vj(t) − c > 0 and vj(t) > vm+1(t) mean that t ∈ Y c

j , but the condition vj(t) −
(c+ p) < 0 means that j’s dominant strategy in Γc+p(t) is to not send a message. Observe
that U is open because vj and vm+1 are continuous. Hence, if we can show that U intersects
supp(γ), then γU > 0 and Y c is not an equilibrium of Γc+p.

Since sj > c, there exists a t′j ∈ (0, 1) such that p > sjt
′
j − c > 0. The final step is to

construct, from t′j , an element t ∈ U ∩ supp(γ); we treat separately the two cases stated
in the proposition. (1) Suppose supp(γ) = T . Then

〈
0, . . . , t′j , . . . , 0

〉 ∈ U ∩ supp(γ). (2)
Suppose instead ∆n−1 ⊂ supp(γ). If m > 1, then choose any i 
= j. If instead there is i

such that si ≤ c, then let t be the element of ∆n−1 such that tj = t′j and ti = 1− t′j . Then
t ∈ U ∩∆n−1. �

Proof of Proposition 7.2. Various steps are stated as lemmas. The assumptions (i)
supp(γ) = ∆n−1 and (ii) m = 1 are maintained throughout. Let v2

max = maxt∈∆n−1 v2(t)
and v1

min = mint∈∆n−1 v1(t).
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Lemma B.2 Suppose Y c is not an equilibrium of Γc. Then v1
min ≥ (1/2)v2

max is necessary
and sufficient for there to be some p > 0 such that Y c is an equilibrium of Γc+p.

Proof of Lemma B.2. Suppose Y c is not an equilibrium of Γc. It follows from Corol-
lary B.1 that (1/2)v2(t) > c for some t ∈ ∆n−1 and hence that (1/2)v2

max > c.

Suppose that v1
min ≥ (1/2)v2

max. Let p = (1/2)v2
max−c, so p > 0. Then v1

min−(c+p) ≥ 0
and hence v1(t) − (c + p) ≥ 0 for all t ∈ ∆n−1. Furthermore, (1/2)v2

max − (c + p) = 0 and
hence (1/2)v2(t) − (c + p) ≤ 0 for all t ∈ ∆n−1. It follows from Lemma B.1 that Y c is an
equilibrium of Γc+p.

Suppose instead that v1
min < (1/2)v2

max. We consider two cases: 0 < p < (1/2)v2
max − c

and p ≥ (1/2)v2
max − c. Consider the first case. Let U ≡ {

t ∈ T
∣∣ (1/2)v2(t)− (c+ p) > 0

}
,

which is a set of types for which Y c(t) is not an equilibrium (from Lemma B.1). Since v2

is continuous, U is open; since (1/2)v2
max − (c + p) > 0, we have U ∩ ∆n−1 
= ∅. Hence,

γU > 0 and Y c is not an equilibrium of Γc+p.

Let instead p ≥ (1/2)v2
max−c, so that v1

min−(c+p) < 0. Let U =
{
t ∈ T

∣∣ p > v1(t)− c > 0
}
,

which again is a set of types such that Y c(t) is not an equilibrium of Γc+p(t). (The condition
v1(t)− c > 0 means that a highest valuation sender should send to t according to Y c(t), but
the condition v1(t)− (c+ p) < 0 means that every sender’s dominant strategy in Γc+p(t) is
to not send a message.) Then U ∩∆n−1 
= ∅ because (a) v1 is continuous, (b) v1

min < c+ p,
(c) v2

max > c (hence there is a t ∈ ∆n−1 such that v1(t) > c), and (d) ∆n−1 is connected.
Continuity of v1 also implies that U is open. Hence, γU > 0 and Y c is not an equilibrium
of Γc+p. �

Lemma B.3 Renumber the senders if necessary so that s1 ≥ · · · ≥ sn. Then

v1
min =

(
n∑

k=1

s−1
k

)−1

,(7)

v2
max =

(
s−1
1 + s−1

2

)−1
.(8)

Proof. The t that minimizes v1(t) on ∆n−1 is such that t1s1 = · · · = tnsn, which means
that tj = (1/sj)/

(∑n
k=1 s

−1
k

)
and hence v1(t) = sjtj =

(∑n
k=1 s

−1
k

)−1
.

The t that maximizes v2(t) on ∆n−1 has positive values only for senders 1 and 2, who have
the two highest values of sj ; t is then such that t1s1 = t2s2. Hence, t1 = (1/s1)/(1/s1+1/s2)
and v2(t) =

(
s−1
1 + s−1

2

)−1
. �

Lemma B.4 v1
min ≥ (1/2)v2

max if and only if condition (1), (2), or (3) of Proposition 7.2
holds.

Proof. Renumber the senders if necessary so that s1 ≥ · · · ≥ sn. Then the inequality
v1
min ≥ (1/2)v2

max can be written as

n∑
k=1

1
sk

≤ 2
(

1
s1

+
1
s2

)
,(9)

n∑
k=3

1
sk

≤ 1
s1

+
1
s2

.(10)

If n = 2, then equation (10) imposes no restriction of all. If n = 3, then equation (10)
becomes s−1

3 ≤ s−1
1 + s−1

2 (which in turn implies s−1
i ≤ s−1

j + s−1
k for other permutations
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{i, j, k} of {1, 2, 3}). If n = 4, then equation (10) becomes s−1
3 + s−1

4 ≤ s−1
1 + s−1

2 . Since
s1 ≥ s2 ≥ s3 ≥ s4, this holds if and only if s1 = s2 = s3 = s4.

Suppose n > 4. Then the left-hand side of equation (10) is the sum of three or more
terms, each of which is larger than the two terms summed on the right-hand side. Hence,
the left-hand side is necessarily larger than the right-hand side. �

This concludes the proof of Proposition 7.2. �

Proof of Proposition 8.1. Part (1). First we show that these functions are well-defined;
that is, we show that there is an equilibrium with the highest sales, one with the lowest
sales, one with the highest profit, and one with the lowest profit. Let c ≥ 0. From the proof
of Corollary 4.1, recall that the graph of the equilibrium correspondence Ec: T → {0, 1}n

for the single-receiver games is closed. In particular, for each strategy profile of the single-
receiver games, the set of types for which it is an equilibrium is closed. Consider Σ+

j . We
can rank the single-receiver strategy profiles {0, 1}n so that j’s sales are weakly decreasing
in the ranking for any single receiver game. (Profiles in which j does not send a message get
the lowest ranking; other profiles are ranked inversely by the number of other senders who
send a message.) For each receiver type, we select the highest-ranked equilibrium strategy
profile. This selection is measurable and hence defines an equilibrium for Γc. Sender j’s
sales in this equilibrium are as high as for any other equilibrium. The proofs for Σ−

j , Π
+
j ,

and Π−
j are analogous.

Next we show continuity. Fix c ≥ 0. For δ > 0, let Θδ be the set of types t ∈ T such
that Γc′(t) and Γc(t) have the same equilibria for any c′ such that |c− c′| < δ. Let ε > 0.
We show later that there is a δ > 0 such that γ(T \Θδ) < ε. If |c− c′| < δ, then equilibria
with the highest sales for a sender j in the games Γc and Γc′ can differ only with respect to
types in T \ Θδ; hence,

∣∣Σ+
j (c)− Σ+

j (c
′)

∣∣ < ε. Therefore, Σ+
j is continuous. The proofs for

Σ−
j , Π

+
j , and Π−

j are analogous.

We still have to show the existence of a δ > 0 such that γ(T \Θδ) < ε. Consider a type
t ∈ T such that for all j ∈ {1, . . . , n} and l ∈ {m, . . . , n}, sjtj(m/l) 
= c; Assumption 4.1
implies that the set of such types has full measure. Each of the equilibria in Γc(t) is strict
and persists for a small perturbation of δ. Hence, γ-a.e. t ∈ T belongs to Θδ for some δ > 0.
Using the countable additivity of γ, we then have that γΘδ ↑ γT as δ ↓ 0. Hence, for every
ε > 0 there is some δ > 0 such that γ(T \Θδ) < ε.

Part (2). Game Γ0 has a unique equilibrium in which senders target all receivers. Thus,
Σ+

j (0) = Σ−
j (0) and Π+

j (0) = Π−
j (0).

Part (3). We construct the lower bound B1: R+ → R on Σ−
1 . By a change of indices,

the result applies also to senders j 
= 1.

Let c ∈ R+. Denote by X̃1 the set of types to whom it is a strictly dominant strategy
for sender 1 to send a message; for each sender j 
= 1, denote by X̃j the types to whom j

would not send a message if all other senders do so. That is,

X̃1 = {t ∈ T | (m/n)s1t1 > c} ,
X̂j = {t ∈ T | (m/n)sjtj < c} .

In any equilibrium, player 1 sends a message to at least the types in X̃1 and these types
receive at most n messages. For types in X̃1∩

(⋃n
j=2 X̂j

)
, not all senders can send messages

in equilibrium, so these types receive at most n− 1 messages. Therefore, as a lower bound
on Σ−

1 (c), we have the sales (m/n)
∫

T
t1 dγ obtained when all senders target all receivers,

with two adjustments: types in
⋃

j>1 X̂j are targeted by at most n−1 rather than n senders;
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and types in X̃◦
1 (the complement of X̃1) might not be targeted by any sender 1—yet we

have so far counted sales of up to (m/(n− 1))t1 for such types. We thus have

σ1(X) ≥ m

n

∫
T

t1 dγ +
(

m

n− 1
− m

n

)∫
⋃n

j=2 X̂j

t1 dγ − m

n− 1

∫
X̃◦

1

t1 dγ .

We obtain another lower bound by breaking up the integral
∫⋃n

j=2 X̂j
t1 dγ into one integral

for each X̂j and then subtracting potential overlap, replacing t1 by its upper bound 1 as we
do so:

(11) Σ−
1 (c) ≥ m

n

∫
T

t1 dγ +
(

m

n− 1
− m

n

) n∑
j=2

∫
X̂j

t1 dγ

−
(

m

n− 1
− m

n

)


n∑
j=2

∑
i≥2
i�=j

γ(X̂j ∩ X̂i)


 − m

n− 1

∫
X̃◦

1

t1 dγ .

The double summation does not appear if n = 2. Otherwise, observe that X̂j ∩ X̂i =
{t ∈ T | ti < (cn)/(msi) & tj < (cn)/(msj)}. Therefore, according to Assumption 8.1, γ(X̂j∩
X̂i) ≤ k̄c2, where k̄ = k(n/(mmax{sj | j 
= 1}))2 and k is the constant given in part 3 of As-
sumption 8.1. We rewrite the integrals in equation (11) using the notation and assumptions
in parts 1 and 2 of Assumption 8.1. For example, since X̂j = {t ∈ T | (m/n)sjtj < c}, we
have

∫
X̂j

t1 dγ =
∫ cn/msj

0
E[t1 |tj ]fj(tj) dtj . We thereby obtain the following lower bound

on Σ−
1 (c):

B1(c) ≡ m

n
E[t1] +

(
m

n− 1
− m

n

) n∑
j=2

∫ cn/msj

0

E[t1 |tj ]fj(tj) dtj

−
(

m

n− 1
− m

n

)
(n− 1)(n− 2)k̄c2 − m

n− 1

∫ cn/ms1

0

t1f1(t1) dt1 .

Note that B1 is continuously differentiable. In particular, tj �→ E[t1 |tj ]fj(tj) is continu-
ous because (a) fj is continuous and (b) E[t1 |tj ] is continuous when fj > 0. The derivative
of B1 evaluated at c = 0 is

d

dc
B1(c)

∣∣∣∣
c=0

=
(

m

n− 1
− m

n

) n∑
j=2

n

msj
E[t1 |tj = cn/msj ]fj(cn/msj)

∣∣∣∣∣∣
c=0

=
1

n− 1

n∑
j=2

s−1
j E[t1 |tj = 0]fj(0) .

This derivative is strictly positive if there is an i 
= j such that fi(0) > 0 and E[tj |ti = 0] >
0, so that B1(·) is strictly increasing in a neighborhood of zero.

Finally, observe that B1(0) = Σ−
1 (0). Given the properties of Σ+

1 and Σ−
1 , these must

be strictly increasing in a neighborhood of zero if B1 is.

Part (4). Let B̂1(c) = s1B1(c) − c. Then B̂1(c) is a lower bound on Π−
1 because B1(c)

is a lower bound on Σ−
1 (c). The function B̂1(·) is continuously differentiable and

d

dc
B̂1(c)

∣∣∣∣
c=0

= s1
1

n− 1

n∑
j=2

s−1
j E[t1 |tj = 0]fj(0)− 1 .
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Equation (2) implies that d
dc B̂1(·)

∣∣∣
c=0

> 0, so that B̂1(·) is also strictly increasing in a
neighborhood of zero.

We also see that B̂1(0) = Π−
1 (0). Given the properties of Π+

1 and Π−
1 , these must be

strictly increasing in a neighborhood of zero if B̂1 is. �
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